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ability of a provider to satisfy requirements will vary between different consumers and over time. Therefore,
we argue that it is vital to manage this variance to ensure an application fulfils its needs. To this end, we
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1. INTRODUCTION

A number of recent studies have highlighted the importance of content delivery in
the Internet, showing that a predominant amount of traffic is attributable to content
distribution [Schulze and Mochalski 2009]. It is envisaged that in the future a fully
integrated infrastructure will replace various proprietary and heterogeneous content
delivery systems [Plagemann et al. 2006]. Currently, however, this is not available; in-
stead, a large number of independent content providers and protocols exist. These have

Authors’ addresses: G. Tyson (corresponding author), Queen Mary, University of London, UK; email:
gareth.tyson@eecs.qmul.ac.uk; A. Mauthe, Lancaster University; S. Kaune, Technical University of Darm-
stadt; P. Grace, Lancaster University; A. Taweel, King’s College London; T. Plagemann, University of Oslo.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1533-5399/2012/12-ART4 $15.00

DOI 10.1145/2390209.2390210 http://doi.acm.org/10.1145/2390209.2390210

ACM Transactions on Internet Technology, Vol. 12, No. 2, Article 4, Publication date: December 2012.



4:2 G. Tyson et al.

been built to address particular requirements and often offer content in fundamentally
different manners. For example, some offer stored delivery [Cohen 2003; Fielding et al.
1999] whilst others offer streamed delivery [Zhang et al. 2005]. Similarly, nonfunc-
tional aspects such as performance, reliability, scalability, and resource consumption
also vary heavily. Due to this, the suitability of a given provider will vary heavily be-
tween different applications. For example, a security-critical application could not use
an unencrypted protocol such as HTTP, whilst a streaming application could not use a
nonlinear delivery protocol such as BitTorrent. Hence, it is the responsibility of devel-
opers to statically select (during the design period) how to best access content based
on how well they consider a given delivery protocol and provider satisfies their own
requirements. Unfortunately, however, these requirements are often complex and di-
verse, with dynamic elements that cannot be properly analysed at design time (e.g., the
performance of a provider will generally vary over time). We therefore argue that this
static design-time selection of delivery options is an inefficient approach considering
the developer’s true needs; instead of wishing to utilize a particular delivery protocol
to connect to a given provider, the developer, in fact, wishes to simply gain access to a
unique item of content within certain requirement constraints. As such, we posit that
developers should be liberated from statically managing these requirements, allowing
runtime decisions to be made based on operating conditions.

To this end, we propose the Juno middleware, which implements a new delivery-
centric API (extending the traditional content-centric interface [Demmer et al. 2007]).
Our delivery-centric API allows applications to issue requests for uniquely identified
items of content, alongside diverse delivery requirements that place constraints on
how the content is provided. Through this, developers are liberated from statically
managing these requirements, empowering Juno to select optimal delivery mecha-
nisms at runtime. To achieve this delivery-centricity, Juno exploits the previously dis-
cussed diversity of providers and protocols in the Internet. Specifically, for each item
of requested content, Juno attempts to discover multiple content sources that each
possess divergent characteristics, for example, different protocols, qualities of service,
etc. Juno then exploits this diversity to dynamically select and (re-)configure between
the sources that best fulfil the application’s needs. Importantly, by performing this
function on a per-node basis, Juno can specialize each node’s delivery to handle any
variance that can be observed both over time and between different consumers. Con-
sequently, applications can use Juno to delay their content access decisions until the
point of request, thereby removing the need to statically make decisions that may
later become suboptimal. Thus, unlike previous content delivery work (e.g., Su and
Kuzmanovic [2008], Zhang et al. [2005], and Cohen [2003]), we attempt to exploit the
diversity of existing infrastructure and protocols rather than building a one-size-fits-
all approach.

In this article, we build on our previous work on Juno. In Tyson et al. [2008] we
provided a preliminary architectural design of the Juno middleware, which this arti-
cle adapts significantly. Alongside this, in Tyson et al. [2012], we presented a brief
overview of some of the main components in Juno’s design; this work is now extended
by providing a detailed design description of all components involved, alongside an in-
vestigation of variance and a system evaluation. Specifically, the contributions of this
work are as follows.

— We identify and validate content delivery variance, alongside its effect on content
delivery performance.

— We formalize a new delivery-centric API, which extends existing content-centric
APIs to allow applications to associate delivery requirements with each content
request.
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— We design, implement, and evaluate a middleware system, Juno, which real-
izes the delivery-centric API to allow per-request adaptation to satisfy delivery
requirements.

The rest of the article is structured as follows. In Section 2 we provide a background
to the problem space, before performing an analysis of content system variance in
Section 3. Section 4 then defines the delivery-centric API, whilst Section 5 details the
Juno middleware. Following this, Section 6 evaluates the approach. Last, Sections 7
and 8 describe the related work in the field and conclude the article.

2. BACKGROUND

This section provides a background to the issue of content distribution. First, we inves-
tigate the existing content distribution paradigm before exploring its key limitations
and inspecting emerging trends in the field.

2.1. Current Content Distribution Paradigm

Modern application development increasingly involves the use of content. This can
range from streaming videos to the distribution of software updates. Generally, most
applications utilize statically selected generic toolkits to offer this necessary support.
A simple example is the use of a Web server to publish software updates. To achieve
this, an organization will acquire the necessary resources to host a Web server (or use
third-party servers) then integrate a HTTP toolkit into their client software.

Within this article, we term a content source as a provider; this could range from
an individual HTTP server to a BitTorrent swarm. Alongside these, a variety of other
alternatives are possible with current mainstream delivery schemes including cloud
services [Palankar et al. 2008], peer-to-peer networks [Bharambe et al. 2006; Zhang
et al. 2005], and various third-party content hosts [Antoniades et al. 2009]. All of
these, however, follow the same process of (i) publication: making the content avail-
able; (ii) consumer discovery: allowing consumers to discover sources of the content;
and (iii) consumer delivery: allowing consumers to gain access to the content. Vitally,
the bespoke and nonstandardized nature of these systems mean that selection and in-
tegration must be performed statically at design time with little support for the future
adaptation of any decisions made.

2.2. Limitations of the Existing Content Distribution Paradigm

We focus in this article on one key limitation of the existing content distribution
paradigm: the lack of per-node (re-)configurability. This occurs because most appli-
cations are currently developed using a fixed statically selected content distribution
mechanism. This means that it is impossible for such an application to be configured
or reconfigured to adapt to future runtime changes regarding this choice. The need
to adapt might arise for a number of reasons that generally occur due to some sort
of environmental change. For instance, a key requirement of many content distribu-
tion strategies is high performance; this could be impacted by a number of (runtime)
events, for example, the following.

— It is possible for protocol characteristics to introduce unpredictable behavior that
can only be resolved post-deployment. For instance, an application that chooses to
utilize BitTorrent will only gain high performance if its host has sufficient upload
capacity to compete in the swarm [Bharambe et al. 2006]. If it does not, BitTorrent
will become a highly suboptimal choice. A statically configured application could
therefore not react to this, as it can only be measured postdeployment (based on a
comparison of each individual host’s upload capacity against the swarm).
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— It is possible for infrastructural characteristics to introduce unpredictable behavior
that can only be resolved post-deployment. For instance, an HTTP server might be
relocated or suffer resource changes (e.g., an upgrade/downgrade). Similarly, the
way this impacts different consumers will vary; for example, if a server is moved
nearer to a set of consumers, performance will increase due to the likely lower
packet loss and delay. This also means that the same protocol (or similar ones such
as HTTP and FTP) can display totally different behavior based on the infrastructure
it is running over.

— It is possible for new providers to become available after an application has been
deployed, as well as old providers to become unavailable. A statically configured
application could therefore not handle this. For instance, a mobile host might wit-
ness providers come and go frequently; alternatively, more practical aspects such as
route failures or firewalls might create similar effects. This is particularly difficult
to manage if the new providers use protocols that the application does not already
have support for.

The preceding situations are examples of variance; we define variance as any
environmental change that might alter a given provider’s ability to satisfy the require-
ments of a consumer (e.g., performance, security, reliability, etc.). Variance can be sep-
arated into a variety of subcategories based on a range of different factors. However,
within this article, we group types of variance into two logical classifications.

— Consumer Variance. This is the observation that the ability of a given provider
to satisfy certain requirements will often vary from the perspectives of different
consumers. For example, an HTTP consumer that is more distant from a source
will generally get inferior performance to a consumer which is nearer [He et al.
2007]. Consequently, it is important that consumers independently select the opti-
mal means by which they access content.

— Temporal Variance. This is the observation that the ability of a given provider to
satisfy certain requirements will often vary over time, even from the perspective of
a single consumer. For example, a BitTorrent swarm’s performance will generally
degrade over time due to population decay [Kaune et al. 2010]. Consequently, it
is important that individual consumers can adapt previous choices to reflect new
operating conditions.

Both of these observations mean that static decisions regarding how to distribute
content can often later become suboptimal. This is further exacerbated by the possibil-
ity for application requirements to change over time, thereby potentially invalidating
previous choices. The current ad hoc way in which content support is integrated means
that there are no mechanisms to easily allow these changes to be addressed without
extensive effort and recoding. Further, the fine-grained per-node basis at which these
changes can occur (due to consumer variance) means that system-wide software mod-
ification will also likely result in further suboptimality. Building such support into
applications, however, has not yet been investigated due to the high complexity. This
is exacerbated by the fact that most application developers do not possess a vested in-
terest in content distribution; instead, they simply wish to utilize simple mechanisms
that allow them to focus on their core goals.

2.3. Emergent Content Distribution Trends

Since the inception of multiple divergent content distribution schemes, primarily fu-
eled by peer-to-peer and cloud technologies, many organizations have begun to decen-
tralize the way in which they deliver content, using a range of different mechanisms.
This is particularly prevalent in Web environments, which often see users presented
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with a number of different delivery options, for example, a range of mirrors using dif-
ferent protocols. For instance, Linux ISOs can be accessed through a wide range of
mediums including HTTP, FTP, and BitTorrent, to name a few. Various studies have
investigated this phenomenon; for example, Ager et al. [2011] found that content is
typically replicated across many ASes. Similarly, Antoniades et al. [2009] also found
that various content provided through RapidShare (HTTP/HTTPS) is also offered via
BitTorrent. Publishing content through multiple means is a way of addressing the pre-
viously discussed forms of variance. For instance, providing geographically distributed
mirrors allows forms of consumer variance to be addressed by selecting nearby sources
(mitigating the different TCP delays of users), whilst offering scalable peer-to-peer al-
ternatives allows forms of temporal variance to be addressed by scalably handling peak
demands. However, as previously mentioned, currently, the complexity of this must be
handled either by the application or the user. This is particularly difficult in the face
of the aforesaid types of variance.

This article posits that it is undesirable to force applications to make design-time de-
cisions regarding which providers and protocols it uses to access content. Instead, this
emerging diversity of providers (in terms of both infrastructure and protocols) should
be exploited based on whatever runtime conditions a consumer observes. Consumers
should therefore be given the necessary knowledge and understanding to dynamically
select the best provider based on their protocol and infrastructural characteristics. In
this article, to achieve this, a new development paradigm (that extends the concept
of content-centricity [Demmer et al. 2007]) is proposed, alongside a middleware that
allows this variance to be effectively addressed without complex development on the
part of designers.

3. UNDERSTANDING VARIANCE

Before inspecting the solution space, it is vital to explore the existence of consumer
and temporal variance in real-world content distribution. This section first provides a
discussion of variance before detailing its existence in some of the key protocols in use
today.

3.1. Modeling Variance

Variance can be understood as the runtime variation of certain parameters that im-
pact the ability of a given provider to satisfy the requirements of a consumer. These
variance parameters could relate to any component involved in the content distribution
process, including the protocol, the consumer, the provider, the network, or the content.
To exploit variance it is therefore first necessary to define a function x(r, p, c, o), which
allows a consumer to calculate provider p’s ability to serve a content request for object
o from consumer c in a way that satisfies requirement r. To compute this function, it is
necessary to collect runtime measurements of these variance parameters, as defined
by the delivery protocol(s) supported by the provider. These measurements could be
locally observed, predicted, or acquired from remote information sources (e.g., through
a Web service). Each 〈r, p, c, o〉 tuple will therefore be dependent on one or more vari-
ance parameters, which can then be dynamically collected to compute the fulfilment
of r. For instance, if 〈r, p, c, o〉 relates to the performance of a consumer accessing
an object using HTTP, it would be necessary to collect measurements on link packet
loss and delay (at least), which could then be used to calculate predicted throughput
[Padhye et al. 1998]. Lastly, in line with previous discussion and for convenience, we
categorized these parameters into two interrelated1 groups: consumer and temporal.

1Many variance parameters (e.g., packet loss) cause both consumer and temporal variance.
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3.2. Exploring Variance in Content Distribution

This section briefly applies the preceding principles to three key content distribution
technologies currently in use: HTTP, BitTorrent, and Content Distribution Networks
(CDNs). The purpose of this is to highlight the forms of real-world variance that any
solution will need to handle. To achieve this, we focus on the most popular require-
ment: performance (r = perf ).

3.2.1. HTTP. HTTP is the predominant Web distribution protocol, as well as having
the second heaviest traffic profile after peer-to-peer [Schulze and Mochalski 2009].
Like many client-server protocols, it is built over TCP, thereby taking on many of its
characteristics.

Consumer variance in HTTP is highly prominent; two variance parameters that
are of particular importance are delay and packet loss. Delay will vary significantly
between different 〈p, c〉 pairs due to the potentially geographically distributed na-
ture of consumers, as well as the significant differences in different region’s net-
work infrastructure (e.g., Africa has much larger delays than Europe [Kaune et al.
2009]). Generally, this will result in significantly different performance levels for
these various consumers, particularly when using delay-based congestion algorithms
(e.g., Reno [Afanasyev et al. 2010]) or performing small transfers [Krishnan et al.
2009]. Similarly, different packet loss rates between these various 〈p, c〉 pairs will
also result in large performance variations due to TCP’s interpretation of packet loss
as congestion [Padhye et al. 1998]. Importantly, these variations are the norm, par-
ticularly when comparing different access technologies, for example, 802.11, DSL,
UMTS, etc.

Temporal variance in HTTP is also very typical; interestingly, the previous param-
eters will similarly vary with time as well as between different consumers. A specific
temporal variable, however, is provider load, which helps define a provider’s available
resources. This is highlighted well by Antoniades et al. [2009] through RapidShare
measurements: using a single measurement site, they found that the download rates
ranged from as little as 1Mbps to over 30Mbps due to loading, with a 50:50 split be-
tween those achieving under 8Mbps and those achieving more. Interestingly, these of-
ten follow patterns showing that users accessing content between 12–2PM or 6–9PM,
for instance, will suffer higher competition for provider resources [Yu et al. 2006].

Put simply, the presence of these variance parameters will mean that the runtime
performance of an HTTP provider will vary heavily over time and between different
consumers. For example, imagine a provider p and a set of consumers C = {c1, c2...cn}.
Clearly, the performance of 〈p, c1〉 will differ from 〈p, c2〉 if the network characteristics
of c1 → P and c2 → P also differ. Beyond this, as the loading of p changes, the
performance will change on a temporal dimension. Consequently, when faced with
multiple HTTP providers, each consumer must therefore compute the optimal based
on these individual characteristics.

3.2.2. BitTorrent. BitTorrent is by far the most popular peer-to-peer distribution proto-
col in use, constituting up to 80% of peer-to-peer traffic [Schulze and Mochalski 2009].

Consumer variance in BitTorrent is a typical observation; the most dominant con-
sumer variance parameter is the host’s upload resources [Piatek et al. 2007]. This will
vary heavily between different consumers, with studies showing upload capacities in
BitTorrent ranging from ≈300Kbps to in excess of 30Mbps [Idal et al. 2007]. Thus,
due to tit-for-tat [Cohen 2003], the individual performance a consumer receives from a
BitTorrent swarm will vary heavily based on this. That is, hosts exceeding the swarm
average will see notable benefits, whilst those falling below will achieve the opposite
[Rasti and Rejaie 2007].
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Temporal variance in BitTorrent is also very usual; the most obvious temporal vari-
ance parameter is the seeder:leecher (S:L) ratio, which varies hugely over time. Typ-
ically, young torrents will have high S:L ratios that degrade over time; in fact, this
degradation even leads to 64% suffering intermittent content unavailability (i.e., when
no seeders are present) [Kaune et al. 2010]. The S:L ratio is very important because it
largely dictates the level of resource competition in a swarm. Specifically, a torrent, t,
can be identified as having a particular service capacity (upt), which is the aggregate of
available upload capacities from all members (seeders and leechers). This can there-
fore be compared against the service requirement (downt) to calculate the competition
over resources: C = min

(
upx

T
downx

T
, 1

)
. Theoretically, if C = 1, all consumers will be able

to saturate their connections, however, if, as often is the case, C < 1, some saturation
percentage will be achieved; for example, on average, a S:L ratio of 0.78 achieves 61%
download saturation [Tyson 2010].

Put simply, the presence of these variance parameters will mean that the runtime
performance of a BitTorrent swarm will vary heavily over time and between different
consumers. For example, two peers with different upload capacities will get vastly dif-
ferent performance, even when operating in the same swarm, while peers that join at
different stages in a swarm’s lifecycle will encounter vastly different levels of resource
availability based on the current S:L ratio (e.g., older torrents will likely have fewer
seeders). Consequently, when faced with multiple BitTorrent providers, it becomes
necessary to be able to dynamically switch between the optimal based on the observed
characteristics of each.

3.2.3. Content Distribution Networks. Content Distribution Networks (CDNs) are used
to deliver content on a large scale. Akamai, for instance, is a widely deployed CDN
that maintains a significant market share (64% [Huang et al. 2008]), claiming to have
over 56,000 edge servers, distributed in over 70 countries. It acts as an augmentation
to existing (Web) content hosts by placing their content on its distributed edge servers.
When a provider that uses Akamai receives a request, it can optionally redirect it into
the Akamai network, which will then attempt to redirect the consumer to the optimal
edge server. The main protocol used by Akamai is HTTP and therefore, when con-
sidering an edge server as a provider, the same parameters discussed in Section 3.2.1
apply. However, it varies significantly from the previous examples because Akamai
also attempts to address variance by intelligently redirecting consumers between dif-
ferent edge servers. Thus, in contrast to the preceding, a key question is what are the
limitations of a CDN’s approach to handling variance?

In essence, CDNs attempt to deal with HTTP variance by minimizing delay and
improving available bandwidth. It is undeniable that performance is improved over a
single HTTP server, however, it is evident that variance is only mitigated, it is not fully
addressed. For example, when looking at CDN delays, Krishnan et al. [2009] found
that over 20% of clients witness, on average, 50 ms greater delay than other clients
operating in the same geographical location. Further, it was also found that 40% of
clients suffer over 200 ms delays even when accessing content provided through CDNs
such as Google. Thus, whilst a CDN does improve performance over traditional HTTP,
it clearly does not resolve the phenomenon of variance. This is primarily because CDNs
like Akamai mitigate such variance in a backwards compatible, provider-driven man-
ner (i.e., DNS redirection). Therefore, the business model moves towards empowering
providers rather than consumers (e.g., a provider chooses when to allow a consumer to
utilize Akamai). Instead, we believe this functionality should be embedded in the con-
sumer, which is in a better position to make such decisions. Further, by decentralizing
the responsibility, far more complicated sets of requirements can be handled. Beyond
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this, CDNs limit consumers to only handling variance that has been specifically cho-
sen by them; for instance, the Limelight CDN hosts content only at a small number
of sites, consequently not mitigating connection delays for geographically distributed
consumers. Perhaps more importantly, it can also be observed that only a small minor-
ity of HTTP providers actually use CDNs, meaning that the majority of providers will
not benefit. These providers are also often the worst resourced; for instance, the Uni-
versity of Washington probed a set of 13,656 Web servers to discover that more than
90% had under 10Mbps upload capacity [Padmanabhan and Sripanidkulchai 2002].

3.3. Summary

The previous sections have sought to highlight the real-world existence of both con-
sumer and temporal variance. Clearly, it has been shown that a variety of prominent
protocols and systems suffer both forms of variance, even those such as Akamai that
attempt to mitigate it. Specifically, we have shown that:

— two consumers may witness different performance levels from a given provider
based on key variance parameters, for example, the packet loss rate between an
HTTP client and server (consumer variance).

— the performance a consumer receives from a provider will vary over time as these
variance parameters change, for example, the S:L ratio of a BitTorrent swarm
(temporal variance).

A further observation is that both of these concerns can only be observed (and han-
dled) dynamically. Consequently, it would be extremely difficult to handle such issues
through the static design-time selection of providers and delivery strategies. Thus, to
address this, we argue that it is necessary to liberate applications from such choices
and allow request-time decisions to be made on a per-node basis, instead. Each node
should therefore individually resolve its own requirements at request time and then
make an appropriate choice regarding how to access the content based on the available
sources.

4. THE DELIVERY-CENTRIC PARADIGM

So far, it has been identified that it is difficult to optimize content access using static
design-time decisions due to variance. We therefore consider it integral to make con-
tent access (in terms of sources and protocols) an explicit runtime decision that can be
dynamically reconfigured based on operating conditions. To liberate applications from
such responsibilities, we therefore propose a new API that can provide a simple inter-
face for requesting content, whilst offering the aforesaid support. Such an interface
should allow applications to: (i) generate content requests using unique identifiers
that do not predefine the access mechanism or source (e.g., unlike a URL); (ii) issue
computable requirements that abstractly define how the content should be accessed;
and (iii) receive content in a way that is agnostic to how it has been acquired. We term
such an interface delivery-centric, extending the previously defined content-centric in-
terface [Demmer et al. 2007], which does not support the stipulation of requirements.
First, we describe how requirements can be stipulated before providing an overview of
the interfaces for providing and consuming content.

4.1. Modeling Delivery Requirements

To enable the content delivery process to be (re-)configured at runtime, it is necessary
for the application to be able to represent its requirements computationally. These
requirements can vary from performance issues to far more diverse aspects relating to
things such as security, monetary cost, overheads, and resilience. Requirements are

ACM Transactions on Internet Technology, Vol. 12, No. 2, Article 4, Publication date: December 2012.



Juno: A Middleware Platform for Supporting Delivery-Centric Applications 4:9

Table I. IProvider Definition

Method Description

put This method allows an application to publish an item of content. It accepts
a reference to the data, alongside a set of rules.

remove This method allows an application to withdraw an item of content from
publication.

presented to the interface in the form of selection predicates, which we term rules.
A rule is defined by an 〈attribute, comparator, value〉 tuple. The attribute value must
adhere to an extensible requirements ontology exported by the underlying API imple-
mentation, whilst the comparator can be =, >, <, min or max (it is also possible to
plug new functions in). For instance, a rule “avg bit rate >= 500Kbps” indicates that
the underlying method of delivery must achieve a download rate of at least 500Kbps.
Subsequently, the requirements are stipulated through a set of these rules bound by a
logical AND, that is, R = {rule1, rule2...rulen}.

4.2. Interface Definitions

There are two aspects of a delivery-centric system: provision and consumption. Within
this article, these are represented by two interfaces, IProvider and IConsumer. This
section provides a summary of them; a formal specification can be found in Tyson
et al. [2012].

4.2.1. IProvider. The delivery-centric IProvider interface is presented to publishers
that wish to distribute their content and consists of two methods as detailed in
Table I. The first method, put, allows an application to publish an item of content.
It accepts a reference to the data alongside a set of rules (as defined earlier). A unique
content identifier is generated and then returned (the rest of this article is based on
the use of hash-based identifiers that are generated from the content’s data). At a
future point, the application can also call the remove method, which will unpublish
an item.

The current Juno implementation supports the following requirements ontology
for IProvider: ‘encrypted:boolean’, ‘type:String’, ‘local upload:long’, ‘local hosting:bool’.
The “type” refers to the method of provision, either streamed or stored (i.e., file down-
load). The “local upload” refers to the acceptable number of bits that can be uploaded
from the local host per second, whilst “local hosting” refers to whether or not the con-
tent can be hosted from the local node (e.g., by instantiating an HTTP server).

4.2.2. IConsumer. The IConsumer interface is presented to applications that require
access to content; Table II provides an overview. The defining properties of the con-
sumer delivery-centric interface are twofold: (i) it receives content requests formatted
as unique content identifiers without any reference to location or the method of access;
and (ii) it allows the association of abstract requirements with such requests. The first
method, get, allows applications to request an item of content using a unique global
identifier, which can also be associated with a set of rules. It is similarly necessary to
state how the application wishes to “view” the content, for example, an in-memory live
stream, a file reference, etc. Each of these “views” is represented by an object, which
extends the abstract Content object. Currently these subclasses are: FileStoredCon-
tent, MemoryStoredContent, RangeStoredContent, and StreamedContent. Depending on
the application’s choice, one of these objects is therefore returned as a reference to the
data, providing the appropriate methods to access it.
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Table II. IConsumer Definition

Method Description

get This accepts a unique content identifier, a set of rules and a type of access (e.g.
stored file, stream). The underlying system must then retrieve the content
item in a way that is conducive with the requirement rules and compatible
with the type of access.

stop This cancels a previous get request for a given item of content.
update This updates a previously issued set of rules for a given content request. The

underlying system should then adapt to reflect these new requirements.

Fig. 1. Overview of Juno’s operation.

An active content request can also be canceled using the stop method. Finally, the
update method can be used to modify previously issued requirements (e.g., to increase
the required performance for a request).

The current Juno implementation supports the following requirements ontology
for IConsumer: ‘avg bit rate:int’, ‘upload resources required:bool’, ‘anonymous:bool’,
‘encrypted:bool’, and ‘encryption strength:int’. Beyond this, further dynamic require-
ments support is being developed including resilience information and monetary cost.

5. JUNO MIDDLEWARE DESIGN

This section details Juno, a middleware which implements the delivery-centric API de-
scribed in Section 4. First, a general overview is given; following this, each of the main
frameworks within Juno are detailed, showing how the required underlying function-
ality is built.

5.1. Juno Overview

Juno is a component-based middleware that utilizes dynamically (re-)configurable
plug-ins to adapt the way it provides/consumes content based on its environment
and any higher-level requirements. Figure 1 provides a general overview of how Juno
consumes content. Each framework uses protocol plug-ins that allow the framework
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to interoperate with a given external system (e.g., BitTorrent, HTTP servers, a cloud
service). These are simply pluggable software components that implement various pro-
tocols behind standard shared interfaces. The fundamental principle behind Juno is
that it can exploit these plug-ins to dynamically select the best mechanism to provide
or consume content with at request time. Consequently, if a range of potential sources
were available and BitTorrent were considered the optimal, a BitTorrent plug-in could
seamlessly be attached to access the content from. This therefore liberates an applica-
tion from making static design-time decisions regarding content distribution, instead
allowing them to dynamically interact with the interfaces defined in Section 4.

There are a number of key components in Juno that work in cooperation to offer this
functionality. These are as follows.

— The configuration engine maintains a repository of available plug-ins and selects
the optimal ones at runtime based on the stipulated requirements (on behalf of the
other frameworks).

— The content manager provides a unified method of indexing and accessing local
content. All frameworks (and plug-ins) utilize this to write/read local content,
thereby simplifying development and ensuring that data cannot be lost during
reconfiguration.

— The provider framework deals with publishing and providing content to consumers.
— The content-centric framework deals with the access of content for consumers. This

framework consists of two subframeworks.
(i) The discovery framework deals with mapping content identifiers to available

sources.
(ii) The delivery framework deals with accessing the content through the preferred

abstraction (e.g., downloaded to file, streamed to memory, etc.).

When an application wishes to consume an item of content, it requests the IConsumer
interface from Juno, which is implemented by the content-centric framework. First,
the framework contacts the content manager to find out if the content is already lo-
cally available (e.g., has been previously downloaded). If not, the discovery framework
is queried to locate a set of potential sources for the content; these could include such
things as HTTP servers and BitTorrent swarms. These sources are then passed to the
delivery framework, which instantiates a plug-in for each delivery protocol available.
These plug-ins are then provided with their appropriate sources so that they can gen-
erate any required dynamic metadata describing the characteristics of each source.2
Using this metadata, the configuration engine then selects the optimal plug-in by com-
paring them against the requirements issued by the application (e.g., avg bit rate =
max). The selected plug-in is then requested by the delivery framework to begin
the content delivery. The dynamic metadata is periodically recomputed and compared
against the requirements so that any environmental changes can be reacted to by
replacing the previously selected plug-in. Importantly, by utilizing a shared content
manager, this can be done without loss of data.

Similarly, when an application wishes to publish an item of content, it requests the
IProvider interface from Juno. This provides access to the provider framework, which
hosts multiple provider plug-ins, thereby allowing the framework to multiplex publica-
tion requests into any attachable plug-in. A plug-in implementation could range from
a locally hosted Web server to a remote cloud storage service to upload the content
to. The rest of this section now details each of the previously mentioned frameworks
in turn.

2This metadata uses the same ontology as that used to present the requirements (e.g., avg bit rate).
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5.2. Configuration Engine

Juno’s configuration engine maintains a repository of all plug-ins available and is
responsible for selecting optimal plug-ins at runtime. It therefore receives plug-in re-
quests (from the other frameworks) associated with sets of requirements; if multiple
plug-in implementations are available, it then returns the one that best fulfils the
requirements. This section details the principles of (re-)configuration and how the con-
figuration engine achieves it.

5.2.1. Principles of (Re-)Configuration. Each framework in Juno offers the functionality
(and interface) to provide a given service, such as accessing an item of content. How-
ever, clearly, each service can be achieved in a number of different ways; specifically, in
the context of Juno, content can be consumed and provided using a variety of different
protocols and infrastructure. The aim of Juno is to achieve these two functions in the
optimal manner. To enable this, different protocol implementations are embodied in
dynamically attachable software components called plug-ins. These plug-ins can then
be used by the frameworks to interoperate with the most suitable provider infrastruc-
ture, based on runtime conditions.

Plug-ins are implemented as software components that each support one or more
plug-in interfaces. These predefined interfaces are known by the frameworks and allow
plug-ins to receive requests for given tasks (e.g., request a content item). Importantly,
plug-ins also have explicit lifecycle management, that is, the ability to be initiated and
shutdown during runtime. Through this, plug-ins can be dynamically attached (and
detached) to Juno’s core frameworks and utilized to interact with a given external
system. We define the act of configuration as the process of selecting the optimal plug-
in dynamically at request time, whilst we define reconfiguration as the process of later
replacing it with another plug-in to reflect some environmental change. Replacing a
plug-in can be performed: (i) sequentially by removing the first and then attaching
the second; or (ii) in parallel by bootstrapping the second before removing the first.
The former (which is the default) has the lowest memory/processing overheads but
introduces a reconfiguration delay, whilst the latter can reduce delays but increase the
overheads. In both cases, Juno manages all memory referencing to protect applications
from complexity.

5.2.2. Selection of Plug-Ins. When a framework wishes to perform a task (e.g., to access
a content item), it issues a request to the configuration engine for a plug-in that can
offer the service, alongside a set of requirements structured as 〈attribute, comparator,
value〉 tuples; generally these requirements are acquired directly from the application
through the IConsumer and IProvider interfaces. Each plug-in is required to expose cor-
responding metadata about itself, structured as 〈attribute, value〉 pairs. For each type
of plug-in interface,3 the configuration engine maintains a set, P, of compatible plug-
ins, whilst the function get(p, x) retrieves the attribute x from plug-in p. Therefore, for
example, if a request for that service is received with the requirement x = 5, the set
P is filtered as compatible = {p|p ∈ P ∧ get(p, x) = 5}. If |P| > 1, a random plug-in
is simply selected, whilst, alternatively, if |P| = 0, an exception is thrown to alert the
application.

As discussed in Section 4.1, metadata can deal with any characteristic that might be
of importance to an application. This can be both static and dynamic. Static items are

3A number of plug-in interfaces exist for handling content discovery, publication, and various types of con-
tent access (e.g., streamed access).
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those that do not change during runtime, whilst dynamic items are those that must be
dynamically generated to reflect current operating conditions. Clearly, it is dynamic
metadata that must be used to address consumer and temporal variance. To enable
the generation of dynamic metadata, each plug-in must be provided with details of the
available sources that are compatible with that plug-in. The plug-in is then respon-
sible for computing predicted dynamic metadata values for those sources. Specifics of
this are delayed to the following sections. However, these principles (embodied within
the configuration engine) are utilized by both the content-centric framework and the
provider framework to fuel adaptation.

5.3. Content Manager

Within Juno, a content manager handles the local storage and indexing of con-
tent, alongside managing content naming. This section details the operation of this
framework.

5.3.1. Content Storage. Juno abstracts the content storage away from any individual
plug-ins, thus allowing them to share a common content library. All plug-ins read from
and write to the content manager without storing any data within themselves. This
has two key benefits; first, it eases plug-in development complexity by allowing conve-
nient content read/write methods; and, second, it allows plug-ins to be detached and
replaced without losing content. Whenever a content request is received by Juno, the
content manager is first queried as to whether a local copy is available. If not, a plug-in
is instantiated to remotely access the content. Whenever a plug-in is instantiated, it
uses the content manager to ascertain what parts (if any) are already locally available;
via this mechanism, plug-ins can be attached and detached seamlessly without loss of
data or the complexities of transferring data between old and new plug-ins.

5.3.2. Content Naming. Content identifiers in Juno are created by generating one or
more hash values from the content’s data (each one constitutes a valid name). Con-
sequently, when content is published, it is first passed through a set of hashing al-
gorithms to create the necessary name. The use of this approach has two benefits:
(i) it allows self-certifying identifiers that can be used to validate content on arrival;
and (ii) it allows globally unique identifiers to be generated in a distributed manner
without the use of a centralized identification authority. More important, however,
is the observation that a large number of existing discovery systems already support
the use of such hash-based identifiers, thus, allowing interoperable and open access
to previously published content that is unaware of Juno, as well as more convenient
interaction with existing content protocols. To further enable this, Juno utilizes the
magnet link addressing standard,4 which provides a format for passing hash-based
content requests into a variety of different content distribution systems. This allows
consumers to request uniquely identified content from a range of different systems;
according to one study, ≈99% of Internet peer-to-peer traffic supports magnet link
identification [Schulze and Mochalski 2009]. Examples of delivery systems that sup-
port magnet links include Gnutella, Gnutella2, ED2K, BitTorrent, Kazzaa, and Direct
Connect. The use of this standard thereby simplifies Juno’s interaction with a range
of different content protocols, as well as often allowing backwards compatible access to
third-party sources.

4http://magnet-uri.sourceforge.net/
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5.4. Provider Framework

This section details the provider framework that is responsible for publishing content
items when needed by an application. First, the framework is described before dis-
cussing how it can be (re-)configured to address an application’s individual needs.

5.4.1. Provider Framework Design. The first mode of operation supported by Juno is that
of a provider. When this is requested, Juno returns the IProvider interface detailed in
Section 4.2.1. This is exposed by the provider framework, which handles any publica-
tion requests. When it receives a publication request, a set of hash-based identifiers
are first generated by passing the data through a set of hashing algorithms (by de-
fault SHA-1, MD5, and MD4). The values returned from these algorithms become the
content’s identifiers.

Once this has taken place, the framework utilizes one or more provider plug-ins
to publish the content. A provider plug-in has the ability to expose an item of content
through one or more delivery schemes. This could perhaps be by instantiating a locally
hosted Web server, uploading the content to a cloud service (e.g., S3 [Palankar et al.
2008]), or offering it to a peer-to-peer network. All provider plug-ins are required to
expose put and remove methods to enable the provider framework to interact with
them. When a plug-in publishes an item of content, it also returns a RemoteContent
object which contains details of exactly how the content has been made available (e.g.,
protocols, source information, metadata, etc.). Importantly, a RemoteContent object
can contain information about an arbitrary number of sources, each with their own
protocols and characteristics.

Once this process has completed, the provider framework combines all sources into a
single RemoteContent object and then uploads tuples (one tuple for each content iden-
tifier) consisting of 〈ContentID, RemoteContent〉 to a bespoke indexing service called
the Juno Content Discovery Service (JCDS). This is a simple lookup service that allows
consumers to map unique content identifiers to any potential sources known by Juno.
Currently, there are two versions of this: a client-server implementation and a dis-
tributed hash-table implementation. Importantly, by also utilizing a common hashing
algorithm such as SHA1, it becomes possible to perform the same mapping in existing
search protocols such as Gnutella and eMule, which already support the use of magnet
link addressing. Consequently, any consumers possessing the unique hash identifier(s)
can use them to locate any sources indexed on the JCDS, as well as in any third-party
providers5 supporting magnet links.

5.4.2. (Re-)Configuring the Provider Framework. Provider (re-)configuration refers to the
dynamic selection of providers at publication time, based on the requirements stipu-
lated by the application. Currently, the provider framework supports all the require-
ments detailed in Section 4.2.1. By default, all provider plug-ins that satisfy these
requirements will be attached and utilized. Therefore, generally, the provider frame-
work will simply multiplex publication requests into multiple plug-ins. However, if
a plug-in later invalidates any selection predicates (e.g., if “local hosting” exceeds its
limit), it will be detached. This is periodically checked every measurement cycle, which
therefore limits (re-)configurations to once every cycle (by default every 2 minutes).

5.5. Content-Centric Framework

The second mode of operation is that of a consumer; when this is requested, Juno
returns the IConsumer interface detailed in Section 4.2.2. This is offered by the
content-centric framework, which encompasses two other frameworks that collectively

5This refers to providers that are not managed by the organization which developed the application.
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Fig. 2. Flow chart of content request consumption process (dotted lines indicate Juno).

offer the desired functionality: the discovery framework and the delivery framework.
Figure 2 shows these frameworks and how abstract content requests are mapped into
concrete provider requests.

5.5.1. Discovery Framework. The discovery framework is responsible for performing
the mapping between content identifier and content location; it is therefore used to
discover any potential sources of the content when it is not available from the local
content manager. Evidently, however, within Juno’s design, content can be provided
from a range of different providers/protocols. This could be due to the use of multiple
plug-ins by the provider framework or, alternatively, because the application is access-
ing open content that is widely distributed by third parties (for instance, Linux ISOs
are openly available through various HTTP, FTP, and BitTorrent sources, to name a
few). Consequently, it is necessary for the discovery framework to enable interopera-
tion with this wide range of providers.

To achieve this, the discovery framework hosts one or more discovery plug-ins, which
each contain the functionality to discover content in one or more indexing services. All
discovery plug-ins are required to expose a locateSources method, which performs a
mapping from a content identifier to a set of sources. Discovered content is represented
using a RemoteContent object, which corresponds to that generated by the provider
framework used to publish the content.

By default, the discovery framework always utilizes the Juno Content Discovery
Service (JCDS) plug-in, which is used by the provider framework to upload references
to any known sources of the content. Alongside this, a range of other discovery plug-
ins can simultaneously be queried to discover sources that are not within the remit of
Juno’s control. This allows third-party sources to be exploited, thereby improving per-
formance. The most prevalent example of this is peer-to-peer sources, which often can
be found to offer third-party content. Through Juno’s use of magnet links it becomes
possible to discover such sources and pass them to the delivery framework, alongside
any sources available via the JCDS. References to any third-party sources located are
also uploaded to the JCDS so other nodes can better discover them. Importantly, by
dynamically mapping content identifiers to sources through the discovery framework,
it becomes possible for applications to discover new sources post-deployment. It there-
fore does not restrict developers to statically configuring an application with provider
information (e.g., a URL); thus, new providers can be added at any time.

5.5.2. Delivery Framework. The delivery framework is responsible for accessing an item
of content once the discovery framework has provided a set of available sources. Evi-
dently, the discovery process will potentially return multiple sources utilizing different
protocols. It is therefore necessary to be able to (re-)configure the framework to select
the optimal source(s) based on the application’s requirements.
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To achieve this, the delivery framework hosts one or more delivery plug-ins, which
each contain the functionality to access content using a given protocol (or set of pro-
tocols). This, for instance, could consist of a generic BitTorrent client implementation
or, alternatively, a provider-specific implementation that only operates with a single
service.

Evidently, different delivery plug-ins will offer differing types of content access
based on the underlying protocols they implement. Some plug-ins (e.g., BitTorrent)
cannot be used for media streaming as they do not perform in-order deliveries, whereas
others (e.g., HTTP) could be used for both stored content downloads and stream-
ing. To address this, applications must stipulate the type of content access they re-
quire (e.g., live stream, file reference); this is done through IConsumer’s get method
(refer to Section 4.2.2). This preference is then used to inform the selection of the
delivery plug-in as only compatible ones are included in the selection process. To for-
malize this diversity, a set of different plug-in interfaces exist for each of the Content
subclasses detailed in Section 4.2.2: FileStoredContent, MemoryStoredContent, Range-
StoredContent, and StreamedContent. For example, the FileStoredContent plug-in inter-
face requires a file reference at initiation so that the content manager can be told where
to store the file. This diversity allows applications to operate with content using the
abstraction that is most convenient for their needs. For instance, a file sharing appli-
cation would request a FileStoredContent plug-in, whilst a video streaming application
would request a StreamedContent plug-in. Importantly, a plug-in implementation can
support multiple interfaces, thereby allowing a single plug-in to be used differently by
each application (e.g., the HTTP plug-in supports all of the aforesaid interfaces).

5.5.3. (Re-)Configuring the Content-Centric Framework. The delivery and discovery frame-
works provide the basis for configuring and reconfiguring Juno to access content in
the optimal way. The discovery framework is responsible for locating as many sources
as possible, whilst the delivery framework is responsible for selecting the optimal one
to utilize. This form of (re-)configuration is therefore more sophisticated than in the
provider framework, which generally multiplexes all publication requests into all com-
patible plug-ins. This is due to the one-to-one nature of consumption in comparison to
the one-to-many nature of provision (i.e., a provider needs to satisfy many consumers
whilst a consumer only needs to satisfy its own requirements).

In essence, (re-)configuration of the content-centric framework involves four stages:
(i) stipulation of requirements by the application; (ii) discovery of available sources
and their characteristics; (iii) comparison of application requirements against source
characteristics; and (iv) selection and attachment of protocol plug-in to interact with
optimal source. Source characteristics (represented by their metadata) can be bro-
ken down into two groups. The first are static characteristics; these are generally
based on the protocol that the source supports. For instance, if a source uses HTTP,
it would not be possible to access it over an encrypted connection; this attribute will
therefore never change (i.e., it is static). In contrast, source characteristics can also be
dynamic, that is, they can change at runtime between different consumers (e.g., per-
formance). Only dynamic characteristics generate consumer and temporal variance.
Currently, Juno supports a single item of dynamic metadata: “avg bit rate:int”. This
refers to the throughput that can be expected from a particular plug-in when access-
ing an item of content. Techniques to generate this have been defined for the following
protocols.

— HTTP. The iPlane service [Madhyastha et al. 2006] is used in conjunction with
the model detailed in Padhye et al. [1998] to calculate predicted download
performance.
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— BitTorrent. The model from Piatek et al. [2007] is used to calculate predicted down-
load performance. The necessary runtime parameters are obtained using a publicly
available dataset [Idal et al. 2007].

— Limewire. History-based predictions are used to predict download performance [He
et al. 2007]. HTTP predictions between each individual source can also be utilized
to augment this information, as Limewire utilizes multisource HTTP to perform
downloads.

Consequently, if, for instance, the content is accessible via a HTTP server, metadata
for that source is generated using iPlane. This metadata is then used (alongside static
metadata) to select the optimal plug-in in same way as detailed in Section 5.2.1.
Currently, the delivery framework also supports the other metadata detailed in
Section 4.2.2. Importantly, these are all static items of metadata that are extremely
efficient to compare whilst the preceding dynamic techniques complete accurately in
under a second.

To ensure that suitable reconfigurations are performed, all metadata predictions
must also include any overheads involved in bootstrapping the plug-in. These are gen-
erated by the individual plug-ins and integrated into the metadata predictions so that
they are automatically taken into account by the configuration engine. For instance, a
bit rate prediction by a BitTorrent plug-in must also include the cost of bootstrapping
itself in the swarm (usually in the order of seconds). Consequently, any reconfigura-
tion overheads are always taken into account during decision making; this, for exam-
ple, prevents reconfiguration taking place when only a small amount of data is left
to be downloaded. This is assisted by the use of the shared content manager, which
allows all plug-ins generating metadata to inspect the current progress of the deliv-
ery (allowing them to find out exactly which parts of the content still remain to be
downloaded). By default, all dynamic metadata is regenerated every 2 minutes and
compared against the requirements, thereby preventing frequent oscillation between
plug-ins. Importantly, by hiding the application from such changes, it can simply con-
tinue to interact with the returned Content object.

6. EVALUATION

The aim of this section is to evaluate Juno’s ability to perform per-node
(re-)configuration in order to best distribute content.

6.1. Evaluation Methodology

In this evaluation, we aim to validate Juno’s ability to (re-)configure itself in reaction
to consumer and temporal variance. To enable this, we use a typical middleware eval-
uation methodology and utilize a set of case studies. These intend to extensibly gener-
alize the core environments and workloads Juno will operate with; importantly, these
should also highlight how Juno reacts in different situations and scenarios. There
are four key consumer usage scenarios that could be used to design case studies: (i)
a consumer discovers multiple non-Juno providers offering the desired content using
different protocols; (ii) a consumer discovers a single Juno provider offering multipro-
tocol support; (iii) a consumer discovers a single non-Juno provider offering only a
single protocol; (iv) a consumer discovers multiple Juno providers, each offering mul-
tiprotocol support.

Within this evaluation we focus on the first two scenarios. Clearly, in scenario (iii)
there is no potential for (re-)configuration as there is only a single provider; thus,
it is important to state that Juno offers no immediate advantages beyond the devel-
opment benefits (e.g., the abstraction of content distribution behind a reusable API).
Further, in practice, the setting in scenario (iv) is identical to that of scenario (i) in
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which multiple providers using multiple protocols are discovered (Juno implicitly of-
fers multiprotocol support). Consequently, we view the first two scenarios to be of
primary importance.

Alongside these scenarios, it is also necessary to consider typical requirement sets
that will be generated by consumers. We believe that most requirement sets will in-
volve performance-oriented selection predicates and therefore this is used as the key
requirement in the case studies. This is also a requirement that suffers both con-
sumer and temporal variance; this therefore is an appropriate choice for highlighting
Juno’s capabilities. Further, it is also important to include static metadata (e.g., “en-
crypted:bool”) to highlight how different protocol properties can be exploited. Vitally,
because these requirement sets include both dynamic and static aspects, they are ex-
tensible to represent any other requirement set (the configuration engine applies se-
lection predicates to all metadata identically).

To realize these case studies, we have built two simple applications over Juno and
deployed them on the Emulab testbed [White et al. 2002]. Emulab contains a number
of dedicated hosts connected via an emulated network. Each node can be configured
to possess specific network characteristics (e.g., bandwidth) allowing tests to be per-
formed in a realistic setting that is subject to all appropriate limitations including
bandwidth variations, packet loss, latency, and real-world network protocol implemen-
tations. Through this, we create a bespoke environment to study the behavior of Juno.
We therefore use this to compare Juno against the alternative of using statically con-
figured applications, which cannot adapt to address variance. Following these case
studies, overhead measurements are then presented to contrast Juno’s benefits.

6.2. Case Study 1: Addressing Consumer Variance

The primary use-case of Juno is the situation in which multiple delivery systems are
discovered to offer a desired item of content, and Juno must reconfigure to access it.
This occurs when the provider framework publishes content through multiple schemes
or, alternatively, when the content is also openly available through multiple third par-
ties (scenarios (i) and (iv)). This case study analyzes this situation to highlight how
Juno addresses consumer variance to dynamically select the provider most suitable for
the individual host.

6.2.1. Case Study Design. We have developed a test application over Juno, with the
purpose of requesting content; first, a small 4.2MB file, followed by a larger 72MB
file. These two sizes have been selected to represent generic music and video files. This
consumer application has then been deployed on two different Emulab nodes. The first
consumer runs on a low capacity node, Node Low Capacity, which operates over a typi-
cal asynchronous DSL connection with 1.5Mbps download capacity alongside 784Kbps
upload capacity. The second consumer, Node High Capacity, operates over a much
faster 100Mbps synchronous connection. This experiment therefore introduces two
variable factors: content size and consumer capacity.

A number of content providers are also set up within the testbed. The content is
available from three providers for Node LC, whilst four are discovered by Node HC,
as listed in Table III. The three common delivery providers are an HTTP server, a
BitTorrent swarm, and a set of Limewire peers. These have been selected as they
constitute three of the most prominent content protocols currently in use [Schulze
and Mochalski 2009]. Node HC further discovers a private replication server offered
on its local network. Clearly, this is only a snapshot of the many possible providers
(and environments) that could be discovered, however, we consider these to represent
a typical situation. For instance, a number of alternate TCP-based providers (e.g., FTP,
HTTPS, etc.) could also be included, each with different infrastructural characteristics.
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Table III. Overview of Available Delivery Schemes

Available for Delivery Scheme

Nodes LC and HC HTTP: A server offering the file. There is 2 Mbps available capacity for the
download to take place. The server is 10 ms away from the clients.

Nodes LC and HC BitTorrent: A swarm sharing the desired file. The swarm consists of 24 nodes
(9 seeds, 15 leechers). The upload/download bandwidth available at each node
is distributed using a real world measurements taken from existing BitTorrent
studies [Bharambe et al. 2006].

Nodes LC and HC Limewire: A set of nodes possessing entire copies of the content. Four nodes
possessing 1 Mbps upload connections are available.

Node HC Replication Server: A private replication server hosting an instance of the con-
tent on Node HC’s local area network. The server has 100 Mbps connectivity
to its LAN and is located ≈1 ms away. The server provides data through HTTP
to 200 clients.

This would be automatically handled by Juno during its plug-in selection process. We
therefore consider this setup extensible to any situation in which multiple potential
providers are discovered.

When the application generates the content requests, it associates them with a
set of requirements. To study performance aspects, the only requirement generated
is avg bit rate = max. However, due to Node LC’s low upload capacity (784Kbps),
it also stipulates upload resources = false, to ensure that its limited resources are
not consumed (it should be noted that Juno also supports the automatic introduc-
tion of such requirements). This is a static item of metadata which is predefined in
each plug-in; it is therefore representative of any other similar static item of meta-
data supported by Juno such as “encrypted:bool”. In addition to this, the application
also provides details of the content sizes to assist in the selection process, for exam-
ple, min f ile size <= 72MB and max f ile size >= 72MB (once again, Juno introduces
these requirements automatically if the discovery process returns such information).
Of course, a variety of other rules could also be added (e.g., encryption support, mon-
etary cost, anonymity), however, as these are less complicated to resolve, we focus on
performance issues.

6.2.2. Analysis of Case Study. The preceding case study has been set up in Emulab;
Figures 3(a) and 3(b) show measurements taken from both Nodes LC and HC as
they were downloading the two files. It shows the application-layer throughput for
the 72MB and 4.2MB file downloads when utilizing each provider. It also shows the
throughput of Juno, which selects the optimal plug-in based on metadata generator
predictions.

It is first noticeable that the results for Node LC and HC are disjoint, that is, the
optimal providers for Node HC are not the optimal providers for Node LC. This means
that an application optimized for Node LC would be suboptimal for Node HC and vice
versa. Consequently, a statically configured application would not be able to fulfil
the delivery requirements for both nodes simultaneously. This therefore confirms the
presence of consumer variance. Thus, without Juno, an application would need to im-
plement control logic to follow different optimization paths depending on the host.

The reasons for these disjoint results between the two nodes can be attributed to
three key factors that generate variance. First, the two nodes have access to differ-
ent providers; second, the consumers possess different characteristics; and third, the
two items of content requested have different properties (size). Consequently, different
combinations of the previous factors can drastically alter a provider’s ability to satisfy
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Fig. 3. Average throughputs for nodes in case study.

performance requirements. To increase the extensibility of the case study, each form
of variance is now analyzed.

The first and most obvious cause of variance is provider availability. This refers to
the differences in content availability when observed from the perspective of different
consumers. For instance, in the case study, Node HC operates in a network that offers
a replication service with very strong connectivity. In contrast, Node LC does not have
any such service available because it is limited to members of a particular network (or
often paid members). Variations of this can happen in a range of different situations;
Gnutella, for example, will allow different sources to be discovered based on a node’s
location in the topology. Any delivery-centric system should therefore be able to ex-
ploit this consumer variance. Juno supports this by allowing each node to select the
source(s) and access mechanism that best fulfils its requirements. Clearly, this also
improves interoperability and extensibility by allowing new providers to be introduced
without recoding of applications.

The second type of divergence is caused by differences in consumer characteristics.
This variance is best exemplified by the observation that, for the 72MB delivery, HTTP
is the optimal plug-in for Node LC but the most suboptimal plug-in for Node HC. This
is because Node HC can better exploit the resources of the peer-to-peer alternatives
(i.e., BitTorrent or Limewire), whilst Node LC fails to adequately compete (due to its
poor upload capacity). In essence, Node LC is best suited to utilizing the least com-
plicated method of delivery because the more complicated approaches simply increase
overhead without the ability to contribute real performance gains. Once again, this
form of consumer variance is effectively addressed by Juno, which configures itself to
satisfy requirements on a per-node basis.

The final type of divergence is caused by differences in the content being accessed.
The previous two paragraphs have shown that in this case study it is impossible to
fulfil the delivery requirements for divergent consumers without performing per-node
configuration. However, a further important observation can also be made: the deliv-
ery mechanism considered optimal for one item of content is not always the best choice
for a different item of content. This is best exemplified by the observation that the
optimal delivery system for accessing the 72MB file is not necessarily the best for the
4.2MB file. For instance, when operating on Node HC, BitTorrent is faster than HTTP
for the 72MB file but slower than HTTP for the 4.2MB file (by 34%). This is due to the
length of time associated with joining a peer-to-peer swarm. Consequently, optimality
not only varies between different nodes but also between different content requests.
An application using BitTorrent that cannot reconfigure its delivery protocol would
therefore observe significant performance degradation between the two downloads.
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Table IV. Performance Improvements of Juno over Static Configurations

App Worst Case App Second Best Case App Best Case
4.2MB 72MB 4.2MB 72MB 4.2MB 72MB

DSL +343% +185% +57% +48% +/− 0% +/− 0%
100 +2979% +2141% +1013% +1174% +/− 0% +/− 0%

Consequently, delivery system selection must not only occur on a per-node basis but
also on a per-request basis. Juno addresses this by seamlessly reconfiguring between
the different optimal plug-ins, thereby effectively addressing this problem whilst re-
moving the burden from the application. This divergence highlights the fine-grained
complexity that can be observed when handling content distribution. This complexity
makes it difficult for an application to address all possible needs and therefore provides
strong motivation for pushing this functionality into the middleware layer.

The preceding analysis can now be used to study the behavior of Juno during this
case study. As shown in the previous graphs, for both items of content, Node LC
selects HTTP (due to the high download rate and the “upload resource = false” re-
quirement), whilst Node HC selects the replication server (due to the high download
rate). In terms of fulfilling performance requirements, this therefore allows a quantifi-
cation of the suboptimality of not using Juno’s philosophy of delivery (re-)configuration.
Table IV provides the percentage increase in throughput when using Juno during
these experiments. The worst-case scenario compares Juno against an application that
has made the worst possible design-time decision (using the preceding figures). The
best case is when the application has made the best decision (obviously resulting
in the same performance as Juno in this situation). These results highlight Juno’s
ability to effectively improve performance based on delivery requirements provided
by the application. However, this is also extensible to applications that wish to
have their deliveries configured based on other requirements, for example, security,
resilience, etc.

6.3. Case Study 2: Addressing Consumer and Temporal Variance

The previous section has investigated consumer variance, showing that applications
using Juno can dynamically configure themselves to interoperate with the provider
that best fulfils their requirements. It is now necessary to extend this to validate that
Juno can similarly address temporal variance by reconfiguring to reflect any tem-
poral changes in the environment. The most prominent example of a requirement
that suffers temporal variance is performance. Therefore, this case study highlights
Juno’s approach to addressing consumer and temporal variance when trying to fulfil
performance-oriented requirements. To further extend the previous case study we also
discuss the provider-side behavior.

6.3.1. Case Study Design. We have developed a second test application using Juno,
which consists of a provider that is distributing a 698MB video file to a set of con-
sumers (this is a typical MPEG-4 movie file size). This application has been deployed
onto a range of nodes in the Emulab testbed. Importantly, unlike the previous case
study, the content is solely provided by a single publisher, rather than being avail-
able through many different sources (i.e., scenario (ii)). The provider operates on a
single node with 10Mbps upload capacity; this is a typical server capacity as shown by
Antoniades et al. [2009], which found that ≈60% of users gained at least 10Mbps
from the Rapidshare Premium service. Twenty-five consumers are instantiated on
nodes configured with bandwidth data taken from Bharambe et al. [2006]. Initially,
only three nodes are present in the experiment; however, after 20 minutes, the other
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Fig. 4. Benefit of Juno using different reconfiguration strategies.

22 nodes begin to arrive sequentially in 20 second intervals. This is done for evalua-
tive purposes to better follow performance changes (as opposed to using a more real-
istic Poisson arrival rate). The experiment therefore extends the previous case study
to include both consumer variance (the bandwidth characteristics of the different con-
sumers) and temporal variance (the changes in server loading as the new nodes arrive).

For simplicity, the consumer applications just use the “avg bit rate = max” require-
ment. Also, when the provider application generates the publication request, it asso-
ciates it with a single requirement: “local upload < 9Mbps”. This indicates that the
upload rate of the host should not exceed this upper capacity for longer than the given
measurement cycle (default 2 minutes). As the provider is on a single host, initially,
only an HTTP plug-in is therefore instantiated.

6.3.2. Analysis of Case Study. The case study has been set up in Emulab over a num-
ber of nodes. Initially, the first three consumers select HTTP because this is the only
source. After 20 minutes, however, the demand for the content increases and the 22
further nodes begin to issue requests to the HTTP server. This temporal change re-
sults in a performance degradation for all the consumers, as the server’s resources
become saturated. At the server, this temporal change also results in the provider’s re-
quirements being invalidated (as shown through the HTTP plug-in’s metadata). Con-
sequently, the rules are reexecuted on the available provider plug-ins. Similarly, the
consumers also reexecute their local rules.

We consider two outcomes of this process: (i) the removal of the provider HTTP plug-
in and its replacement by the BitTorrent plug-in; or (ii) the addition of the BitTorrent
plug-in to operate alongside HTTP. This is a policy decision made by each provider
application. In the former case, all consumers must then reconfigure to use BitTorrent
as it becomes the only available source, whilst, in the latter case, each consumer is
left to select its preferred access mechanism (BitTorrent or HTTP). Importantly, Juno
handles both situations without application awareness. For completeness, Figure 4
shows the gains, in terms of download time, when utilizing both policies; nodes are
ordered by their download capacity with the slowest nodes at the left (results include
reconfiguration times).

First, Figure 4(a) shows what happens when a system-wide reconfiguration is em-
ployed, that is, the provider detaches its HTTP plug-in and forces all nodes to use
BitTorrent. This therefore involves all nodes replacing their HTTP plug-ins with the
BitTorrent one.

Clearly, it can be seen that the lower capacity nodes suffer from the system-wide re-
configuration; 12 out of the 25 nodes take longer to complete their downloads. This
occurs because in BitTorrent nodes are required to compete for download capacity
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Table V. Reconfiguration Times for Clients

Plug-in Re-Configuration Local Plug-in
Average Maximum Minimum Instantiation

Consumers 6 Sec 18 Sec 3 Sec 126 ms
Provider 11 Sec 11 Sec 11 Sec 349 ms

[Piatek et al. 2007]; in the case of lower capacity peers, often this is difficult, result-
ing in low performance. This therefore highlights the unattractive nature of ignoring
consumer variance through system-wide reconfiguration strategies (unlike Juno’s per-
node approach).

In contrast to this, Figure 4(b) shows Juno’s performance when utilizing per-node
reconfiguration, allowing each node to individually select its own plug-in, that is, the
provider serves the content simultaneously through both HTTP and BitTorrent. It can
be observed that every peer improves its performance when utilizing this strategy. It
allows high capacity peers to exploit each others’ resources through BitTorrent whilst
freeing up the server’s HTTP upload bandwidth for use by the lower capacity peers. On
average, through this mechanism, peers complete their download 65 minutes sooner.
This is an average saving of 30% with the highest saving being 51%. Consequently,
the case study further validates the importance of supporting per-node configuration,
as discussed in Section 3 and the previous case study. Importantly, Juno has also been
shown to effectively handle temporal variance by periodically reexecuting metadata
generation to ensure optimality is maintained.

6.4. Overheads

This section presents an evaluation of Juno’s overheads, specifically, its reconfiguration
delays, memory/processing costs, and development burden.

6.4.1. Reconfiguration Delay. Reconfiguration is a vital part of Juno’s operation; how-
ever, it can also introduce an overhead in terms of the delay between detaching and
replacing plug-ins. Reconfiguration is performed using one of two concurrency models
(refer to Section 5.2.1): the first is sequential, which involves removing one plug-in
and replacing it with another, whilst the second is parallel, which involves leaving the
first plug-in attached whilst bootstrapping the second one. The latter option creates
no noticeable reconfiguration delay but results in far greater resource utilization. In
contrast, sequential reconfiguration has a low overhead but results in a delay during
which no plug-in operates.6

Table V presents the delays for sequential reconfiguration, as recorded in Case
Study 2. It can be seen that, on average, reconfiguration takes 6 seconds; this delay
is caused by BitTorrent’s high bootstrap complexity (e.g., contacting peers, calculating
hash values), as it only takes 126 ms to locally instantiate the BitTorrent component.
It can also be contrasted with reconfiguring to use the simpler plug-ins (e.g., HTTP),
which take only ≈500 ms. Generally, streaming applications are most sensitive to
these delays; however, it is important to note that such a reconfiguration would only
take place if sufficient data had been buffered to ensure continuous playback. This
is in a similar vein to rejecting reconfiguration when a delivery has nearly completed
(refer to Section 5.5.3).

6.4.2. Memory and Processing Overhead. Table VI details the memory and process-
ing overheads of various plug-ins. The measurements are taken when a number of

6Sequential is the default method due to its simplicity.
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Table VI. Runtime Memory Footprint of Configurations
(inc. JVM) and Instantation Times

Plug-in Footprint Plug-in Juno
Attached Instantiation Instantiation

None 472KB N/A 329 ms
HTTP 512KB 35 ms 357 ms
BitTorrent 522KB 95 ms 374 ms
Limewire 573KB 42 ms 369 ms

Table VII. Coding Complexity for IConsumer and IProvider Interfaces

Interface Operation Juno HTTP BitTorrent CCN

IConsumer get 4 3 11 2
IConsumer stop 1 2 1 1
IConsumer update 4 N/A N/A N/A
IProvider put 3 1 13 2
IProvider remove 1 1 1 1

different plug-ins are attached individually. Clearly, it shows that there is only a
limited overhead involved in utilizing Juno, which we consider acceptable for most
applications.

6.4.3. Development Overhead. The core development overhead is that of code complex-
ity. To quantify this, Table VII shows the lines of code required for performing vari-
ous operations with Juno compared against various alternate delivery toolkits: HTTP
(java.net), BitTorrent (HBPTC and trackerBT APIs), and NetAPI [Ananthanarayanan
et al. 2009]. These are based on the provision and consumption of a single static ob-
ject. Clearly, there is relatively constant coding effort required amongst the different
APIs, indicating that Juno does not create a noticeable increase in overhead. However,
importantly, both the Juno and NetAPI interfaces provide significant gains over HTTP
and BitTorrent through their content-centric nature. Further, Juno’s ability to achieve
delivery-centricity comes at only a small increase in coding overhead (i.e., the need to
define the necessary rules).

A further interesting issue is the complexity of Juno’s abstract-to-concrete map-
pings. This is necessary to map the calls made to the delivery-centric API into concrete
interactions with the underlying protocol implementations. Ideally, for most plug-ins,
there should be a one-to-one mapping to indicate that: (i) the mapping is a low over-
head process; and (ii) the mapping is likely extensible to other protocol implementa-
tions. This can be studied by looking at the get method of IConsumer. This method
only required a maximum of five concrete invocations (for RTP) to interact with the
underlying protocol implementations, indicating that the complexity is relatively low.
In fact, many plug-ins only required one or two invocations, indicating that integrating
new plug-ins is relatively straightforward.

6.5. Discussion and Limitations

This evaluation has shown that Juno can, indeed, dynamically (re-)configure to ad-
dress the needs of higher-level applications. Further, the overheads of this process
have been shown to be low. As such, even when the environment prevents Juno from
reconfiguring (i.e., only one provider is available), the software engineering benefits
can be gained without high costs. However, it is also important to note that the case
studies are not exhaustive and therefore have limitations. Specifically, the choice to
use emulated case studies means that certain real-world considerations have been
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abstracted away. On the one hand, this improves control and determinism, however,
it also potentially reduces the applicability of the results for some scenarios. For in-
stance, route dynamics were not introduced into the emulations because it has been
long understood that most routes are relatively static [Zhang et al. 2000]. However,
this does not preclude the existence of network path variations in a real-world deploy-
ment. Unfortunately, it is difficult to perform such real-world experiments until Juno
has received more uptake and, as such, the use of case studies means that a smaller
number of application-level concerns have been explored (e.g., content types, require-
ments, etc.). Our longer-term evaluative aims therefore include: (i) building more
diverse applications over Juno, ideally involving third parties; (ii) exploring larger
and more complex requirement sets for these applications, including real-time aspects;
and (iii) deploying and monitoring these applications over the Internet for long-term
periods to understand how real-world variance can actually be handled consistently.
Despite this, we consider the case studies to have been configured realistically using
various measurements to offer a number of evaluative insights, which we consider
highly promising for Juno’s approach.

7. RELATED WORK

Demmer et al. [2007] were the first to propose a standardized content-centric API.
It is similar to Juno’s delivery-centric abstraction, however, it does not allow com-
plex delivery requirements to be represented, instead, limiting requirements to be
expressed through simple properties when performing the open operation on content
(although further details of how this would work are not provided). Further, the ab-
straction does not allow such requirements to be adapted after the content has been re-
quested. Other attempts at standardization include the NetAPI [Ananthanarayanan
et al. 2009]. However, currently, none supports the stipulation of requirements like
Juno does. The defining property of these content-centric APIs is therefore the ability
to request an item of uniquely identified content without stipulating any particular
source.

Variations of these APIs have been realized by a small set of existing systems.
Current content-centric solutions involve the deployment of network infrastructure
to perform routing. These systems generally focus on the discovery of content sources,
rather than its subsequent delivery. Prominent examples of these systems are DONA
[Koponen et al. 2007] and CCNx [Jacobson et al. 2009] (from the Named Data Net-
working initiative). DONA is a content-based equivalent to the current Domain Name
System (DNS). It builds a distributed tree overlay consisting of a number of Resolution
Handlers (RHs), which are used to route REGISTER and FIND messages. Providers use
REGISTER messages to publish content, whilst consumers use FIND messages to re-
quest content. These FIND messages are routed to the closest source, which then initi-
ates an out-of-band delivery to the requester (over IP). CCNx is an alternative solution
which uses network infrastructure to route content requests to sources. A content re-
quest is issued by sending an INTEREST packet, which is routed through the network
to an instance of the content. Unlike DONA, however, CCNx then returns the content
in a DATA packet, which is passed through the content-centric infrastructure (as op-
posed to out-of-band). The key limitations of these proposed solutions are therefore as
follows.

— Poor configurability of deliveries. Content-centric networks currently focus on dis-
covery; they do not offer the necessary underlying functionality to adapt source and
protocol selection based on complex application requirements. In contrast, Juno’s
interfaces allow the stipulation of requirements, which can then be adapted at run-
time. Importantly, these requirements can extend to a number of characteristics
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including both static protocol issues (e.g., supports encryption) and dynamic infras-
tructural concerns (e.g., performance).

— A lack of backwards compatibility. Content-centric networking’s aim of rearchitect-
ing the Internet suffers many of the deployment challenges encountered by tech-
nologies such as IPv6 and RSVP. In contrast, Juno places a far smaller burden on
deployment. Applications (both consumers and providers) need only integrate Juno’s
interfaces into their software. Importantly, Juno also offers interoperable support
with many of the existing prominent protocols; this, for instance, allows consumers
to easily discover and interact with existing (third-party) providers without modifi-
cation to them (through the use of the magnet link standard and passive indexing
on the JCDS).

— High Deployment Costs. Content-centric networks often require new routing infras-
tructure to be built, which mandates heavy investment. In contrast, by integrating
content-centric functionality at the middleware layer, such costs can be avoided. Im-
portantly, if a content-centric networking solution were later deployed, this could be
integrated into Juno through a plug-in, providing an immediate basis for usage by
any Juno applications.

An interesting variation on these is the Data-Oriented Transfer service (DOT) [Tolia
et al. 2006], which allows applications to abstract control over deliveries to a software
toolkit. The DOT service then accesses the content on the application’s behalf. How-
ever, it does not support the receipt of content-centric identifiers, instead requiring the
application to perform the necessary negotiations with the chosen content source. Its
key goal is therefore superior software engineering and component reuse (also a key
aim of Juno). In contrast to the consumer-driven approaches of Juno and DOT, there
are also Content Distribution Networks (CDNs) [Fortino et al. 2009] such as Akamai
[Su and Kuzmanovic 2008], which utilize DNS redirection to select optimal sources.
These, however, do not allow individual consumers to adapt their deliveries; it is solely
controlled by providers (with considerable monetary costs). Such things as protocol
adaptation are therefore not supported, as this would require consumer involvement.
Thus, Juno empowers individual consumers and applications in a way that is not pos-
sible using CDNs.

8. CONCLUSION

This article has introduced the concept of delivery-centricity. This exploits the observa-
tion that many applications do not have a vested interest in how and where their con-
tent comes from, as long as it verifiable and conducive with their requirements. To this
end, delivery-centric interfaces have been developed, alongside a middleware solution
that implements them. The middleware, Juno, utilizes software (re-)configuration to
adapt its behavior to the requirements issued by the applications. It has been shown
that Juno can dynamically select and (re-)configure between different protocols and
providers in a way that satisfies higher-level abstract requirements. Specifically, we
have shown that it is possible to address performance-oriented requirements by ex-
ploiting runtime observations of available providers. Beyond this, we have also shown
how static protocol-specific characteristics (e.g., upload requirements, encryption sup-
port) can be handled by Juno to conveniently address application needs. Importantly,
Juno has been designed in a highly extensible way that allows new plug-ins and
metadata generators to be easily added; consequently, there are both immediate and
future benefits in using Juno.

Based on the presented work, a number of further research directions are possi-
ble. First, it is important to evaluate Juno’s usage in the real world, alongside real
systems and users. This could involve the development of both new plug-ins and new
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metadata generation techniques. Clearly, these should be aimed towards motivating
people to build their applications over Juno. Lastly, an important line of future work
is to create more sophisticated decision making algorithms regarding the mapping of
requirements onto configurations.
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