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Abstract—Large cloud service providers have built an increasing number of geo-distributed data centers (DCs) connected by Wide
Area Networks (WANs). These DC-WANs carry both high-priority traffic from interactive services and low-priority traffic from bulk
transfers. Given that a DC-WAN is an expensive resource, providers often manage it via traffic engineering algorithms that rely on
accurate predictions of inter-DC high-priority (delay-sensitive) traffic. In this paper, we perform a large-scale measurement study of
high-priority inter-DC traffic from Baidu. We measure how inter-DC traffic varies across their global DC-WAN and show that most
existing traffic prediction methods either cannot capture the complex traffic dynamics or overlook traffic interrelations among DCs.
Building on our measurements, we propose the Interrelated-Temporal Graph Convolutional Network (IntegNet) model for inter-DC
traffic prediction. In contrast to prior efforts, our model exploits both temporal traffic patterns and inferred co-dependencies between DC
pairs. IntegNet forecasts the capacity needed for high-priority traffic demands by accounting for the balance between resource
provisioning (i.e., allocating resources exceeding actual demand) and QoS losses (i.e., allocating fewer resources than actual
demand). Our experiments show that IntegNet can keep a very limited QoS loss, while also reducing overprovisioning by up to 42.1%
compared to the state-of-the-art and up to 66.2% compared to the traditional method used in DC-WAN traffic engineering.
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1 INTRODUCTION

LARGE cloud service providers often use tens of ge-
ographically distributed data centers (DCs), that are

interconnected by a wide-area network (WAN), to host
diverse services. Services are replicated across these DCs
to process users’ requests locally for better Quality-of-
Experience (QoE). As such, large volumes of data are trans-
ferred among DCs for synchronization and backup pur-
poses. These data center wide-areas networks (DC-WANs)
also carry delay-sensitive services that have stringent Qual-
ity of Service (QoS) requirements, e.g., responding to user
web requests [1]. Delay-sensitive traffic is usually classified
as high-priority, while bulk transfers receive a best-effort
service using the remaining bandwidth resources. A DC-
WAN, however, is an expensive resource, and providers
have to optimize the bandwidth allocation with traffic en-
gineering (TE) solutions to make full use of the network.

In recent years, there have been several DC-WAN TE
solutions based on software-defined networking (SDN) [2],
[3] or fine-grained policy enforcement [4], [5]. These meth-
ods tend to rely on predictions of inter-DC traffic, especially
delay-intolerant high-priority traffic for interactive services.
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These predictions are used to inform TE and bandwidth al-
location in DC-WANs. Most notably, they involve reserving
a certain portion of capacity to guarantee the QoS for high-
priority traffic. The remaining capacity is then allocated to
low-priority traffic for network data transfers across geo-
distributed data centers [6], [7], [8], [9], [10], [11], [12].

Accurate inter-DC traffic prediction has many chal-
lenges. As described in previous work [13], inter-DC traffic
is harder to predict than many other types of network traffic.
This is because it is dominated by large applications that
contribute to complicated aggregated traffic patterns. Exist-
ing DC-WAN traffic prediction methods often use statistical
models, e.g., moving average (MA), exponentially weighted
moving average (EWMA), and Auto-Regressive Integrated
Moving Average (ARIMA). However, these traditional lin-
ear models are not able to characterize high-dimensional
and non-linear temporal patterns [14], and thus yield low
accuracy. Despite this, TE solutions, such as SWAN [2] and
BwE [4], assume the ability to accurately predict traffic.
Although these studies utilize real inter-DC traffic traces for
evaluation, the WAN traffic patterns of large-scale produc-
tion DCs remain poorly understood. To accurately predict
traffic, neural networks (e.g., LSTM, ANN) have also been
used to capture the non-linear temporal dynamics for link
utilization [13]. Nevertheless, applying these without an un-
derstanding of inter-DC traffic patterns will not yield high
accuracy. For instance, we later show that information about
inter-dependencies between DC pairs can improve predic-
tion accuracy (which was largely ignored by prior studies).
In addition, existing traffic prediction methods used in DC-
WAN TE are designed to guarantee enough capacity for
high-priority traffic by simply inflating the predicted traffic
demands according to historical estimation errors. A large
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Fig. 1: Overview of the role of our work in DC-WAN traffic
engineering.

prediction error can lead to traffic overprovisioning, which
in turn lowers the utilization of WAN bandwidth resources.
Thus, the reserved capacity should be forecast by accounting
for a balance between the QoS loss of high-priority services
and resource overprovisioning.

To address these challenges, in this paper, we focus on
understanding the patterns of high-priority inter-DC traffic
and develop techniques to forecast the capacity required
by high-priority traffic of individual DC pairs, for traffic
engineering purposes. Figure 1 outlines the role of our
work in DC-WAN TE. We argue that accurately estimating
input high-priority inter-DC traffic requires a deeper un-
derstanding of traffic dynamic patterns in large-scale DC
networks. Motivated by this, we offer the first measurement
study of high-priority DC-WAN traffic patterns in a large-
scale DC network with respect to temporal and interrelated
traffic pattern analysis. Based on our findings, we propose a
learning-based traffic prediction method (i.e., IntegNet) that
makes use of input features to provide the output capacity
forecast. During the model training phase, the output is
used to evaluate a loss function that quantifies the prediction
error, which is designed to account for the cost balance
between resource overprovisioning and QoS losses of high-
priority services. Finally, the forecast capacity is fed to DC-
WAN traffic engineering, in which the forecast capacity is re-
served for high-priority services and the remaining capacity
is allocated to optimize bulk transfers.

To this end, we gather Netflow data from the data center
network of Baidu, a large-scale web and cloud provider
with tens of geo-distributed DCs serving millions of users
each day. Its geo-distributed DCs, with a complex service
mix, make it an interesting exemplar for the examination
of traffic patterns across modern DCs. Using this Netflow
data, we first perform a large-scale analysis of high-priority
traffic patterns in Baidu’s DC-WAN. As an extension to
our previous work [15], here we focus on exploring the
temporal traffic patterns of individual DC pairs and how
these patterns correlate with each other across DC pairs. We
find that the aggregated traffic (which is relatively stable)
provides limited insight into the patterns of individual pairs
of DCs (which tend to exhibit far greater variability). We
then reveal that the various traffic dynamics of different
services lead to these complicated temporal patterns. We
also explore how this variability correlates across DCs, and
find that topological and service dependencies between DC
pairs predictably impact these patterns.

Motivated by the above observations, we choose to uti-
lize neural network models to capture the high-dimensional
temporal traffic patterns. We also propose to organize the
network traffic between DCs as a graph structure based on

the topology- and service-level relationships and exploit a
graph convolution to directly extract the traffic correlation
features. These two components lead to our design of the
Interrelated-Temporal Graph Convolutional Networks (In-
tegNet) model for predicting the capacity needed for high-
priority inter-DC traffic demands. In contrast to prior works,
IntegNet exploits both temporal features and the informa-
tion about the topological/service relationships between DC
pairs. Besides, we propose a novel customized loss function
to evaluate the prediction accuracy, which is meaningful for
balancing the QoS losses and resource overprovisioning.

We evaluate IntegNet using the Netflow traffic data col-
lected in Baidu’s DC-WAN. The experimental results show
that our model outperforms other state-of-the-art methods
in balancing underestimation (which leads to QoS losses for
high-priority services) and overestimation (which leads to
resource overprovisioning). IntegNet reduces the overprovi-
sioning by 66.2%, 57.6%, 42.1%, 41.6% compared with MA,
EWMA, LSTM, and GAT, respectively. This is achieved with
limited QoS loss for under 0.3% of the total inter-DC traffic.
We also show that the delay for computing predictions is
about 10−3 seconds on a mid-range server, which is practical
for DC-WAN traffic engineering. Our findings have key
implications for improving DC-WAN traffic engineering. To
summarize, the main contributions of this paper are:
• Inter-DC Traffic Analysis (§5): By analyzing Netflow

data of inter-DC traffic collected in Baidu’s DC-WAN,
we find that the stability of high-priority traffic varies
heavily across DC pairs. The various traffic dynamics
of different services lead to this complicated temporal
pattern. We also observe correlations among the traffic
dynamics between DC pairs. In particular, the most
strongly-correlated DC pairs have topological relation-
ships, or host similar services.

• Inter-DC Traffic Prediction (§6): Exploiting the above
findings, we design the IntegNet model for predicting
high-priority inter-DC traffic demands. IntegNet com-
bines a Temporal Convolution layer (TCN) to capture
temporal traffic dependencies, and an Interrelated Graph
Convolution (GCN) layer to capture inter-DC traffic
correlations. Based on these features, IntegNet generates
predicted traffic rates between DC pairs for the next time
segment. We also propose a customized loss function
to quantify the prediction error, which is designed to
account for the cost balance between overestimation and
underestimation.

• Evaluation (§7): We conduct comprehensive experi-
ments to evaluate IntegNet using data from Baidu’s
DC-WAN. Our results demonstrate the effectiveness of
the IntegNet model in improving the inter-DC traffic
prediction performance with respect to both resource
provisioning and QoS losses. IntegNet can be integrated
with popular DC-WAN traffic engineering solutions for
online traffic demand prediction.
The rest of this paper is organized as follows. §2 intro-

duces the related work. §3 and §4 describes the background
and data collection methodology. §5 measures the high-
priority WAN traffic characteristics with respect to temporal
dynamics among data centers. §6 describes the design of
our Interrelated-Temporal Graph Convolutional Network
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model. §7 evaluates IntegNet. Finally, §8 concludes the
paper.

2 RELATED WORK

NetFlow-based Measurements of DCNs. NetFlow is a
widely used monitoring tool with a variety of applications
in data center networks. Specifically, network operators and
managers rely on sampled NetFlow data to study traffic
characteristics, e.g., traffic demand, communication patterns,
and traffic stability [16], [17], [18]. These studies provide net-
work operators with important insights for network fabric
design and service deployment. There are also several traffic
engineering solutions in DC-WANs that utilize NetFlow
data to evaluate the effectiveness of proposed methods [2],
[5], [12]. In this paper, we use sampled NetFlow data for the
analysis of variation of DC-WAN traffic.

DC-WAN Traffic Analysis. There have been a range of
measurement studies reporting the nature of traffic within
DCs, including from Microsoft [16], [19], [20], [21], and
Facebook data centers [18]. Based on various data sources
(i.e., NetFlow, SNMP, socket-level logs and packet traces)
these measurements primarily focus on traffic characteristics
inside DCs in terms of traffic exchange, flow characteristics
and packet arrival patterns. In contrast, our work focuses
on inter-DC traffic. In this regard, our work is closely
related to [17], which studied the inter-DC traffic in Ya-
hoo! However, their analysis focuses on analyzing the IP
communication patterns and correlations with client traffic
characteristics. Further, their scale (5 DCs) is much smaller
than ours, and the service mix is much simpler.

In our previous work [15], we examined WAN traffic
characteristics with NetFlow and SNMP data in Baidu’s
DCN from the perspectives of traffic demand, traffic com-
munication among DCs, and the traffic patterns of diverse
services. Specifically, we revealed high predictability of
overall traffic demands, as well as disparity of WAN traffic
among services. These observations motivate the need for
more accurate estimation methods for DC-WAN traffic engi-
neering at the service level. This paper gives further insights
into the various traffic dynamic patterns of individual DC
pairs and how this variability correlates across DC pairs.

DC-WAN Traffic Prediction. Many traffic engineering
methods in DC-WANs have been designed to estimate
high-priority traffic for efficient bandwidth allocation. These
works usually rely on traditional statistical methods such as
MA [2], [4], [5] and EWMA [7] to perform traffic prediction.
However, we later show that these linear models are not
able to capture the complex dynamics of inter-DC traffic,
resulting in poor estimation accuracy. Li et al. [13] com-
bine wavelet transformation with artificial neural network
(ANN) to improve prediction accuracy of the aggregated
WAN traffic for a specific data center. However, as discussed
in §5, the aggregated traffic pattern differs radically from
individual pairs of DCs. In contrast, our solution focuses on
accurate traffic estimation for individual DC pairs.

ISP Network Traffic Prediction. There is also work in
traffic prediction for ISP networks. These methods vary
from statistical time-series methods to ANN-based models.
Yoo et al. [22] developed a prediction model with Seasonal

Decomposition of Time Series by Loss (STL) and ARIMA
on SNMP data. Some works [23], [24], [25], [26], [27], [28]
leverage RNN models (e.g., LSTM, GRU) to capture tem-
poral dependencies of traffic matrices for traffic prediction.
Bega et al. designed DeepCog [29] by utilizing 3D-CNN
models to capture both temporal and spatial correlations
of traffic demands of network slices for capacity forecasting
in 5G networks. Other works propose hybrid deep learning
models for spatiotemporal predictions [30], [31], [32], [33].
They utilize CNN-based or autoencoder-based models for
spatial modeling and use LSTM-based models for tempo-
ral modeling. These works capture the spatial correlations
among traffic flows based on geographical information or
from the network topology perspective.

In contrast, our IntegNet model captures not only the
temporal dependencies, but also the topological and service-
level correlation between DC pairs. Such a correlation may
not hold in an ISP network (e.g., ISP links may exhibit
limited service-level similarity). We also note that the use
of GCN-based models (as opposed to CNN and RNN) has
also proved effectiveness in other domains [34], [35], [36],
[37]. We contribute to this wider field of literature, showing
the efficacy of GCN solutions for traffic prediction.

Bandwidth Provisioning. traffic engineering solutions in
DCNs [2], [4], [10] reserve bandwidth for the high-priority
traffic by inflating the predicted demand with an empir-
ical prediction error. In doing so, they aim at providing
sufficient bandwidth for high-priority traffic. However, the
poor prediction accuracy with blind inflation will lead to
bandwidth overprovisioning, and lower the utilization of
WAN links. Some studies have noticed the importance of
balancing the resource overprovisioning and possible QoS
losses due to resource underprovisioning. Krithikaivasan et
al. introduce a forecast cost function [38] that is defined by
allowing a different penalty associated with the under- and
over-forecast for ISP network traffic prediction. Bega et al.
design a loss function [29] that is tailored to account for 5G
operators’ desired balance between resource overprovision-
ing and service request violations, so as to minimize the
economic cost. Inspired by these studies, the loss function
in our model also accounts for the cost balance between
overestimation and underestimation.

3 BACKGROUND AND MOTIVATION

In this section, we first introduce key concepts on DC-
WAN traffic engineering. We then briefly describe the large-
scale DC network that we examine, and the diverse services
hosting in DCs.

3.1 DC-WAN Traffic Engineering
DC-WANs carry both high-priority and low-priority traffic.
Typically, high-priority traffic is driven by Internet-facing re-
quests (e.g., web search queries) and thus is delay-sensitive.
Low-priority traffic is usually from batch computing ser-
vices (e.g., Hadoop, Spark) and thus can tolerate delays
within pre-assigned deadlines. The WAN that interconnects
DCs is an expensive resource. Most DC-WAN traffic en-
gineering solutions aim at making full use of bandwidth
resources, guaranteeing preferential provision for high-
priority traffic [2], [3], [4], [5]. To this end, DC-WAN traffic
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Fig. 2: Top: observed and predicted high-priority traffic de-
mands of two example DC pairs at 5-minute intervals during
two days; using traditional MA-based prediction method [2],
[4], [10]. Bottom: overprovisioning (positive) and unserviced
(negative) traffic demands over time. The traffic volume is
normalized by the maximum volume.

engineering methods usually estimate traffic demands of
high-priority services and then reserve this capacity to guar-
antee the service. The remaining capacity is then allocated
to low-priority traffic.

In practice, we observe that about 38% of inter-DC traf-
fic is generated from high-priority services, which exhibit
peaks and valleys traffic patterns (as shown in Figure 2).
This proportion is higher than the range of 5%-20% ob-
served in prior works [2], [3], [10]. As such, the capacity
forecast of high-priority inter-DC traffic is of great impor-
tance for DC-WAN traffic engineering. Accurate predictions
can save capacity resources for low-priority traffic while
guaranteeing the quality of high-priority services (QoS). The
reserved capacity is required to account for the balance
between the loss of QoS (i.e., allocating fewer resources
than the actual demand) and resource overprovisioning (i.e.,
allocating resources exceeding actual demand).

Existing methods used by Software Defined WANs (SD-
WANs) often rely on the average or median traffic volume in
the last few time slots to estimate the high-priority services’
demand [2], [5]. However, as we will show in this paper,
high-priority traffic in some WAN links may experience
significant variations over short time periods, resulting in a
large estimation error. In order to guarantee enough capac-
ity for high-priority traffic demands, a popular solution to
compensate is setting aside “headroom” [2], [4], [10], where
the size of the headroom is dependent on the empirical
prediction error. A larger prediction error will require more
headroom (i.e., more resource overprovisioning), which in
turn leaves less room for low-priority traffic, lowers the
utilization of WAN links and degrades the performance
for bulk transfers. As exemplified in Figure 2, this solution
leads to large resource overprovisioning over most of the
time. The lower graphs highlight significant wasteful over-
provisioning (using mean average predictions). Despite this,
the quality of high-priority services still meets losses when
traffic surges occur.

Therefore, the focus of our work is to precisely predict
the capacity required by high-priority inter-DC traffic. Our
goals are two-fold: (1)To guarantee the QoS of high-priority
services with little unserviced traffic demands; and (2)To re-
duce traffic overprovisioning to save bandwidth resources.

3.2 Baidu’s Data Center Network
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Fig. 3: Overview of Baidu’s data center network.

Our paper is underpinned by a large-scale dataset col-
lected across Baidu’s DC network (DCN). This DCN hosts
services, ranging from traditional web search to emerging
vehicle auto-driving. Parts of the services (e.g., web search,
location-based services) directly serve tens of millions of
users every day, while others (e.g., Hadoop) act as the
infrastructure to support Internet-facing services. The DC
network is built on an infrastructure of DCs connected
through high bandwidth (multiple Tbps) wide area net-
works (WANs). Figure 3 depicts the simplified topology
of Baidu’s DCN. DCs connect to the WAN via the core
switches, and form a full-meshed core network at the over-
lay layer. The traffic that goes out of a DC flows through
xDC (cross-DC) switches to the core switches, while the
traffic destined to servers within clusters is transferred
via DC switches. Each cluster either employs a typical 4-
post structure or a Spine-Leaf Clos design. Overall, Baidu’s
DCN topology is similar to others (e.g., Facebook [18],
Microsoft [16]). However, Baidu’s DCN hosts many ser-
vices that have not been reported in other DC networks,
such as emerging distributed AI and vehicle auto-driving
services [39]. This makes it an interesting exemplar for
measuring modern DC-WAN traffic patterns.

There are over 1K services hosted in Baidu’s DCN. For
context, these services can be divided into 10 categories
based on their functionalities: Web (search engine), Com-
puting (batch computing), Analytics (news feeds, ads and
user behavior analysis), DB (database), Cloud (cloud storage
and computing), AI (distributed machine learning), File Sys-
tem (distributed file systems), Map (location-based services),
Security (security management) and Others. We argue that
this variety of commercial services provides the research
community with a unique opportunity to understand the
traffic patterns of modern DC-WAN.

4 DATA COLLECTION METHODOLOGY

We have gathered 18 days of Netflow data from Baidu’s
DCN. This section provides a brief overview of the data
collection methodology.

4.1 Traffic Data Collection
We rely on Cisco’s Netflow service to gather traffic data
from Baidu’s DCN. It provides access to summarized IP
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flow records within the networks [40]. Figure 4 summarizes
the Netflow data collection. We collect Netflow data from all
the core switches in Figure 3 across Baidu’s entire DCN for
our analysis of inter-DC traffic. This results in an average of
over 10 TB of raw Netflow data each day.

The active timeout for NetFlow on all the core switches
is set to 1 minute.1 Each flow records the aggregated flow
information obtained from the sampled packet headers with
1:1024 sampling rate; a log contains the source and desti-
nation IP addresses, transport-layer port numbers and IP
protocol. The collected flow data, along with other metadata
such as the machines’ IP addresses and capture timestamps,
are first processed by Netflow decoders, which convert each
log into a CSV or JSON object.2 The parsed data is then
streamed to Netflow integrators using a distributed subscrib-
ing and streaming system.

The Netflow integrators aggregate the traffic flow data
at one minute intervals and further annotate records with
additional information such as the DC, service and QoS
information (indicating the priority of the flow) correspond-
ing to each flow log. The DC information is identified via
querying a directory that maintains the mapping between IP
addresses and DCs. Since flows that transferred across dif-
ferent core switches are not repeatedly counted, we merge
flows that belong to the same DC pair to identify inter-DC
traffic. The service information is identified via querying a
directory that keeps the mapping between IP addresses and
port numbers to services. The priority of the flow is marked
by the end server in each packet using the DSCP field, which
is identified as high-priority and low-priority according to the
sensitivity to loss and delay.

Netflow integrators then feed data into Apache Doris, a fast
analytics database [41] and Baidu CFS, a bespoke cloud file
system built for data storage. For each core switch, Netflow
Decoders and Netflow Integrators are distributed locally in
multiple DCs that connect to it for processing the collected
flow data (i.e., local processing). The data analytics and stor-
age systems (i.e., Apache Doris and Baidu CFS) are centrally
deployed in a set of DCs for processing the global flow
data from all the core switches across the DCN (i.e., global
processing). Note that, during the collection of the data used
in this paper, we did not notice any abnormalities in our
Netflow data collection system.

4.2 Dataset Summary
We collected the Netflow data for a period of 18 days. In
this paper, we focus on forecasting capacity demands of

1. Flows longer than 1 minute are stored across multiple records.
2. Incorrectly formatted records are discarded. The percentage of

failed records is around 0.00001%.

high-priority inter-DC traffic (due to its importance in traf-
fic engineering solutions). Thus, we then extract all traffic
labeled high-priority by the DSCP field.

We aggregate the high-priority inter-DC traffic into 5-
minute intervals (5,184 inter-DC traffic matrices in total).3

We find a skewed traffic distribution, where 25% of DC pairs
contribute 99% of high-priority traffic. Moreover, the set of
heavy hitters that contribute 99% of traffic remains the same
over time. Besides, among the remaining DC pairs account-
ing for the last 1% of high-priority traffic, the average traffic
volume is below 100Mbps. The small traffic volume of these
DC pairs has little impact on resource capacity and does
not require a sophisticated forecast. A reserved capacity
can be directly given based on the historical traffic values.
We therefore focus on the traffic of 330 heavily loaded DC
pairs, covering 30 DCs. Note, we also analyze the service
composition in high-priority traffic of these heavily loaded
DC pairs. We find that the traffic distribution across different
types of services remains relatively stable over time.

5 INTER-DC TRAFFIC DYNAMICS ANALYSIS

In this section, we provide an analysis of high-priority WAN
traffic dynamic characteristics in Baidu’s DCN. We first
analyze the overall temporal dynamics of inter-DC traffic
(§5.1), and then look into the dynamic patterns at the service
level (§5.2). We further investigate the correlation of traffic
dynamics among DC pairs (§5.3). Our analysis sheds light
on the potential of inter-DC traffic prediction, which we later
use to underpin §6.

5.1 Overview of Traffic Dynamics

Inter-DC Traffic Dynamics. We first examine the variations
in aggregated high-priority traffic T (t) by computing its
change rate, rAgg., as:

rAgg.(t) =
|T (t+ τ)− T (t)|

T (t)
(1)

Figure 5 (upper plot) presents the variation of the aggre-
gated traffic (normalized to the maximum traffic volume)
at 5-minute intervals during three days. We see a clear
diurnal trend across days, and also relatively stable patterns
over short time periods (e.g., 5-minute intervals). This is
evidenced by the low change rate (rAgg.) of the aggregated
traffic (about 1.1% in average and 0.8% in median).

To further reveal the traffic dynamics of individual DC
pairs, for each time period, we represent the high-priority
traffic between DCs as a traffic matrix (TM). We then ex-
amine the variation of the inter-DC traffic matrix over time.
Specifically, for a time point t, the change rate rTM of the
traffic matrix TM is computed as [20]:

rTM (t) =
|TM(t+ τ)− TM(t)|

|TM(t)|
(2)

where the numerator is the absolute sum of the entry wide
differences of the two matrices at adjacent time intervals,
and the denominator is the absolute sum of entries in

3. Traffic engineering in a DC-WAN is usually scheduled at the
granularity of 5 minutes.
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Fig. 5: Change rate of the aggregated high-priority traffic and
the traffic matrix between DCs at 5-minute intervals during
three days.

TM(t), which equals to the aggregated traffic T (t). Note
that even if the aggregated traffic remains unchanged (i.e.,
rAgg. = 0), the exchanged traffic patterns among DCs
(measured by rTM ) may change greatly. To understand
the variations in traffic exchanged among DCs, Figure 5
(lower) plots the rTM over time. We observe that the traffic
exchanged across DCs is more dynamic than the aggregate
traffic for most of the time intervals (about 2.5% in average
and 2.2% in median). In particular, the inter-DC traffic
shows variations during certain time intervals, even when
the aggregated traffic remains almost unchanged (i.e., rAgg.

close to 0).
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Fig. 6: The distribution of the average change rate of the high-
priority traffic for top n% of DC pairs (sorted by traffic volume
in descending order).

The above analysis indicates that, although overall inter-
DC traffic is relatively stable over time, the traffic exchanged
amongst DCs varies significantly. The change rate of the
traffic matrix TM may be dominated by those DC pairs with
large traffic volumes. Thus, we further investigate the high-
priority traffic dynamics of each DC pair and observe a wide
difference in dynamic patterns. 50% of the least dynamic
DC pairs have an average change rate of below 3.5%, while
another 25% (10% resp.) of the most dynamic pairs have an
average change rate of above 6.1% (10.5% resp.). We then
compare the traffic dynamics of DC pairs with different
traffic volumes in Figure 6. We see that the DC pairs with
larger traffic volumes show a remarkably stable traffic pat-
tern. Specifically, the average change rates of the top 10%
of DC pairs (n = 10) are lower than 5%. As more DC pairs
with smaller traffic volumes are included, the fraction of
pairs with stable traffic patterns decreases significantly. This
finding indicates that accurate traffic predictions for the DC
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Fig. 7: High-priority traffic stability with three different change
rate thresholds. (a) Distr. of the proportion of DC pairs with
insignificant traffic change; (b) Distr. of the run-length of in-
significant traffic change for individual DC pairs.

pairs with small traffic volumes are particularly challenging.

Per-DC Pair Traffic Stability. We next explore how the
stability of traffic exchanged between DCs changes over
time and evaluate the potential of high-priority inter-DC
traffic prediction on a 5-minute time scale. To this end,
we first compute the proportion of DC pairs that have no
significant change in traffic volume at each time interval.
For this, we extract the pairs that have a change rate below
a predefined threshold, thr. Figure 7a presents the Comple-
mentary Cumulative Distribution Function (CCDF), where
we experiment with three values of thr: 5%, 10% and 15%.

We see that over 65% of DC pairs remain stable (with
thr = 5%) for 80% of 5-minute intervals. This propor-
tion goes beyond 90%, if thr = 15%. This confirms the
potential to estimate high-priority traffic demands based
on historical data. We thus analyze the persistence of this
stability. Specifically, we examine the mean “run-length”
of the time sequence: the length of continuous 5-minute
intervals where the change in traffic for individual DC pairs
remains insignificant (i.e., below thr). Figure 7b shows the
distribution of mean run-length across individual DC pairs.
We observe that only about 30% of the DC pairs remain
stable for more than ten time intervals on average when
thr = 5%. This percentage goes up to 70% when using
thr = 10%. Only if we can tolerate 15% of change (i.e.,
thr = 15%), do 80% of the DC pairs remain stable for over
ten time intervals. This implies the difficulty for traditional
moving average prediction methods to capture the non-
linear dynamic temporal patterns of high-priority inter-DC
traffic.

Observation 1: While the aggregated high-priority traf-
fic in the DC-WAN remains relatively stable, the traffic
of individual DC pairs exhibits greater instability. These
variations may challenge existing traffic estimation
methods (used in current TE solutions).

5.2 Service-level Traffic Dynamics

As mentioned in §3, Baidu’s DCN consists of various types
of services, which contribute to complicated aggregate traf-
fic patterns. We thus explore the traffic dynamics at a service
level.

In our previous work [15], we discovered different di-
urnal and dynamic patterns of high-priority WAN traffic



7

W
eb

Com
pu

tin
g

Ana
lyt

ics DB
Clou

d AI

File
Sys

tem Map

Sec
uri

ty
Tota

l
0

50

100

150

200

M
ea

n 
ch

an
ge

 ra
te

 (%
)

Fig. 8: The distribution of the average change rate of the high-
priority traffic across different types of services.

among services. Here, we further inspect the traffic dynam-
ics of each DC pair across different types of services. Figure 8
depicts the change rate distribution. We see dramatically
different traffic dynamics across service types. Compared
to Web, DB and AI services, the FileSystem, Map and
Security services exhibit significantly higher dynamics in
high-priority inter-DC traffic. This is possibly because of
their unpredictable usage patterns and the relatively low
traffic volume.
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Fig. 9: High-priority traffic stability across different types of
services with the change rate threshold of 10%.

The traffic exchanged between DCs may be dominated
by a single service or a group of different services, which
in turn may lead to complicated traffic patterns. We next
examine how the stability of high-priority traffic exchanged
between DCs varies across services. Figure 9 plots the results
with a change rate threshold of 10% (i.e., thr = 10%). The

stability indeed varies greatly across services. First, the Web,
DB and AI services exhibit very high stability for most DC
pairs: for 80% of 5-minute intervals, the traffic change of
over 65% of DC pairs remains stable. In contrast, the Map
and Cloud services exhibit less stability with the traffic of
under half of DC pairs remaining stable for 80% of 5-minute
intervals. Second, we see that Web services have the longest
run-length of stability. 50% of the DC pairs remain stable
for over ten time intervals. The run-length for the Map and
Cloud services is much shorter though. Only about 20% of
DC pairs remain stable for over ten time intervals.

Observation 2: Different services exhibit various traffic
dynamics, which lead to complicated temporal char-
acteristics of high-priority traffic. This makes traffic
prediction challenging.

5.3 Understanding Correlations among DC Pairs
The above observations imply that relying on simple mov-
ing average predictions [2], [5] may yield poor results for TE
solutions, particularly as individual DC pairs often exhibit
markedly different levels of stability and host a variety of
services with different dynamic patterns. Thus, traditional
linear models are not able to capture the high-dimensional
temporal characteristics of the high-priority inter-DC traffic.

In addition to the temporal patterns, we observe that the
traffic variations of some DC pairs may correlate with each
other. We argue that these correlations may provide another
dimension for use in traffic prediction.
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Fig. 10: Examples of high-priority traffic of DC pairs during
two days; normalized to the maximum traffic volume. (a) share
the same destination DC, not service related; (b) share the
same source DC, mostly for Computing services; (c) belong to
a bidirectional network link, mostly for Web services; (d) not
topologically related, mostly for AI services.

Identifying Traffic Correlations. To better highlight this, we
take four groups of representative DC pairs and plot their
high-priority traffic during two days in Figure 10. Several
clear trends can be observed:

(1) In Figure 10a, the traffic of DC pair #1 (mostly for
Computing services) is less stable than DC pair #2 (mostly
for AI services), yet they tend to have opposite traffic trends
during some time periods. That said, the traffic of DC pair #1
and that of #2 are correlated with each other. This is because
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DC pair #1 and #2 share the same destination DC, and thus
compete for bandwidth, leading to this negative correlation.

(2) In Figure 10b, the traffic of DC pair #3 and #4 (both
mostly for Computing services) tend to have consistent
traffic trends over time. Because DC pair #3 and #4 share
the same source DC, their traffic exhibits a positive corre-
lation (due to the intensive traffic demands of Computing
services).

(3) In Figure 10c, the traffic of DC pair #5 and #6 (both
mostly for Web services) also tend to have consistent traffic
trends over time. DC pair #5 and #6 belong to a bidirectional
network link (e.g., the source of DC pair #5 is the same as
the destination of DC pair #6, and vice versa). The data
synchronization of Web services between DCs may lead to
this positive correlation.

(4) In Figure 10d, unlike other examples, DC pair #7
and #8 are not related in network topology, but their traffic
exhibit a strong positive correlation. This is because both DC
pairs primarily host AI services, and therefore have similar
traffic dynamic patterns, leading to the positive correlation.

Taken together, the above examples suggest that the
knowledge of traffic correlations may be useful in traffic
predictions. We identify two potential reasons for these cor-
relations: either the DC pairs are topologically related or they
are service related. Two DC pairs are topologically related if
their links are neighbors: (a) share the same destination DC;
(b) share the same source DC; (c) belong to a bidirectional
network link (e.g., a → b, b → a) or two cascaded links (e.g.,
a → b, b → c). In case (a), they may compete for bandwidth
(as DC pair #1 and #2 do in Figure 10a), leading to a
negative correlation. In case (b)-(c), they may have positive
correlations because of popular traffic demands, data sync
or cooperative tasks (as DC pair #3-#6 do in Figure 10b-
10c). In contrast, two DC pairs are service related if they
carry traffic for similar services. Thus, common events in
these services (e.g., a sudden increase in user requests) may
simultaneously impact the traffic of both DC pairs (as DC
pair #7 and #8 do in Figure 10d). We quantify service
similarity between two DC pairs using the Cosine Similarity
Coefficient between the traffic distribution of the ten types
of services (see §3). Two DC pairs are considered service
related if their cosine similarity is over 0.8.

Understanding Traffic Correlations. Next, we study how
these two reasons impact the correlation of traffic variations
among DC pairs. To this end, we compute the Pearson
Correlation Coefficient, ρ, of the traffic time series between
each two DC pairs as follows:

ρ(p, q) =
cov(Tp, Tq)

σTp
σTq

(3)

where Tp is the traffic time series of DC pair p, cov(·) is the
covariance operator, and σTp

is the standard deviation of Tp.
Note that we consider its absolute value to reflect both the
positive and negative correlation: the larger |ρ(p, q)| is, the
stronger the correlation between Tp and Tq is.

Figure 11a depicts the distribution of the absolute corre-
lation coefficients among all DC pairs (|ρ|) as a CCDF. Over
50% of traffic interaction pairs have strong correlations, with
|ρ| ≥ 0.6. For each DC pair, we count the number of strongly
correlated DC pairs and show the CCDF in Figure 11b.

We see that about 60% of DC pairs are strongly correlated
with at least 50 other DC pairs. This confirms prevalent
correlations in traffic variations between DC pairs in DC-
WAN.
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Fig. 11: Traffic correlation among DC pairs. (a) Distr. of corre-
lation coefficients among DC pairs; (b) Distr. of the number of
strongly correlated DC pairs for each DC pair.
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Fig. 12: Impact of topological and service-level relationship on
the inter-DC traffic correlations among DC pairs.

To understand the importance of topology vs. service
relations, we next sort all the DC pair tuples <DC pair i,
DC pair j > (i ̸= j) in descending order according to their
absolute Pearson correlation coefficient, |ρ|. This ranks the
pairs based on the similarity in their traffic dynamics. Then,
for the top x% strongly-correlated DC pairs, we compute
the proportion of pairs that are topology-related (denoted by
ptopo.) and the proportion that are service-related (denoted
by pserv.).

Figure 12 reports the results. The plots also contain a
baseline for comparison: Figure 12a contains ttopo., which is
the fraction of the topology-related DC pairs out of all tuples
(which is 17%); Figure 12b contains the tserv. baseline, which
is the fraction of service-related DC pairs out of all tuples
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(which is 19%). A larger value of ptopo. vs. the baseline,
ttopo., indicates it is impacted by a topological relationship.
Similarly, a larger value of pserv. vs. the baseline, tserv.
indicates it is impacted by a service-level similarity. We see
from Figure 12 that for the top 1% of strongly-correlated
DC pairs, about 47% are topology-related. Furthermore,
about 56% of them are service-related, confirming the large
combined impact of these two factors.

Observation 3: Some DC pairs exhibit strong correla-
tions with other DC pairs in terms of traffic dynamics.
This is driven by either topological or service-level re-
lationships between pairs. We posit that this correlation
provides another dimension to improve traffic demand
estimation.

6 INTER-DATACENTER TRAFFIC PREDICTION

In this section, based on the Observations 1-3, we propose a
learning-based model for performing inter-DC traffic capac-
ity prediction: the Interrelated-Temporal Graph Convolutional
Network (IntegNet). We start by formulating the problem
and giving an overview of the IntegNet model. We then
describe each of the IntegNet modules in detail.

6.1 Problem Statements

In our network model, we denote by Xt = (x1
t , . . . , x

N
t )

the high-priority traffic data interacted between DCs in time
interval t, where xi

t is the traffic demand of DC pair i ∈ N
at time t (N is the set of N DC pairs in the DC-WAN). We
then denote the capacity predicted for DC pair i at time t as
x̂i
t, and X̂t as the set of forecast capacities of all DC pairs.

Therefore, the inter-DC traffic capacity prediction problem
is to compute X̂t+1 based on knowledge of the historical
traffic data (Xt−M+1, . . . , Xt) of previous M time intervals.

From Observation 1 and 2, we see complicated temporal
characteristics for high-priority inter-DC traffic, as well as
a wide range of traffic variations for individual DC pairs.
Existing statistical models (e.g., MA, EWMA, ARIMA and
SARIMA) are not able to accurately capture such large
variations of non-linear temporal features. Therefore, we
next utilize neural network models to learn the high-
dimensional temporal patterns from historical inter-DC traf-
fic data. Moreover, Observation 3 shows that some DC pairs
exhibit stronger traffic correlations with others, driven by
either topology- or service-level relationships between DC
pairs. Intuitively, the network traffic between DCs can be
organized as a graph structure based on these relationships.
Accordingly, in our model, we employ a graph convolution
on the graph-structured traffic data to directly extract these
correlation features (which are overlooked in previous stud-
ies).

To summarize, IntegNet utilizes a learning-based neural
network model with a customized loss function to capture
the combination of temporal features and traffic correlation
patterns to predict high-priority inter-DC traffic demands.
IntegNet aims to forecast the capacity required to satisfy the
high-priority service demands while saving the remaining
resource for low-priority bulk transfers, i.e., balancing the
QoS losses and resource overprovisioning. Next, we present

an overview of IntegNet, its inputs/outputs as well as the
loss function we propose.

6.2 Model Overview

IntegNet Structure. Figure 13 presents the overall archi-
tecture of IntegNet. It is composed of a Temporal Convo-
lution layer, an Interrelated Graph Convolution layer, and
an Output layer. The Temporal Convolution (TCN) layer
adopts the dilated causal convolution module for modeling
the temporal dependencies of inter-DC traffic. In the Interre-
lated Graph Convolution (GCN) layer, a graph convolution
module followed by a 1×1 convolution module is employed
for modeling the traffic correlations among DC pairs.

𝑋 = (𝑋$%&'(,	…	 𝑋$) 	∈ ℝ&×0×(
Input  traffic data
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Dilated Causal 
Conv Γ>

IT-Conv Block

Fig. 13: The architecture of IntegNet network.

First, in the TCN layer, we employ two-layer stacked
dilated causal convolution structures [42] on time dimension
data to capture the temporal dependencies of the traffic
among DC pairs. This module allows for exponentially
large receptive fields with increasing layer depth in order
to properly handle long-range sequences in a non-recursive
manner. Second, in the GCN layer, we adopt the spectral-
based graph convolution [43] to learn the correlation pat-
terns of the output temporal features of the traffic of each
DC pair (output from the TCN layer). The 1×1 convolution
module is used here for adding non-linearity. We further
apply residual connections in both the TCN and GCN layers
to preserve gradient validity and avoid model degradation.
Finally, in the Output layer, we use a 1-D causal convolu-
tion module, followed by a fully connection (FC) layer, to
integrate the features and produce the prediction. In this
way, we obtain the predicted inter-DC traffic demands and
use the prediction errors to update the model parameters in
model training procedure.

Data Inputs/Outputs. We take the high-priority traffic data
of all N DC pairs of the previous M time intervals as
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the input, which is denoted as X = (Xt−M+1, . . . , Xt) ∈
RM×N×1; the last dimension stands for the channel feature
as shown in Figure 13. To jointly capture the temporal and
correlation features of inter-DC traffic, we abstract the input
X as the graph-structured data. Since the traffic data of each
DC pair x is not independent but interrelated with those
of other DC pairs with high traffic correlations, Xt can be
regarded as a graph signal at the t-th time interval. We
define an undirected graph denoted as Gt = (Vt, E,W ),
where Vt is a finite set of vertices, corresponding to the
traffic volume Xt of N DC pairs, i.e., each node in Gt

corresponds to a DC pair x’s traffic volume at time t. E is a
set of edges, indicating there exists a topological or service-
level similarity relationships between the DC pairs with a
strong traffic correlation (i.e., |ρ| ≥ 0.6); and W ∈ RN×N

denotes the weighted adjacency matrix of graph Gt, in
which the weight is measured by the absolute value of traffic
correlation coefficient ρ and can be formed as:

wij =

{
|ρij | , i ̸= j and eij ∈ E

0 , otherwise
(4)

To help understand this, Figure 14 shows the heat map of
weighted adjacency matrix W . When forecasting the traffic
of one inter-DC connection, the adjacent nodes in Gt with a
high link weight (i.e., the traffic data of other DC pairs with
strong correlations) can be used to assist in the prediction.

Based on this graph-structured traffic data, the Temporal
Convolution layer first captures the temporal features for
each node in G. Then, at each time interval t in M , the
Interrelated Graph Convolution layer learns the correlation
patterns of the output temporal features for all the nodes in
Gt, with weight wij . Overall, based on the learned temporal
dependencies and traffic correlations, IntegNet generates
the final single-step capacity prediction X̂t+1 ∈ R1×N×1.
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Fig. 14: Heat map of weighted adjacency matrix.

Loss Function. Generally, learning-based prediction solu-
tions evaluate the quality of output (i.e., the prediction accu-
racy) by using standard loss functions, such as Mean Abso-
lute Error (MAE) or Mean Square Error (MSE). However,
these metrics are not well suited for capacity forecasting
(see §3). These metrics impose an equal penalty on both the
positive loss (i.e., overestimation) and the negative loss (i.e.,
underestimation). They are therefore not able to achieve a
cost balance of QoS losses of high-priority services vs. re-
source overprovisioning. Therefore, we propose a Weighted
Mean Square Error loss function to implement asymmetric

cost for overestimation and underestimation (see details in
§6.6).

6.3 Temporal Convolution Layer
We next describe each of the IntegNet modules in more de-
tail. First, we introduce the Temporal Convolution network
(TCN) layer used for capturing temporal dynamic patterns
of inter-DC traffic. We rely on dilated causal convolution
structures [44] as the TCN layer to capture the temporal
dependencies for DC pairs. As shown in Figure 15, the
dilated causal convolution operation slides over inputs by
skipping values with a certain step, and applies the standard
1-D causal convolution to the selected values. The receptive
field of the convolution can grow exponentially by stacking
dilated causal convolution layers with dilation factors in an
increasing order. Thus, dilated causal convolution networks
are able to capture long-range sequences with fewer layers
in a non-recursive manner, which can be parallelized during
training and save computation resources.

Dilated Causal Conv layer
Dilation factor k2 = 2

Dilated Causal Conv layer
Dilation factor k1 = 1

TCN Output

Fig. 15: Visualization of the stacked dilated causal convolution
layers with two-layer depth and kernel size 2.

In the TCN layer, for each DC pair (i.e., each node in G),
the input is a length-M observed traffic sequence with one
channel as x ∈ RM×1×1. The dilated causal convolution (de-
fined with the convolution kernel Γ) interactively explores
Kt neighbors spaced with a certain distance (determined
by the dilation factor k) over x to calculate the temporal
features of traffic volume. To generalize the dilated causal
convolution to the input traffic data X ∈ RM×N×1 of all DC
pairs (i.e., all nodes in G), we employ the convolution kernel
Γ to each node in G equally to capture their dynamic tempo-
ral features, and obtain the output as XΓ ∈ RM×N×CΓ . CΓ

is the size of output channels, which is determined by the
number of output filters in the dilated causal convolution.

We stack two layers of dilated causal convolutions (de-
fined with the convolution kernel Γ1,Γ2 respectively in
Figure 15) with the kernel size Kt = 2 and the dilation factor
k1 = 1, k2 = 2 (see Figure 13). The size of output channels
is designed as 2CΓ1

= CΓ2
= 64. We apply residual

connections and utilize ReLU as the activation function.

6.4 Interrelated Graph Convolution Layer
We next proceed to model the traffic correlation patterns
among DC pairs in the Interrelated Graph Convolution
layer. We rely on the spectral-based graph convolution
structures in the GCN layer to capture the correlation de-
pendencies among DC pairs. Graph convolution can be used
on graph-structured data to extract the highly meaningful
features of nodes by aggregating and transforming their
neighbor information. At the time interval t, the input of
the GCN layer is denoted as XΓ

t ∈ R1×N×CΓ . We employ
the spectral-based graph convolution on XΓ

t to extract its
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correlation features for all the nodes in Gt. Specifically,
the graph convolution can be defined with the convolution
kernel Θ as follows:

Θ ∗G X
(Γ)
t = Θ(L)X

(Γ)
t ∈ R1×N×CΘ (5)

where ”∗G” is the graph convolution operator, L is the graph
Laplacian with L = D − W , D is the diagonal matrix
with Dii =

∑
j Wij , W is the weighted adjacency matrix

of graph G, previously defined in the data inputs. CΘ is the
size of output channels, which is determined by the number
of output filters in the graph convolution. To reduce the
number of parameters and lower the computing complexity,
we utilize Chebyshev polynomial approximation [43] to
restrict the convolution kernel with the kernel size of Ks.
That is, the graph convolution recursively computes local
convolutions within the radius of Ks from each node in Gt

through polynomial approximation.
To generalize the above graph convolution to XΓ, at each

time interval in M , we impose the equal graph convolution
operation with the same kernel Θ on all the nodes in Gt

to capture their topologically and service-level interrelated
features, and obtain the output as XΘ ∈ RM×N×CΘ . Fol-
lowing the graph convolution, we employ a 1 × 1 con-
volution (defined with the convolution kernel Γs) to add
non-linearity, and obtain the output as XΓs ∈ RM×N×CΘ .
In our model, the graph convolution is designed with the
kernel size Ks = 3 and the output channel size CΘ = 64.
We apply residual connections and utilize ReLU as the
activation function.

As shown in Figure 13, by combining the Temporal Con-
volution layer and Interrelated Graph Convolution layer,
the IntegNet can extract both temporal dependencies and
traffic correlation patterns for predicting high-priority inter-
DC traffic.

6.5 Output Layer
In the output layer, we first utilize the 1-D convolution Γo

with kernel size of M to map the outputs of Interrelated
Graph Convolution layer XΓs to a single-step prediction,
which is denoted as XΓo ∈ R1×N×CΘ . Here we utilize a
Sigmoid as the activation function. Then we use a Fully
Connected (FC) layer to map XΓo from multi-channels to
one-channel. In the FC layer, a linear transformation is ap-
plied across CΘ-channels for the input X(Γo) as XΓowf+bf ,
where wf is a weight vector and bf is a bias. Finally, we
obtain the predicted inter-DC traffic X̂t+1 ∈ R1×N×1 in the
(t+ 1)-th time interval.

6.6 Loss Function
The loss function is an essential part of model training,
which determines the penalty incurred when making a
prediction error. Inspired by previous work [29], [38], we
propose to use a Weighted Mean Square Error loss function,
denoted by l(·), to account for the asymmetric cost for:
(1) overestimation, i.e., forecasting a higher value than the
actual load, which leads to resource overprovisioning; and
(2) underestimation, i.e., predicting a lower value than the
actual load, which leads to the QoS loss. Recall that the aim
of capacity forecasting in DC-WAN traffic engineering is to

save resources for low-priority traffic, while ensuring the
QoS of high-priority services. We give higher weights to
the cost of underestimation than that of overestimation in
the cost model. For each DC Pair, we denote by x̂t+1 the
predicted traffic demand in the (t+ 1)-th time interval, and
by xt+1 the corresponding actual traffic load. The forecast
error is then expressed as s = x̂t+1 − xt+1. Thus, the cost
model of capacity forecast is defined as follows:

c(s) =

{
α · s2 , s < 0

s2 , s ≥ 0
(6)

where the constant α (α > 1) represents the product factor
of weight for the higher penalty of underestimation. The loss
function used to evaluate the quality of capacity forecast in
the (t+ 1)-th time interval for all the N DC pairs is then:

l(X̂t+1 −Xt+1) =
1

N

∑
x∈X

c(x̂t+1 − xt+1) (7)

The setting of constant weight α can be obtained from the
trade-off between the traffic overprovisioning and unser-
viced traffic demands. Our current design sets α = 50 to
balance the resource overprovisioning and QoS loss (see
detailed evaluation in §7).

6.7 Practical Concerns
To finish, we briefly discuss some practical considerations
that our architecture faces.

Model Extension. We note that the TCN and GCN layers
can be combined into the Interrelated-Temporal convolu-
tional (IT-Conv) block, and stacked based on the scale and
complexity of traffic data. While more convolution layers
may learn higher-order features, more parameters need to
be trained (costing more training time), and overfitting may
occur. Our current design uses one TCN layer and one GCN
layer to balance the performance with training complexity
(see detailed evaluation in §7).

Integration with DC-WAN TE. The IntegNet model is
trained offline. Given that there are often hundreds of DC
pairs communicating, the traffic graph (in which each node
corresponds to a DC pair’s traffic) is of a relatively small
scale (compared to other machine learning tasks). As we
show in §7, a round of training lasts just a few minutes on a
mid-range server. It can therefore be retrained regularly (e.g.,
per day if the traffic patterns vary in a time scale of 1 day).
The trained model can also be integrated into existing DC-
WAN traffic engineering systems (e.g., SWAN, B4) for online
prediction of the high-priority DC-WAN traffic demand.
Note that the average inference time of all DC pairs at each
time step is only 10−3 seconds (see §7), indicating that it is
feasible for use in online prediction.

7 EVALUATION

7.1 Experimental Setup

Data Training. We evaluate IntegNet using our Baidu
dataset from §4. Given that the time interval in our dataset
is set to 5 minutes, there are 288 data points per day for
each DC pair. In our experiments, we set the historical time
intervals for input as M = 12; that said, we use the prior 12
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observed inter-DC traffic matrices (i.e., the prior 60 minutes)
to make the one-step prediction for the next 5 minutes.

Specifically, we iteratively split the data for each day into
a series of data segments with a stride of one time interval,
where each segment consists of 12 traffic matrices used as
the input and the following one used for measuring the
prediction errors. The training is run on the first 14 days
of Netflow data. Therefore, we obtain 3,864 data segments
for model batch training. The data of the next 2 days (i.e., 552
data segments) are used for validation, in order to locate the
best parameter settings for the trained model. Finally, we
use the data of the last 2 days (i.e., 552 data segments) for
testing. Note that the traffic data is pre-processed with log-
transform and normalized with the Z-Score method. Unless
specified otherwise, we train the prediction model once and
do not retrain it during the evaluation.

Evaluation Metrics. The cost of resource overprovisioning
and QoS loss is determined by the deviation between fore-
cast traffic capacity and the actual traffic demand. We thus
leverage the absolute estimation error of traffic capacity to
evaluate the forecasting performance. We use y(i, t) and
ŷ(i, t) to denote the actual and predicted traffic demand of
DC pair i at time interval t. For all the N DC pairs over
T time intervals, we define the metric of overestimation
(Overcost) and underestimation (Undercost) as follows:

Undercost =
1

T
×

T∑
t=1

N∑
i=1

|y(i, t)− ŷ(i, t)|

if ŷ(i, t)− y(i, t) < 0

Overcost =
1

T
×

T∑
t=1

N∑
i=1

|y(i, t)− ŷ(i, t)|

if ŷ(i, t)− y(i, t) ≥ 0

(8)

Baselines. We compare our model against four baselines:
Moving Average (MA), Exponentially Weighted Moving
Average (EWMA), a Long Short-Term Memory (LSTM)
model [45], and a Graph Attention (GAT) model [46]. MA
and EWMA are the most widely used DC-WAN traffic
estimation methods [2], [5], [7], and are performed as uni-
variate time series prediction. LSTM is a popular RNN-
based neural network model for time series prediction, often
used for network traffic [23], [30]. The GAT model adopts a
convolutional architecture with an attention mechanism to
learn relative weights between neighboring nodes in graph
structured data, which is leveraged by a recent solution
for network congestion predictions [47]. We apply these
baseline models in capacity forecast problem by the naive
solution of setting aside “headroom” that is dependent on
the historical prediction error. Specifically, we inflate the
predicted traffic demand based on the error in past estima-
tions (mean plus 1.96 standard deviations) to guarantee the
provision for high-priority traffic demands.

Parameter Settings. The settings of our IntegNet model are
presented in §6. In the LSTM model, we deploy an LSTM
layer by setting the hidden size as 128 and using ReLU as
the activation function. In the GAT model, we deploy an
attention layer by using 8 attention heads (8 output features
per head) with the Exponential Linear Unit (ELU) activation
function, and utilize a linear transformation in the output

layer. We choose the optimal settings for individual models
according to the validation results. We will discuss the
impact of model complexity on the effectiveness of IntegNet
in §7.7.

We use mean square error (MSE) as the loss function
for training LSTM and GAT models. The optimizer used in
LSTM and GAT models are RMSprop and Adam respectively.
We train our IntegNet model by minimizing the Weighted
Mean Square Error (l(·)) using RMSprop as the optimizer.
LSTM, GAT, and our IntegNet models are all implemented
in Tensorflow and trained for 100 epochs with a batch size
of 32. All experiments are performed on a mid-range Linux
server (Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, GeForece
RTX 2070 GPU).

7.2 Comparison Against Predictors Using Headroom

Overall Evaluation. Figure 16 reports both the Overcost
(i.e., overprovisioning traffic volume) and Undercost (i.e.,
unserviced traffic volume) of the high-priority traffic pre-
diction over all DC pairs. The traffic volume is normalized
to the maximum value of the sum of inter-DC traffic. Apart
from the four baselines, we also compare a naive version
of IntegNet, denoted by IntegNet h, which makes capacity
prediction by minimizing the MSE by setting aside “head-
room”.
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Fig. 16: Comparative evaluation of IntegNet with baseline
methods.
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Fig. 17: Performance of IntegNet for DC pairs with high traffic
dynamics.

We see that our proposed IntegNet model achieves the
lowest overestimation (normalized as 0.073). This consti-
tutes a 66.2%, 57.6%, 42.1%, 41.6%, and 36.5% overprovi-
sioning reduction compared with MA, EWMA, LSTM, GAT,
and IntegNet h respectively. The Undercost of IntegNet is
less than 0.3% of the total inter-DC traffic volume, which can
be tolerated with limited QoS loss. These results confirm the
effectiveness of leveraging the Weighted Mean Square Error
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Fig. 18: Visualization of prediction performance of IntegNet and
other comparison methods: (a) capacity prediction results and
(b) estimation errors of an example DC pair over two days. The
y-axis shows the traffic volume is normalized by the maximum
traffic volume.

loss function in balancing between resource overprovision-
ing and QoS losses of high-priority traffic.

Besides, IntegNet h achieves the lowest Overcost as well
as quite low Undercost compared to the four baselines. This
result confirms that incorporating both temporal dynamic
patterns and their correlations among DC pairs is important
for inter-DC traffic estimation.

Evaluation for Dynamic DC Pairs. To understand how
IntegNet performs for DC pairs with high dynamics, we
next inspect the estimation cost for DC pairs whose traffic
has a change rate of over 10% (see Figure 7a). Note, these
are the hardest cases for traffic prediction. Figure 17 plots the
normalized estimation cost for these pairs. As expected, the
traffic is more difficult to predict, evidenced by the higher
overestimation and underestimation than those for all the
DC pairs (in Figure 16). Nevertheless, our method IntegNet
outperforms the others with both the lowest Overcost and
Undercost, showing its robustness even for the hardest cases.

Figure 18 plots the performance of our IntegNet model
against other methods. We present the capacity prediction
results compared to the observed ones, showing that In-
tegNet has the best performance. The figure also plots the
estimation cost over time to show that IntegNet outperforms
the others with significantly low overprovisioning and un-
serviced traffic demands for most time intervals.

Evaluation for Individual DC Pairs. We next analyze the
traffic prediction performance for all the individual DC pairs
in Figure 19. For each solution, we present the distribution
of the Overcost and Undercost for individual DC pairs. We
note that while the performance of all solutions varies across
DC pairs, our model IntegNet shows a significantly lower
Overcost than others. Further, although IntegNet shows the
largest median underestimation, the normalized median
Undercost is still less than 0.3%, which can be tolerated with
limited QoS loss in practice.

MA EWMA LSTM GAT IntegNet_h IntegNet
0.00

0.05

0.10

0.15

0.20

0.25

0.30

O
ve
rc
os
t

(a) Overcost distribution

MA EWMA LSTM GAT IntegNet_h IntegNet

0.000

0.002

0.004

0.006

U
nd
er
co
st

(b) Undercost distribution

Fig. 19: Distribution of prediction performance over individual
DC pairs.

7.3 Loss Function Trade-off Analysis
As aforementioned in §6, the weighted parameter, α, in
our proposed loss function can be determined based on the
trade-off between overestimation and underestimation. We
next evaluate the performance of IntegNet with different
settings of α in loss function, l(·), and present the results
in Figure 20. We see that, as expected, a higher α reduces
unserviced traffic demand (i.e., Undercost) at the cost of pro-
visioning more capacity (i.e., Overcost). Our current choice
of α = 50 can achieve a balance between the resource
overprovisioning and QoS losses.

7.4 Benefits of GCN
One of the key components of our IntegNet model is the
Interrelated Graph Convolution (GCN) layer. As a comple-
ment to the Temporal Convolution (TCN) layer, it learns
the traffic correlation patterns among DC pairs and helps
to improve the prediction accuracy. We further validate the
effectiveness of GCN with ablation analysis and show the
results in Figure 21.

We compare IntegNet with TCN alone, which denotes
the model that only consists of the TCN layer. We also
compare IntegNet h with TCN h, which denotes the naive
version of TCN by setting aside “headroom” for capacity
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Fig. 20: Performance trade-off of IntegNet with different α in
loss function.
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Fig. 21: Benefits of GCN on the performance of IntegNet.

forecast. We find that IntegNet reduces 16% of Undercost
while keeping nearly the same low Overcost compared to
TCN. Besides, IntegNet h achieves lower Overcost than
TCN h, which implies the smaller prediction error of In-
tegNet h. These results confirms that the GCN layer is
of great importance for capturing high-dimensional traffic
correlation patterns to improve the forecast performance.

7.5 Effect of Interrelated Features
Our IntegNet model captures the correlation features of
inter-DC traffic based on the graph-structured traffic data,
which is determined by interrelated features we observed in
measurement (see §5). We utilize both topologically related
and service-level related features in our design. In Table 1,
we evaluate how these two types of features affect learn-
ing traffic correlation patterns by using either topologically
related features (denoted by IntegNet topology) or service-
level related features (denoted by IntegNet service). We see
that the IntegNet model achieves the best performance, fully
characterizing the correlation features. Compared to Integ-
Net topology, IntegNet service achieves lower Undercost at
the cost of higher Overcost.

TABLE 1: Effect of topology and service correlations on the
performance of IntegNet.

Method Overcost Undercost
IntegNet 0.0733 0.0026

IntegNet topology 0.0719 0.0030
IntegNet service 0.0779 0.0027

7.6 Evaluation of Computational Overhead
We next investigate the time required for model training
and inference, as listed in Table 2. Note that we run all the
methods on a mid-range Linux server (Intel(R) Core(TM)

i7-8700 CPU @ 3.20GHz, GeForece RTX 2070 GPU). We
evaluate the training time of running one epoch on the
training data lasting for 14 days. Note that MA and EWMA
have no model training process. The average training time
for IntegNet is 3.12 seconds for a round of training (in
comparison to LSTM and GAT, which takes 31.77 and 49.59
seconds respectively). This means that the model can easily
be retrained regularly if needed.

TABLE 2: Computation time overhead evaluation.

Method Training time (s/epoch) Inference time (s/time step)
MA — 3.8× 10−5

EWMA — 5.4× 10−1

LSTM 31.77 4.6× 10−3

GAT 49.59 5.9× 10−3

IntegNet 3.12 1.1× 10−3

We also compute the average inference time for all DC
pairs at each time step on the testing data, lasting for 2 days.
This overhead will be encountered whenever a prediction is
required by the traffic engineering algorithm. As expected,
MA has the lowest execution time (i.e., 10−5 seconds in our
setup) for each prediction. LSTM, GAT and our proposal
IntegNet requires more time for inference: the average time
to get a prediction of traffic demand is about 10−3 seconds
in our setup. As traffic engineering is often scheduled on a
5-minute time scale [2], the inference time for these methods
are reasonable in practice.

7.7 Impact of Model Complexity

As aforementioned in §6, in IntegNet, the TCN and GCN
layer can be combined into the IT-Conv block and stacked
by multiple layers to obtain deeper models. While deep
convolution layers may capture higher-dimension features,
they may lead to overfitting and longer training time. We
evaluate the prediction performance and time efficiency of
IntegNet at different complexity levels of model settings in
Table 3. We denote Cl (l = 1, 2, 3 . . . ) as the size of output
channels of GCN layer in the l-th IT-Conv block stacked in
IntegNet model.

TABLE 3: Impact of model complexity on the performance and
time efficiency of IntegNet.

Model
setting Overcost Undercost Training

(s/epoch)
Inference

(s/time step)
C1 = 16 0.0856 0.00365 1.32 6.3× 10−4

C1 = 32 0.0719 0.00377 1.88 8.9× 10−4

C1 = 64 0.0733 0.00260 3.12 1.1× 10−3

C1 = 16
C2 = 32

0.0716 0.00407 2.61 1.3× 10−3

C1 = 32
C2 = 64

0.0656 0.00340 4.25 1.7× 10−3

C1 = 16
C2 = 32
C3 = 64

0.0758 0.00293 5.01 2.2× 10−3

We see increasing time consumption with deeper IT-
Conv blocks and growing GCN output channel size. In our
current design, we deploy one IT-Conv block with C1 = 64,
which attains a good balance between the performance and
time complexity.
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8 CONCLUSION

In this paper, we have explored the characteristics of inter-
DC traffic. Using 18 days of data from Baidu’s DC-WAN,
we have shown that the stability of high-priority traffic
varies greatly across DC pairs. The various dynamic traffic
patterns of the different services lead to these complicated
temporal characteristics. We have also shown that the traffic
variations of some DC pairs are highly correlated, and
explored how these correlations are driven by topological
and service-level similarities.

With these insights, we have devised a novel prediction
model (IntegNet) that relies on both temporal and relational
information to forecast the capacity needed by high-priority
inter-DC traffic. We have also proposed a customized loss
function to account for the cost balance between resource
overprovisioning and QoS losses desired in DC-WAN traffic
engineering. Our evaluation shows that IntegNet signifi-
cantly outperforms other state-of-the-art methods.

We note that our findings are potentially specific to the
Baidu DC-WAN. As one of the world’s largest DC-WAN
operators, we argue that this still offers powerful insights
into global patterns. We have made the implementation of
IntegNet publicly available at [48]. In our future work, we
wish to test IntegNet in other environments, particularly
smaller-scale DC-WANs to understand how our observa-
tions generalize.
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