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Abstract—Sampling social graphs is critical for studying things
like information diffusion. However, it is often necessary to
laboriously obtain unbiased and well-connected datasets because
existing survey algorithms are unable to generate well-connected
samples, and current random-walk based unbiased sampling
algorithms adopt rejection sampling, which heavily undermines
performance when applied in social media networks that show
local disassortative mixing pattern. This paper proposes a nov-
el random-walk based algorithm which implements Unbiased
Sampling using Dummy Edges (USDE). It injects dummy edges
between nodes, on which the walkers would otherwise experience
excessive rejections before moving out from such nodes. We
propose a rejection probability estimation algorithm to facilitate
the construction of dummy edges and the computation of moving
probabilities. Theoretical analysis shows that adding dummy
edges improves both the sampling efficiency and convergence.
We apply USDE in two synthetic networks and in two real-life
social media: Twitter and Sina Weibo. The results demonstrate
that USDE generates well-connected samples, and outperforms
existing approaches in terms of sampling efficiency and quality
of samples.

I. INTRODUCTION

Social media have gained tremendous popularity in recent
years. In order to characterize, optimize and simulate informa-
tion diffusion within such networks, it is often necessary to
collect realistic datasets [1][2][3]. However, the huge size of
these networks makes it very hard to gain a true snapshot of
the complete graph. Hence, it becomes necessary to obtain an
unbiased and well-connected subgraph of the network. Here, a
subgraph sample is unbiased if every user in the social media is
sampled with equal probability, as widely adopted in literature
[4][5]; and a sample is said to be well-connected if it has only
a few connected components. Well-connected subgraphs are
mandatory in information diffusion studies, because otherwise
the scope of diffusion would be limited to small isolated
components, failing to capture the process in the original social
media.

Sampling networks has been heavily studied in the literature
(§II). Survey sampling approaches (like stratified sampling [6]
or uniform sampling [7]) and those using random jumps during
sampling [8][5][9], while being able to provide unbiased esti-
mations of individual node attributes (like node degree), fail to
generate well-connected samples. Another kind of sampling,
called random-walk sampling, while being able to provide
well-connected samples, generates biased towards high-degree
nodes. Several algorithms, including Metropolis-Hastings Ran-
dom Walk (MHRW) [4] and its variants [10][11][12][13], were

proposed to adapt random-walk based sampling to generate
unbiased samples using the rejection sampling procedure.

The rejection sampling procedure explicitly rejects mov-
ing to high-degree nodes by increasing the probability of
(re)sampling low-degree nodes. This procedure incurs the
cost and delay of sampling without gathering information
in exchange, especially when applied to online social media
with local disassortative mixing pattern, where users tend to
follow power-users (like celebrities) with degrees that are
orders of magnitude larger [14][15]. In such networks, the
random walkers will be trapped in the low-degree nodes for
a long time due to the rejection sampling of high-degree
nodes. Low-degree nodes, on the other hand, will be repeatedly
sampled wastefully. Unfortunately, if these repetitions are
removed, MHRW and its variants using rejection sampling
fail to provide unbiased samples [16][11].

The above facts motivate us to propose a new sampling algo-
rithm (§III): Unbiased Sampling with Dummy Edges (USDE).
We aim to provide a good quality of samples (measured by
the ability to provide unbiased and well-connected subgraphs)
with high sampling efficiency (measured by the sampling
convergence and the speed of discovering new nodes). USDE
is a random-walk based algorithm that exploits artificially
injected dummy edges (§III-A). The intuition is that, instead of
rejecting high-degree nodes, the walkers move through dummy
edges to other nodes, on which the walkers would otherwise
experience excessive rejections. Note that the dummy edges
are not included in the final samples and are only used in
the sampling process temporarily. We propose a rejection
probability (also called self-sampling probability) estimation
algorithm to facilitate the construction of dummy edges and
the computation of traversal (moving) probabilities (§III-B).
By carefully assigning moving probabilities between adjacent
nodes that are connected by either original edges or dummy
edges, we show that our algorithm is able to generate unbi-
ased and well-connected samples (§III-E). Theoretical analysis
shows that adding dummy edges improves both the sampling
speed and convergence (§IV), while evaluation on synthetic
networks, as well as Twitter and Sina Weibo, further validates
the efficiency (§VI).

II. BACKGROUND AND MOTIVATION

A. Background

To study social phenomena it is necessary to collect realistic
social media data. However, collecting entire social graphs is



often impossible. Hence, most studies rely on social graph
sampling to collect data for analysis. Due to a low level
of reciprocity [15], these social media are usually abstracted
as directed graphs. From the perspective of sampling, it
has been shown that the random walk with “backward edge
traversals” in directed graphs (which allows the crawler to take
unidirectional edges as bidirectional ones) can achieve similar
performance to the ones in the corresponding undirected
graphs [16][12]. We use a similar idea here. Taking Twitter
as an example, we treat the unidirectional edges representing
follower and following relationships as bidirectional ones.
Hence, the Twitter network can be viewed as an undirected
graph: G = (V,E), where V is the set of nodes representing
users, and E is the set of bidirectional edges.

Another prominent feature of online social media is that
nodes with a very high degree (e.g. celebrities) may be
surrounded by many low-degree nodes [15][14], implying
high local disassortativity. Here, dissasortativity captures the
phenomenon that nodes tend to be connected with other nodes
with different degrees. Formally, the local (dis)assortativity
metric is defined by in [17], where for a node of degree (j+1),
its local (dis)assortativity coefficient ρ is:

ρ =
j(j + 1)(k̄ − µq)

2Mσ2
q

(1)

where k̄ is the average remaining degree of the node’s neigh-
bors, M is the number of links in the network, µq and σq
are the mean and standard deviation of the remaining degree
distribution of the network respectively. A positive (resp.
negative) coefficient ρ indicates an effect of local assortativity
(resp. disassortativity).

For a high-degree node i (e.g. a celebrity in Twitter) that
is surrounded by a large number of low-degree nodes, k̄ is
likely to be less than the global average of remaining degree
distribution µq . In this case, ρ of the high-degree node i is
negative but with a large absolute value, leading to a high
local disassortativity.

B. Motivation

The existence of local disassortative nodes makes unbiased
sampling challenging. Considering a high-degree node u that
it is surrounded by many low-degree nodes, crawlers in the
native random-walk sampling will move from u to its low-
degree neighbor v with a low probability. And once the
crawlers reach low-degree nodes, the native sampling prefers
high-degree nodes as the next hop. This leads to sampling bias
towards high-degree nodes. To address this problem, two kinds
of methods can be adopted. One is using random jumps [16],
[5], i.e. allowing the crawler to jump to a randomly chosen
node (instead of following edges). Random jumps essentially
decrease the sampling probability of high-degree nodes, while
increase the probability of low-degree ones. Random jumps,
however, will yield many small and isolated components in
the final samples.

The other solution is using rejection sampling, like
MHRW [4], i.e. rejecting to move to high-degree nodes but

sampling low-degree nodes many times (called self-sampling
here). This kind of solution generates well-connected samples
because crawlers follow edges to move to the current node’s
neighbors. Self-sampling therefore increases the sampling
probability of low-degree nodes and implicitly reduces the
probability of high-degree nodes. However, for a network with
local disassortativity, the self-sampling probability of low-
degree nodes will be extremely high, because crawlers must
experience excessive rejections of moving towards high-degree
neighbors in order to compensate the sampling probabilities of
low-degree nodes. The excessive rejections greatly hurts the
efficiency of discovering new nodes.

Further, as shown in [4], MHRW achieves unbiased esti-
mation of node properties by counting m self-samplings on
a node as m distinct nodes with the same attributes in the
final samples. However, if we should include edges in the
final samples (for studies of information diffusion and alike),
a unique node, along with its edges, can only be counted once
in the graph, because otherwise it will increase the degree of
the node’s neighbors by adding m−1 edges on each neighbor.
In this case, MHRW fails to provide unbiased samples. In
this paper, we aim at solving this shortcoming of rejection
sampling, in order to improve sampling efficiency and generate
unbiased samples while eliminating repeated samplings.

III. UNBIASED SAMPLING WITH DUMMY EDGES

This section presents our proposed sampling algorithm,
USDE. The idea is to keep the connectivity and unbiased
nature of samples obtained by rejection sampling algorithms
(like MHRW), while avoiding excessive rejections (or self-
samplings). To this end, we add dummy edges between nodes
that would otherwise experience high self-samplings, and
amortize the self-sampling probabilities of individual nodes
to moving probabilities on the dummy edges. Importantly,
dummy edges are only used during the sampling process to
allow the sampling crawler to move to another node, and they
are not involved in the final sample. Table I lists the notations
used throughout of this paper.

TABLE I: Notations in the description of USDE

Notation Definition
V ′ set of nodes having been visited by sampling walkers
ki degree of node i in the abstracted undirected network
Pi,j moving probability from node i to j through one step

P
(n)
i,j moving probability from node i to j through n steps
πi probability that node i can be sampled
Li self-sampling probability of node i, i.e. Pi,i

U(i) set of nodes that connect with i through dummy edges
S(i) set of nodes that connect with i through original edges
DPi,j moving probability from i to j via the dummy edge
LPi lower bound of node i’s self-sampling probability
Er(k) the average node degree with sampling repetitions
Eu(k) the average node degree without sampling repetitions

A. Dummy Edges

Dummy edges are built between nodes that experience ex-
tensive self-sampling (rejection) probabilities in random-walk



Fig. 1: Example of adding dummy edges on multiple nodes

based rejection samplings. Suppose the crawler is currently on
node i; the candidate nodes for building dummy edges from i
are the previously visited nodes’ neighbors that have not been
visited yet and have non-zero self-sampling probabilities. In
this way, a node that connects with i through a dummy edge
once being visited cannot form new connected components,
since at least one of its neighbors has been visited. This avoids
jumping to random nodes, and therefore avoids the generation
of many small components.

Fig. 1 shows an example where multiple dummy edges are
added. Note that when assigning a moving probability over
edges, we keep the probability of moving out and moving in
from every node to be 1, i.e., the sum of moving probabilities
over all edges of a node is 1. In the example, the sampling
crawler is at node i with self-sampling probability of 0.4.
Node v has already been visited. Two nodes, b1 and b2, have
not been visited yet and their self-sampling probabilities are
Lb1 = Lb2 = 0.8. If we add two dummy edges {i, b1} and
{i, b2} and assign the moving probabilities on the two edges
as Pi,b1 = Pb1,i = 0.2, Pi,b2 = Pb2,i = 0.2, then Li, Lb1 , then
Lb2 are reduced to 0, 0.6 and 0.6 respectively. As b1 and b2
have not yet been visited, moving the crawler to them improves
the efficiency of identifying new nodes and user attributes.
Besides, as their neighbor v has been visited, moving the
crawler to them will not generate new connected component.

B. Moving Probability in USDE

At first, we describe the calculation of the moving proba-
bility from node i to node v in USDE using Eq. 2:

Pi,v =


min( 1

kv
, 1
ki

) if v ∈ S(i)

DPi,v, if v ∈ U(i)

1−
∑
x∈S(i)

Pi,x −
∑
y∈U(i)

Pi,y if v = i

0 otherwise

(2)

where U(i) is the set of nodes that have dummy edges with i,
S(i) is the set of original neighbors of i, and DPi,j = DPj,i.

We have showed in our previous work [10] that the suffi-
cient and necessary condition for unbiased (nodal) sampling
in a network G that has at least one node with non-zero
clustering coefficient is: (1) if Pi,j > 0, then Pj,i > 0;
(2) ∀j ∈ V,

∑|V |
i=1 Pi,j = 1, where |V | is the number

of nodes in network G. The above moving probability of
USDE meets these two conditions, because following Eq.
2: Pi,j = Pj,i and thus if Pi,j > 0, then Pj,i > 0; and
∀i ∈ V,

∑|V |
j=1 Pj,i =

∑|V |
j=1 Pi,j = 1. Hence, USDE generates

unbiased (nodal) samples where each node is sampled with
equal probability.

C. Dummy Edge Addition

The selection of nodes to build dummy edges is critical in
USDE. The nodes to which dummy edges can be built from
the currently visited node are the previously visited nodes’
neighbors that have a non-zero self-sampling probability and
have not yet been visited by the sampling crawler. However,
finding such nodes is challenging because we are unable
get the exact self-sampling probability of an unvisited node.
Instead, we estimate the lower bound of the self-sampling
probability for an unvisited neighbor based on the degree of
the current visited node and the degree of this neighbor.

From Eq. 2, we can infer that if there is a neighbor u of node
i with degree ku > ki, then the self-sampling probability of
i without dummy edges is at least ( 1

ki
− 1

ku
). Following this

observation, the lower bound of an unvisited node i’s self-
sampling probability without dummy edges, LPi, is:

LPi =
∑
v∈{S(i)∩V ′}(

1
ki
− 1

kv
) where kv > ki (3)

where S(i) is the neighbor set of i and V ′ is the set of nodes
that have been visited.

Fig. 2: Estimating self-sampling probability

Fig. 2 illustrates how the lower bounds are estimated during
the sampling process. The node degrees are marked on the
nodes and the node IDs are labeled beside the nodes. Let’s
assume that, before step T , the self-sampling probability for
all nodes is 0. At step T , the crawler visits node w. Node j and
node m are neighbors of w and kj < kw, km < kw. Hence,
we can estimate that LPj = 1

kj
− 1

kw
= 1

20 −
1
50 = 0.03 and

LPm = 1
km
− 1

kw
= 1

10 −
1
50 = 0.08 at step T . At the next

step T + 1, the crawler visits y. We update the estimation of
LPj because j is also a neighbor of y and kj < ky . The LP
value of j is updated as LPj = 0.03 + 1

20 −
1
30 = 0.0467. But

we are unable to estimate LPn at T + 1 as kn > ky .
During the process of sampling, we use a queue Q to record

the node ID and the estimated lower bound of self-sampling
probability, LPv , for each unvisited node v with LPv > 0, i.e.
a tuple (v, LPv) for a node v. The nodes in this queue are
candidate nodes for dummy edge addition from the currently
visited node.

D. Computation of moving probabilities

When a node i is visited for the first time, we obtain its
self-sampling probability as 1−

∑
x∈S(i) Pi,x−

∑
y∈U(i) Pi,y

according to Eq. 2. U(i) is empty in the case that i has never
been selected for building dummy edges before. If such a
probability is larger than a threshold δ, we pop a tuple (v, LPv)



from Q and add a new dummy edge between node i and v. The
moving probability of the added dummy edge DPi,v (DPv,i)
is computed as Eq. 4.

DPi,v = min(LPv, 1−
∑
x∈S(i)

Pi,x −
∑
y∈U(i)

Pi,y) (4)

We then update LPv with LP
′

v = LPv − DPv,i. If the
updated LP

′

v > 0, we push the updated tuple (v, LP
′

v) back
to Q. Such an estimation method (for the lower bounds of
self-sampling probability) ensures that the sampled subgraphs
are well-connected because all the nodes recorded in Q are
neighbors of previously sampled ones.

The moving probability DPi,v (DPv,i) of the dummy
edge can be significant in the case of large LPv and self-
sampling probability. In this case, the sampling crawler will
wander between i and v for a long time, which prevents
the crawler from finding new nodes. To solve this prob-
lem, rather than pop only 1 tuple, we pop γ (γ > 1)
tuples (v1, LPv1), (v2, LPv2), (v3, LPv3) · · · (vγ , LPvγ ) from
Q at one time, and γ dummy edges are added {i,vj} (j =
1, 2 · · · γ). The moving probability on dummy edge {i, vj}
DPi,vj (DPvj ,i) is computed as Eq. 5.

DPi,vj = min(LPvj ,
1−

∑
x∈S(i) Pi,x −

∑
y∈U(i) Pi,y

γ
)

(5)
LPvj is then updated accordingly and the tuples with non-

zero LP s are pushed back to Q. The addition of dummy edges
ceases when the self-sampling probability on i is reduced to
0, or dummy edges to all the γ nodes are added.

The queue Q applies FIFO (First In First Out), which avoids
adding too many dummy edges on a single node. The stored
nodes with fewer dummy edges and larger LP are more
likely to be popped out, reducing self-sampling probabilities
as much as possible. The queue Q is initialized in the first t
iterations of sampling. During this time period, dummy edges
are not added, and the LP s of the visited nodes’ neighbors
are estimated and pushed into Q as dummy edge candidates.

E. USDE Implementation

To sum up, the pseudo code of USDE is listed in Algorithm
1, where t (the number of iterations for the queue initial-
ization), δ (the threshold on self-sampling probability) and γ
(the number of records popped from Q at a time) are design
parameters. The list R stores unique node ID sampled.

Our USDE implementation leverages multiple random-walk
based crawlers that run in parallel for efficient sampling. At the
beginning, a set of initial nodes (called seeds) are uniformly
selected from the network at random. Each seed initializes a
crawler following Algorithm 1. Crawlers share the common
queue Q for candidates of end points for dummy edges.1 In
this way, each crawler is able to access the candidate end
points for dummy edges generated by other crawlers, enabling

1We associate the queue Q with a mutex lock.

Algorithm 1 Unbiased sampling with dummy edge (USDE)
1: procedure USDE(t, δ, γ)
2: R← ∅, Q← ∅, v ← initial seed
3: while stopping criterion has not been met do
4: if v /∈ R then
5: insert v in R
6: if (v, LPv) ∈ Q then . visited nodes are not eligible for dummy

edges
7: pop (v, LPv) from Q
8: end if
9: Lv ← 1

10: for each neighbor i of v do . estimating self-sampling prob. of
neighbors

11: Pi,v = Pv,i ← min( 1
ki
, 1
kv

)

12: Lv ← Lv − Pv,i
13: EstimateLP(v, i, Q,R)
14: end for
15: for each tuple (k, Pv,k) ∈ U(v) do . if v has been chosen as the

end point of dummy edges before it is visited
16: Lv ← Lv − Pv,k
17: end for
18: if Iteration > t and Lv > δ then . adding dummy edges
19: AddDummyEdges(v,Q, γ)
20: end if
21: end if
22: Select a neighbor w according to Eq. 2
23: v ← w . moving to a neighbor
24: end while
25: end procedure
26:
27: procedure ESTIMATELP(v, i, Q, R)
28: if kv > ki and i /∈ R and i ∈ Q then
29: LPi ← LPi + ( 1

ki
− 1
kv

) in Q
30: end if
31: if kv > ki and i /∈ R and i /∈ Q then
32: LPi ← 1

ki
− 1
kv

, push (i, LPi) into Q
33: end if
34: end procedure
35:
36: procedure ADDDUMMYEDGES(v, Q, γ)
37: N ← 0
38: while N < γ and Lv > 0 do
39: pop (b, LPb) from Q
40: Pv,b = Pb,v ← min(LPb,

Lv
γ )

41: push(b, Pv,b) into U(v) . adding dummy edges
42: push (v, Pb,v) into U(b)
43: Lv ← Lv − Pv,b . updating self-sampling probability
44: LPb ← LPb − Pb,v
45: if LPb > 0 then
46: push (b,LPb) into Q
47: end if
48: N ← N + 1
49: end while
50: end procedure

the building of dummy edges between two nodes in different
communities of the network. The shared queue Q essentially
facilitates the formation of large connected components in the
sampled subgraphs. Finally, nodes that are visited by crawlers,
along with the edges between them, are exported to form the
final samples. The dummy edges, however, are not included
in the final result.

It is also noteworthy that since sampling on the graph with
dummy edges still keeps the necessary and sufficient condition
for unbiased sampling stated in [10], the sampling is still nodal
unbiased.

IV. SAMPLING EFFICIENCY ANALYSIS

We analyze the sampling efficiency of USDE from two
perspectives: the speed in discovering new nodes during the
sampling process and the convergence of the crawlers. We
show that the addition of dummy edges via USDE can reduce



the sampling times per node and improve the convergence by
increasing the “conductance” of the sampled network.

A. Sampling Times per Node

Given the sampling iterations, the speed of discovering
new nodes is inversely proportional to the sampling times per
node. Suppose the crawler starts from a node i. The average
sampling times on node i within T steps is

∑T
n=1 P

(n)
i,i [18].

Recall that USDE meets the sufficient and necessary condition
for unbiased (nodal) sampling that is given in [10]. Thus, when
P

(n)
j,k reaches the stable state (when n is sufficiently large),

it converges to the stationary distribution of k, πk (i.e. 1
|V | )

for ∀j, k ∈ V . Since |V | is sufficiently large (e.g. billions in
Twitter and Sina Weibo),

∑T
n=1 P

(n)
i,i is dominated by the first

m iterations
∑m
n=1 P

(n)
i,i , where m < T is a small number. In

other words, the sampling time per node is largely determined
by the self-sampling probability in the first m iterations.

Next, let’s analyze the reduction of sampling time per
node from the perspective of the transition matrix P . For a
Markov chain, P (n)

i,j is the element in the ith row and the jth
column (we use (i,i)-element to represent) of Pn. For a node
i with high self-sampling probability in the rejection sampling
algorithm (e.g. MHRW), we have Pi,i � Pi,j and Pi,i � Pj,i,
where j 6= i. As such, for a small number n, P (n)

i,i � P
(n)
i,j

holds for any j that j 6= i in Pn.
After the addition of dummy edges, Pi,i is amortized to Pi,j

and Pj,i, where j 6= i, making P̂i,i close to (or even smaller
than) the others in the same row or the same column in the new
transition matrix P̂ . In that case, the (i,i)-element in P̂n gets
close to (or even smaller than) the other elements in the ith
row, compared with the one in Pn. As

∑
∀j∈V P

(n)
i,j = 1 and∑

∀j∈V P̂
(n)
i,j = 1, it is obvious that P (n)

i,i is likely to be higher
than P̂

(n)
i,i for a small number n. Recall that P (n)

i,i largely
determines the sampling times per node, we can conclude that
USDE reduces average sampling times per node, and in turn
improves the speed in discovering new nodes compared with
traditional rejection samplings, like MHRW and its variations.

B. Convergence of USDE

Because of the addition of dummy edges, the structure of the
graph is changing dynamically during the execution of USDE.
It is thus difficult to calculate the exact convergence rate of the
sampling probability. Fortunately, we show that the addition
of dummy edges in each step is beneficial to the convergence.

The “conductance” of a graph G(V,E) measures how “well-
knit” the graph is. It also controls how fast a random-walk
based crawler on G converges to a uniform distribution of
sampling probabilities [19]. We thus study the convergence of
USDE from the perspective of the conductance of sampled
graphs. The conductance of a set A in graph G is defined as
follows [20]:

ϕ(A) =
F (A)

π(A)(1− π(A))
(6)

where F (A) is called as the ergodic flow from A, which is
defined as F (A) =

∑
i∈A

∑
j /∈A πiPi,j , and π is the stationary

distribution vector of the sampling process. F (A) represents
the fraction of steps of a very long random walk which
moves from A to its complement. The denominator denotes
the fraction of steps of a very long sequence of independent
samples from π that moves from A to its complement, where
π(A) =

∑
i∈A πi. The conductance of the whole graph is the

minimum conductance over all non-empty proper subsets of
V .

A small conductance indicates that the network consists
of several communities, which have few links to others. In
this context, USDE with a single random walk crawler may
prevent the crawler in one community from discovering other
communities as the dummy edges are always added in the
community of the starting node.

The above issue is addressed by the multiple random walk-
ers (or crawlers) running in parallel. Since a common queue Q
of candidate nodes for dummy edges is shared among crawlers,
crawlers in one community have access to the candidates in
other communities, enabling the building of dummy edges
between two nodes in different communities. Let ϕ(A) be the
minimum conductance of G without dummy edges and F (A)
be the ergodic flow from the community A. We further denote
K(A) as the set of dummy edges between nodes i ∈ A and
nodes j /∈ A added by USDE. After adding dummy edges,
the updated conductance of A in USDE ϕ̂(A) is:

ϕ̂(A) =
F̂ (A)

π̂(A)(1− π̂(A))

=
F (A) +

∑
i∈A

∑
(i,j)∈K(A) π̂iPi,j

π(A)(1− π(A))

= ϕ(A) +

∑
i∈A

∑
(i,j)∈K(A) π̂iPi,j

π(A)(1− π(A))

(7)

where π̂i = π̂j = 1
|V | ,∀i, j ∈ V since the sampling on the

new graph is still an unbiased stationary process as already
stated. Obviously, ϕ̂(A) is larger than ϕ(A) as long as K(A)
is non-empty. In other words, dummy edges added by USDE
between A and its complement increase the “conductance” of
the graph and therefore improve the sampling convergence.

The condition for K(A) being non-empty is that some
crawlers start from A and some from the complement of A.
Suppose the proportion of nodes in A is ρA. Given that the
initial seeds are randomly selected, the probability of K(A)
is non-empty is pK(A) = 1− ρnA − (1− ρA)n, where n is the
number of crawlers running in parallel. Therefore, pK(A) is
very high with a limited number of crawlers. For instance, if
ρA = 5%, pK(A) is as high as 87% with only n = 40 crawlers
(similar to MHRW in [11]).

V. EVALUATION ON SYNTHETIC NETWORKS

This section evaluates USDE on two synthetic networks,
each with 20,000 nodes. The synthetic networks allow us to
have more control over the experiments.
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Fig. 4: # connected compo-
nents in sampled subgraphs
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Fig. 5: Estimated local as-
sortativity coefficients

A. Experiment Setup

Test Data: The first network is generated using Exploration
without replacement [21] with a mean degree around 30
following a power-law distribution (referred to as Gp). This
follows the degree distribution of real-life online social media
[15]. The other one is a barbell graph (referred to as Gb), of
which two communities with 10,000 nodes are generated with
a Gaussian degree distribution with mean degrees of 20 and
40, respectively. We randomly choose from each community
one node and then link them with a single edge. This is used
to measure how the conductance of the graph controls the
convergence rate of sampling.

We also associate nodes with user attributes. Each node
is assigned an integer a ∈ [1, 200] with two probability
distributions: Gaussian and power-law distributions, which
are denoted as G-attribute and P -attribute, respectively. Each
integer represents a category of attributes. We run sampling
experiments with 10 crawlers simultaneously starting from
randomly selected seeds. The default design parameters of
USDE are: t = 100; δ = 0.00001; γ = 100.
Metrics: We evaluate the performance from two perspectives:
the quality of samples and the sampling efficiency. The quality
of samples is measured by the closeness of sampled node
degrees and user attributes to the ground truth, as well as the
connectivity of the sampled subgraphs; the sampling efficiency
is measured by the speed of identifying new nodes and new
user attributes, and the convergency of crawler.

B. Quality of samples

An important metric used in the literature to measure the
unbias of sampling algorithms is the sampled average node
degree. Due the existence of self-samplings, we measure two
node degree metrics: Er(k) — the average node degree when
m samplings on a node are counted as m nodes with identical
properties; and Eu(k) — the average node degree when a node
is only counted once no matter how many times it is sampled.
Fig. 3 plots these two metrics normalized by ground truth of
average node degree. Both USDE and MHRW provide stable
results after 300 iterations. However, MHRW converges to a
higher Eu(k) than the ground truth, although Er(k) is close
to that. Our results reconfirm that if repetitions are removed,
MHRW fails to provide unbiased samples [16][11]. In contrast,
both Eu(k) and Er(k) computed using samples generated by
USDE converge to the ground truth.

Next, we measure the connectivity of samples by counting
the number of connected components in samples, an impor-
tant metric for studies of user interactions and information
propagation [22][3]. Besides MHRW, we also compare USDE
with uniform sampling (UNI), which samples nodes in a
graph randomly with uniform probability and is always used
to generate unbiased degree distribution [4]. Fig. 4 shows
the results generated by 10 crawlers on Gb. The crawlers
select distinct seeds at the beginning of the sampling process
(which is evidenced by the 10 connected components after
10 iterations). The connectivity of samples of MHRW and
USDE increases with the growth of iterations, while that of
UNI decreases quickly.

The connectivity of sampled subgraphs is also of great
importance for the computation of topological features such
as local assortativity. As depicted in Eq. 1, the degree of the
current node i and its neighbors are both necessary for the defi-
nition of i’s local assortativity coefficient. However, in samples
with lots of isolated small components, the information of
most edges might be lost. To demonstrate this, we compute the
local assortativity coefficient based on the sampled edges and
plot the distribution in Fig. 5, where 1% nodes are sampled
on Gp.

Although UNI is able to provide an unbiased estimation
of degree distribution, the distribution of local assortativity
coefficients on samples (consisting of only sampled nodes and
sampled edges) is unable to reveal the dominant pattern of lo-
cal disassortativity. This is because it generates many isolated
small components. On the contrary, both USDE and MHRW
yield much more accurate distributions of the coefficients.

C. Sampling Efficiency
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Fig. 6: Convergence of MHRW and USDE on Gb



We next measure the time (in terms of sampling iterations)
required to obtain stable and accurate results on the barbell net-
work Gb. Fig. 6 compares the sampling convergence speed of
MHRW and USDE, where the y-axis is the average normalized
degree of Er(k). It is notable that USDE has a much better
performance in terms of convergence than MHRW, which
confirms our analysis in the previous section. The effect of
dummy edges is indeed very notable, because USDE becomes
convergent after 100 iterations when we begin to add dummy
edges (t = 100).
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Fig. 7: Efficiency of identifying new attributes on Gb

We finally examine the speed of identifying new attributes
in Fig. 7. USDE consistently outperforms MHRW for both
attribute distributions. For example, while about 90 categories
in Fig. 7(a) have been discovered by USDE within 1,000
sampling iterations, MHRW has discovered only 60 within
the same period, implying USDE is 50% more efficient than
MHRW. We also observe the effect of the user attribute
distribution on the efficiency in identifying new attributes. It
requires more sampling iterations to discover the same amount
of categories for P -attribute than G-attribute. The reason is
that P -attribute contains lots of “slight” attributes in its tail
distribution, which are more difficult to be discovered.

VI. SAMPLING TWITTER AND SINA WEIBO

To confirm the practicality of our technique, we now use
USDE to sample Twitter and Sina Weibo.We focus on the
quality of samples and the sampling efficiency as in the
previous section.

A. Experiment Setup

Both Twitter and Sina Weibo have a dense numerical ID
space. We randomly generate a number of IDs, and choose
10 IDs that correspond to valid users as the initial seeds for
crawlers. Since the relationship between users might be non-
reciprocal in Twitter and Sina Weibo, we leverage the idea of
“backward edge traversals” [12], where unidirectional edges
are treated as bidirectional ones.

The evaluation of unbias requires the ground truth of user
attributes in Twitter and Sina Weibo. Since we are aiming at
unbias in terms of nodes (as opposed to edges), the ground
truth of user attributes can be estimated using UNI2 [4]. We
thus uniformly generate a large number of user IDs at random
and use these IDs to query Twitter and Sina Weibo APIs.

2It is worth noting that uniform sampling is unable to provide well-
connected samples, and thus is not an alternative for USDE or MHRW.

During the sampling process, we rely on the APIs provided
by Twitter and Sina Weibo to obtain the information of the
currently visited node’s neighbors.

It is worth briefly noting that for some social network
platforms, like Google Plus, the user ID space is sparse and
the random ID generation is difficult. Fortunately, popular
social networks always provide public profile directories that
can be used for random seed selection. For example, Google
maintains a sitemap file that contains a link to every Google
Plus profile public3; Twitter4 and Facebook5 also provide
public user profile directories. The initial seeds can therefore
be uniformly chosen from these profile directories [23].

B. Quality of samples
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Fig. 8: Normalized average number of followers

We first examine the accuracy of estimating the number
of followers in Fig. 8, where the y-axis shows the average
number of followers (normalized by the ground truth). We
observe large variations of Er(k) and Eu(k) for the initial
sampling iterations due to the random choice of seed nodes.
The normalized Er(k) gradually converges to 1 after taking
several hundred iterations. Nevertheless, while the normalized
Eu(k) estimated by USDE in both networks converges close
to 1, the Eu(k) estimated by MHRW is about four times as
high as the ground truth. Such a huge difference is due to
excessive sampling repetitions in MHRW.

Fig. 9 further examines the distribution of followers ob-
tained by sampling algorithms after 2,000 iterations, where
the sampled users are counted uniquely. It is notable that
USDE generates a much closer distribution to UNI (ground
truth for nodal properties) than MHRW. For instance, samples

3http://www.gstatic.com/s2/sitemaps/profiles-sitemap.xml
4https://twitter.com/i/directory/profiles
5http://www.facebook.com/directory
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Fig. 9: Complementary CDF of followers in samples

generated by USDE reveal 93% users have fewer than 200
followers, close to the the corresponding proportion of ground
truth 95%. Nevertheless, this percentage in samples generated
by MHRW is only 80%.

C. Sampling Efficiency

Our results reveal that, for both Twitter and Sina Weibo,
the average sampling times per node by USDE is close to 2,
much lower than that by MHRW, which is 6-8 and 8-10 for
Twitter and Sina Weibo, respectively.
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Fig. 10: Efficiency of identifying location information

We finally investigate the efficiency in identifying new
locations in Fig. 10. USDE consistently identifies many more
new locations than MHRW. For example, USDE identifies
more than 200 cities in Twitter within 1,200 iterations, while
MHRW only identified about 50. The difference between the
two curves in Twitter is more significant than that in Sina
Weibo, possibly due to the categories of attributes in Twitter
(world-wide), which are more diverse than the ones in Sina
Weibo (country-wide).

VII. CONCLUSION

Studies on information diffusion in online social media
require unbiased and well-connected samples of online social
media networks. However, the local disassortative mixing pat-
terns in online social media makes efficient sampling difficult.
To this end, we propose a novel random-walk based sampling
algorithm: USDE. It introduces dummy edges between nodes
with high self-sampling probabilities to allow crawlers to
move between nodes, while still keeping the connectivity of
samples. We have detailed the way of building dummy edges
and the computation of moving probabilities, and theoretically
analyzed the performance of USDE. The evaluations on both

synthetic networks and real-life social media have demon-
strated that, in comparison with existing algorithms, USDE
achieves a better quality of samples and higher sampling
efficiency. Our future work will focus on further utilisation
of USDE for collecting real data sets. We wish to then exploit
this to further validate its ability to effectively sample a wide
range of node attributes, and structural properties. We envisage
this might lead to subsequent improvements.
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