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Abstract

Recent years have seen a huge proliferation in the use of content in distributed ap-
plications. This observation has been exploited by researchers to construct a new
paradigm called content-centric networking. Within this paradigm, applications
interact with the network using a simple content request/reply abstraction. The
network is then responsible for routing this request towards the ‘nearest’ provider
that can offer the content. This process therefore exploits the observation that
applications rarely have a vested interest in where their content is obtained from.
However, it currently ignores the fact that many applications similarly have no
interest in how their content is obtained, as long as it falls within certain require-
ment bounds (e.g. performance, security etc.). Consequently, existing content-
centric interfaces offer no support for stipulating such abstract requirements.
This thesis therefore proposes an extension of the content-centric abstraction to
include the concept of delivery-centricity. A delivery-centric abstraction is one
that allows applications to associate (high-level) delivery requirements with con-
tent requests. The purpose of this is to offer access to content in a specialised
and adaptable way by exploiting an application’s ambivalence towards the un-
derlying means by which it is acquired. Through this, applications can simply
issue abstract requirements that are satisfied by the underlying system. These
requirements can range from performance needs to more diverse aspects such as
overheads, anonymity, monetary cost and the ethical policies of providers.

Using the above principles, this thesis proposes the design of a new system
that can offer a delivery-centric abstraction. This process is guided by key design
goals, which dictate a solution should be interoperable with existing sources,
highly deployable and extensible. Specifically, a middleware approach is taken,
which results in the development of the Juno middleware. Juno operates by using
configurable protocol plug-ins that can interact with various third party providers
to discover and access content. Using these plug-ins, Juno can dynamically (re-
)configure itself to deliver content from the sources that are most conducive with
the application’s requirements.

The thesis is evaluated using a number of techniques; first, a detailed study of



real-world delivery protocols is performed to motivate and quantify the benefits of
using delivery-centricity. Alongside this, Juno’s functional aspects (discovery and
delivery) are also evaluated using both simulations and a prototype deployment to
understand the performance, overheads and feasibility of using a delivery-centric
abstraction. Throughout the thesis, performance is focussed on as the primary
delivery requirement. It is shown that utilising a delivery-centric abstraction
can dramatically increase the ability to satisfy this requirement, and that Juno’s
approach fully supports such improvements. It is then concluded that placing
delivery-centricity in the middleware-layer is a highly effective approach, and
that it can be performed in a feasible manner to ensure that delivery requirements
are met. The key contributions of this thesis are therefore, (i) the introduction
of a new delivery-centric abstraction, (ii) the design and implementation of a
middleware solution to realise this abstraction, and (ii7) the development of novel
technologies to enable content-centric interoperation with existing (and future)
content providers.
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Chapter 1

Introduction

1.1 Overview

Recent years have seen a huge proliferation in the use of content in distributed
applications. This has resulted in a large percentage of Internet traffic being at-
tributed to various types of content distribution [39][60][128]. Consequently, its
delivery has become a well studied research topic from both providers’ and con-
sumers’ perspectives. One such avenue of recent investigation is that of content-
centric networking, which proposes the radical overhaul of current Internet tech-
nologies to make the discovery and delivery of content an explicit network-level
function.

The proposed benefits of content-centric networking are wide. Within such
a system, content would be uniquely addressed with the ability to be accessed
from any location using a simple request/reply paradigm. This would make ap-
plication development simpler and allow an array of network-level optimisations
to be performed relating to the storage and distribution of content. However,
the placement of traditionally application-level functionality at the network-level
has resulted in a number of identifiable limitations. Specifically, this refers to
(1) poor interoperability between existing distribution schemes, (i) complicated
deployment, and (#i¢) an inability to configure or adapt deliveries.

This thesis investigates content-centric networking, with a focus on address-
ing the above issues. To achieve this, the principle of content-centric networking
is extended to include the concept of delivery-centricity. This is the ability for
an application to associate content requests with delivery requirements (e.g. per-
formance, security, access preferences etc.) that are dynamically resolved and
satisfied by the content-centric network. To investigate this, a new delivery-
centric abstraction is designed and implemented, with a focus on ensuring easy

deployment and high levels of interoperability with existing delivery schemes.
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The remainder of this chapter provides an introduction to content-centric
networking. First, an overview of content-centric networking is given, looking at
both its potential benefits as well as its current limitations. Following this, the
aims of this thesis are explored, looking at the important research goals. Last,
an overview of the thesis is given.

1.2 Content-Centric Networking

1.2.1 Overview

Broadly speaking, content-centric networking refers to any type of network that
views content as a central tenet of its operation [116]. However, recently the
term has been used to describe a new type of clean-slate network, which follows
a content publish/subscribe paradigm [81]. Providers can publish their ability to
serve an item of uniquely identified content, which consumers can then subscribe
to accessing. This is done through a common operating system abstraction [54],
leaving the network to manage the intermediate delivery and optimisation.

A number of designs have emerged in the last few years, including PARC’s As-
surable Global Network (AGN) [82] and U.C. Berkeley’s Data-Oriented Network
Architecture (DONA) [93]. These propose the deployment of routing infrastruc-
ture within the Internet, alongside the introduction of a new type of networking
stack to interact with it. DONA, for instance, proposes the use of DNS-like
routing infrastructure that can redirect consumers towards the closest providers.
Similarly, AGN uses content-centric routers that operate alongside IP to deliver
both Interest packets (subscriptions) and Data packets (provisions). Alongside
this, both approaches propose new types of content identification as a conceptual
replacement for traditional host addresses.

1.2.2 The Case for Content-Centric Networking

Content delivery has emerged as one of the primary uses of the Internet today.
This has been driven by recent improvements in access connectivity, as well as
the evolution of technologies and business models to adapt to new user demands.
A content-intensive application is one that heavily relies on some form of content
delivery; examples therefore include e-mail clients, IPTV systems, file sharing
applications and software update mechanisms.

Currently, content-intensive applications must implement a content delivery
protocol (e.g. HTTP), alongside a mechanism to discover the location of one
or more available sources. For instance, a software update management system
would likely use a server that provides periodic announcements regarding newly
available packages. In such an environment, any client applications would be
configured with the location (domain name) of the server, alongside the necessary
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protocol support to interact with it. Although this seems simplistic, this creates
a wide range of unnecessary complications. This is because the application only
desires access to a given item of content; it does not have a vested interest in
where the content comes from or how it arrives. The management of such details
is therefore an unnecessary burden for developers. This burden often leads to
sub-optimality because developers without a vested interest in content delivery
rarely invest time (and money) in improving the process.

Content-centric networking offers an effective solution to these problems by
deploying an integrated content discovery and delivery system that can operate
behind a single standardised abstraction. Evidently, this approach would offer
a simpler mechanism by which applications could access content. However, the
introduction of a single integrated system would further allow a range of other
optimisations to be performed that are not possible when dealing with multiple
diverse location-based solutions. First, performance advantages could be achieved
by allowing each item of content to be uniquely addressed at the network-level;
exploitations of this including easy caching, replication and request profiling.
Alongside this, the current problems of availability and resilience are addressed
because it becomes difficult for flash crowds to be directed towards particular
hosts. Instead, packets are solely addressed using content identifiers, thereby
resulting in requests being forwarded to a variety of potential sources (based on
suitable proximity and loading metrics). Last, many security issues could also
be resolved as the current approach of securing communication channels (e.g.
through SSL) would become obsolete; instead, the content itself could be secured
using self-certifying content identifiers based on cryptographic hashing.

1.2.3 Critique of Existing Approaches

Content-centric networking is still a very young research area and, as such, there
are a number of weaknesses in existing designs. Within this thesis, three core
problems are identified and investigated. These are interoperability, deployability
and delivery specialisation.

Interoperability. Most content-centric approaches promote themselves as
‘clean-slate’ solutions that wish to reform how the Internet operates. Whilst
this is an interesting challenge, it is highly undesirable in regard to interop-
erability with existing content infrastructure. When an application utilises a
content-centric abstraction it likely wishes to have the opportunity to interact on
a large-scale with any available provider. Unfortunately, however, any users of a
current content-centric design would not be able to interoperate with providers
offering content using traditional discovery and delivery. This is because cur-
rent proposals introduce new bespoke infrastructure and protocols that require
both provider-side and consumer-side modifications. Consequently, current de-
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signs only promote access to content across multiple (controlled) replicas, and not
across multiple systems. This observation means that the majority of content in
the Internet would not be available to those using content-centric networking.

Deployability. Most existing content-centric networks involve the deployment
of a network infrastructure (e.g. [82][93]). This infrastructure largely focuses
on the routing of requests based on content identifiers. Solutions such as NetInf
[33] also promote the deployment of storage infrastructure in the network. In
practice, this makes the uptake of the content-centric paradigm extremely un-
likely, as building new infrastructure is both slow and expensive. Further, due
to their network-level position, content-centric protocols are susceptible to a lack
of support by ISPs. This has been frequently encountered when deploying new
network technologies with examples such as quality of service (QoS) and mul-
ticast [34]. Evidently, this requirement is therefore related to interoperability,
as such support also improves the deployment process (e.g. through backwards
compatibility).

These hardware deployment challenges also lead to software deployment prob-
lems caused by the need for both applications and operating systems to be
adapted. The cost of re-engineering existing applications to use a content-centric
paradigm is high; similarly, there is an extremely high risk associated with de-
veloping new applications using a content-centric paradigm. Consequently, it is
likely that most applications would not utilise any newly deployed content-centric
network until it had global support.

Delivery Configuration and Specialisation. At present, the primary defin-
ing property of a content-centric network is the separation of location and iden-
tifier when requesting content. The purpose of this is to allow the network to
route requests based on content rather than hosts. However, as of yet, there is
no consideration for the specialisation or adaptation of the delivery procedure
to match the requirements of the consumer (or provider). In fact, there is not
even the ability to stipulate these requirements as part of the abstraction [54].
This is a wasted opportunity as the abstraction acknowledges the fact that the
consumer does not care where content is coming from, yet ignores the fact that
the consumer similarly does not care how the content is being received (as long
as it falls within certain requirement bounds, e.g. performance). This therefore
allows a huge array of ‘behind-the-scenes’ adaptation to be performed based on
these application-level requirements. Within this thesis, the ability to do this is
described as being delivery-centric.

Delivery-centricity is a concept that would be manifested through the ability
for an application to stipulate delivery requirements when requesting an object.
There exists a number of a possible delivery requirements that could be issued



1.2. CONTENT-CENTRIC NETWORKING 5)

by applications at both the provider’s and consumer’s side. Currently, these
are satisfied through the use of different delivery protocols (e.g. BitTorrent,
HTTPS, etc.). However, if a single unified content-centric system were to be
defined, the need must be satisfied in a different way. The most evident delivery
requirement is performance; this includes things such as throughput, delay and
jitter. Due to a lack of network-level support, this is currently performed (if
at all) at the application-level using techniques such as multi-source selection
[92] and swarming [49]. In a traditional content-centric network, however, this
must be handled entirely by the network, as it would not be possible to use
these approaches. This is because the consumer would be unable to differentiate
between different sources.

Although performance is probably the most important, there are also a num-
ber of other delivery requirements that an application might wish to stipulate.
Whilst it is possible that performance concerns might be introduced into content-
centric designs (e.g. COMET [6]), it is unlikely that this more extended set will
be. Collectively, these requirements define the quality of service that an appli-
cation requires. If all requirements are met by the delivery-centric system, then
an application can be considered to be satisfied with the service received from its
content provider. A range of potential requirements can feed into this, including,

o Security: What degree of security should be employed on the connection
(e.g. encryption strength)?

o Timeliness: Is the content required immediately? Must it be live or can it
be buffered?

o Anonymity: Must the request be anonymous?

e Monetary Cost: How much is the user/application prepared to pay for the
content?

o (Quverheads: What local and remote overhead can be acceptably incurred
(e.g. upload bandwidth, memory)?

e Fthical Policies: What are the energy costs involved? What policies does
the provider have regarding employment practices?

The reason that these requirements cannot be easily satisfied is that the deliv-
ery protocol utilised by current content-centric networks is static. It therefore
cannot be adapted and configured in the same way that traditional application-
level delivery systems can be. Currently, in the simplest case, a consumer might
choose not to download a particular item of content from BitTorrent because
of anonymity fears; instead, they might choose to use FreeNet [48]. Because
consumers cannot individually select their delivery protocol or their preferred
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sources, this becomes impossible in a content-centric network. Thus, many pow-
ers are removed from the consumer, making it impossible to enforce personal
criteria over that of the network policy.

1.3 Research Goals

The key objective of the thesis is to investigate the notion of content-centric
networking and to extend its definition to fully exploit the potential of (existing
and future) content systems. This objective can be further decomposed into three
core research goals,

1. To define an extended notion of a content-centric abstraction encompassing
both discovery and delivery, capturing the requirements of (existing and
future) heterogeneous content systems

2. To design and implement an end-to-end infrastructure that realises this
(new) abstraction in a flexible manner

3. To show that this concept is feasible and can be deployed alongside existing
systems in an interoperable way

From these high-level goals, a number of more specific research steps can be
derived. First, it is necessary to explore the state-of-the-art in content discovery
and delivery systems, to understand how they could be capitalised on using a
shared abstraction. This includes a detailed analysis of current content distri-
bution systems to ascertain whether or not the above heterogeneity regarding
delivery-centricity actually exists. Using this information, the next step must
be to design and implement a system that can provide applications with a new
delivery-centric abstraction, whilst building explicit support for deployment and
ensuring interoperability with existing (and future) content systems. Last, this
design must be evaluated based on the above goals, namely it must be shown that
the system offers support for (i) a content-centric and delivery-centric abstrac-
tion, (i7) interoperation with existing (and future) third-party content systems,
and (iii) explicit deployment support to enable wide-spread uptake.

1.4 Thesis Overview

Chapter 2 provides a background overview of content networking, as well as an
overview of technologies that could be used to achieve interoperation between
different content systems. Following this is a detailed analysis of related content-
centric solutions, looking at their ability to satisfy the key requirements of this
thesis. Chapter 3then performs a detailed quantitative analysis of delivery system
dynamics. This specifically looks at how the abilities of three popular delivery
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systems to satisfy performance requirements varies over time. To achieve this,
simulations, emulations and real-world measurement studies are used to show
that such requirements can only be satisfied using runtime adaptation, thereby
making it difficult for applications to provide such support natively.

Chapter 4 proposes a new delivery-centric interface that can be used to ab-
stract applications away from the complexity of handling the previously discov-
ered dynamics. This interface is then realised by a middleware design called
Juno. Following this, Chapter 5 explores the deployment challenges of Juno
whilst proposing techniques that can improve both its discovery and delivery
aspects.

Chapter 6 then evaluates Juno, looking at its ability to achieve both content-
centricity and delivery-centricity. First, the discovery process is evaluated using
simulations, before deploying a prototype implementation on a testbed to validate
its ability to achieve the performance benefits highlighted in Chapter 3.

Finally, Chapter 7 highlights the main contributions of the thesis, as well as
detailing potential future work. The thesis is then concluded, reviewing how the
primary research goals have been achieved.






Chapter 2

Background and Related Work

2.1 Introduction

The previous chapter has introduced the key goals of this thesis, highlighting lim-
itations of existing content-centric networks, alongside important research tasks
regarding their future. The central tenet of this thesis is to investigate the poten-
tial of extending the existing content-centric abstraction to include the concept
of delivery-centricity. An important stage in achieving this goal is therefore un-
derstanding the capabilities and operation of existing content systems that might
be involved in this process.

This chapter provides a detailed background overview of the principles of con-
tent networking, with a focus on understanding the various forms of heterogeneity
that can be observed between different systems. This underpins this thesis by
providing a state-of-the-art understanding of the paradigms and protocols that
can potentially be exploited by a delivery-centric network. Following this, is a
survey of potential technologies that can be used for achieving interoperation
between these multiple content systems. Last, the related work to this thesis is
explored; this involves analysing three closely related systems based on the core
goals detailed in Chapter 1.

2.2 Defining Content-Centricity

Content-centric networking (CCN) is a term that has the potential to cover many
topics. By its nature, the term can be used to encompass all networks that view
content as a central and paramount entity in their operation. This follows a
similar definition to Plagemann et. al. [116]. This generic definition, however,
could lead to a number of networks being classified as being content-centric.
Examples include peer-to-peer systems and the Akamai Content Distribution

9
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Network (CDN) [1]. This section seeks to clarify this definition by exploring the
criteria that a system must uphold to be classified as truly content-centric from
the perspective of this thesis. To define a content-centric network, this thesis
uses three measures. Each of these is now investigated in turn.

A content-centric network should provide a network abstraction that offers a
publish/subscribe-like interface. This implicitly creates a location/identifier split,
detaching the network abstraction away from the use of any specific location
(e.g. IP address). Currently, when an application requires an item of content it
is necessary to make a connection to one or more IP locations so that it can be
requested using an application-level protocol (e.g. HTTP [14]). This has resulted
in the development of a range of discovery techniques to allow applications to
ascertain the best location to request a given item of content from. Examples
of this include Akamai’s DNS redirection infrastructure [1] and Coral’s lookup
clusters [63]. A content-centric abstraction, however, must implicitly offer this
service without the need for the application to provide any details about content
location.

Table 2.1 provides an overview of the content-centric API proposed by Dem-
mer et. al. [54]. Such an API would typically be offered by a middleware or
operating system. It offers the capability to publish an object (create) and then
fill that publication with data (put). This therefore allows subscribers to discover
and access the content by opening a handle to the publication (open) then re-
questing data from it (get). Publications are accessed using a handle in a similar
way to a TCP connection being accessed using a socket handle. It is important
to note, however, that the open command needs only a publication identifier as
opposed to a socket’s need for a host address and port.

This stipulation is the primary defining factor in the design of a content-
centric network. Interestingly, however, it deviates from the standing definition
offered by Van Jacobson et. al. as being a “communications architecture built on
named data...[it] has no notion of host at its lowest level - a packet address names
content, not location” [83]. The important difference is therefore that existing
content-centric networks fulfil this criterion based on their underlying function-
ality, whilst this thesis attempts to fulfil the criteria solely using an abstraction
(i.e. it does not necessarily have to be content-centric behind the abstraction).
This means that this thesis places no prerequisites on the underlying method of
implementation.

A content-centric network should attempt to fulfil the delivery requirements
of the consumer(s). Different users and applications have different delivery re-
quirements. Currently, this observation is addressed through the use of a range
of divergent (application-level) delivery systems. However, the deployment of a
single, unified content-centric network would also need to satisfy this require-
ment to receive widespread uptake. An application’s needs can vary from the
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Parameter \ Returns ‘ Description
open(pub_id, flags) handle Opens a stream to a given publication
close(handle) void Closes a stream to a given publication
create(handle, attrs) | Status Creates a new (empty) publication
stat(handle) Status, Provides an up-to-date set of statistics re-
Attrs, lating to a publication
Statistics
update(handle, attrs) | Status Updates a previous publication
get(handle) Status, Requests data from a publication
Message
put(handle, message) | Status Puts data into a given publication
seek(handle, seqid) Status Moves to a particular location in a publi-
cation

Table 2.1: Overview of Content-Centric Networking Interface [54]

way it accesses the content (stored, streamed, interactive) to non-functional re-
quirements such as reliability and security. Within this thesis, a content-centric
network that supports the fulfilment of these various on-demand requirements is
termed delivery-centric.

Delivery-centricity can, generally speaking, be achieved through one of two
mechanisms: (i) intelligent source selection and (ii) protocol adaptation. Intelli-
gent source selection is a discovery process that attempts to locate sources that
offer content in a way that is conducive with the requirements of the application;
whilst, protocol adaptation involves adapting the behaviour of sources that aren’t
already operating in a way that is conducive with the requirements. The former
offers a passive way in which delivery-centricity can be achieved whilst the latter
constitutes a more pro-active approach.

Current content-centric networks do not place a focus on the delivery process.
DONA [93], for instance, just performs a point-to-point sequential delivery after
a source has been found. LIPSIN [85] takes a push approach and therefore the
delivery is defined by the provider. AGN [83] provides a greater degree of control
over the delivery with the ability to request the parts of the content (data packets)
in different orders. This, however, is essentially a multi-source TCP connection.
None of these systems therefore support the stipulation of more diverse require-
ments relating to issues such as security, anonymity, resilience, monetary cost
and performance. Due to this unfulfilled requirement, existing content-centric
systems cannot be classified as truly content-centric from the perspective of this
thesis. To address this, the term delivery-centric is introduced; this refers to a
system that fulfils this requirement.

A content-centric network should offer content security based on securing the
content itself and not the communications channel. By its nature, a content-
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centric network should remain agnostic to any particular location. As such, it is
not important to secure any particular channel but, instead, to secure the content
received from that channel. This need is increased by the promotion of caching
[140] in content-centric networks [33][118], which means it is often impossible to
ascertain the original source of the data.

To secure the content it is important for consumers to be able to validate
every part that they receives (e.g. each chunk or packet). This must also be
implicit to the content without the need to contact remote locations. The most
intuitive approach is therefore to generate content naming based on the data, e.g.
identify the content using a SHA1 hash of its data. This subsequently allows any
consumer to validate the integrity of the data by re-hashing it and comparing it
to its identifier. This is the approach taken by current content-centric networking
designs.

2.3 Principles of Content Distribution

2.3.1 Overview

The central tenet of this thesis is to explore the potential of deploying a new
content-centric abstraction by unifying the resources of existing popular content
systems. The purpose of this is two-fold; first, it would allow a practical deploy-
ment of content-centricity using the resources and content of existing systems;
and, second, it would allow the intelligent selection of different available sources
and protocols to allow delivery-centricity to be achieved. The former provides a
foundation for building a new content-centric system with access to a wide range
of content whilst the latter exploits this foundation to further offer optimisation
on behalf of the application. Collectively, these offer a strong motivation for
application developers to incorporate content-centric networking in their designs.

As a foundation to this research, it is therefore necessary to (7) understand the
predominant protocols and paradigms utilised in widely deployed systems, and
(ii) investigate how their non-functional properties can vary to support delivery-
centricity. In its simplest form, content distribution can consist of a point-to-point
connection between a consumer and a provider. This, however, can be (and often
is) extended to exploit a range of sophisticated technologies that attempt to
optimise the delivery process. As such, a content distribution system can be
defined as “a networked infrastructure that supports the distribution of content”
[116]. At its core, it is necessary for a content distribution system to offer at least
two functions:

e (Content Discovery: The ability for consumers to discover sources of a given
item of content, based on some form of identifier
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e Content Delivery: The ability for consumers to subsequently access the
content by transporting it from the remote source(s) to the chosen location

This section now explores the major paradigms used to build these two functions
in modern deployed systems.

2.3.2 Content Discovery

Content discovery is the process by which a node discovers a set of available
sources for a specified item of content. This is a necessary first step before a
content delivery can take place. In a location-oriented network (e.g. IP) this
generally involves performing some form of lookup to map a content identifier
to a host address. In contrast, in a content-centric network this involves routing
a request to an available source. Despite this, it is evident that both mecha-
nisms perform the same essential function. Content discovery mechanisms can
be categorised into three main groups,

e (lient-Server: A logical server maintains a database that can be queried
by potential consumers

e Peer-to-Peer: A set of cooperating peers collectively maintain a database
that they openly provide to each other

e Decentralised Infrastructure: A set of cooperating servers maintain a database
that can be queried by potential consumers

All of these approaches have been successfully deployed in the Internet and offer
various advantages and disadvantages. Each is now discussed through the use of
prominent real-world examples.

Client-Server Model

The client-server model is the oldest and simplest distributed systems paradigm
available. It involves setting up a single (logical) high capacity node that can serve
as a centralised accessible index of information. This index is then contacted by
clients that request this information, as shown in Figure 2.1. Such an approach
offers a flexible mechanism by which clients can query information using a range
of different criteria.

There are many client-server discovery systems deployed in the Internet with
most web sites operating in a client-server fashion. For instance, websites such
as rapidshareindex.com and rapidmega.info offer the ability to perform keyword
searching on the Rapidshare [25] content host. These services operate as servers
that maintain a database that contains the mapping of keywords — content iden-
tifier, as well as content — location, e.g.,
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‘animals’ — ‘Monkey3-12a’ — http://rapidshare/files/217935/72B2Y11.jpeg

Figure 2.1: The Client-Server Paradigm

The client-server model is highly attractive for a number of reasons. It is fast
and simple to deploy. Further, it allows queries to be resolved quickly based on
a range of flexible request fields as all data and computation resides at a single
location. However, it has significant scalability issues that create a limit on the
number of requests it can handle. This means that increases in demand must
be responded to with an increase in the amount of provisioned resources. This
process is both slow and costly, making the client-server model unattractive to
systems with limited resources or large variations in demand.

Peer-to-Peer

The peer-to-peer paradigm has become a popular alternative to the client-server
model. Peer-to-peer discovery services operate by sharing and exploiting the
resources of the peers utilising the service. As such, peers self organise to coop-
eratively offer content indexing. There are two primary approaches to building
peer-to-peer discovery systems: unstructured and structured. These two ap-
proaches are now outlined.

Unstructured discovery overlays were the first widespread deployment of peer-
to-peer networking following Napster [23]. The most popular example of this is
Gnutella [10], which offers a file sharing service between users. The Gnutella
topology is totally unstructured with peers connected to a set of n arbitrary
peers, as shown in Figure 2.2. All peers are considered equal and operate in
homogeneous roles. When a peer wishes to search the network it forwards a
query to all of its neighbours, which in turn forward it to all of their neighbours
with a Time to Live (TTL). Any node that receives this query subsequently
responds if it possesses a shared file matching the query.

The process of flooding queries to all neighbouring nodes obviously creates
significant overhead and makes Gnutella largely unscalable. A number of supe-
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Figure 2.2: An Unstructured Overlay Topology

rior variations therefore also exist, such as Gnutella 0.6 [91] and FastTrack [98],
which introduce the concept of super-nodes. These are high capacity peers that
can solely perform the indexing role for the network, as shown in Figure 2.3.
This leaves less reliable peers in a client-like role making the approach more scal-
able. Such an approach is utilised by popular applications such as Limewire [18]
(Gnutella 0.6) and Shareaza [27] (Gnutella2).

Figure 2.3: A Super-Peer Overlay Topology
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Structured discovery overlays are the second type of widely deployed peer-
to-peer discovery system with large-scale systems such as Azureus, eMule and
Skype all using structured overlays. They were developed to addresses the scal-
ability and reachability issues of unstructured alternatives. Structured discovery
overlays offer an efficient and deterministic routing process by which queries can
be propagated to the node(s) that are responsible for the search information.
Structured overlays encompass any topology with a predefined structure, such as
trees (e.g. BATON [84]) and skip lists (e.g. SkipNet [75]). However, of most
relevance is the example of Distributed Hash Tables (DHTs) [126]. These allow
applications to retrieve information using a hash table abstraction - information
can be stored under a given unique identifier and then subsequently retrieved
at a later date using the same identifier. Behind this abstraction exists a fully
decentralised set of peers that have self organised into a structure that allows
Distributed Object Location and Routing (DOLR). In essence, each peer is given
a unique identifier; DOLR allows messages to be routed to any member peer by
addressing it with this unique identifier. Most currently deployed systems claim
that this can be done in log(/N) hops, where N is the number of nodes. For
instance, Pastry [126] creates an ordered ring topology that is supplemented by a
tree topology connecting all the nodes. DHTs have become hugely popular with
a number of instances being deployed such as Chord [131] for OpenDHT and
KAD [106] for eMule and BitTorrent’s decentralised tracker system.

Peer-to-peer content discovery services offer a means by which a large amount
of content can be indexed cheaply with little investment by developers. In con-
trast to client-server models, it also allows the system to scale with an increase in
the number of users. This is because an increase in the number of users also re-
sults in an increase in the available resources. Despite this, peer-to-peer systems
suffer from efficiency and flexibility problems. These arise because it is neces-
sary to distribute data and computation over a large set of nodes. This makes
coordination difficult and expensive, thereby restricting the number of tasks that
can be performed (e.g. searching based on flexible criteria). Similarly, this need
to distribute the indexing process makes the system far slower than client-server
counterparts. For instance, in theory, a Pastry DHT would, on average, requires
4 hops to locate an item of content in a 100,000 node network [126], whilst a
Gnutella query can contact over 400 nodes based on its default settings [125].
In practice, these values are generally higher due to routing failures and stale
information; Azureus’ KAD, for instance, has been shown to contact over 50
nodes during a lookup, often taking well over a minute [61]. Alternative, more
aggressive, lookup algorithms improve performance, however, lookup times are
in the order of seconds, rather than milliseconds. Peer-to-peer discovery systems
therefore often struggle to offer the performance of client-server systems in the
real-world.
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Decentralised Infrastructure

Decentralised infrastructure has been in use since the inception of the Internet.
In fact, the Internet is by its nature a decentralised infrastructure, i.e. a collection
of routers and end hosts working in cooperation. In essence, it is a combination
of both client-server and peer-to-peer principles to exploit the benefits of both. It
consists of a set of autonomous items of infrastructure; these are usually servers,
however, they can also be specialised hardware such as routers. This infrastruc-
ture is then connected in a peer-to-peer manner using an overlay network.

There are two types of decentralised infrastructure. The first is open infras-
tructure that is spread over many different autonomous domains and is open to
the convenient addition of new resources. This generally requires some form of
protocol standardisation and, as such, is limited to older protocols and services.
The second is closed infrastructure that is controlled by one or more private op-
erators. This is usually owned by a small number of commercial entities and
therefore does not require the same type of protocol standardisation as open in-
frastructure. Instead, it is possible for a company to deploy its own protocols.
These two instances are now discussed.

Open infrastructure is defined by a relatively open policy of admission, along-
side the use of standardised open protocols allowing anybody to potentially con-
tribute. The most prominent example of a public decentralised discovery infras-
tructure is that of the Domain Name System (DNS). This consists of a hierarchical
collection of DNS servers that operate to resolve domain names to IP addresses.
This is analogous to the mapping of content identifiers to source locations. In
fact, a prominent content-centric network, DONA [93] (c.f. page 32), considers
itself similar to a DNS service. DNS servers are interconnected using a tree topol-
ogy based on the structure of domain names. When a client wishes to perform
a lookup using the DNS system, it queries its local DNS server, which traverses
the query through the tree until an entry is found. An alternative prominent
example is that of content-based routing designs such as LIPSIN [85] and CBCB
[44], which allow content requests to be directly routed to sources. These build
decentralised routing infrastructure that maintain content routing tables; using
these, routers forward requests through the network to the ‘nearest’ source of
content.

Closed infrastructure is defined by relatively closed ownership that limits man-
agement of the infrastructure to a controlled few. Generally, it is initiated by an
individual organisation that wishes to replicate functionality (e.g. lookups) for
increased performance and fault tolerance. Due to the specific nature of the in-
frastructure it also offers the potential to support a richer set of functionality
that is finely tuned to the organisation’s needs [137]. Content intensive websites
such as YouTube [32] often build private infrastructure due to their access to
large amounts of resources [94]. This gives them the flexibility to define a large
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number of important factors; most importantly, it allows them to select their own
peering points to reduce costs and optimise performance.

Decentralised infrastructure combines many of the benefits of both client-
server and peer-to-peer designs. By distributing the load over multiple servers it
increases scalability and resilience; further, by using dedicated infrastructure it
becomes possible to increase control and maintain higher levels of performance.
The primary limitation is therefore the cost and complexity of deploying the in-
frastructure. Most examples of decentralised discovery infrastructure are either
legacy systems that have evolved alongside the Internet (e.g. DNS) or, alterna-
tively, systems that have been deployed by extremely well provisioned companies
such as Google and Microsoft. Subsequently, open infrastructure is extremely
slow to deploy due to the need for protocol standardisation and cooperation
between multiple organisations; whilst, the extreme cost of deploying closed in-
frastructure is prohibitory for most organisations.

2.3.3 Content Delivery

Content delivery is the process by which an item of content is transferred from
one or more providers to a consumer. This is an extremely important step as
it generally consumes the greatest amount of time and resources. Before it can
take place, some form of content discovery must have taken place to ascertain a
set of locations. A delivery mechanism must therefore offer the interface,

get(Locations, ContentID) — Content

It is important to note that this type of function call will not be directly
invoked by an application when operating in a content-centric manner. This is
because the method signature uses a location reference, thereby invalidating the
requirements in Section 2.2. Instead, an intermediate interface would exist that
interacts first with the discovery system before passing the location information
to the delivery service.

The content can be returned to the caller in whatever form desired (e.g. file
reference, data stream). The there are two primary types of content delivery;
stored delivery involves viewing the content as a discrete entity that must be
downloaded in its entirety before it becomes available to the application. An
example of this is downloading a software package, which cannot be compiled
until all data has been received. The second type is streamed delivery which views
the content as a progressive (potentially infinitive) stream of data. With such
a paradigm, the stream generally can be immediately accessed without waiting
for its complete transfer. An example of this is streaming a video, which allows
users to begin to watch it as it is received.

From an infrastructural perspective, content delivery technologies can be cat-
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egorised into three main groups. They each provide a generic approach by which
content can be transferred from one or more providers to a consumer in both
stored and streamed manners,

e (lient-Server: A server stores a copy of the content which is remotely
requested by clients

e Peer-to-Peer: A set of cooperating peers share and distribute an item of
content amongst themselves

e Decentralised Infrastructure: A set of servers cooperate to best deliver the
content

Each of these paradigms has been successfully deployed in the Internet through
a number of different popular delivery systems. These delivery systems offer a
range of access mechanisms, such as content push/pull and publish/subscribe.
This section now explores these three approaches through the use of prominent
examples.

Client-Server

The simplest way in which a provider can transfer content to a consumer is
to utilise a client-server model. Within such a model, a single (logical) high
capacity node stores a copy of the published content. Any user that wishes to
access content must therefore connect to this server and download it. In practice,
however, many client-server systems actually operate with server farms, which
consist of multiple servers co-located (e.g. Rapidshare [35]).

Popular examples of client-server distribution systems are the Hyper-Text
Transfer Protocol (HTTP) [14] for stored content delivery and the Real-Time
Transfer Protocol (RTP) [26] for streaming. When using HTTP, for instance,
a client first discovers a location of a desired item of content. This location is
identified using a Uniform Resource Locator (URL), which contains the protocol,
IP address and remote path of the content, e.g. http://www.lancs.ac.uk/file.html.
This URL is then used to access the content; first, the client makes a TCP
connection to the server (by default on port 80); following this, the client sends
a GET request using the HTTP protocol that stipulates the remote path of the
desired content (e.g. /file.html). The server then responds by sending a data
stream of the content over the TCP connection.

The advantages and limitations of client-server content delivery are similar to
those of client-server content discovery. They are, however, exacerbated by the
resource intensive nature of transferring content. A client-server delivery system
is fast and simple to setup with the ability to maintain high degrees of provider
control. The primarily limitations, however, are cost and scalability; when de-
mand increases beyond the currently provisioned resources, it is necessary to
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perform costly upgrades to the server as well as its network connection. These
problems still remain even when operating server farms as they simply serve to
increase the resources by a further finite level. Last, client-server models are also
heavily restricted by their uni-sited nature as they are highly vulnerable to net-
work failures; further, this means they cannot adapt to variations in geographic
demand. This is particular crucial when considered the delay-sensitive nature of
TCP/IP networks [38]. It is these vulnerabilities that make client-server delivery
systems highly susceptible to security attacks, such as denials of service (DoS).

Peer-to-Peer

The peer-to-peer paradigm has become hugely popular for distributing content.
During its early deployment this was largely attributable to the widespread avail-
ability of copyrighted content. However, increases in access link capacities have
made peer-to-peer content distribution highly effective and hugely scalable.
Early peer-to-peer file sharing applications such as Gnutella [91] utilised
very simple distribution mechanisms that involved finding individual sources and
downloading the content from them in a client-server fashion. Unfortunately, this
approach suffers greatly from the often limited resources available at the chosen
‘server’ peer. This is exacerbated further by possible churn that can result in
download failure. To remedy this, simple multi-source downloads were devel-
oped (e.g. Limewire [18]). These made connections to multiple peers to exploit
their resources and aggregated reliability. This generally involved splitting the
file into ranges and then requesting each range from a different source. This was
largely effective, however, the emergence of a culture of free-riding meant that
often such approaches would fail [78]. This is analogous to the tragedy of the
commons [87] in which users attempt to consume resources without contributing
them in return. In response to this, systems were developed that integrated the
necessary incentive mechanisms into the core of the distribution protocols. The
most prominent example of this is BitTorrent [49], which has been measured as
contributing over 66% of all peer-to-peer traffic [128]. Unlike previous distri-
bution mechanisms, BitTorrent employs a direct reciprocation incentive scheme
called tit-for-tat (TFT) [62]. Peers separate the file they are downloading into
small parts called chunks (default 256 KB), which are then requested from other
peers possessing that part of the file. The decision to provide a remote node
with a chunk is made based on the performance that has been received from that
node. Therefore, it becomes difficult for nodes to download chunks unless they
are also prepared to upload chunks to others [40]. This approach has been hugely
successful and has acted as a foundation for a number of further designs [24][148].
It is also possible to stream content using peer-to-peer; early approaches used
tree-based topologies, e.g. NICE [36] and ZigZag [136]. These built a tree-
based overlay structure connecting the consumers so that receivers also forward
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the stream to their children. Unfortunately, tree structures often result in long
delays between the source and the receiver; further, they also are heavily affected
by churn. To address this, researchers began looking into building BitTorrent-like
protocols that operate using chunk exchange but in a streamed manner. Popular
examples of this are CoolStreaming [148] and PRIME [104]. These both operate
using sliding windows that stipulate ranges of the content that a peer is interested
in (e.g. in windows of 30 seconds). Chunks nearer to the peer’s playback point
are therefore considered more important than ones that are further away.

Peer-to-peer content delivery offers a powerful solution for providers wishing
to perform large-scale delivery without the associated costs of using a client-server
model or paying commercial CDNs such as Akamai. This is because the clients
that consume resources also contribute resources, thereby pushing the costs of
the delivery onto the tier-2 and 3 networks [46], as shown in Figure 2.4. It can
be seen that the content is only provided from the original source once; following
this, the content is only passed through tier-2 and 3 networks.

Tier-1 ISP

e

Figure 2.4: Peer-to-Peer Content Distribution over Different ISPs

Despite these benefits for the provider, peer-to-peer systems often struggle
to compete with the over-provisioned resources of infrastructural alternatives.
Many research papers have claimed through simulation that the opposite is the
case [89], however, in practice this is not always true. Experiments have shown
that well-provisioned client-server providers can offer vastly superior performance
when compared to peer-to-peer systems. Atoniades et. al. [35] investigated the
performance when accessing content using both BitTorrent and the client-server
content provider Rapidshare. This was done by downloading a random set of 38
files using both systems. The average download rate using BitTorrent was 600
Kbps with only the top 10% achieving over 2.4 Mbps. In contrast, Rapidshare
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offered in excess of 8 Mbps for 50% of users, with a notable percentage gaining
over 20 Mbps. Similarly, the reliance that peer-to-peer systems have on user
behaviour means that content delivery systems often suffer from large variations
in performance and reliability when compared to infrastructural alternatives. In
the most extreme of cases, peer-to-peer delivery systems sometimes are incapable
of distributing certain content [73][88].

Decentralised Infrastructure

Decentralised infrastructure consists of the coordinated use of multiple servers to
best distribute an item of content. To achieve this, a set of servers are placed
at various strategic points in the network and loaded with content that they
are responsible for providing to their region. This content is often dynamically
defined and can vary based on observed demand trends. When a consumer desires
an item of content, it is redirected towards the server that can best provide
it. The predominant metric driving this is locality, as low delay usually results
in superior performance and reduced economic cost for the underlying network
infrastructure.

Generally, two types of decentralised delivery infrastructure exist. Public
infrastructure that offers its servers for (paid) third party utilisation and closed
infrastructure that is owned and used by a single controlled organisation. Note
that public infrastructure is different to open infrastructure in that it is not
possible for third parties to integrate their own resources.

Popular examples of public infrastructure include Akamai [1] and Mirror Im-
age [22]. These services place their customers’ content onto their content servers
and subsequently allow customers to redirect requests into their network. Closed
infrastructure, in contrast, is owned and managed by an individual organisation
and is solely used for their needs. This can often be seen in larger-scale web
sites (such as YouTube [32]), which distribute their servers to improve perfor-
mance. Regardless of the model, when a consumer wishes to access content in
any decentralised infrastructure, the discovery process selects one or more servers
for the consumer to access the content from. The sources that are returned are
optimised for certain desirable parameters such as distance and cost. This is
achieved by resolving the requester’s IP address based on one of these charac-
teristics; this is trivial using GeolP services and BGP maps. Subsequently the
returned sources are then utilised by the consumer to access the content in a
traditional client-server manner, usually using a protocol such as HT'TP.

The benefits of using decentralised delivery infrastructure can be significant.
First, it allows greater performance as it becomes possible to (i) serve clients
from geographically closer servers, and (ii) load balance across multiple servers.
It also improves fault tolerance significantly as there no longer exists a single
point of failure. Through the use of public infrastructure it also becomes possible



2.3. PRINCIPLES OF CONTENT DISTRIBUTION 23

to address the scalability limitations of traditional client-server models. This
is achieved by sharing the resources of the public infrastructure between many
different content providers in the hope that only a subset of those providers will
need it at any given time. This therefore allows providers that only occasionally
endure spikes in demand to quickly scale their resources for a short period.

The primary limitation of using decentralised infrastructure is its heavy cost.
Unfortunately, building private infrastructure is unfeasible for all but the richest
providers; examples of companies that have done this are Google and Microsoft,
which have been observed to build far-reaching wide area networks covering much
of the U.S as well as Europe, Asia and South America [66]. An alternative
is to simply purchase the use of existing infrastructure such as Akamai. This
approach has the advantages of reduced maintenance for content providers as
well as improved performance (through intelligent edge server selection). These
advantages, however, are expensive with an average charge of between $0.3-0.6
per GB [122]. Assuming a relatively low-use provider that has a mean average of
10 Mbps traffic, the costs per month would reach approximately $1,000. This cost
would obviously increase dramatically for large scale websites that reach Gbps
traffic. As such, many providers without strong financial backing are unable to
afford to use commercial CDNs, leading to the use of cheaper solutions [42].

2.3.4 Summary

This section has detailed the principles and paradigms used in modern content
distribution over the Internet. Two separate bodies of functionality have been
investigated: discovery and delivery. Content discovery refers to the process by
which a consumer can resolve a content identifier to a set of content locations.
Content delivery is then the subsequent process by which a consumer can utilise
those locations to access the content.

Current content discovery and delivery systems can be categorised as either
client-server, peer-to-peer or decentralised infrastructure. Table 2.2 provides a
summary of the different paradigms and examples of popular systems. All three
approaches are widely deployed in the Internet with large numbers of users. Im-
portantly, it can be observed that there is a plethora of diverse content-based
mechanisms that are used today.

From this study, it is clearly evident that a large degree of heterogeneity exists
between this multitude of content systems. This heterogeneity has been shown
to come in a number of forms, including performance, overhead, reliability and
security. It can therefore be derived that a significant benefit could be gained
from integrating access to these systems, in terms of both content and resource
availability. Further, however, it is also evident that sufficient heterogeneity exists
to enable delivery-centricity through the informed selection of different providers
and protocols. Consequently, the primary challenge that can be concluded from
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Paradigm ‘ Examples ‘ Pros and Cons
Client-Server HTTP 4+ Good content management
RTP + High performance possible
SQL + Predictable performance
— Not optimised for divergent con-
sumers
— Not scalable
— Expensive

— Inflexible to demand
Peer-to-peer Gnutella, + Highly Scalable

BitTorrent, | + Inexpensive

ZigZag + Resilient

— Complicated to build

— Poor content management

— Slow content querying

— Unpredictable performance

— Higher overhead for consumers
Decentralised Akamai, + Good content management
Infrastructure | DNS + Relatively scalable

+ Very high performance

+ Resilient

— Extremely expensive

— Highly complicated to deploy and
maintain

Table 2.2: Overview of Content Discovery and Delivery Paradigms

this study is how a future content-centric network could (i) unify and integrate
the different protocols and addressing schemes used by each provider to exploit
these resources, and (ii) make informed decisions as to which provider/protocol
best fulfils a given set of delivery-centric requirements.

2.4 Principles of Networked System Interoperation

2.4.1 Overview

The previous section has explored the diversity of currently deployed content sys-
tems to highlight their trade-offs in terms of both providers and consumers. A
key conclusion from this study is that the exploitation of this diversity can con-
tribute heavily towards both content and resource availability, as well as delivery-
centricity. However, as discussed in Chapter 1, to gain this, it is necessary to
achieve interoperation between the different protocols. This section explores
three common approaches taken to interoperation between multiple networked
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systems,

e Protocol Standardisation: This involves designing a standard protocol that

is expected to replace all previous protocols and be used globally

e Protocol Bridging: This involves using an intermediary to convert protocol
messages between two or more incompatible systems

o Interoperability Middleware: This involves placing a software layer between
the network and the system to adapt it somehow

This section investigates the background to these three approaches; as such, the
basic principles are explored before outlining prominent examples and analysis.

2.4.2 Protocol Standardisation and Uptake

The most obvious manner in which a content network can achieve interoperation
is through protocol standardisation and large-scale uptake. This, for instance,
has been performed with protocols such as HTTP [14] and BitTorrent [49]. It
involves a protocol being defined and then deployed with the acceptance of (ide-
ally) all parties. Therefore, in the ideal world this is the optimal approach to
interoperation between distributed systems.

Many protocols such as HT'TP [14] and RTP [26] have undergone traditional
protocol standardisation through bodies such as OASIS, the world wide web Con-
sortium and the IETF. This involves an extensive review process that starts with
issuing a Request for Comments (RFC) document that precisely details the work-
ings of the protocol. After many iterations the protocol is formally standardised,
allowing developers to confidently build an implementation. In contrast to this,
protocols such as BitTorrent and Gnutella began as non-standardised protocols
that gained increasing popularity until becoming de-facto standards. Neither ap-
proach, however, supports interoperation between different protocols; instead, it
simply allows interoperation between different implementations of a single pro-
tocol.

A different approach to protocol standardisation is therefore to attempt to
persuade system administrators/developers to cease using their individual proto-
cols and replace them with a new standard to enable interoperation. Depending
on the diversity of the existing protocols this might have to be performed without
any backwards compatibility. A prominent example of this form of protocol stan-
dardisation is the introduction of new inter-domain routing protocols. As new
variations of the Border Gateway Protocol (BGP) [123] are developed (currently
version 4), it becomes necessary for domains to install new software . This is
generally a process that must be led from the top by the more powerful ISPs.
Although this has proved feasible in this field, it is unlikely that it is applicable to
most other areas. This is because inter-domain routing is already a global process
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that operates in an open manner that is fundamental for the continuation of the
Internet. In contrast, content distribution systems often operate as independent
organisations that do not require the assistance of others. As such, the existing
relationships that ISPs have, do not exist between content distribution systems.
This is exacerbated by commercial competition observed between content net-
works; for instance, what benefits would Akamai gain through integrating their
protocols with other content distribution systems?

Another variation is to define a new protocol that allows existing systems
(using their own protocols) to interact. This treats each individual system as
a black box, allowing each instance to interact through the protocol. A perti-
nent example of this comes from the IETF Content Distribution Internetworking
(CDI) workgroup, as detailed in RFC 3750 [53]. This has investigated the po-
tential of interconnecting multiple content delivery networks. The aim of this is
to design a protocol to allow different CDNs to communicate with each other, to
share resources. To achieve this, the Content Network Advertisement Protocol
(CNAP) [43] has been defined, allowing CDNs to advertise content that they
possess to each other alongside information relating to properties such as topol-
ogy, latency and geography. CDN nodes can therefore continue to use their own
propriety protocols whilst using CNAP to communicate with other CDNs. A
similar approach is also taken in [137], which defines a further CDI architecture.

The standardisation and deployment of protocols such as CNAP has been
feasible due to their application-level nature. They therefore support progressive
deployment that does not require modification to intermediate infrastructure.
This is one of the reasons for the rapid and widespread uptake of peer-to-peer
systems such as BitTorrent. In contrast, lower levels protocols such as Ethernet
have far stricter deployment policies as progressive deployment is often compli-
cated. This is even more difficult for layer 3 protocols such as IPv6 that require
global uptake [58]. This is exemplified by the deployment difficulties of network
layer multicast and Quality of Service (QoS) due to the reluctance of intermediate
networks (e.g. Tier-1 ISPs) [34]. Therefore, protocol standardisation can gener-
ally only be used to solve deployment issues when the support of third parties
(e.g. providers, ISPs) is not required. This can be seen in Figure 2.5, in which
the clients wish to subscribe to the multicast stream provided by the server but
cannot as it must traverse a network that does not support the multicast protocol.

2.4.3 Protocol Bridging

A protocol bridge is an entity that acts as a mediator between two (or more) par-
ties that communicate using different protocols. A bridge is therefore required
to be aware of both protocols and to be able to perform the necessary mappings
between the two. This is shown in Figure 2.6 with a client and server interact-
ing with each other despite the fact that they are utilising different underlying
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\

Figure 2.5: A Multicast Deployment Problem; the black cloud does not support
the multicast protocol, whilst the white clouds do

protocols. To allow a new protocol to interoperate with existing protocols, such
an approach therefore involves the new protocol being simultaneously deployed
with a bridge that can convert its interactions with existing systems. This can
take place within a local software layer or, alternatively, at a remote point (e.g.
a router). This simple approach has been used extensively in the past as it offers
a simple way in which incompatible systems can interoperate without modifi-
cation. This is especially helpful when interacting with multiple parties that
operate outside of a single domain (e.g. two companies).

Prominent examples of protocol bridging are network bridges and middleware
bridges. A network bridge generally operates on the edge between two different
networks and converts layer 2 and 3 protocols (e.g. IPv4 — IPv6 [100]). There
also exists higher level bridges for interoperable services; for instance, Multi Pro-
tocol Discovery and Access (MDSA) [121] is a service discovery bridge that allows
applications using different service discovery protocols to interact. The Object
Management Group has also created the DCOM/CORBA interworking specifi-
cation that provides the necessary mappings between DCOM and CORBA [70].
Similarly, SOAP2CORBA [29] provides the same functionality for bridging SOAP
and CORBA applications.

A bridge can also be considered as a type tunnel; tunnelling has been used ex-
tensively in lower level networking deployments that require intermediate support
for a protocol. Unlike bridging, however, tunnelling does not intend to achieve
interoperability between the two end hosts but, instead, to achieve interoperabil-
ity with the two end hosts and the intermediate network, e.g. 6to4 and ISATAP
[58]. Each end of the tunnel therefore utilises the same protocol but hides it
from any intermediate infrastructure; this is usually done by packaging messages
within the payload of existing compatible messages (e.g. IP packets).

Protocol bridging is attractive due to its simplicity. It also offers a means by
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Figure 2.6: A HTTP — FTP Protocol Bridge
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which a system can elegantly extract interoperability functionality and place it in
an external entity. Importantly, this can even take place without the awareness of
either party by transparently re-directing output and input through the bridge.
There are, however, also a number of limitations. Most importantly, two protocols
can only be bridged in a scalable manner if they possess a core set of synonymous
protocol messages, therefore allowing the bridge to operate in a stateless manner.
If two protocols perform the same (or similar) high level function but in totally
different ways, the process of bridging often becomes difficult because the bridge
is required to maintain state for both protocols.

When dealing with a content distribution system there are also heavy resource
requirements if it becomes necessary to channel data through the bridge. This
can be mitigated if the control and data planes can be separated to allow the
data transfer to operate externally to the bridge. This is most evident in a
protocol such as FTP, which utilises entirely separate TCP connections for the
two planes. In contrast, a BitTorrent mechanism would need constant bridging
as it uses protocol messages to request each chunk. When converting BitTorrent
to HTTP, a bridge would therefore need to request each chunk individually (in
order) before passing them to the other party over the HT'TP connection, as
shown in Figure 2.7. This makes bridging such protocols complicated due to the
high level of functionality required, as well as the frequent memory copies.

BitTorrent Protocol HTTP Protocol
A W
|
[
|
|
|
S
|
|
|
|
|
BitTorrent HTTP/BitTorrent HTTP
Peers Bridge Consumer

Figure 2.7: A HTTP — BitTorrent Protocol Bridge Converting Chunks Received
from a BitTorrent Swarm into a HI'TP Data Stream
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These problems are further exacerbated by the need for N? bridges to be
fully interoperable, where N is the number of protocols. It further can require
application modification so that messages are redirected towards the bridge. Col-
lectively, this makes the bridge a dangerous point of failure that can leave any
dependent applications non-functioning.

2.4.4 Interoperability Middleware

Middleware has emerged as a vital component in distributed systems; it can be
defined as,

“A layer of software residing on every machine, sitting between the
underlying operating system and the distributed applications, whose
purpose is to mask the heterogeneity of the cooperating platforms and
provide a simple, consistent and integrated distributed programming
environment” [50]

In essence, middleware resides as an abstract constant that protects applications
from underlying heterogeneity. This heterogeneity comes in many forms; popular
examples include programming languages [51], network infrastructure [69] and
mobility [68]. Middleware therefore deals with a variety of important deployment
complexities for application developers.

Middleware is underpinned by the principle of abstraction; this is the process
of defining what a function does rather than how it does it. This is realised by de-
veloping interfaces that present a set of methods that allow a body of functionality
to be interacted with regardless of how it is implemented. Middleware exploits
this to bind distributed applications together without the need for each instance
of the application to understand the underlying operations taking place behind
the abstraction. A popular example of this is the Common Object Request Bro-
ker Architecture (CORBA) [8]; this middleware abstracts the application away
from both the location and programming language of a method call. As such,
it allows applications written in different languages and at different locations to
seamlessly interact, therefore handling language and location heterogeneity. Sim-
ilar examples include R-OSGi [124] and J-Orchestra [135], which offer the ability
to transparently partition and distribute an application over multiple locations.

One particular limitation of middleware such as CORBA is the need for dual-
sided deployment. Therefore, all parties involved are required to host the middle-
ware so that it can handle interoperability on the application’s behalf. This there-
fore creates similar problems to that of protocol standardisation, i.e. all systems
need to install and utilise a compatible middleware. To remedy this, uni-sided
middleware have also been pioneered. A prominent example of this is ReMMoC
[68], which offers transparent client-side support for interoperation with diverse
service implementations. ReMMoC achieves this by adapting its underlying im-
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plementation to support whatever service protocols are available in its current
environment. This is done transparently without the application’s involvement.
As such, an application can simply interact with ReMMoC’s standardised service
abstraction without the need to handle the complexity of operating with differ-
ent service protocols. Importantly, this occurs solely at the client-side without
the need for server-side support. Therefore, the deployment can take place in-
crementally without support from existing infrastructure. A similar (albeit less
sophisticated) approach is also taken by a limited set of peer-to-peer applications
such as Shareaza [27] and TrustyFiles [31], which provide support for connecting
to multiple peer-to-peer networks such as Gnutella2, BitTorrent, eMule etc.

To build an interoperability middleware it is necessary to implement an
abstract-to-concrete mapping so that applications can issue abstract requests
that are converted into system-specific requests. This is therefore a transforma-
tion function similar to that found in a protocol bridge. However, the primary
difference is that neither party continues to operate using a particular protocol.
Instead, they begin to use a new abstraction that protects them from the un-
derlying nature of the protocol used. This means that extra functionality can
potentially be added to the abstraction to enable the utilisation of a wider range
of protocols. This clearly makes the approach non-transparent, although, this
can be considered acceptable for a paradigm such as content-centric networking,
which requires the introduction of a new network abstraction anyway.

Beyond possible deployment difficulties, the key limitation of using interop-
erability middleware is that of overhead. This arises from the need to perform
abstract-to-concrete mappings, as well as handling potentially memory-intensive
operations. For instance, using ReMMoC’s abstract interface creates a 54% de-
crease when being mapped to CORBA method calls and a 11% decrease when
mapped to SOAP [28] method calls (for a null operation). Clearly, the process
of interoperation comes at a cost that must therefore be traded-off against the
overall system requirements.

2.4.5 Summary

This section has detailed three important approaches to achieving interoperation
between different networked systems: standardisation, bridging and middleware.
These take systems with the same (or similar) functional goals and offer some
form of additional support to allow them to interact in either a passive or active
manner. Table 2.3 provides an overview of the properties associated with the
mechanisms investigated.

From this study, it is evident that deploying systems in an interoperable
manner is an important issue. It has been shown that there are a set of proven
approaches that have looked at similar goals in different domains. However, only
limited work has been performed in the area of content distribution and therefore
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this background offers a platform over which interoperability between content-
centric systems can be explored. Most closely related is the existence of content
inter-networking protocols that allow CDNs to interact with each other. However,
these do not allow consumers to interact with different content protocols, nor do
they allow interactions to occur in a transparent manner. These principles must
therefore be built upon to fulfil the requirements of a content-centric network
based on interoperation.

Pros and Cons

Paradigm ‘ Examples

Standardisation| Akamali, + High performance

HTTP, + Simple

DNS, — Not transparent

SOAP — Often not feasible

— Requires multi-party cooperation

— Often requires external third party
support (e.g. ISPs)

Protocol MDSA, + Transparent to applications
Bridging ISATAP + Simple

— Expensive

— Bottleneck

— Difficult to deploy

— Not scalable for some protocols

— Not always possible

Middleware ReMMoC, + Eases application development
CORBA + Doesn’t require network deployment
+ Can be uni-sided (doesn’t require
multi-party support)

+ Flexible due to operating within soft-
ware

— Requires application awareness

— Increases end-host resource require-
ments

Table 2.3: Overview of Approaches to Interoperability

2.5 Related Work

2.5.1 Overview

The previous sections have investigated a range of existing content discovery and
delivery systems as well as common paradigms that could be used to gain inter-
operability between these systems. The approaches discussed in these sections
have shaped heavily the formation of most content-centric networking solutions.
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The purpose of this section is now to explore the related work to content-centric
networking, seeing how these principles are utilised in such designs. From the
outset, it can be said that no current content-centric designs offers interoper-
ability due to their clean-slate nature. This means that such systems cannot
interoperate with each other, or any existing content providers/consumers at the
protocol-level. Therefore, in relation to the primary goals of this thesis, it is
important to inspect this related work based on two remaining criteria,

o Deployability: Is it feasible to deploy this system in the current Internet?
What are the costs?

o Delivery-Centricity: What is the support for expressing and satisfying di-

verse and extensible delivery requirement?

To do this, three popular content systems have been selected. The first is DONA
[93], which is a tree-based infrastructural content-centric network proposed in
2007. It promotes the replacement of the current domain name — location map-
ping, with a unique content name — location mapping instead. The second system
looked at is AGN [83], which was proposed in 2009 as a content-centric network-
ing solution based on deploying new routers that can operate above a range of
connection-less protocols (including IP and UDP). Finally, the Akamai Content
Distribution Network (CDN) [1] is investigated; this is not a content-centric sys-
tem as it does not utilise content-centric addressing, however, it is currently the
largest and most powerful content distribution organisation and, as such, shares
many similar goals to the other systems.

2.5.2 Data-Oriented Networking Architecture (DONA)
Design

The Data-Oriented Networking Architecture (DONA) [93] is one of the first sys-
tems to emerge that labels itself as ‘content-centric’. It is built as a replacement
to the existing Domain Name System (DNS) infrastructure. Its purpose is there-
fore to allow location resolution for named content. Unlike alternate designs, it
does not aim to install content-centric routing at the network layer; instead, it
aims to deploy indirection infrastructure (similar to i3 [130]) at the application
layer. This involves the distribution of servers capable of routing requests over
various autonomous systems.

It operates using two primitives: REGISTER and FIND. When a node wishes
to publish an item of content, it sends a REGISTER message to the DONA
infrastructure, which registers the particular node as being capable of providing
the item of content. When a node wishes to access an item of content it then

*This term is synonymous with data-oriented
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sends a FIND message to the DONA infrastructure which, in turn, returns the
‘nearest’ instance of the content. In essence, this is therefore an anycast service
that routes based on proximity metrics.

For DONA to work correctly, it is obvious that a new naming mechanism
must be employed to uniquely identify content. Content identifiers in DONA
are organised around principals; these are providers that are responsible for the
content. As such, each item of content is associated with a given principal. Each
principal is associated with a public-private key pair that uniquely identifies it.
Therefore, content names are of the form, P : L where P is the cryptographic
hash of the principal’s public key and L is a label that identifies the content
(chosen by the principal). Naming in DONA can therefore be considered to be
structured as a two-tier hierarchy.

The next question is how DONA performs routing. DONA requires that each
domain installs a DNS-like server termed a Resolution Handler (RH). RHs are
responsible for maintaining the entirety of DONA’s redirection service. They
are linked together in a tree structure that represents the BGP topology of the
underlying network; finer grained topologies can also be built (e.g. departments
in a university). Each domain registers all of its local content with its Resolution
Handler. This information is then passed on to the RH’s parents and peers in the
tree if (7) the content has not been encountered before, or (i7) the new registration
is ‘closer’ than the existing one. The neighbouring RHs then decide whether to
forward the information further depending on local policy (e.g. depending on
whether they are prepared to serve as a transit for the content). This process
is outlined in Figure 2.8 with the client (on the right) publishing an item of
content; the solid arrows show how this information is propagated. Evidently, the
broadcast nature of this propagation results in huge content routing tables that
must be maintained in the network, thereby creating significant scalability issues.
This problem is exacerbated further when considering any degree of churn that
results in previous REGISTER messages becoming invalid. When a REGISTER
message is received by a RH it is first authenticated by issuing a nonce to the
originator so that it can be signed with P’s private key. If this is valid, the RH
then signs the message so that it can be passed to other RHs without the repeated
need for verification.

When a FIND is generated by a node, it is first passed to its local RH,
which checks its registration table to ascertain if it possesses a pointer to a RH
responsible for a replica. A registration table is a routing table that maps content
addresses to a next hop RH. Registration tables contain entries for both P:* as
well as individual items of content (P:L). If there is an entry that matches the
FIND message, it is passed onto the next hop RH. If there are multiple choices,
the closest one is selected based on a (currently undefined) distance metric. If
no entry is found, the request is passed up the tree in the hope of locating an
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Figure 2.8: DONA REGISTER and FIND Processes; propagation of registration
state (solid arrows) and routing of FIND message (dashed arrow).

entry. This, however, is an unguided process as the content addressing does not
following the same hierarchical structure of the tree topology. This process can
therefore be highly inefficient for less popular content [47]. An example of this
is shown in Figure 2.8; the client (on the right) issues a request for an item of
content. Its local RH performs a lookup to find the next hop; in this example,
it does not have an entry and therefore passes the message up the tree. This
process continues until a entry is found at the first-tier. The FIND message then
begins to be routed back down the tree to the nearest copy located at the central
branch.

Deployment Support

There are two deployment challenges that must be successfully addressed in
DONA. The first is dealing with the physical hardware deployment (RHs) whilst
the second is achieving wide-spread software up-take.

DONA'’s functionality is mainly implemented through a distributed set of
Resolution Handlers (RHs). These operate in a similar way to DNS servers
and therefore exist entirely above the network-layer. As such, deployment does
not involve the modification of existing infrastructure but, instead, simply the
deployment of new infrastructure. This eases the challenge, however, it still
leaves the need to deploy a large body of new hardware. DONA takes a protocol
standardisation approach to its system deployment, i.e. all domains must adopt
its protocol. This is possible because its application-layer position allows it to
enjoy progressive deployment without the need for every autonomous system to
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immediately take up the system. A problem with this, however, is that it becomes
difficult (if not impossible) for users operating in networks without support to
use DONA unless they can find a nearby surrogate network that they can route
REGISTER and FIND messages through.

The second issue is that of software modification; it is necessary for operating
systems and applications to extend their code to use the content-centric routing.
This is a step that will have to be taken by any new content-centric system.
DONA, however, does provide support for this by offering the ability to perform
protocol bridging between legacy protocols and the new content-centric system.
Proxies have been built for bridging HTTP, SIP and RSS. There are few details,
however, provided about how these operate and it is not clear how traditional
HTTP requests (URLs) can be converted into DONA’s content-centric addressing
scheme. Currently, therefore, DONA offers little support for interoperating with
other content systems.

The above two issues relate to the theoretical deployment issues. However,
there are also a number of practical deployment challenges. These centre on the
massive increase in overhead related to routing in this manner. For instance, a
first-tier RH would likely need to handle around 84,000 registration messages per
second (assuming a registration lifetime of two weeks) [93]; if each message were
1 KB, this would generate ~680 Mbps of traffic, even excluding the transit of
any data. Beyond this, it also would be necessary to perform expensive crypto-
graphic operations, which can take in excess of 100 ms. Consequently, this 680
Mbps of traffic would require at least 40 3 Ghz processors to handle the load in
real-time. Alongside these bandwidth and processing costs, the non-hierarchical
nature of DONA’s identifiers would also create a large memory cost. First, as-
sume that each routing table entry would require 42 bytes (40 for the name and 2
for the next-hop). Taking the estimated number of web pages from 2005 [71] and
increasing it by an order of magnitude to 10! results in an estimate of approxi-
mately 4 TB of storage required for the routing information required at a first-tier
ISP (excluding data structure overhead). Considering the expense of memory,
this would therefore likely require secondary storage, which has lookup times of
~2.5 ms. Consequently, to handle a 1 Gbps link (20,000 requests per second),
it would be necessary to operate 50 disks in parallel to achieve the necessary
throughput. Alternative studies [47] have also found DONA’s routing procedure
to be non-scalable, with the routing table size of Resolution Handlers increasing
linearly with content numbers. Evidently, this can be considered vastly inferior
to the logarithmic increase as observed in other structures such as Pastry [126].
The inefficiencies of DONA’s design therefore produce significant hardware costs,
introducing a direct incentive not to adopt DONA.
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Delivery-Centric Support

A delivery-centric system makes the delivery process a primary element of its
operation. It provides an application with the ability to stipulate diverse and
extensible requirements that must be satisfied by the system. Delivery-centricity
can be achieved using either (i) intelligent source selection (discovery aspect) or
(74) protocol adaptation (delivery aspect). The delivery-centricity of a system
can be looked at in two ways; first, through its current support and, second,
through its potential support. Currently, DONA cannot be considered to be
delivery-centric as its abstraction and protocol simply do not offer any mecha-
nisms to explicitly state delivery requirements. However, there is potential scope
to introduce it.

DONA’s delivery process operates through the use of FIND messages that
request items of content. When a FIND is generated by a consumer, DONA
attempts to route it to the ‘nearest’ copy based on the number of hops from the
requesting RH (i.e. the RH that is responsible for the requesting node). When a
FIND is received at an end point possessing the content, it automatically initiates
the content transfer. This simply involves replying with a standard transport-
level message to the requester. Unfortunately, like many aspects of DONA, this
is not properly defined. However, this is likely to be a process similar to TCP but
with the use of content identifiers rather than the host:port identifiers currently
used. Importantly, however, this occurs over the location-based IP network and
not through the RH infrastructure (unless some sort of caching is taking place).

It is evident that delivery-centricity in DONA is fuelled by the network’s view
of a node’s requirements rather than that of an individual application. Unsur-
prisingly, there is no support for differentiation and configuration in the delivery
process, as the network uses a fixed set of metrics for routing FIND requests. It
is possible for nodes to request that its FIND packet is routed to a more distant
source in the situations that it finds previous requests have not been fulfilled.
However, it still maintains no control over what source will receive the FIND.
The primary goal in DONA is therefore to simply route requests to the nearest
source - an identical goal to that of existing systems such as Akamai. It is there-
fore evident that delivery-centricity can not be achieved in DONA using any form
of intelligent source selection.

As previously mentioned, DONA might be able to achieve delivery-centricity
through protocol adaptation. This could be achieved by sending delivery require-
ments directly to the source once it has received the FIND message. Although
this is not stipulated in the DONA specification, it would be possible as the
transport mechanism is currently very loosely defined. This could involve send-
ing a direct message to the source, requesting the use of a particular protocol
or network QoS reservation. One obvious limitation might be that the source
selected by the RHs does not support the needs of the consumer or, alternatively,
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the runtime conditions prevent it from achieving the requirements. In such a
circumstance, the consumer would have to issue the FIND again whilst stipulat-
ing the need for a more distant source. Depending on the number of times this
cycles for, this could increase the delay dramatically. This also makes the use of
multi-sourcing difficult as it would be necessary for multiple FIND messages to
be sent out each asking for more and more distant replicas. However, there is
currently no functionality available for requesting only a subset of the content.
DONA makes heavy use of identifiers for such tasks and therefore a unique con-
tent identifier would have to exist for each chunk of data being requested from
the different sources. For instance, if a file were to be separated into chunks in
a similar way to BitTorrent, an identifier would have to be generated for each
one and then separately requested, creating a even greater burden on the rout-
ing infrastructure. An item of content not published in this fashion would not
be capable of delivery in this manner. Further, more sophisticated functionality
such as BitTorrent’s tit-for-tat incentive scheme would not be able to operate in
this way. In fact, many current peer-to-peer principles would cease to operate as
it would be impossible to control and show preference for different sources.

Summary

DONA is a content-centric network that operates at the application-layer. It
constructs a DNS-like tree topology over a number of Resolution Handler (RH)
servers throughout the Internet structure (i.e. within different domains). Providers
within each domain register their content with their local RH using unique con-
tent identifiers. RHs then distribute content advertisements between themselves
so that when consumers wish to access the content, they can forward their re-
quests to a nearby source. Once a source receives a request it can subsequently
send a transport protocol response to the consumer so that the data can be
exchanged.

DONA does not suffer from compatibility issues with existing infrastructure
because it operates at the application-layer. Any interoperability issues, instead,
arise through software integration, i.e. the need to update applications and op-
erating systems. Consequently, there is little support for interacting with any
existing content delivery protocols. DONA also has significant deployment bar-
riers due to its need to deploy extremely powerful RHs on a large-scale. Further,
these must adhere to a single protocol thereby reducing the chances of other
organisations developing their own equivalents.

DONA also does not offer delivery-centric support for applications. This
is most evident because its protocol does not offer the support for carriage of
delivery-centric information. However, DONA’s poor transport specification and
the fact that data exchange does not occur through the DONA infrastructure
leaves significant scope for introducing this functionality through some form of

protocol re-configuration.
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In summary, DONA offers a basic approach to realising content-centric net-
working that is unlikely to be successful in the real-world. Despite this, it does
offer feasible deployment as long as substantial resources are available. Further,
there is also scope for introducing delivery-centricity. Unfortunately, however,
currently DONA is poorly defined without a substantial evaluation leaving many
conclusions theoretical.

2.5.3 Assurable Global Networking (AGN)
Design

Assurable Global Networking” (AGN) is a research project developed at PARC
[83]. Like DONA, it aims to introduce infrastructural content-centric networking,
offering the ability to route based on content identifiers. It does, however, take a
far more comprehensive approach than DONA with considerations ranging from
scalability to deployment. Further, a lower level approach is taken, including

integration with existing protocols such as BGP [123] to allow routers to operate
using both IP and AGN.

Interest Packet Data Packet
Content Name Content Name
Selector Signature
(order preference, publisher filter, scope, ...) (digest algorithm, witness, ...)
Nonce .
Signed Info

(publisher ID, key locator, stale time, ...)

Data

Figure 2.9: AGN Packet Types

Two packet types exist in AGN: Data and Interest, as shown in Figure 2.9.
When a node wishes to access content, it broadcasts an Interest message over all
available connectivity. This packet is detailed in Table 2.4; it contains a unique
content identifier (ContentName), a set of parameters such as the order preference
(Selector), and a Nonce to prevent the packet from looping. The most important
field from these is the ContentName; this is a hierarchical identifier much in the
same way that IP addresses are (net, subnet, host). This is necessary to enable
scalable global routing to be achieved (addressing an obvious criticism of DONA’s

fNo name currently exists for the system developed and therefore this name is taken from
an earlier PARC white paper [82]
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flat addressing). Each identifier consists of a number of components, which consist
of an arbitrary number of octets. Figure 2.10 shows an example content identifier.
The first part of the identifier provides the global routing information; the second
part contains the organisational routing information (i.e. the locally selected
name); finally, the last part shows the versioning and segmentation functionality
of the identifier.

Field ‘ Description

ContentName | Unique hierarchical identifier of content

Selector Order preference, publisher filter, scope,
etc.

Nonce Used to prevent looping in the network

Table 2.4: Overview of Interest Packet in AGN

Versioning &
User/App supplied name Segmentation

/parc.com/video/WidgetA.mpg/_V <timestamp>/_s3

-

Globally-routable name Organisational name Conventional/automatic

Figure 2.10: AGN Address Format

When an Interest message is sent into the network, it is routed towards the
‘closest’ instance of the content, identified by the ContentName. The routing
process is managed by a set of content-centric routers that operate in a similar
manner to traditional IP routers (due to the similarities in the addressing scheme).
An AGN router receives a packet on a network face (or interface), performs
a longest-match lookup in a routing table, then performs some action based
on the result (e.g. forwarding). Each AGN router contains three core data
structures: a Forwarding Information Base (FIB), a Content Store (cache) and
a Pending Interest Table (PIT). The FIB is used to forward Interest packets
towards potential source(s) of data. The Content Store acts as a buffer space;
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however, unlike IP, CCN data packets are idempotent and self-identifying thereby
allowing one packet to potentially be used for many different consumers. This
means the router buffer actually becomes a cache. Last, the PIT keeps a log
of the Interest packets that have been forwarded so that returned Data packets
can follow the reverse route. In essence, this creates a set of breadcrumbs so
that Data packets are not required to be routed using any complicated routing
information.

The way that these data structures are propagated with information is, once
again, very similar to traditional IP networking. This is because of their shared
hierarchical addressing structure. As such, AGN exploits existing routing proto-
cols for its implementation. Routing can be separated into two types: intra and
inter domain; these are now discussed in turn.

Intra-domain routing is the process of routing packets within an individual
domain. This involves describing both local connectivity (‘adjacencies’) and di-
rectly connected resources (‘prefix announcements’). However, unlike IP, a prefix
announcement relates to given items of content rather than a host. Despite this,
both IS-IS [113] and OSPF [108] algorithms can be used with AGN. AGN content
prefixes, however, are greatly different to IP prefixes and therefore cannot be used
ordinarily with these protocols as they currently stand. To address this, fortu-
nately, both protocols support the advertisement of directly connected resources
(in this case, content) via a general Type Label Value (TLV) scheme. This field
can be used to advertise the presence of content to the other routers, allowing the
AGN routers to construct their link-state routing tables based on this data. Any
traditional routers simply ignore this information and pass it on. In Figure 2.11,
the CCN routers A, B, E and F can therefore exchange information between each
other whilst IP routers C and D simply ignore it.

The inter-domain routing in AGN is based on traditional BGP [123]; this
allows each domain to announce its connectivity and the prefixes that it can
route to. Subsequently, in AGN these announcements will advertise accessible
content rather than IP addresses.

Once an Interest packet has been routed to a content store, the data is sent
back using a Data packet. For each Interest packet, there is only a single Data
packet that represents a segment of data from the content. As such, Data packets
can be cached and reused. Unlike DONA, this is done through the content-centric
routers and not as a separate process over IP; as such, AGN can be considered
a far ‘purer’ example of a content-centric network. However, this also means the
AGN routers must be able to achieve a suitably high throughput. Data Pack-
ets contain four fields, as shown in Table 2.5. The first two fields provide the
content identifier and the actual data. The last two fields, alternatively, provide
the necessary content security. Security in AGN is performed by authenticating
the binding between names and content. Content names are therefore not self-
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Nlancs.ac.uk/media/art
/lancs.ac.uk/media

/lancs.ac.uk/media = B
5§ llancs.ac.uk/media/art = A, B

Figure 2.11: AGN Routing Process; square routers are IP, circular routers are
AGN

Parameter ‘ Description

ContentName | Unique hierarchical identifier of content
Data The data

Signature A hash signature of the data

Signed Info Supporting information for data verifica-

tion (e.g. hash function)

Table 2.5: Overview of Data Packet in AGN

certifying. Instead, each Data packet contains a Signature field that contains a
public key signature of the entire packet. This therefore allows user or application
meaningful names as opposed to using simple data hash values. The signature
algorithm used is selected by the publisher based on the requirements of the con-
tent (e.g. latency and computational cost). The Signed Info field (shown in Table
2.5) is then used to allow parties to retrieve the necessary information to validate
the content using the signature. This information includes the cryptographic di-
gest of the public key and a key locator indicating where the key can be obtained
from (the key could even be an item of content itself). This therefore allows a

consumer to validate the content even on a per-packet basis.

Deployment Support

AGN has been designed with deployment in mind, as detailed in [83]. The pri-
mary challenge to AGN deployment is the distribution of new CCN routers as
well as their progressive integration with existing network technologies (e.g. IP).
AGN is not built to necessarily operate at Layer 3 of the network stack. It places
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few requirements on the layer below it and therefore can operate over a number
of different technologies including IP, UDP and peer-to-peer overlays. Therefore,
AGN can actually be deployed as an overlay network. Unfortunately, such an
approach is often plagued by performance limitations though.

AGN supports progressive deployment alongside existing non-CCN aware
routers. As discussed previously, intra-domain routing can be handled by popular
protocols such as IS-IS and OSPF, whilst inter-domain routing can be performed
by BGP. The greatest challenge is therefore successfully operating these pro-
tocols without affecting the operation of the existing IP routing. Luckily, the
Type Label Value (TLV) scheme aids the deployment greatly, as routers that
do not recognise particular types simply ignore them. This means that both IP
and AGN routers can co-exist without adversely affecting each other. An AGN
router therefore first learns the physical topology of the network and announces
its own location (using the standard protocols) before flooding the network with
the content prefixes that it can resolve (using an AGN TLV). This subsequently
allows a fully directed graph to be constructed for all content.

Although progressive deployment on an intra-domain level is often helpful,
generally, the progressive deployment on an inter-domain level is far more im-
portant as this involves dealing with routers that are outside of an individual
organisation’s control. Unless this is addressed, AGN can only operate in is-
lands. This is addressed through use of the existing BGP protocol. It does this
by exploiting BGP’s support for an equivalent of the TLV scheme. This there-
fore allows a topology map to be constructed at the Autonomous System level
(as opposed to the prefix level in intra-domain routing). This map can then be
annotated with information about content prefixes by any supporting router.

As of yet, the developers of AGN do not provide any evaluation regarding
the system’s actual deployability. Therefore, the performance and scalability
of this deployment approach remains untested in the real-world. Assuming the
deployment works, the largest barrier is therefore the cost of deploying the nec-
essary routing infrastructure. [83] offers some incentives regarding the uptake of
the approach. Specifically, this refers to the advantages that can be gained from
caching Data packets. Unfortunately, however, these advantages are mitigated by
the presence of legacy routers that cannot perform caching. Last, as with DONA,
it is necessary for applications and operating systems to modify their software
to introduce support for interacting with AGN. Clearly, this is endemic to in-
troducing a new networking paradigm. This means that there is no backwards
compatibility with existing content protocols (e.g. HTTP).

Delivery-Centric Support

Content in AGN is delivered using the Data packet; consumers send Interest
packets containing the desired content address (which implicitly defines a spe-
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cific segment) and, in return, receive Data packets that contain that segment.
Transport in AGN is connectionless and client-side driven, i.e. the consumer
must request every segment using an Interest packet. Therefore, unlike TCP,
the consumer is responsible for re-sending an Interest packet if it has not been
satisfied with a Data packet after a given timeout. Subsequently, the consumer is
responsible for reliability and flow control by adjusting the frequency of Interest
packets; this is analogous to TCP’s window size.

First, considering the definition in Section 2.2, AGN is clearly not delivery-
centric because it does not support the stipulation of delivery requirement in
its protocol. Instead, the AGN routers simply route any Interest packets to the
nearest source based on the distance metric (e.g. hops). As with DONA, source
selection is managed entirely within the network’s routing fabric and therefore
consumers cannot shape the sources that are utilised. This is exacerbated fur-
ther by the fact that transport occurs entirely within the content-centric routing
infrastructure and, as such, a consumer cannot even ascertain where the con-
tent is coming from. Clearly this can be considered as an implicit property of
a content-centric network when considering more clean-slate designs. However,
this prohibits a consumer even making an out-of-band connection to a provider to
attempt a delivery-centric transfer. The sources selected by the network therefore
only constitute the ones considered optimal by the routing metric.

The second mechanism for achieving delivery-centricity is through protocol
adaptation. Within DONA, the transfer protocol is not defined but within AGN
this has become an inherent aspect of the protocol. A consumer issues an Interest
packet for a particular segment of an item of content and, in return, receives a
Data packet containing the data. A strong black-box abstraction therefore exists
between data requests and reception. Unfortunately, with black-box systems it is
impossible for adaptations to take place beyond that supported by the abstrac-
tion. As such, it is impossible for adaptation requests to be sent or any reflective
information about the consumer to be provided.

Summary

AGN [83] is a content-centric network designed to be able to operate over a
range of connectionless protocols, including IP and UDP. It offers content-centric
routing using hierarchical identifiers alongside in-network content retrieval, i.e.
content is transported through the content-centric network rather than through
other means as with DONA. AGN is based on a set of special routers that can
co-exist with traditional IP routers to offer the necessary routing functionality
to forward requests (Interest packets) towards the nearest source. During this
process, ‘bread crumbs’ are also left so that Data packets can be routed back to
the requester.

AGN places significant focus on enabling deployment alongside existing in-
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frastructure. AGN itself is designed to operate over IP, and both IP and AGN
routers are designed to be co-located. To allow progressive deployment, AGN
also utilises existing IP routing protocols for both intra-domain (IS-IS or OSPF)
and inter-domain (BGP) routing. This is through the use of general type label
schemes supported by the routing protocols, which allow content-centric prefixes
to be distributed. Routers that do not support the labels simply ignore them.

Delivery-centricity in AGN is not currently supported as there is no protocol
ability to stipulate delivery requirements. Instead, consumers must send Interest
packets whilst providers must simply respond with Data packets. The selection
of which sources provide the content is entirely managed within the routing fabric
of the network and therefore consumers cannot shape this process. Further, un-
like DONA, the exchange of messages occurs through AGN’s own infrastructure,
thereby preventing any form of protocol adaptation taking place out-of-band.
These two facts make AGN non-configurable in terms of the delivery operation.

In summary, AGN can currently be considered as the purest existing content-
centric network proposal available. This is because it performs both content
discovery and delivery within the network without the external use of existing
networks (although, obviously, it operates above an existing network). Further,
AGN also offers attractive real-world solutions to deployment issues as well as fea-
sible large-scale routing algorithms. However, despite these facts, its deployment
is still slow and complicated, meaning that it is unlikely to receive wide-spread
uptake. This is worsened by the use of the AGN infrastructure for forwarding
data as this dramatically increases the hardware costs of the routers. This design
choice similarly prevents AGN from offering true delivery-centricity, as all con-
trol is removed from the consumer and placed in the network, without the ability
for individual consumers to inject personalised delivery requirements. These ob-
servations mean that AGN does not fulfil any of the key goals explored in this
thesis.

2.5.4 Akamai
Design

Akamai [1] is a widely deployed content distribution network (CDN) that cur-
rently maintains a significant market share (64% [77]). It is not a content-centric
network as defined by [81]; similarly, it is not a content-centric network as de-
fined in Section 2.2. This is because it does not utilise content-centric identi-
fiers or location-agnostic security. Instead, content addresses are location depen-
dent; importantly, however, the delivery itself is not location dependent. This
means that an item of content’s address is based on the location of the original
provider but it can subsequently be delivered from a variety of different locations
through DNS redirection. It is therefore possible to argue that Akamai offers
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a publish/subscribe-like abstraction, allowing providers to publish their content
and consumers to access it (albeit not in a strictly content-centric way).
Akamai is a relatively straight-forward system; it acts as an augmentation
to existing (web) content hosts by placing their content on its set of distributed
servers. When a provider that uses Akamai receives a request, it can optionally
redirect it into the Akamai network. This allows a provider to achieve superior
performance, resilience and handle flash-crowds effectively. Akamai claims to
have 56,000 edge servers, distributed in over 70 countries [1]. From these, 60%
reside in the U.S.A and a further 30% in nine other countries [77]. Figure 2.12
provides a geographical overview of the location of Akamai’s content servers. It
is clear that the scale of Akamai is huge with 10-20% of all web traffic being
routinely delivered by Akamai servers, sometimes reaching over 650 Gbps [1].

Figure 2.12: Location of Akamai Edge Servers [77]

As usual, there are two stages involved in utilising Akamai; the first is publish-
ing content and the second is consuming it. Unlike DONA and AGN, publishing
content is limited to users that are prepared to pay, i.e. Akamai is not an open
system. Importantly, the process is also not an implicit function of the network;
instead, it is a commercial transaction achieved through business interactions.
Similarly, the content consumption process also follows a different paradigm to
DONA and AGN. This is because content requests are always location-oriented,
i.e. a request must be sent to a specific provider that has subscribed to the use
of Akamai’s infrastructure. Despite this, Akamai is by far the largest integrated
content distribution infrastructure in the world and it does share many similar
goals to content-centric networking.

Before an item of content can be accessed, it is first necessary for a provider to
purchase the services of Akamai. Once this has taken place, it becomes possible
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to ‘inject’ its content into the CDN. Akamai operates a multicast network based
on a three-tier hierarchy, as shown in Figure 2.13. Providers first transfer their
content to entry points; this can be done statically for traditional media or,
alternatively, in real-time for streamed media [133]. Once this has taken place,
the entry points pass the content to a set of reflectors, which subsequently are
responsible for distributing the content to an optimal set of edge servers. These
are the strategically placed content servers that actually provide the content to
end hosts. To make the process more scalable, reflectors only pass content to an
edge server once it has been requested in that region; this ensures that content
is not pushed to unnecessary locations.

Entry Points

Reflectors

Edge Servers

Figure 2.13: Publishing Content in Akamai through the Multicast Network

The process of accessing content in Akamai is slightly more complicated. This
is because Akamai has been deployed as a transparent augmentation to existing
protocols. As such, it is necessary for such CDNs to ‘trick’ consumers into using
them without explicit knowledge. This is achieved using DNS redirection, which
involves manipulating the IP addresses returned by DNS servers so that content
can be acquired through Akamai rather than the original source. This process
is relatively simple and is shown in Figure 2.14. When a website such as tu-
darmstadt.de uses Akamai, it is provided with a unique Akamai hostname (e.g.
al964.g.akamai.net). This hostname can then be used to redirect requests to. For
instance, when a user at lancs.ac.uk attempts to download an item of content from
tu-darmstadt.de, its domain name is first resolved using the DNS server residing
at tu-darmstadt.de (steps 1). This server then redirects the client to the Akamai
infrastructure rather than resolving the query to the Darmstadt server. This is
done by generating a CNAME response containing the Akamai hostname (i.e.
al964.g.akamai.net) (step 2). This results in the client generating a second DNS
query for al964.g.akamai.net, which enters the Akamai private DNS network
(step 3). These servers then locate the client’s closest Point of Presence (POP)
based on its IP address. Using this, the query is resolved to a set of the closest
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edge servers (default 2) that possess the content of tu-darmstadt.de; these IP
addresses are then returned to the consumer using the DNS protocol (step 4).
Finally, the consumer then connects to one of the edge servers and downloads
the content using a protocol such as HTTP (step 5).

Figure 2.14: Performing a Lookup in Akamai

Deployment Support

Deployment has always been a primary concern for Akamai because it is a com-
mercial organisation that needs wide-spread uptake to be successful. Akamai
therefore has slightly different deployment challenges to DONA or AGN. This is
driven by the fact that (i) Akamai is fully controlled by one organisation, and
(i) it is inherently designed to operate seamlessly with existing web distribution
infrastructure (e.g. DNS, HTTP). It therefore does not offer the revolutionary
approach of DONA or AGN but, instead, takes an evolutionary approach to
improving existing content systems.

The biggest challenge to Akamai is hardware deployment. Unlike DONA and
AGN, Akamai is primarily focussed on content delivery rather than content dis-
covery. This is obviously a much more resource intensive process and therefore
the expense of setting up an Akamai-like CDN is phenomenal. Further, it is
difficult to set an Akamai-CDN up on a small scale because it’s purpose is to
optimise latency and increase the capabilities of existing providers. This requires
that Akamai has both sufficient resources and geographical reach. This is ex-
acerbated by the private nature of the Akamai network, thereby preventing any
other organisation from contributing resources. Other, CDNs such as Limelight
[17] mitigate these costs by primarily uni-locating their content servers, however,
the necessary bandwidth and infrastructure for this is still extremely expensive.
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Whereas, DONA and AGN are systems that demand many different third
parties incorporate their protocols, Akamai is entirely private. In essence, this
means that Akamai is solely responsible for its own deployment without the need
to persuade any other organisations to become involved. This is therefore a type
of protocol standardisation. Of course, this means that Akamai is also solely
responsible for the costs. This, however, results in an alternative challenge as it
becomes necessary for Akamai to (7) place content servers in third party networks,
and (i7) ideally persuade third party networks into settlement-free peering [65].
Some CDNs such as Limelight [17] and Level 3 [16] are owned and managed by
a particular network, which eases this burden as most servers are hosted within
their own autonomous system. In contrast, however, Akamai alongside others
such as Mirror Image [22] and CacheFly [5], are not owned by a particular net-
work and therefore must distribute their servers over many different autonomous
systems. The task is therefore to persuade these third party networks to install
the servers or, alternatively, to peer with Akamai. Peering is the process of two
networks mutually accepting each others’ traffic directly without charge. This
arrangement can increase delivery performance and resilience whilst reducing the
transit cost for both parties. A major challenge, however, is achieving the neces-
sary business relationships; a problem that is largely synonymous with persuading
other networks to utilise a particular content-centric protocol. Akamai has a large
number of peering arrangements with 63 officially listed [2]; this is due to their
open policy as well as their dominant market position. Newer CDNs would not
be able to achieve this acceptance, however, as peering generally requires both
parties to prove their commercial worth.

Usually, the final difficulty encountered during networked system deployment
is the end host software uptake. Akamai, however, also does not require mod-
ification to consumer-side software. It has been designed from the outset with
backwards compatibility in mind. From the consumer’s perspective no new pro-
tocols or operations are utilised; discovery is performed using transparent DNS
redirection whilst delivery is seamlessly performed using HTTP. This best high-
lights Akamai’s difference from content-centric networks such as DONA and AGN
because Akamai operates in conformance with the existing IP nature of the In-
ternet rather than attempting to introduce new protocols.

Delivery-Centric Support

As previously discussed, a delivery-centric systems makes the delivery process a
primary element of its operation. In this respect, Akamai takes a largely similar
approach to DONA and AGN, in that support for this is removed from the
consumer and placed in the network. However, Akamai is far more flexible in its
behaviour because it operates exclusively at the application-level. For instance,
it offers support for HT'TP, FTP, streaming, as well as digital rights and software
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management.

The first possible approach to delivery-centricity is the use of intelligent source
selection. Like the previous systems discussed, this is implemented within the
network, however, unlike AGN and DONA, this is done through a lookup function
rather than content-based routing. The lookup function returns one or more IP
addresses, which implicitly provides a significantly greater degree of flexibility.
By default, Akamai returns a set of two possible nearby content servers, however,
these servers provide the same functionality as each other and there is little
benefit in dynamically selecting between them. It is, instead, a load balancing
function, leaving consumers to randomly select between the two. The ability for
intelligent source selection to enable delivery-centricity therefore does not exist
in Akamai.

The other approach for achieving delivery-centricity is to use protocol adap-
tation to manipulate delivery behaviour. Currently, Akamai offers no support
for this; however, unlike AGN there is significant scope for it to take place. This
is because consumers gain the address of the specific provider, thereby allowing
out-of-band interactions to take place (e.g. a re-configuration request). This
is also something that could be easily provisioned in the Akamai infrastructure
because it is owned by a single organisation, subsequently allowing global soft-
ware updates to be deployed. As such, when a lookup is performed in Akamai, a
consumer could send delivery requirements to the possible sources so that their
behaviour can be re-configured to address the requirements. Although this would
introduce delivery-centricity, this has the downside of needing software modifica-
tion to take place, thereby preventing Akamai from operating transparently. It
would be easy for such infrastructure, however, to support both approaches to
allow backwards compatibility. Despite this, it is also likely that Akamai would
provide such support in a provider-centric manner considering that commercial
income is generated via providers rather than consumers.

Summary

Akamai is a widely deployed content distribution network (CDN) that is believed
to be responsible for 10-20% of all web traffic being routinely delivered [1]. It
uses DNS redirection to redirect clients to nearby servers that can best serve their
requested content. This is done by requiring providers to upload content into the
Akamai network, addressed by a unique domain name (e.g. al964.g.akamai.net).
Therefore, whenever a provider receives a DNS lookup for its content, it can
simply reply with a CNAME response that redirects the consumer to query
a1964.g.akamai.net from Akamai’s DNS infrastructure. Subsequently, Akamai
can resolve the DNS request using the available content server that is closest to
the consumer.

Akamai has clearly already shown itself to be a highly deployable system.
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From the outset, there was a strong focus on achieving transparent deployment
through the use of existing protocols. Akamai combines existing DNS and HTTP
functionality to successfully operate without client-side modification. The biggest
deployment barrier to Akamai-like systems is therefore not technical but commer-
cial. The cost of setting up a large-scale decentralised CDN is huge, prohibiting
nearly all organisations from achieving it.

Although Akamai is a delivery focussed network with significant resources
solely employed in improving delivery performance, it cannot be considered as
delivery-centric as it does not offer the necessary protocol support for applications
to stipulate delivery requirements. Instead, the delivery protocol is a predefined
element of the address (usually HT'TP) and the source selection process is man-
aged by Akamai.

In summary, Akamai cannot be considered as a true content-centric network
because (7) it does not use location-independent addressing, and (i7) it does not
offer any location-independent security. Instead, Akamai offers many of the fa-
cilities of a content-centric network without introducing the principles of unique
content addressing. However, Akamai is not restricted to delivering content from
a particular location even though the identifier stipulates it. This is achieved
through transparent DNS redirection, which therefore means that Akamai does
not try to introduce any new protocols making deployment and interoperability
far easier. Currently, however, Akamai does not offer a delivery-centric abstrac-
tion; this is because Akamai’s need for transparent interactions prevents it from
providing support beyond that of existing traditional protocols such as HTTP.

2.5.5 Summary

This section has investigated the related work to content-centric networking. The
purpose of this has been to ascertain to what extent existing approaches fulfil the
research goals stated in Section 1.3. Three systems have been inspected: DONA,
AGN and Akamai. DONA is an application-layer content-centric network that
is designed to operate as a replacement to the existing Domain Name System.
It allows nodes to resolve content identifiers to the closest available source using
some network metric. Following this, the source can respond with a transport
message to initiate the content delivery over the traditional IP network. In con-
trast, AGN offers a more revolutionary approach in which routers are placed
throughout the networks to augment the functionality of IP. Both requests and
responses are routed through the content-centric infrastructure. Finally, Akamai
is a content distribution network that has already been successfully deployed. It
is not, however, a content-centric network because it does not introduce unique
content identification. Table 2.6 summarises the details of each system, whilst
Table 2.6 provides a comparison between them.
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| DONA AGN Akamai
Addressing Flat Hierarchical URL
Routing Tree AS-Topology DNS redirection
Security Hashing Hashing SSL
Delivery Out-of-bands over | Data Packets HTTP

P
Layer Application Above IP/ UDP/ | Application
P2P

Deployment
- Cost High High Very High
- Speed Slow Slow Slow
Interoperability
- Between CCNs | None None None
- Between Proto- | Limited bridging | None Possible

cols

Delivery-
Centricity

- Source Selection
- Protocol Adap-
tation

Within Network
Potential

Within Network
None

Within Network
Potential

Table 2.6: Summary of Related Work

2.6 Conclusions

This chapter has investigated the background and related work to the research

goals discussed in Section 1.3. First, the principles of content distribution were

investigated, looking at the state-of-the-art in content discovery and delivery.

Following this, technologies for achieving interoperation were also detailed to

provide an overview of possible techniques to unify existing delivery systems.

Last, the related work to content-centric networks was investigated based on

their ability to support delivery-centricity, as well as real-world deployment. To

summarise, the following conclusions can be drawn from this chapter,

e There are a large range of diverse discovery and delivery systems used in

the Internet

— Providing unified access to these different systems would increase con-

tent availability and ease the development burden on applications

— Heterogeneity in each system makes its suitability vary when facing

different requirements at different times (e.g. performance, security,

reliability etc.)

e [t is feasible to build interoperability into diverse networked systems
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— Protocol standardisation is largely unfeasible without commercial or
sociological incentives

— Bridging is feasible in certain cases but often cannot operate with
complicated or divergent protocols

— Middleware can provide interoperability effectively but it requires a
new independent abstraction to be conformed with at certain strategic
points in the system (e.g. consumer, provider or both)

e Content-centric proposals and similar content distribution systems do not
satisfy the research goals

— DONA and AGN are difficult to deploy and do not offer interoperabil-
ity with existing content systems

— Akamai is deployable (with enough resources) but it does not offer
interoperability with other systems (in fact, it is an instance of one
system)

— None of the related work handles delivery-centricity as defined in this
thesis

e The discovery, delivery and content-centric systems contribute to diversity
rather than managing it

So far, this chapter has dealt with important background issues relating to
content distribution, interoperability and content-centricity. It has also been
established that a primary tenet of this thesis is the exploitation of diversity be-
tween delivery protocols and providers. A large degree of heterogeneity has been
identified within this chapter, however, to feasibly exploit this heterogeneity, it is
necessary to take a more detailed, quantitative approach. The following chapter
builds on this chapter to take an in-depth look at the dynamic characteristics
that make certain delivery systems more appropriate than others at a given time.



Chapter 3

Analysis and Modelling of
Delivery Protocol Dynamics

3.1 Introduction

The previous chapter has detailed a number of possible mechanisms by which
users can access content over the Internet. This includes a diverse set of proto-
cols as well as a range of independent providers that utilise them. The primary
goal of this thesis is to design and build a content-centric and delivery-centric ab-
straction that can be successfully deployed to interoperate with existing content
systems. One of the key potential advantages behind this is the ability to dynam-
ically select between these various different providers and protocols to best fulfil
the application’s requirements. This, however, is complicated by the fact that
the ability of a provider to fulfil a set of requirements will often vary dynamically
during runtime. This obviously strengthens the case for pushing complexity into
the middleware-layer and abstracting content requests away from the underlying
mechanism by which they are accessed. However, it is important to first under-
stand how these dynamic variations take place, as well as offering mechanisms to
capture and model such heterogeneity to allow informed decisions to be made.
This chapter provides a detailed quantitative analysis of the delivery system
dynamics observed in three popular protocols: HTTP, BitTorrent and Limewire.
These are focussed on rather than other systems and paradigms (e.g. live stream-
ing protocols [26]) due to their predominance - they collectively make up 75% of
all traffic in the Internet [128]. This is approached by investigating certain key
parameters that affect the behaviour of each protocol. These parameters can be
categorised as either static or dynamic. Static parameters can easily be inspected
and taken into consideration at design-time, however, dynamic parameters often
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fluctuate, thereby requiring decisions to be made during runtime. Consequently,
it is vital to be able to understand and model how such parameters vary (7)
over time (temporal variance), and (ii) between different consumers (consumer
variance). This is because collectively these define the divergence that a node
accessing an item of content can potentially observe. To allow a detailed analysis,
this chapter therefore focusses on the dynamics of the most important delivery
requirement: performance.

This chapter now explores the analysis and modelling of content delivery
protocols. In the following sections, the three delivery systems are investigated in
turn using simulations, emulations and measurement studies. Each section looks
at an individual system based on both resource and protocol-specific parameters
that are found to fluctuate during runtime. With this information, techniques
for modelling and predicting performance are then presented to allow accurate
decisions to be made dynamically relating to the best protocol to utilise.

3.2 HTTP

3.2.1 Overview of HTTP
Delivery Protocol Overview

The Hyper-Text Transfer Protocol (HTTP) is a text-based application layer
client-server protocol that is primarily used to transfer content from a single
provider to potentially many consumers in a point-to-point fashion. When a con-
sumer desires an item of content it issues a GET request to a known provider. As
such, HTTP is entirely based on location without any separation between content
and location.

To request an item of content, a consumer first makes a TCP connection with
the known server (by default on port 80). The identification of the required con-
tent is stipulated through a Uniform Resource Locator (URL). A URL offers the
location of the server alongside the subsequent remote file path of the content.
For instance, http://www.rapidshare.com/files /513245 /music.mp3 indicates that
the protocol used is HTTP, the location of the server is www.rapidshare.com
(i.e. 195.122.131.14), and the remote path to the content on that server is
files /513245 /music.mp3.

Once a connection has been made, the consumer sends the GET request con-
taining the URL (i.e. GET www.rapidshare.com/files/513245/music.mp3). The
provider then replies with a data stream of the file. Due to this, the performance
of HTTP is largely defined by the performance of TCP, which subsequently man-
ages this data stream delivery. This is particularly prevalent for large transfers,
in which the initial HTTP protocol exchange is dwarfed by the subsequent data
transfer. This is highlighted in Figure 3.1, which provides an overview of the
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protocol messages exchanged during a HT'TP delivery.

Client Server
TCP SYN
TCP SYN-ACK Transport Layer
> Connection
Establishment
TCP ACK

HTTP GET

HTTP OK
> HTTP Request /
Response

Data

TCP FIN

TCP FIN-ACK

Transport Layer
> Connection Tear
Down

TCP ACK

Figure 3.1: Overview of Protocol Exchange for HT'TP Delivery

Discovery Protocol Overview

Discovery refers to the ability of a system to index and discover sources for a par-
ticular item of content. HTTP does not possess any native mechanism for this
because there is no separation between content and location, i.e. a HI'TP iden-
tifier (a URL) already implicitly contains the content source, thereby removing
the need for any indirect source discovery. Instead, HT'TP is simply concerned
with accessing an item of content relative to a given location.

Due to this facet of HT'TP, it is necessary to provide discovery as a supple-
mentary service. This can be done through a variety of means, however, the
most popular approach is to crawl web servers to discover what content they
possess. This is done by a range of companies such as Google [11], which period-
ically download web content to extract pertinent elements of information. This
information is then offered through a search interface.
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An alternative to this is the use of user contributions. This, in essence, is a
use of the peer-to-peer paradigm as exploited by systems such as Grub [12] and
Harvest [13], which perform progressive web crawling in a decentralised manner.
A variation of this is for users to actively upload references to content with a web
interface. This is a popular approach to indexing one-click hosting sites such as
Rapidshare [25].

3.2.2 Methodology

The next step is to investigate the behaviour and performance of HTTP. To
do this, a number of experiments have been set up in Emulab [144]. Emulab
is a testbed containing a number a dedicated computers that can be remotely
accessed. Each computer possesses an emulated connection to the testbed that
can be modified based on a range of parameters such as bandwidth, packet loss
and delay. By using Emulab, it is possible to test a distributed system in a
realistic, reproducible setting that can be subjected to many real-world factors
including congestion and real protocol stack implementations.

Within the experiments, two nodes are focussed on: a client and a server. In
each experiment the server possess 100 Mbps upload capacity whilst the capacity
of the client is varied. Importantly, two further nodes also exist in the experiment
with the purpose of creating contention on the server’s resources. These two nodes
maintain 40 HTTP connections to the server and are constantly downloading
throughout each experiment. To emulate different server loads, the bandwidth
capacity of these contention nodes is varied whilst the performance of the client
is monitored. To investigate the performance of HT'TP, the pertinent parameters

are varied before files are transferred from the server to the client; the average

downloadtime
filesize * All

nodes in the experiment run Red Hat 8.0 with a 2.6 Kernel using TCP Reno; the

application layer throughput is then calculated and logged using,

HTTP server used is BareHTTP (available from http://www.savarese.org),
whilst the HT'TP client running is implemented in Java using the java.net package
(v1.6). The HTTP server is hosted on a high capacity Emulab node with a 3
Ghz 64 bit Xeon processor; 2 GB of RAM; and a 10,000 RPM SCSI disk.

3.2.3 Resources

The predominant factor in any delivery system’s performance is the available
resources. This section investigates HI'TP’s resource usage; first, an analysis is
provided before moving on to study measurements taken from Emulab.

Analysis

HTTP follows a client-server model; this makes its performance largely based
on the resources available at the server. This, however, is not a static metric;
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instead, it is dynamically defined by the loading that the server observes. With an
increase in the number of clients being served, these resources become depleted.
If this occurs beyond a certain threshold then the server will not have sufficient
resources to serve all clients satisfactorily. This is obviously a variance that occurs
over time, making it impossible to predict before a request is performed. There
are several resources of interest when designing and provisioning servers; namely,
bandwidth capacity, processing capacity, I/O capacity and memory size.

Although all resources are of interest, the one that acts as the greatest bot-
tleneck is the bandwidth capacity. The processing capacity, although important,
rarely has the significance of bandwidth capacity; [86] found that even a low-
capacity 450 MHz Pentium II CPU could achieve well over 1 Gbps when serving
static content items. Similarly, the I/O speed and memory size will often not act
as a bottleneck as increased server load is generally associated with demand for
only a particular subset of objects due to usual skewed Zipf distribution of pop-
ularity [80][147]. In contrast, the consumption of upload resources is far faster;
this is most noticeable in multimedia servers that have strict bandwidth require-
ments. For instance, a 100 Mbps upload capacity can theoretically serve only
200 simultaneous users viewing a typical 500 Kbps encoded video. Thus, it can
be concluded that the resource of most interest is, by far, the (available) upload
capacity of the server.

As with any resource, each server is restricted by a finite upload capacity,
denoted by up® for server S. Whilst every client is similarly restricted by a finite
download capacity, denoted by down® for client C. If, at a given time, n clients
wish to download content from the server at their full capacity, the maximum
number of satisfied connections is defined by,

S
up
—_— 3.1
avg(down) (3:-1)
where avg(down) is given by,
- down’
avg(down) = Licn down’ (3.2)

n

Beyond this, an admission policy must reject further requests or, alternatively,
each connection must be degraded. Generally, the policy utilised is a combination
of both these approaches with rate allocation being managed by TCP, which
attempts to allocate bandwidth fairly (although this is often ineffective [96]).

Measurements

To investigate the effect of different server workloads, a 4 MB delivery is per-
formed from the server to the individual monitor clients when operating under
various loads. Two monitor clients are used: a low capacity 784 Kbps client and
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a high capacity 100 Mbps client. 4 MB is used because it is large enough to reach
the achievable peak throughput (after TCP slow-start); a larger 700 MB delivery
was also performed with similar results. Three different workloads are utilised
in the experiments to emulate different available resources; each load is defined
by the application layer congestion at the server (excluding the monitor client’s
request). The first represents a low workload and consists of 10 Mbps traffic. The
second is a medium workload of 90Mbps traffic that leaves sufficient resources for
the client to access the content. Last, a heavy workload of 95 Mbps is used to
emulate a fully saturated server (note that 100 Mbps is not an achievable sat-
uration level due to protocol overheads). Importantly, by generating traffic at
the application layer, the server also suffers from processor consumption and not
just bandwidth consumption. This therefore allows the effect of different resource
levels to be monitored in a controlled environment.

Figure 3.2a shows the average download throughput for a client with a 784
Kbps download capacity. It can be seen that the client’s performance is rela-
tively unchanged under the three different loadings. This is attributable to the
client’s low bandwidth requirements, which place only a very light load of the
server. This can be contrasted with a high capacity 100 Mbps client, which suf-
fers greatly from any degree of loading at the server, as shown in Figure 3.2b.
The effects become even more extreme once the server’s resources are saturated,
with a 95% performance decrease for the 100 Mbps client. This occurs because
during saturation it becomes necessary to share the server’s upload capacity be-
tween all clients. The HTTP implementation does not perform any intelligent
resource management and therefore bandwidth allocation is managed by TCP,
which attempts to allocate a fair share between all streams. By providing each
client with a ‘fair share’ of bandwidth, low capacity clients can easily saturate
their downlinks without significant degradation. In contrast, high capacity nodes
suffer greatly from this algorithm as their fair share is far lower than their de-
sired throughput. Consequently, the effects of resource variations are observed
in vastly different ways when perceived from different clients: this is evidently a
consumer variance.

The experiments have so far highlighted that as the server’s finite resources
are consumed, the performance perceived by the clients is reduced. Further, it
has also been shown that there is a marked difference between the effects on
divergent consumers. Subsequently, it can be derived that two clients operating
at identical times can get totally different qualities of service (consumer variance).
The next step is to ascertain whether or not these fluctuations also occur over
time (temporal variance). To achieve this, it is necessary to inspect real-world
studies to understand how resource demand varies over time.

The presence of temporal variance is validated by a range of studies. Yu
et. al. [147] found that the access patterns of users vary greatly over time;
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Figure 3.2: HTTP Download Performance

by studying the PowerInfo Video on Demand (VoD) service, it was found that
server loading varies on both a daily and weekly basis. Unsurprisingly, usage
drops during the early morning (12AM-7AM) and in the afternoon (2PM-5PM),
whilst it peaks during the noon-break (12PM-2PM) and after work (6PM-9PM).
It was found that this can result in variations between 0 and 27 requests per 5
seconds. Similarly, [80] found that access rates vary significantly based on the
time of the day and the time of the week. Obviously, the effects of these variations
are most noticeable with low capacity servers, which seem highly prevalent; for
instance, the University of Washington probed a set of 13,656 web servers to
discover that more than 65% had under 10 Mbps upload capacity [112]. With
such limited resources, the effects of high load can obviously result in significant
problems. However, even in well resourced environments such as Rapidshare [25],
these issues can still take effect. Antoniades et. al. [35] performed a number of
Rapidshare downloads from an individual site. They found that the performance
significantly varies over time. With a premium account, the capacity can range
from as little as 1 Mbps to over 30 Mbps, with a 50:50 split between those
achieving under 8 Mbps and those achieving more. Clearly, these results therefore
confirm the existence of temporal variance in HI'TP based on the availability of
resources.

3.2.4 Protocol

The purpose of this section is to investigate how dynamic variations endemic to
the protocol implementation can affect performance regardless of the available
resources. Table 3.1 provides an overview of the relevant network parameters for
HTTP, as detailed in [38]. It should be noted that there are also a number of
other higher-level parameters, relating to both TCP and HTTP (e.g. maximum
transmission unit, TCP/HTTP version). However, these are not considered be-
cause they are parameters that can be better configured by the providers and
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Parameter Description

Server Bandwidth | The amount of available upload bandwidth at the
server

Packet Loss The percentage of packets lost during the delivery

Link Asymmetry The difference between a link’s upload and download
characteristics

Propagation Delay | The delay between the client and the server

Table 3.1: Overview of Relevant HTTP Parameters

consumers (i.e. they are not outside of their control).

The first parameter, server bandwidth, is a resource metric as previously de-
scribed. The second parameter is packet loss. This references the percentage of
lost packets that a stream endures when operating over a given link. High levels of
packet loss obviously affect performance because it becomes necessary to re-send
the lost data. TCP’s behaviour, however, also exacerbates this by using packet
loss as a congestion metric. The third closely linked parameter is link asymmetry;
this can make it difficult for TCP’s congestion algorithms to correctly ascertain
the bottleneck capacity, thereby potentially lowering performance. All of these
parameters are clearly important, however, the chosen parameter is propagation
delay. First, an analysis of the importance of this parameter is provided, followed
by details from the Emulab measurements.

Analysis

TCP operates with a closed control-loop. Receivers must acknowledge the receipt
of data periodically so that the sender can verify it has been successfully sent
(using an ACK packet). The period over which this control-loop operates is
defined by the window size (CWIN); this represents the number of bytes that a
sender can transfer before waiting for the next ACK. Subsequently, a sender will
pause the download periodically whilst it waits for the receiver’s ACK packet.
This results in throughput being limited by,

CWIN

throughput <= ————
delay

(3.3)

If a connection has a lengthy delay then this will result in a significant pro-
portion of time being spent in this waiting state. This problem is most noticeable
in long fat pipes that have the capacity to send at a high data rate but are re-
stricted due to the TCP control-loop [150]. To highlight this, a simple example
is used; imagine an up® of 100 Mbps, a connection delay of 100 ms and a fized
window size of 64 KB. The time it takes for the server to transfer 64 KB is 5
ms. The server must then wait for the ACK to be received which takes a further
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100 ms; during this time a further ~1.2 MB could have been transmitted. In this
example, each control cycle therefore results in a huge wastage of capacity.

Measurements

To study this, several experiments are performed in Emulab whilst varying the
delay between the HT'TP server and the clients. Figure 3.3 shows the through-
put for two clients requesting a 700 MB file from the server with a 10 Mbps
background load and different delays. It can clearly be seen that the throughput
degrades as the delay increases. This is most noticeable for the high capacity 100
Mbps client, as shown in Figure 3.3b, with the 60 ms delay achieving only 9%
of the throughput achieved by the 6 ms delay. This is attributable to the larger
Bandwidth-Delay Product (BDP) of this node when compared to the 784 Kbps
client; this therefore results in a greater percentage of wasted capacity during
high latency transfers. For instance, every 10 ms spent in a wait-state results in
the waste of just under 1 KB for a 784 Kbps client whilst the same period spent
waiting costs 125 KB for a 100 Mbps client.
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Figure 3.3: HT'TP Download Performance with 10 Mbps Contention and Differ-
ent Delays

These results show that delay has a significant impact on the performance
of a HT'TP connection. Recent studies have shown that delay in the real-world
can vary dramatically over time by up to four orders of magnitude [95] (temporal
variance). However, the most likely cause for heterogeneity is the location of the
requesting client (consumer variance). For instance, two nodes connected via the
same network will have a lower delay than two nodes operating at different sides
of the globe [87]; this is highlighted in Table 3.2 by the measured delay through
both a co-located wired and wireless access links. Some content distribution
networks such as Akamai [1] reduce this effect by replicating content at multiple
geographical locations, however, the majority of web providers are located at
only a single site. Rapidshare, for instance, hosts all its servers at a single site in
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Host \ Country | Wireless RTT ‘ Wired RTT
bbc.co.uk UK 10 ms 7 ms
google.com UK 22 ms 13 ms
rapidshare.com Germany 43 ms 37 ms
cornell.edu NY, USA 124 ms 107 ms
heraldsun.com.au | Australia 329 ms 306 ms

Table 3.2: RTT between Lancaster University and Remote Hosts

Germany [35]. Similarly, content distribution networks such as Limelight [17] also
host their servers at only a small number of sites. In such situations, the effects
of delay are not mitigated through site replication. Interestingly, even when sites
are replicated using CDNs such as Akamai, latency is not static or necessarily well
controlled. Instead, [94] found that over 20% of clients witness, on average, 50
ms greater delay than other clients operating in the same geographical location.
Further, it was also found that 40% of clients suffer from over 200 ms delays even
when accessing content provided through CDNs such as Google.

3.2.5 Modelling

The previous sections have shown that the performance of HT'TP possesses both
consumer and temporal variance that cannot be predicted at design-time. Con-
sequently, to achieve delivery-centricity using HT'TP, it is evidently necessary to
be able to dynamically select providers. To allow this, however, it is necessary
for a runtime model to be built of the system to allow comparison between dif-
ferent alternatives. This section now explores how HTTP can be modelled to
predict the performance it will achieve under certain runtime conditions. First,
the model is described before showing how the important parameters can be
acquired. Following this, a validation of the model is given.

Model

Modelling the behaviour of HT'TP is largely a process of modelling TCP. This
is because in most situations the performance is defined by the underlying algo-
rithms of TCP. Deliveries can be separated into two groups; first, small downloads
that are dominated by delay and, second, larger downloads that are dominated
by TCP’s congestion control.

When performing small downloads, the primary limiting factor is the propa-
gation delay between the two points. This is because when the data is below a
default 64 KB, it is possible for the entire download to take place without the
TCP congestion control algorithms being executed. A prime example of this is a
picture; a 32 KB file could be transferred using 22 Ethernet frames without the
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need for TCP to employ any ACKs. This makes the TCP and HTTP initiation
phases the greatest bottleneck. This involves the following steps,

1. TCP SYN: Client sends connection initiation

2. TCP SYN-ACK: Server acknowledges

3. TCP ACK: Client acknowledges the acknowledgement
4. HTTP GET: Client sends content request

This means that two round trip times are required before the data can be sent
(i.e. 4 -delay). For instance, a typical delay between Lancaster and Washing-
ton University would be 175 ms. In such a circumstance, the initiation phase
would last approximately 700 ms (excluding any processing time). In contrast,
based on a bandwidth capacity of 5 Mbps, the data transfer period would only
last approximately 50 ms. In such circumstances, throughput can therefore be

approximated by, filesi
ilesize

delay - 4 + (filesize/bandwidth)

where delay is the connection delay, filesize is the size of the content being

(3.4)

accessed and bandwidth is the consumer download bandwidth (assuming the local
bandwidth is less than the provider’s bandwidth). This subsequently creates a
rough estimate of the time required for the data exchanged before adding it to
the time required for the connection initiation.

The above represents the simplest scenario because the process does not in-
volve any of the more complicated functionality of TCP. In contrast, larger items
of content will be subjected to the congestion control algorithms employed by
TCP, which subsequently dwarf the impact of the connection initiation delay. A
number of models have been developed for predicting the achievable throughput
by a TCP connection. The most predominant of these is the so called square
root equation, first defined by Mathis et. al [105] and extended by Padhye et. al.
[110]. This model calculates achievable throughput based on two key parame-
ters: delay and packet loss. Within such a model, for the moment, it is therefore
necessary to assume that server resources always exceed consumers resources.

Within this model, the throughput is defined as being inversely proportional
to latency and the square root of loss rate. Variations also exist for alternative
versions such as TCP Reno [111]. The model, taken from [110], is as follows,

M w
T % + T,min(1, \/%)p(l + 32p?) T

where p is the loss probability and b is the average number of packets acknowl-

E[R] = min

(3.5)

edged by an ACK, W is the maximum congestion window, M is the maximum
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segment size, T is the average roundtrip time, and 7}, is the average duration of a
timeout without back-off. Evidently, both b, W and T, are parameters defined by
the operating system, whilst p and T" are dynamic parameters that vary between
different hosts. The model has been empirically evaluated using real-world traces
to show its accuracy. Further studies, have also performed independent analysis
of the model to find that the majority of predictions fall within a factor of two
in terms of accuracy [117].

Acquiring Parameters

The previous section has provided one mechanism by which throughput between
two points can be predicted mathematically. However, before this calculation can
be undertaken, it is necessary to acquire the necessary parameters dynamically;
namely, delay and packet loss.

Considering the time-sensitive nature of generating predictions, active prob-
ing cannot be used. Therefore, to achieve this with a low overhead, network
monitoring services must be utilised. These are remote databases that are acces-
sible via some form of interface. They collect and maintain information about
system resources to allow a host to query the performance of a particular system
aspect. A prominent example of this is the Network Weather Service (NWS)
[145], which monitors and predicts various network and computational resources.
Network characteristics are periodically measured using a distributed group of
hosts that perform active probing whilst computation resources are measured us-
ing daemons residing at end hosts. Other alternatives to this include GridMAP
[59] and Remos [107], which both offer the ability to generate accurate throughput
predictions.

A more recent proposal is that of iPlane [102], which offers the ability to
query network characteristics for links between arbitrary hosts. This service
exposes an RPC interface that can be accessed by consumers with very low la-
tency. This service simply exposes a method (iplane.query), which accepts a list
of source/destination pairs, and returns a range of information including both
packet loss and delay. This information is collected from a number of network
probes, which monitor characteristics over time and index this information so
that it can be accessed by remote hosts. This is exposed as a web service and,
as such, can be accessed with very low delay. To validate this, a number of
queries were generated with increasing numbers of hosts being queried (in batch
requests). The delay increases linearly with only ~13 ms of processing delay for
every 10 extra providers queried, making the service highly suitable for generating
low latency predictions.
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Validation

The previous two sections have shown how one of the many TCP models can be
utilised to predict the achievable throughput when accessing content via HTTP.
It is important, however, to validate that these predictions are actually accurate
and feasible when used in conjunction with iPlane. This can be done using results
provided in [102].

To perform this study, active probes were performed between 161 PlanetLab
nodes to ascertain their achievable throughput. Following this, iPlane was queried
to generate predicted throughput values based on loss and latency using the model
from [111] (shown in Equation 3.5). Figure 3.4 compares the two sets of results. It
can be observed that the predicted values, on the whole, are extremely accurate.
For instance, for over 82% of predictions, iPlane achieves an error range of under

10%.
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Figure 3.4: Rank Correlation Coefficient between Actual and Predicted TCP
throughput [102]

Although, these results are clearly very accurate, the primary issue when us-
ing these predictive services is that of real-time variations. For instance, a flash
crowd scenario would not be captured by a predictive service unless it occurs dur-
ing a measurement period. Unfortunately, most services utilise relatively limited
numbers of probes (e.g. two a day [103]) and therefore such rapid changes in net-
work behaviour cannot be discovered. Despite this, it is likely that most Internet
paths remain relatively similar. For instance, using traceroute operations, Zhang
et. al. [149] found over 75% of Internet paths remain identical on a day-to-day
period. However, obviously this does not incorporate end-host characteristics
such as computational loading. Such information would be perfect for exposure
by a reflective interface or, alternatively through a NWS daemon [145].

In summary, the combination of iPlane and existing models can clearly be seen
to offer an effective approach to generating predictive throughput values. Impor-



CHAPTER 3. ANALYSIS AND MODELLING OF DELIVERY PROTOCOL
66 DYNAMICS

tantly, this is simply one exemplary approach; there are a number of constantly
improved throughput models, including [57]. Similarly, alternative network ser-
vices can be used to acquire the necessary characteristic parameters.

3.2.6 Summary

This section has inspected the dynamic behaviour of HTTP. It has been shown
that HTTP exhibits significant runtime variations when operating in different
conditions and with different clients. Two aspects have been investigated: avail-
able server resources and propagation delay.

It has been shown that both available server resources and connection delay
have a significant effect on performance. Importantly, consumer and temporal
variance is observable in both aspects. Consequently, when dealing with HTTP,
two consumers will likely receive vastly different performance levels if either (7)
they access the content at different times, or (ii) they possess different personal
characteristics (e.g. bandwidth capacity, location). From this it can be concluded
that performance-oriented delivery-centricity can only be achieved if providers
can be dynamically selected on a per-consumer basis. To achieve this, however,
it is evidently necessary to provider each consumer with a personalised prediction
regarding the achievable performance of each potential provider; therefore, this
section has also detailed a mechanism by which important runtime parameters
can be acquired with low overhead, and converted into such predictions.

3.3 BitTorrent

3.3.1 Overview of BitTorrent
Delivery Overview

BitTorrent [49] is a peer-to-peer distribution system; it has become the de-facto
standard for scalable content delivery with 66.7% of all peer-to-peer traffic being
attributable to BitTorrent [128]. It operates by separating files into small pieces
called chunks, which are then exchanged between the cooperating peers; this set
of peers is collectively referred to as a swarm. A swarm is a file-centric entity
in which all peers are sharing an individual item of content. Consequently, each
swarm can be considered to be an independent provider in itself.

When a new peer wishes to download a file it first connects to a tracker; this is
a centralised manager that maintains an index of all peers sharing or downloading
a particular file. The tracker provides new peers with a list of existing peers that
can be contacted. Peers can be categorised into two types: seeders and leechers.
Seeders are those that already possess the entire file and are altruistically sharing
it, whilst leechers are those that are still downloading the content.
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After receiving a set of peers from the tracker, new users connect to a random
subset of the existing peers to request data. Each peer maintains a bit map
indicating which chunks it possesses and which chunks it requires. These chunk
maps are then exchanged between peers using the Peer Exchange Protocol (PEX)
to allow each peer to discover which other peers can provide the required chunks.
To improve availability, each peer requests the chunks that appear to be the rarest
according to its local view of the swarm.

Fach peer maintains a set of five upload slots for which competing peers
barter for. This process is managed by BitTorrent’s incentive mechanism, termed
rate-based tit-for-tat [99]. If there is contention over a peer’s upload slots, the
peer shows preference to the requesters that have been uploading to it at the
highest rate, i.e. the ones that have been contributing the most. This metric
is calculated locally and subsequently peers cluster into neighbourhoods within
which they download and upload to each other. If peer P! makes the decision to
upload content to peer P2, it is said that P? is unchoked. By default, four peers
are unchoked periodically (every 10 seconds) based on the tit-for-tat algorithm.
However, to ensure that newly arrived peers that cannot cooperate (due to a lack
of chunks) are not prevented from downloading, each peer also randomly selects
a fifth peer to unchoke (every 30 seconds); this is termed optimistic unchoking
because it is hoped that the peer will reciprocate.

Discovery Overview

Unlike many other peer-to-peer systems, BitTorrent does not natively support
the discovery of content within its own peer-to-peer infrastructure. Instead, con-
tent is indexed and discovered outside of the swarm. Every swarm is managed
by a individual server known as the tracker, which is responsible for providing
newly joined peers with a list of existing swarm members. It therefore provides
a bootstrapping mechanism and acts as an access point for the swarm.

Databases of trackers are kept by a variety of indexing web sites that al-
low users to search for content. Popular examples are Mininova.org and Pi-
rateBay.com, which index millions of objects by providing links to each swarm’s
tracker. This allows users to query the index using both web interfaces and web
services to discover () items of content, and then (i¢) the address of the tracker to
access the swarm through. This approach allows content to be quickly discovered
with response times that are orders of magnitude below traditional peer-to-peer
searching. However, there are also peer-to-peer discovery mechanisms such as
Azureus’ KAD that provide this functionality in a decentralised way
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3.3.2 Methodology

BitTorrent, unlike HI'TP, is a complex system that cannot be easily studied in a
controlled environment. This is because the performance of BitTorrent is largely
based on the behaviour and characteristics of the peers operating in the system
(which are difficult to accurately capture). Further, logistically, the resources
required to emulate a BitTorrent swarm are much greater than a client-server
system. Therefore, to address these concerns, two approaches are taken: simula-
tion and large-scale measurements.

Simulation. The simulator utilised is the OctoSim [40] BitTorrent simulator,
developed by Carnegie Mellon University and Microsoft Research. To investigate
BitTorrent’s performance in diverse settings, a number of simulations are per-
formed whilst varying the resources and behaviour of the swarm members. For
each experiment, one client is selected as a monitor node. Each experiment is
run with a monitor node possessing a small set of different bandwidth capaci-
ties to inspect how divergent nodes behave. This allows a detailed analysis to
be performed in a flexible, reproducible and controlled manner. The bandwidth
of the other clients is distributed using the measurement data provided by [56].
Peers join the swarm in a flash crowd scenario, all at time 0; this allows a more
impartial evaluation to be performed based on the varied parameters rather than
other aspects such as the arrival rate.

Measurement Studies. The main limitation of utilising simulations to inves-
tigate BitTorrent is the difficulty of truly modelling real-world situations. This
is because capturing realistic node capacities and behaviour is often impossible.
To remedy this, two detailed measurement studies have also been performed that
offer insight into BitTorrent’s real-world performance.

The first measurement study inspects high level characteristics of swarm be-
haviour by periodically probing a number of trackers. These measurements are
termed macroscopic as they investigate behaviour on a torrent-wide basis. To
achieve this, a crawler was developed that listens for newly created torrents pub-
lished on the Mininova website [21]. After this, it followed these torrents to
collect information about their member peers. This ran for 38 days, starting on
the 9th December, 2008; it collected information about 46,227 torrents containing
29,066,139 peers. This process allowed the crawler to log peer arrival patterns
alongside the seeder:leecher ratio within the torrents over time.

To complement the information gained through the macroscopic measure-
ments, a second microscopic study was also performed. This involved developing
and deploying a crawler that can investigate swarms on a per-peer level as well.
The crawler operated from the 18th July to 29th July, 2009 (micros-1) and then
again from the 19th August to 5th September, 2009 (micros-2). It collected sets
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of online nodes from the trackers indexed by the Mininova.org website, request-
ing information using the Peer Exchange Protocol (PEX). Periodically (every 10
minutes) the crawler requested a chunk bitmap from each peer in the swarm. This
information was then logged, generating 7 GB and 12 GB of data from each trace
respectively. For the micros-1 study, the crawler followed 255 torrents appearing
on Mininova after the first measurement hour. In these torrents, 246,750 users
were observed. The micros-2 dataset contains information from 577 torrents and
531,089 users. The logs consist of the chunk bitmaps and neighbour table entries
for each peer sampled with a resolution of every 10 minutes.

After the study had completed, the logs were post-processed to remove all
peers that were not recorded for their entire download lifetime; this left approx-
imately 12,000 peers in micros-1 and 92,000 peers in micros-2. The average

download throughput of these peers was then recorded by performing the follow-
filesize

downloadtime *

rate of each peer was calculated by sequentially inspecting the chunk maps of

ing calculation, throughput = Following this, the peak download

each peer. This was then assumed to be the maximum download capacity of the

throughput

peer therefore allowing the downlink saturation to be calculated, peakthroughpit

This information was then logged alongside various parameters.

3.3.3 Resources
Analysis

BitTorrent is a peer-to-peer system and therefore the available resources are de-
fined by those contributed by peers. Subsequently, the available resources can be
modelled by looking at the contributed resources minus the required resources.
If this is negative, clearly there are insufficient resources in the system to satisfy
peer requirements. In BitTorrent these two factors can generally be measured
by looking at the number of seeders compared to the number of leechers, defined
by the seeder:leecher (S:L) ratio. In this section, it is represented with a single
decimal figure; this is calculated using, Z—j where n® and n! are the number of
seeders and leechers, respectively.

Seeders play a very important role in BitTorrent. On the one hand, they
ensure that the complete file remains available [88] by acting as a source of every
possible chunk. Whilst, on the other hand, they also improve download speeds
by providing resources without consuming any [40].

Every torrent, x, can be identified as having a particular service capacity
(up?.); this is the aggregate of available upload capacity and is defined for torrent
r at a given time as,

uph = > upk+ Y uph (3.6)

i<n® i<nl

where upfg and upiL are the upload capacities of seeder 7 and leecher 7, respec-
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tively. Equally important is the required service capacity of the swarm; this is
the aggregate download capacity of the leechers and is defined at a given time
for torrent x as,
downy = Z down®, (3.7)
i<nl
Assuming that all chunks are available, in a homogeneous environment it is there-
fore easy to model the percentage downlink saturation for torrent x by,

mm< upr 1) (3.8)

x )
downi,

Unfortunately, however, due to the asynchronous nature of most Internet con-

nections [56], it is generally impossible for a swarm of solely leechers to achieve
upy,

downi

the presence of seeders as seeders increase service capacity without introducing

downlink saturation as < 1. Saturation can therefore only be achieved by

any service requirement.

Measurements

To investigate the effect that the S:L ratio has on download performance, a
number of experiments are executed in the OctoSim simulator. Ten torrents are
created and to each one, 100 nodes are added in a flash crowd scenario (i.e. all
at time 0). Each torrent operates with a different percentage of seeders in the
swarm (10-90%) to measure how performance differs.
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Figure 3.5: Download Saturation with Different Seeder:Leecher Ratios (Simu-
lated)

Figure 3.5a and Figure 3.5b show the downlink saturation for these experi-
ments. In both situations, the increase in the number of seeders results in im-
proved performance. Interestingly, however, the curves of each graph are signifi-
cantly different. When compared to the 784 Kbps client, the 100 Mbps client is
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more sensitive to the S:L ratio; it can be seen that the saturation continues to
increase even when the torrent is made up of 90% seeders. This occurs because
of the higher capacity client’s very high service requirement (its optimal down-
load time is only 56 seconds). It can therefore easily continue to consume the
resources of increasing numbers of seeders. In contrast, the 784 Kbps client is
far less sensitive to variations in the S:L ratio because its service requirement is
far lower [114]. In essence, due the observation that usually upi < downiL, peers
that have download capacities that are above the swarm average require seeders
to achieve higher download rates whilst those that operate below, can generally
receive high performance regardless. This is a prominent example of consumer
variance. This is exemplified by the number of uploaders that a 100 Mbps client
would require to achieve downlink saturation; assuming that the five unchoked
users get an equal share of bandwidth (as assumed by [101])), this would be

modelled by
100Mbps  100000K bps

avg(upr)-0.2  105Kbps

This occurrence can also be investigated by inspecting the measurement re-

= 380 (3.9)

sults. To validate the findings, users from the measurement logs are grouped
into intervals (of size 0.05) based on the S:L ratio of the swarm when each user
first joins. Figure 3.6 shows the average downlink saturation achieved by each
S:L range. It can be seen that the plot follows a similar trend to the simulation
results with a steady increase in downlink saturation, until it begins to curve
off. Whilst the S:L ratio is below two, there is a strong linear increase, as the
peers eagerly consumer the increased resources. As the ratio increases beyond
two, however, this trend tails off as many of the lower capacity peers reach their
saturation (99% of measured peers had a downlink capacity of under 10 Mbps).

0.8

0.75 |- — ]
0.7 | L ; * . |
0.65 |- LI |

0.6 - * =

Saturation (%)

055 [ v+ |
05+ |

0.45 |- =

0.4 I I I I I
0 1 2 3

Ratio

N
o
(2]

Figure 3.6: Downlink Saturation with Different Seeder:Leecher Ratios (Mea-
sured)
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Figure 3.7: Cumulative Distribution of Seeder:Leecher Ratios

‘ Anime ‘ Books \ Games \ Movies \ Music \ Others \ Pics \ TV

S:L 0.78 2.74 0.66 0.42 1 0.58 3.3 | 038
Exp. Sat | 61% 1% 58% 54% 64% 60% | 74% | 57%

Table 3.3: The Median Seeder:Leecher Ratio and Expected Downlink Saturation
for Different Content Categories

So far, it has been shown that a change in the S:L ratio of a torrent generally
translates into a change in the achievable performance witnessed by consumers.
Further, it has similarly been shown that different nodes undergo this change
in different ways (consumer variance). The next important step is therefore to
validate these large inter-torrent variations actually exist in the real-world. To
explore this, Figure 3.7 shows the cumulative distribution of S:L ratios in all
torrents at a snapshop 2 weeks into the macroscopic traces (note the log scale).
It can be observed that there are a huge range of S:Li ratios, varying from 0.001
to 100, with the majority (74%) falling below 2. Clearly, variations in the S:L
ratio are therefore common-place showing that the performance received by a
consumer is entirely dependent on the item of content being accessed. To gain an
understanding of how this might translate to performance variations, Table 3.3
also shows the observed median S:L ratios for the various content types, as well
as the average downlink saturation levels that can be expected for each category
(based on Figure 3.6). This shows, for instance, that a client downloading pictures
will likely gain far higher performance than a client downloading TV shows.

The previous results show that consumer variance is highly prevalent in Bit-
Torrent with large variations between consumers accessing different content, as
well as consumers possessing different downlink capacities. It is also important,
however, to ascertain if BitTorrent similarly possesses high levels of temporal
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variance in terms of resource availability. This can be done by inspecting how
torrents’ S:L. ratios evolve over time, i.e. are the S:L ratios largely static or do
they vary dynamically? Figure 3.8 shows the number of seeders and leechers for
a representative torrent™ over time, taken from the macroscopic measurements.
Evidently, the population size can clearly be seen to change dramatically. For
instance, between minute 0 and minute 173, the number of leechers increases
from 1 to 91. Similarly, the number of seeders can change rapidly with a ten-fold
increase taking place over only 33 minutes (minute 173 - 206). The most notice-
able change occurs after 213 hours when the number of seeders drops to zero.
This indicates that during this period the file will be unavailable [88]. Interest-
ingly, however, on day 5 the number of seeders increases again meaning that,
once again, the content will be available. Consequently, two identical consumers
would achieve entirely different levels of performance when downloading the same
item of content at different times, highlighting a strong temporal variance.
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Figure 3.8: Seeder:Leecher Ratio of Representative Torrent over Time

3.3.4 Protocol

This section investigates how specific facets of the BitTorrent protocol can affect
the performance perceived by consumers. Due to the complexity of BitTorrent,
a large number of parameters can be observed to have dynamic variations. Table
3.4 provides an overview of important parameters in BitTorrent.

The first important parameter is the average peer upload capacity. This is
an important resource parameter as its sum represents the swarm capacity. This
can also be contrasted with the average peer download capacity, which defines the
resource requirements of the users. This has already been exemplified previously
by varying the S:L ratio. These parameters, however, also have an extended

*Similar behaviour has been observed in most torrents.
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Parameter ‘ Description

Average Peer Download Rate The average download rate in the swarm

Average Peer Upload Capacity | The average upload capacity of peers

Client Upload Capacity The upload capacity of the inspected client
S:L Ratio The number of seeders compared to leechers
Churn Rate The degree of churn observed in the swarm
Swarm Size The number of users in a swarm

Table 3.4: Overview of Relevant BitTorrent Parameters

effect when combined with the consumer’s upload capacity. It has been found
that peers tend to cluster together into bandwidth symmetrical neighbourhoods
[97]. Consequently, a consumer’s upload capacity when compared against the
swarm average largely defines its ability to achieve a high performance. The next
important parameter is the churn rate; it has been found that swarms with low
churn are far more resilient and have better availability [88]. It was also found
that larger swarms better ensure the availability of files. However, swarm size
does not similarly have a significant effect on download performance [40].

The chosen parameter to investigate is the client upload capacity as this can
be easily identified by each consumer (to assist in later modelling). The rest
of this section now focusses on investigating how performance varies with this
parameter. Information regarding any of the other parameters can be found in
papers such as [40][62][73][101].

Analysis

Within BitTorrent, peers compete with each other for the finite number of upload
slots within the swarm (default 5 per peer). Periodically (every 10 seconds), peers
decide which neighbours they will upload chunks to. To achieve this, each peer
periodically ranks all the peers it is downloading from based on the observed bit
rates. Using this ranking, the top n peers in this list (default n = 4) are unchoked
and their requests accepted. This competition therefore means that a leecher ¢
with upiL will generally receive content only from peers with up;, <= upiL, thereby
resulting in the clustering of nodes based on bandwidth capacities [97].

Measurements

To study this, simulations are solely used as the measurement studies cannot
capture the upload rate of individual users. A movie torrent containing 100 peers
is simulated using the median S:L ratio from the macroscopic measurements
(0.42); all peers join in a flash crowd. Several experiments are executed whilst
varying the upload capacity of peers.
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Figure 3.9 shows the download time of a 700 MB file by four different clients.
Each client has a different download capacity: 784 Kbps, 5.5 Mbps and 100 Mbps.
Experiments were then executed whilst varying each node’s upload capacity as
shown on the y-axis. The effect that decreasing the upload capacity has is sig-
nificant. The average upload capacity in the swarm is 526 Kbps; when exceeding
this average (i.e. 5.5 and 100 Mbps), the download time improves significantly.
Conversely, when the node’s upload capacity drops below the average (i.e. 128
and 512 Kbps), the opposite occurs. This indicates that the performance of a
client operating in BitTorrent does not rely on its download capacity but, rather,
its upload capacity; this is confirmed by [120]. Clearly, this is another example of
consumer variance, which is based on the individual consumer’s upload capacity,
as well as the average upload rate of the swarm. Considering that this average
will also change as peers come and go, a temporal variance similarly exists.
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Figure 3.9: Download Times for Clients with Different Upload Capacities

These assertions are best exemplified by comparing the 5.5 Mbps client with
the higher capacity 100 Mbps client. It can be seen that the download times
are almost identical despite the vast differences in their download capacity. This
is because both peers are clustered around the same neighbours (and therefore
getting the same unchoke rate). An interesting point to also note is that even
when both the 5.5 and 100 Mbps peers possess a huge upload capacity of 100
Mbps, their download times remain (almost) the same. In theory, the tit-for-tat
algorithm should, instead, allow the higher capacity client to utilise its download
capacity better. This does not occur, however, because of the far lower aver-
age upload capacity in the swarm, preventing the nodes from saturating their
downlink (as discussed earlier). Importantly, as observed in both consumer ac-
cess links [56] and specific BitTorrent studies [115][120], there is a huge range of
upload capacities, thereby leading to two conclusions. First, these different users
will receive a different performance based on their upload capacity; and, second,
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an arbitrary user with a given capacity will receive a different performance based
on the other peers that have chosen to join its swarm. These are both therefore
prominent examples of consumer variance.

3.3.5 Modelling

The previous sections have shown how BitTorrent’s performance can vary when
operating under different conditions; this includes both swarm-wide aspects (S:L
ratio) and local aspects (upload capacity). This section explores how the per-
formance of BitTorrent can be modelled using the available upload capacity of a
client.

Model

It has been shown how the seeder:leecher ratio (resource aspect) and the local
upload capacity (protocol aspect) heavily affect the performance of BitTorrent.
The latter is a factor that is introduced when the resource capacity of the swarm
up’
dowz%
in resource competition. When this occurs, it becomes necessary for peers to

is not plentiful enough to fully serve all peers (i.e. < 1), thereby resulting
trade their upload resources in return for the upload resources of other peers.
In such situations, a node chooses to upload chunks to nodes that, in return,
upload chunks at the highest rate. Unfortunately, the vast majority of swarms
operate competitively due to poor seeder:leecher ratios (74% below a ratio of 2)
and therefore it has been found that a peer’s upload capacity can be used as a
primary factor in predicting its download rate [79][115].

BitTorrent’s tit-for-tat incentive mechanism does not offer perfect fairness in
which contributions are matched with improved performance linearly. Instead,
imperfect fairness is achieved in which increases in contributions result in a sub-
linear monotonic increase in performance [115]. This means that a consumer
who contributes a greater upload capacity will achieve a higher performance but
not necessary at the same level that it contributes. The ability for a peer to
compete can simply be ascertained by comparing its upload capacity with that
of other peers in the swarm; this principle can be utilised to build a model of
the achievable download rate of a given peer. This has already been shown to
be possible in Section 3.3.4 through the observation that varying a node’s upload
capacity modifies its download rate, regardless of its download capacity.

Piatek et. al. [115] performed an extensive measurement study of BitTorrent,
observing over 300k peers. With this, they constructed a model to predict the
download rate (reward) received from a given upload rate (contribution). Table
3.5 details the necessary parameters required to calculate this value; these are
based around general shared parameters such as the number of transfer slots, as
well as runtime torrent-specific parameters such as the upload rate of each peer.
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Parameter ‘ Default \ Description
w 2 Number of simultaneous optimistic unchokes per peer
b(r) runtime Probability of upload capacity rate r
active(r) | |v0.6r —w] | Number of peers in active transfer set for upload ca-
pacity r
split(r) m Per-connection upload capacity for upload capacity r
S(r) runtime cumulative probability of an equal-split rate r

Table 3.5: Functions and Parameters used in BitTorrent model [115]

The rest of this section details the model.

It is first necessary to calculate the probability by which a peer C will be
unchoked by another peer P (i.e. consumer and provider). This is simple to do
in BitTorrent as the decision to unchoke another peer is based on its upload rate
when compared against the other members of the swarm. This can be modelled
by inspecting the cumulative distribution of per-slot upload rates within the
swarm; this is represented as S(r), where r refers to a particular upload rate.
Consequently, S(r) refers to the fraction of peers that offer an upload slot that
is less than or equal to . This can then be used to calculate the probability
by which the consumer’s upload rate (rC') will be sufficient to compete for the
potential provider’s upload rate (rP). This can be modelled as,

p-recip(rC,rP) =1 — ((1 - S(rC’))athe(rP)> (3.10)

The next step is to calculate the download rate that can be achieved by a
consumer based on its upload rate. Evidently, this is a function of its competitive-
ness, which is shown using p_recip(rC,rP). Assuming no optimistic unchokes,
this is subsequently modelled by multiplying the probability of receiving an up-
load slot with the upload capacity of the upload slot. The probability of receiving
reciprocation from a node with an upload rate of r can be modelled by,

b(r) - precip(rC,rP) (3.11)

where b(r) is the probability of a node in the swarm having an upload capacity of
r and p_recip(rC, rP) is the probability of such a node accepting a chunk request.

This can then be converted into an upload rate by multiplying it by the per-
slot upload capacity for a given peer, denoted as split(r) for a peer with an upload
rate of r. This is simply calculated by dividing the peer’s upload capacity by its
number of slots.

Now it becomes possible to calculate the upload rate received from P by C
using the default number of slots at each peer, denoted by active(r) for a client
with an upload rate of r. This can be calculated as,

active(r) - b(r) - precip(rC,rP) - split(r) (3.12)
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A similar process can also be performed for modelling the upload rate gained
from optimistic unchokes with the removal of p_recip(rC,rP),

w - b(r) - split(r) (3.13)

The sum of these values therefore defines the download rate a peer with a
given upload rate, r, will receive. This is because a node’s download rate is
simply a product of its neighbours’ upload rates. A peer’s predicted download
rate can therefore be calculated by combining the upload rates received from both

normal and optimistic unchokes using,

D(r) = active(r) {/ b(rP) - precip(rC,rP) - split(rP)d - T’P] +
w { / b(rP) - split(rP) - d-rP} (3.14)

Acquiring Parameters

The previous model requires a small number of important parameters to work,
listed in Table 3.5. Some of these parameters are static configurable values that
are set at each client, namely active(r) and w, which represent the number of
active upload slots and optimistic unchokes, respectively. These are therefore
default values that can be set statically based on the current standards.

There are also two runtime parameters that are based on the swarm that a
peer is operating in. The first is b(r), which models the probability of a client
existing in the swarm with an upload capacity of r. The second runtime param-
eter is S(r), which is the cumulative probability of the equal split rate of r. This
is obviously a derivative of b(r) based on the active(r) sizing. These parameters
are required so that a peer can ascertain how well it will be able to compete in
the swarm. Further, they allow a resource model to be constructed to predict
download rate; this is obviously because the collective upload rate in a swarm is
also equal to the collective download rate.

To calculate these dynamic parameters it is necessary to generate a represen-
tative distribution function of the upload bandwidth available within the swarm.
This is a similar challenge to acquiring the upload capacity of a HT'TP server,
however, there are a number of more stringent requirements. First, it is not pos-
sible to assume that one peer would have a greater upload capacity than another
in the same way it can be assumed that a server has a greater capacity than a
client. Second, scraping a torrent for peers can return as many as 200 members
making any form of active probing unscalable.

An important factor that can be used to address this issue is the observa-
tion that a strong correlation exists between the upload rates of nodes sharing
the same IP prefix [115]. Subsequently, given an accurate data set, a peer’s IP
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address can be mapped to an upload capacity using a longest match lookup. Ev-
idently, this requires an up-to-date data set, which must also be representative of
the bandwidth capacities allocated to BitTorrent and not the raw link capacities
as provided by traces such as [56]. This is because often clients utilise traffic
shaping to limit their connection speeds (most BitTorrent implementations sup-
port this). Such a data set is openly provided by the University of Washington,
which performs periodic monitoring of BitTorrent users from a number of vantage
points as detailed in [79]. This involves discovering peers from a large number of
BitTorrent swarms and downloading chunks from them using optimistic unchoke
slots. This then can be used to compile a profile of the upload capabilities of
peers operating with different autonomous systems and IP prefixes.

This data set (available from [15]) contains approximately 87k samples; each
entry consists of a /24 prefix and the median access link bandwidth measured by
the BitTorrent vantage points. Importantly, the measurement study verifies that
the values are similar for end-hosts that share the same /24 prefix. This data set
is only 1.8 MB and can therefore reside at each Juno host with periodic updates
being performed. Consequently, a new consumer can acquire a list of peers from
the tracker and then calculate a distribution function for the bandwidth by per-
forming lookups for each peer’s IP address in the data set. This is therefore an
extremely low overhead process that can be performed in well under a second.

Validation

It has already been shown in Section 3.3.4 that nodes with vastly different down-
load capacities receive almost identical download throughputs when operating
with the same upload capacity. However, it is also important to validate the
presented model on a large-scale. To achieve this, results are taken from [115].
These results compare the values generated by the model against real-world mea-
surements taken from over 63k peers. To acquire this data, a number of monitor
points downloaded chunks from each peer being measured (using optimistic un-
chokes) in order to calculate each peer’s split(r) parameter (i.e. its per-slot upload
rate). Whilst doing this, the download rate of each peer is also monitored using
similar techniques to those detailed in Section 3.3.2 (i.e. requesting PEX chunk
maps). This information is then correlated to map a peer’s upload rate to its
achieved download rate.

Figure 3.10 shows the expected download performance as a function of upload
capacity; this is solely based on the model presented in the previous section. This
can be contrasted with Figure 3.11, which shows the actual measured download
throughput as a function of upload capacity (obtained using the previously de-
scribed technique). Each point represents an average that has been taken over
all sampled peers.

The first observation is that the model correctly predicts the sub-linear growth
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that is observed in the real-world. This means that increasing the upload capacity
of a peer will not result in a one-to-one improvement in download performance.
However, it can be also be observed that the model offers slightly more optimistic
predictions. For instance, using the model, an upload capacity of ~2 Mbps should
result in a download rate of ~1.6 Mbps. However, in practice the measurements
show that the download rate achieved is only ~1.2 Mbps. This can likely be
attributed to more conservative active set sizes than assumed in the model. Un-
fortunately, this is difficult to resolve as it is not possible to dynamically collect
each peer’s active set size. Instead, the most common standard must be used,
as shown in Table 3.5. Despite this, clearly the model offers a low overhead
mechanism by which a relatively accurate download prediction can be gained.
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Figure 3.10: Predicted Download Performance as a Function of Upload Capacity
based on [115] Model
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Figure 3.11: Measured Validation of Download Performance as Function of Up-
load Capacity [115]
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3.3.6 Summary

In summary, BitTorrent has been shown to have large performance fluctuations
when operating in different environments. Two parameters have been inspected:
the seeder:leecher (S:L) ratio and the upload capacity of peers. First, it has
been observed that the S:L ratio defines the resource availability within a swarm
and that peers operating in well resourced torrents will gain higher performance.
Further, those peers operating in swarms without any seeders are likely to find
the content often unavailable. Second, it has also been shown that the upload
capacity offered by a peer has a direct impact on its received performance when
compared against the capacity of other peers in the swarm. This is because peers
operating in torrents without sufficient resources must compete for upload slots.
Consequently, those peers that contribute the greatest upload capacity get the
largest download rate. This means the download performance of a consumer will
vary based on its own upload capacity as well as the upload capacities of other
members of the swarm.

These observations prove that the performance of BitTorrent varies both over
time and between different clients. A client operating in a torrent can get a very
high performance but later return to the same torrent to receive a much worse
performance due to variations in the S:L ratio. Similarly, two clients operating
in the same torrent at the same time are likely to receive different download
throughputs if they have different upload capacities. This means that selecting
the use of BitTorrent at design-time will result in large variations in performance
observed by the different application instances.

Based on the above findings, a model has also been detailed (from Piatek et.
al. [115]) that can be used to generate runtime predictions of performance based
on the upload capacities of swarm members. Using a publicly available data
set, it is possible to efficiently estimate the upload capacity of any BitTorrent
peer based on its /24 prefix. Consequently, this allows predictive performance
meta-data to be generated dynamically based on the information provided by a
BitTorrent tracker.

3.4 Limewire

3.4.1 Overview of Limewire
Delivery Overview

Limewire is a popular open source peer-to-peer file sharing application. Limewire
operates a delivery mechanism based on simple multi-source swarming. When
a Limewire peer begins a download it first creates a local representation of the
entire file in which each region is defined by one of three colours:
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e Black regions indicate the data range has already been downloaded

e (Grey regions indicate the data range is currently being downloaded but it
has not yet been completed

e WWhite regions indicate the data hasn’t been downloaded yet

When a source is discovered it attempts to ‘grab’ responsibility for a region based
on a predefined range size. If it is successful it then makes a connection to the
source using HTTP and requests the data range using the HT'TP range field (e.g.
Content-Range: bytes 21010-47021). This process continues with each source
grabbing an available data range until the entire file is downloaded. If a source
is available, yet there are no white regions remaining, the latter half of a grey
region is ‘stolen’ and allocated to the newly available source. Obviously, the
download from the original source is terminated half way through to account for
this (this is easy to do as HTTP downloads occur sequentially). This therefore
accommodates sources having different upload capacities or, alternatively, new
sources being discovered mid-delivery.

In contrast to BitTorrent, Limewire does not operate any sophisticated incen-
tive mechanisms. Instead, by default all requests are accepted by a Limewire peer
until a configurable limit is reached. Subsequently, performance is equally shared
between the different requesters based on the underlying TCP implementation.

Discovery Overview

Content discovery in Limewire is currently performed by the Gnutella 0.6 network
[91]. Gnutella is a decentralised limited-scope broadcast overlay that maintains
an unstructured set of connections between the member peers. It is used to allow
users to query each other to ascertain whether or not they possess a given file
(based on meta-data). More details can be found in Section 2.3.2.

The Gnutella protocol is decentralised and, as such, is highly resilient. How-
ever, the protocol has three major limitations: reachability, overhead and delay.
This means that queries generated in Gnutella are not guaranteed to return all
possible results from the network. This makes it only suitable for popular con-
tent. Perhaps more importantly, queries are slow to yield results and generate
a high level of overhead [125]. Consequently, accessing small files is ill-advised
as an application requesting the download of a 1 KB picture for instant display
to the user, does not wish to wait 30 seconds for the discovery process to be
accomplished. In such a circumstance, it would obviously be superior to use a
fast discovery mechanism, even at the cost of a slower delivery mechanism.
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3.4.2 Methodology

To investigate Limewire, a small-scale measurement study has been performed.
A Limewire client has been hosted on a high capacity node connected via a 100
Mbps synchronous connection. This node has then been used to download a
number of files from other users in the Limewire network. After every download,
information about the file is logged and the throughput achieved is recorded.
Through this, a profile can be constructed of the achievable performance when
utilising the Limewire delivery mechanism.

3.4.3 Resources

As with BitTorrent, the resources available to Limewire are defined by the con-
tributions made by peers. Unlike BitTorrent, however, there is not an explicit
separation between users that are downloading a file and those that are in the pro-
cess of doing so. Hashing in Limewire is not performed on a per-chunk level and
therefore only users that possess the entire file are discoverable through Gnutella.

Analysis

The resources available to a Limewire download are defined by the number of
sources and their respective upload capacities. Assume a set of n available
sources, {51, 52...5"} with respective upload capacities of {up', up?®...up"}. The
achievable download performance for consumer C' at a given time is therefore

defined by,

max (downc, Z up’) (3.15)
<n

Therefore, as the number of sources increase, clearly so does the amount of re-

sources available to a peer. Evidently, sources are transient and therefore de-

pending on up®, performance can significantly vary if a client witnesses churn

within its source set.

Measurements

To investigate the effect that the number of available sources has on performance,
a number of Limewire downloads have been performed. Queries were generated
for various popular music files with sizes ranging from 3 MB to 7 MB. The chosen
range of source numbers is from 1 to 9; this is because over 95% of files are hosted
by under 10 sources. The number of sources of a file are identified based on the
search results. Importantly, it is possible for a node to discover new sources
after the download has begun by gossipping information between the nodes it is
downloading from. Similarly, it is possible for nodes to go offline through churn.
Therefore, the experiments also incorporate real-world variations in the source



CHAPTER 3. ANALYSIS AND MODELLING OF DELIVERY PROTOCOL
84 DYNAMICS

set. For each number of sources, 10 downloads were executed using different files.
The average was then calculated over this set.

Figure 3.12 shows the average throughput of a download based on the number
of sources available. It can be seen that the performance clearly increases with
larger numbers of sources, in-line with Equation 3.15. This occurs for two reasons;
first, there are more resources available for the download, and, second, the greater
the number of sources, the greater the probability of finding a high capacity peer.
The downloads were performed using a 100 Mbps connection and therefore such
sources can easily be taken advantage of. This is exemplified by the steepness of
the curve showing that increasing the number of sources can have a significant
impact.
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Figure 3.12: Download Performance based on the Number of Sources

This means that a strong consumer variance exists, based on the number of
sources discovered by the peer; this is a facet of both file popularity and the
node’s reachability in the Gnutella network. To understand this better, however,
it is also necessary to ascertain the performance of individual peers. The reason
for this is two fold; first, the majority of files are served by only a single peer; and
second, the performance of a multi-source download is actually just the sum of
multiple individual connections. To investigate this, 100 uni-sourced downloads
have also been performed. Figure 3.13 shows the cumulative distribution of the
throughput achieved during these downloads. Importantly, this therefore also
offers the upload capacity of the remote source at that time. It can be observed
that the majority of users serve files at under 600 Kbps with an average upload
rate of only 264 Kbps. Consequently, users accessing unpopular, single-sourced
files are likely to fail to achieve downlink saturation.

The previous results have shown that consumer variance emerges when access-
ing different files, based on the degree of replication. This degree of replication

is largely based on popularity, which evidently also results in a temporal vari-
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Figure 3.13: Cumulative Distribution of Individual Peer Upload Capacities in
Limewire

ance as the popularity of content evolves. To exemplify this, a number of queries
were generated for the Top 10 music charts from both November 2009 and May
1985 (tests were performed during November 2009). Unsurprisingly, the recent
music had a high replication rate with, on average, 60.7 copies being located by
Gnutella. In contrast, however, only an average of 6.2 replicas were discovered
for the 1985 music. This is because, as detailed in [151], the files (and number
of replicas) constantly evolve based on user trends. Consequently, the resources
available for a user downloading a file are constantly in flux.

3.4.4 Protocol

The previous section has investigated the important resource parameters relat-
ing to Limewire’s performance. Limewire is a variation on the HT'TP protocol;
in essence, it operates as a collection of HT'TP connections to different sources
with a simple management mechanism so that each connection knows what to
request. As such the resource parameters are different in Limewire (due to mul-
tiple sources) but the protocol parameters are the same as HTTP, discussed in
Section 3.2.

3.4.5 Modelling

So far, it has been shown that the performance of Limewire is largely based on the
number of available sources. This section now builds on this study to investigate
how history-based predictions can be performed to model performance at runtime.
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Model

Modelling the behaviour of Limewire can be considered as a process of modelling
the performance of multiple HT'TP streams. Section 3.2.5 detailed an approach
for generating performance meta-data relating to HI'TP. However, the assump-
tions made for HTTP providers do not hold for Limewire; namely, that the
performance bottleneck is the TCP congestion control algorithm rather than the
provider’s upload bandwidth. Consequently, such a model can only be utilised
if it possible to acquire the resource availability of remote sources to perform a
man function that can compare the theoretical maximum capacity achievable by
the TCP connection with the available upload bandwidth at the source.

To address this, the resources of Limewire peers can be modelled using history-
based prediction [76]. This involves extrapolating future performance based on
past experiences. The biggest challenge to this is the collection and aggregation
of information. The simplest way this can be done is to utilise a linear predictor
in which future values are estimated as a linear function. This involves collecting
the throughputs achieved via previous downloads and calculating a predicted
value based on the number of sources available. The simplest approach to this,
is the use of a moving average, as calculated by,

. 1 &
Xiu1 = — X 3.16
i+1 n k:;Jrl k ( )

in which X, is the predicted value and X; is the observed value at time ¢. This
function therefore consumes all previous throughput values and aggregates them
as a moving avergage. Consequently, if n is too low, it is impossible to smooth
out the noise of potential outlier. However, on the other hand, if n is too large, it
will become slow to adapt to changes in the environment. Evidently, the former
case cannot be addressed in any other way than to wait until more downloads
have been performed. To address this, alternate smoothing functions also exist
that offer better reaction to recent changes (e.g. exponentially weighted moving
average). A detailed overview can be found in [76].

Acquiring Parameters

The previous section has detailed a history-based approach to generating through-
put meta-data. The acquisition of the required parameters is therefore simply a
process of gathering and storing the throughput for each delivery. The key ques-
tion is therefore how this information is categorised; traditional history-based
prediction mechanisms generate moving averages for each remote source inter-
acted with. This is often possible when utilising a limited set of servers (e.g.
Akamai edge servers). However, when operating in a peer-to-peer system, the
chances of repeat interactions are extremely low [90]. To address this, through-
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put information is gathered and collated based on the number of sources, rather
than the individual peers. This therefore involves creating a moving average for
1...n sources, where n is the maximum number of sources previously encountered
for an individual download.

This information can be stored within an array; each element contains the
current moving average of the throughput for deliveries from that number of
sources. When a delivery has completed, its throughput can be calculated simply

by,

filesize

throughput = (3.17)

downloadtime

Following this, the value can be added to the moving average as detailed in the

previous section.

Validation

The previous sections have detailed how predictive meta-data can be generated
for Limewire deliveries using past interactions. It is now important to validate
whether or not these claims are accurate. This is done using the previous measure-
ment data presented, which contains the throughput for each Limewire download
performed in a time series; this allows the logs to be post-processed to ascertain
the predictions that would have been generated. This involved performing a linear
moving average prediction (c.f. Equation 3.16) sequentially over each download
so that the predicted values can be compared against the achieved throughput.
The rest of this section now validates this approach by inspecting the results.

Figure 3.14 shows the standard deviation of the predictions when compared
against the actual throughput for each group of downloads (grouped by number
of sources). The throughput of highly sourced downloads can clearly be accu-
rately predicted; for instance, the results show that downloads with over 7 sources
gain under a 0.2 factor of deviation. This level of accuracy is achieved because
such deliveries can have any anomalous results averaged out by the other sources.
Subsequently, the use of moving averages is perfectly suited to this circumstance.
Unsurprisingly, it can be observed that downloads from fewer nodes have signifi-
cantly greater inaccuracy. This is particularly prevalent in single source deliveries.
This occurs because such downloads are highly susceptible to anomalies, e.g. par-
ticularly high or low capacity peers. Consequently, there can be a high deviation
in the accuracy of predictions when downloading from a single peer.

To study this, Figure 3.15 presents the cumulative distribution of the devi-
ations from the predicted value for single sourced downloads. It can be seen
that 58% of predictions are within one factor of accuracy whilst 45% gain bet-
ter than a factor of 0.6. In contrast, 29% gain extremely inaccurate predictions
that are over two factors out. The most extreme example is a delivery that has
a throughput that is 43 times less than the predicted value (achieving only 6
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Kbps). Subsequently, a large number of the predictions are actually more accu-
rate than the averages, with a small number of extreme outliers. Unfortunately,
however, there is no true way of improving the prediction for these occasional
anomalies and, as such, they will generally be predicted inaccurately unless the
particular sources have been previously encountered. Clearly, however, the linear
function performs an effective task of smoothing out these occasional anomalies,
with accurate predictions for the remaining deliveries.
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Figure 3.14: Standard Deviation of Prediction from Achieved Throughput
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Figure 3.15: Cumulative Distribution of Deviations for Single Sourced Limewire
Downloads

The previous data has shown that for most downloads, relatively accurate
meta-data predictions can be generated with only a small number of samples.
These results were gained using only 10 downloads and therefore it is easy to
perceive the accuracy increasing with larger data sets (i.e. taking place over
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longer periods of time). It is now necessary to validate that the occasional in-
accuracies previously discussed are not related to a lack of past experience (i.e.
not enough previous downloads). This is because such a finding would indicate
that the approach would be unsuitable for applications that do not perform many
downloads. To study this, Figure 3.16 shows the time series for deliveries from
single sources. This shows the deviations of the predictions for each download
over time. It immediately becomes evident that the extremely inaccurate results
are not correlated over time; instead, inaccuracy occurs throughout the node’s
lifetime. The vast majority of predictions fall within one factor of the actual
throughput achieved and the distribution of these results is spread evenly over the
entire time series. In fact, the first extreme deviation from the prediction occurs
after 9 downloads. From this it can therefore be concluded that the history-based
predictions can be quickly and accurately generated and that the deviations are
not caused by general problems with the linear function but, rather, from the ex-
istence of highly unpredictable extreme cases. These highly unpredictable cases,
however, can be rapidly detected by connecting to such nodes before re-selecting
another source.
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Figure 3.16: Deviations of Predictions over Time for Single Source

3.4.6 Summary

In summary, Limewire has been shown to have large variations in performance
when operating in different environments. This performance is defined by two
parameters, (i) the number of available sources, and (iz) the HT'TP characteristics
of each source. Generally, a download with a greater number of sources will
achieve higher performance than a download with fewer. However, this is also
dependent on the quality of each available source based on the HT'TP parameters
discussed earlier.
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These observations prove that the performance of Limewire will vary when
accessing different items of content. Popular content will generally be highly
accessible with many sources, whilst unpopular ‘long-tail’ content will be difficult
to access in a reliable manner. Further, considering that deliveries are performed
between peers using HT'TP, any variations in the parameters detailed in Section
3.2 will also result in changes in performance. Both of these observations therefore
result in consumer and temporal variance in Limewire.

It has also been shown that using history-based predictions can offer an ac-
curate method of modelling future throughput based on the number of available
sources. By performing a time-series analysis of the measurement data, a strong
correlation has been found between the different downloads, which can be calcu-
lated using simply a moving average.

3.5 Conclusions

This chapter has explored the diversity of three prominent delivery protocols
utilised in the Internet. This has focussed on identifying and inspecting important
runtime parameters that make the design-time selection of delivery protocols
suboptimal. HTTP, BitTorrent and Limewere were investigated to ascertain how
their performance varies with certain key parameters. It was confirmed that
each protocol could be modelled using important runtime parameters that could
be easily collected by nodes. Consequently, when faced with a choice between
multiple providers using these protocols, it was shown that a node could only
make an optimal decision if it were allowed to do so on a per-node and per-
request basis. To summarise, the following conclusions can be drawn from this
chapter,

e HTTP performance is highly dependent on () the available server resources
and (i7) the connection delay; these parameters can be captured and mod-
elled to predict the performance that could be gained through utilising a
given HTTP provider

— The variability of HTTP has been measured and quantified, before
detailing and validating a suitable model

e BitTorrent performance is highly dependent on (i) the seeder:leecher ratio
and (ii) the peer upload capacity; these parameters can be captured and
modelled to predict the performance that could be gained through utilising
a given BitTorrent swarm

— The variability of BitTorrent has been measured and quantified, before
detailing and validating a suitable model
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e Limewire performance is highly dependent on (i) the content replication
level and (i7) the HTTP parameters for each connection to the sources;
these parameters can be captured and modelled to predict the performance
that could be gained through utilising a given set of Limewire sources

— The variability of Limewire has been measured and quantified, before
detailing and validating a suitable model

e Many parameters change (i) between different consumers (consumer vari-
ance), and (i7) over time (temporal variance)

— An optimal decision regarding the use of a delivery protocol with pa-
rameters that change between different consumers cannot be made on
a system-wide basis (i.e. it must be made on a per-node basis)

— An optimal decision regarding the use of a delivery protocol with pa-
rameters that change over time cannot be made before request-time

e When an item of content is provided through multiple means, both con-
sumer and temporal variance mean an application cannot be optimised by
statically selecting providers/protocols at design-time

— It is necessary to allow an application to make such decisions at request-
time on a per-consumer basis

— It is necessary to allow an application to re-make such decisions after
the delivery has started to address any later temporal variance

This chapter has identified and quantified the extreme levels of heterogeneity
that can be observed in delivery systems. Through this, it has been shown that
delivery optimisation can only be achieved through allowing provider/protocol
selection to be performed at request-time on a per-consumer basis. The next
challenge is therefore to devise a mechanism by which this can be exploited to
offer delivery-centric access to content. The next chapter builds on the present
one to offer a middleware design that supports delivery-centricity through the
dynamic selection of protocols and providers.






Chapter 4

A Middleware Approach to
Delivery-Centric Networking

4.1 Introduction

Chapter 2 has provided a holistic overview of content network heterogeneity,
whilst Chapter 3 has given a more detailed quantitative analysis of delivery sys-
tem dynamics. These previous chapters have identified that there is a significant
number of existing distribution systems that possess a range of divergent charac-
teristics. In regards to content-centricity, two conclusions can therefore be drawn:
(1) statically selecting providers/protocols at design-time will result in subopti-
mality due to consumer and temporal variance, and (ii) deploying content-centric
solutions as stand-alone systems that do not interoperate with existing content
systems ignores a huge opportunity in terms of content and resources.

This chapter proposes the use of a new approach to building a content-centric
system, which introduces the concept of delivery-centricity into the existing ab-
straction. Instead of placing functionality in the network, a middleware is de-
veloped called Juno [141]. Using component-based adaptation, a mechanism is
devised that allows an extensible range of divergent content distribution systems
to be interoperated with. This ability is then exploited to dynamically resolve
and satisfy application-issued delivery requirements by (re-)configuring between
the use of different content providers. This therefore offers a mechanism by which
content-centric and delivery-centric networking can be instantly deployed along-
side current and future content providers.

This chapter explores the design of the Juno middleware. First, the observa-
tions of the previous two chapters are explored to construct a set of important
design requirements. Following this, an abstract overview of the design is given
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based on these requirements. Next, the core design principles and framework are
explored, highlighting the fundamental technologies used in the design of Juno.
Last, the content-centric and delivery-centric functionality of Juno is explained,
showing how it utilises the previously discussed principles to build a content-
centric service that fulfils the requirements of this thesis.

4.2 Requirements

The previous section has made two observations regarding current approaches to
content-centric networking: (i) statically selecting providers/protocols at design-
time will result in suboptimality due to consumer and temporal variance, and (i7)
deploying content-centric solutions as stand-alone systems that do not interoper-
ate with existing content systems ignores a huge opportunity in terms of content
and resources. From these, it is possible to derive a set of requirements that can
be used to shape a proposed content-centric and delivery-centric solution. This
section details these requirements.

First, the solution must offer a content-centric abstraction (such as [54]) that
satisfies the functional requirements of content-centric networks as they currently
stand. This involves the ability to issue a network request using simply a content
identifier, without any reference to potential sources of the data. This abstraction
must be provided to applications in a simple, transparent and open manner. As
well as this, it must also be offered in a way that can reach a wide audience
without the need for modification to extensive software such as operating system
network stacks.

Second, the solution must extend the concept of content-centric networking
to include delivery-centricity. This means that an abstraction must be designed
to allow applications to express delivery requirements to the system. These must
then be fulfilled dynamically based on current operating conditions without ex-
tensive or complicated involvement by the application.

Third, a solution must be able to exploit the content and resources of existing
systems, i.e. the solution should be highly interoperable. It is important that this
occurs seamlessly from the application’s perspective to avoid introducing com-
plexity into the abstraction or limiting its use to more sophisticated applications.
This means that users of the abstraction should not have to provide complicated
or extensive information to allow interoperability. Clearly, this must also occur
in a low overhead fashion; for instance, it would be unscalable for every content
system to install support for every protocol.

Fourth, the solution must avoid the deployment difficulty of previous net-
worked systems such as multicast and quality of service (QoS) [34]. It should
therefore not require the immediate global uptake of all parties (i.e. it should be
progressive). Similarly, it should not depend on third parties such as first-tier
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ISPs that are likely to be uncooperative. Further, it should be designed without
the use of expensive infrastructure that will likely act as a financial barrier.

Last, the solution must take a flexible and extensible approach to allow for
the later introduction of new technologies. This must be achieved in both the
content-centric abstraction and the underlying implementation. The solution
must therefore be capable of expanding its capabilities to address the development
of new protocols and communication architectures.

In summary, these requirements can be defined as,

1. A solution must offer a content-centric abstraction
e The abstraction must allow applications to generate network queries
for uniquely identified content, without any location-oriented details
e The abstraction must be openly available to applications
e The abstraction must not be difficult to deploy or restricted to a small

subset of hardware, software or operating systems

2. A solution must provide delivery-centricity by supporting the stipulation of
delivery requirements by the application (e.g. relating to performance)

e Delivery requirements should not need to be associated with individual
delivery schemes
e Delivery-centricity should not need the application to provide any in-

formation beyond its abstract requirements

3. A solution must support interoperation with existing content distribution
Systems
e Interoperation must be seamless from the application’s perspective

e Interoperation should not require the provision of extensive or obtuse
location information from the application

e Interoperation should not have high resource requirements that are
significantly beyond current delivery protocols such as HT'TP
4. A solution must be progressively deployable without significant barriers
e Its deployment must not require ubiquitous uptake by any set of par-
ties (providers, consumers, ISPs)

e Its deployment must not require the support of (potentially) uncoop-
erative third parties (e.g. ISPs)

e Its deployment must not require the construction of expensive infras-
tructure
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5. A solution must be flexible and extensible to support future technological
changes and advances

e The abstraction and interoperability mechanism must support the ad-

dition of new content systems

e The abstraction must support the introduction of future access mech-
anisms (e.g. interactive content)

This rest of the chapter now utilises this requirement set to drive the design
of a new middleware solution to handling these challenges.

4.3 Juno Middleware Overview

Before inspecting the strict technical details of the Juno middleware, it is impor-
tant to gain an understanding of its general design and operation. This section
provides a brief abstract and technical overview to provide a foundation for ex-
ploring the finer details of Juno.

4.3.1 The Case for Content-Centric Middleware

The previous section has detailed a number of core requirements that must be
fulfilled by the design. As previously discussed, existing network-level solutions
have a number of flaws. Chapter 2 analysed three prominent content systems
to find that none of them successfully satisfy the research goals of this thesis.
Namely, relating to delivery-centricity, interoperability and deployability. These
problems emerge due to the inflexible and static nature of network-level designs
such as DONA [93] and AGN [83]. This means that they often fail to offer the
type of capabilities offered by previous application-level solutions.

First, the construction of content delivery at the network-level prevents delivery-
centric requirements from being satisfied. This is because such approaches cannot
be modified to respond to varying user needs, as the content-centric network is
viewed largely as a routing infrastructure. This means, for instance, that it
cannot be made aware of content quality issues or higher level needs such as
monetary cost. Second, the introduction of interoperation at the network-level is
also largely unfeasible. This is because all major content distribution mechanisms
currently operate at the application-level. Consequently, existing content-centric
designs would require these systems to modify their behaviour to become visible.
Unsurprisingly, large organisations such as Akamai have little incentive to do this,
thereby leaving content-centric networking as an unused technology. Finally, this
is also exacerbated by the cost of new network infrastructure, making deployment
extremely difficult.

From this, it is evident that current network-level solutions fail to fulfil the
requirements of this thesis. A number of similarities, however, can be drawn be-
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tween content-centric networking and existing middleware designs. Both attempt
to ease the development burden of applications by offering a simple abstraction
that fulfils a set of requirements. Further, both attempt to hide underlying dis-
tributed complexities through the use of such an abstraction. A logical question
is therefore whether or not there would be any benefit from attempting to in-
troduce the content-centric paradigm at the middleware-layer? Intuitively, the
key benefit would be to provide a far greater degree of flexibility through the
removal of network-level restrictions. This is because it would be entirely built
in software, therefore making it easy to interact with existing (application-level)
infrastructure. This would have two advantages; first, it would allow interopera-
tion with existing protocols, thereby making existing content providers instantly
visible; and, second, by allowing the use of existing infrastructure, it would allow
instant deployment. This flexibility could even potentially allow the introduction
of delivery-centricity through the exploitation of the heterogeneity observed in
different protocols and sources.

Based on these observations, a middleware approach has been taken to ad-
dressing the research goals of this thesis. The rest of this section now explores
the design of Juno, which offers a content-centric and delivery-centric service at
the middleware-layer.

4.3.2 Abstract Overview

Section 4.2 has provided a set of important requirements to base the solution on.
These cover primary functional aspects (what the system must do) as well as other
non-functional properties (how it should be done). In essence, these require that
the content-centric solution can interoperate with existing content distribution
mechanisms and exploit their diversity to select the one (or more) that best fulfils
the delivery-centric requirements of the application. Certain constraints are also
placed on this process to ensure that it can be feasibly deployed with limited
overhead and support for future advances in technology.

Current approaches that operate within the network cannot achieve this be-
cause they consider content-centric networking as simply a routing process that
forwards requests to the closest instance of content. This clearly prevents such an
approach from interoperating with application-level protocols. This thesis there-
fore proposes the use of a middleware approach for building a content-centric
communications paradigm. As such, a content-centric middleware is outlined
called Juno. Instead of modifying operating system and router capabilities,
content-centric functionality is placed within a middleware implementation that
resides between the operating system and application. Juno uses this position
to transparently translate content-centric requests generated by the application
into location-oriented requests that can be passed into the operating system us-
ing traditional sockets. To achieve this, Juno maintains connectivity between
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itself and an extensible number of available content distribution mechanisms.
Through this, it overlays content-centric addressing onto these systems and ac-
cesses content from each system using their individual protocol(s) to provide it
to the application in an abstracted manner.

Figure 4.1 provides a simple overview of this behaviour. The application inter-
acts with Juno using a content-centric interface; as such, it sends a content-centric
request and then receives an abstracted response with the content it desires. How-
ever, below this, Juno converts the request into a traditional location-oriented
address that is interoperable with the existing widespread content infrastructure
in use (e.g. a web server). Juno then interacts with these external parties to gain
access to the content so that it can subsequently be returned to the application.
This process is made feasible using a number of technologies, which are explained
within this chapter.

Application
A
Content-Centric Response Content-Centric Request
(e.g. abstract data stream) (e.g. Req ContentA)
Juno
A
Content Response Location-oriented Request
(e.g. HTTP stream) (e.g-http://www.content.com/content)

Operating System

HTTP Server
www.content.com

Figure 4.1: An Abstract Overview of Juno’s Behaviour

4.3.3 Technical Overview

Juno is a component-based middleware that exploits software (re-)configuration
to enable interoperation with a number of different content systems. It exposes a
standard content-centric (and delivery-centric) abstraction to applications whilst
dynamically re-configuring to download content from existing content infrastruc-
ture that offers the desired content in the optimal way. As such, it enables
content-centricity to be instantly deployed without the need for new and expen-
sive infrastructure. Considering that Juno is a configurable component-based
middleware, the most important aspect of its design is its software architecture.
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This is the way in which Juno’s constituent components are built and intercon-
nected to successfully offer a content-centric abstraction. The rest of this section
provides an architectural overview of Juno alongside a more detailed description
of its technical operation.

Juno’s design consists of three primary architectural elements: content man-
agement, discovery and delivery. These elements are manifested through compo-
nents capable of independent manipulation, as shown in Figure 4.2. Specifically,
these three elements are the Content Manager, the Discovery Framework and
the Delivery Framework. These are each managed through the Content-Centric
Framework, which interacts with the application to receive requests and return
content. These elements are now each discussed in turn.

Application

— Juno Content-Centric Framework

Content ‘

Management
= Discovery Framework Delivery Framework

Figure 4.2: An Overview of Juno’s Software Architecture

The Content Management component in Juno is responsible for handling
the local management of file system content. It provides methods to lookup,
retrieve and manipulate local content. To be truly content-centric this must be
considered as a primary entity in the system, allowing a full library to be locally
shared. When Juno receives requests for content from an application, the Content
Manager is first checked to find out whether a local copy is available. Clearly, this
is the ideal situation that would occur if a previous application has accessed the
content. The Content Manager also provides standard methods to allow Juno
to write content to disk when it is receives from remote sources. Similarly, it
allows data to be streamed directly to the application without explicit knowledge
of the underlying delivery scheme. This therefore makes the development of new
delivery protocols easier.

When content is not locally available it is necessary to access it from a re-
mote source. The first step is therefore to locate a set of available sources; in
existing content-centric networks this is simply performed by sending a request
packet into the network (which is responded to with data from wherever it is
routed to). In Juno, however, this process is more intricate and is managed by
the Discovery Framework. This framework is provided with a content identifier
and is then responsible for locating as many valid sources as possible. It does this
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by attaching and utilising a set of components called discovery plug-ins, shown
as small boxes connected to the framework in Figure 4.2. These are components
that implement a standard discovery interface that allows the framework to pass
it a content request and then receive, in return, a set of sources (host address,
port, supported protocol(s), remote identifier(s)). Each plug-in offers the func-
tionality to access the query service of a particular discovery system that indexes
content for a set of providers. This process therefore provides the consumer with
a choice of possible sources from a number of providers that are addressed by
their traditional location (i.e. their IP address).

Once a consumer possesses a number of sources, the next step is to connect
to one or more and request the content. This is the responsibility of the Delivery
Framework. The first step is to select which source(s) to utilise; this decision
is driven by the delivery requirements originally issued by the application. In
its simplest form, this may be just to get the highest performance, however,
this could also extend to other issues such as security, reliability and monetary
cost. The Delivery Framework manages a number of delivery plug-ins that each
offer the functionality to access content from a particular provider or protocol.
Plug-ins are required to generate runtime meta-data relating to their ability to
perform a particular delivery. As such, the framework can query this meta-data
to compare each plug-in against the requirements of the application. Once a
decision has been made, the framework dynamically attaches the optimal plug-in
and begins the download.

Finally, once this has completed the application is provided with a handle
on the content and is allowed to access it through one of Juno’s standard ab-
stractions. These abstractions allow the application to view the content using
whichever abstraction best suits its needs (e.g. file handle, input stream etc.).
This functionality is all underpinned by the Juno core; this is a set of impor-
tant interfaces, classes and components that are required for the middleware to
operate. The next section details these fundamental aspects of Juno. Then, fol-
lowing this, a detailed description of the content-centric functionality of Juno is
provided.

4.4 Juno Design Principles and Core Framework

This section details the fundamental principles utilised by Juno to support the
operation of the content-centric service it offers. First, an overview is given of
Juno’s core design principles. Following this, the concepts of components and
services are detailed, alongside the important interfaces and objects used for
building them. Last, these aspects are brought together to show how Juno ex-
ploits the unique properties of components and services to perform configuration
and re-configuration to adapt system behaviour.
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4.4.1 Overview and Design Principles

Juno is designed using three important software engineering principles,

e Components: A component is a fixed body of functionality that offers pre-
defined services as well as exposing explicit dependencies

e Services: A service is an abstract piece of functionality (as represented by
a programming interface) that does not have a fixed underlying implemen-
tation

o Reflection: Reflection is the ability to dynamically introspect a body of
code to ascertain and manipulate its operation

These three principles provide the foundation for Juno’s operation. Juno is a
component-based configurable middleware. This means that functionality within
Juno is separated into independent pluggable entities called components, which
collectively build up the system. A component is an element of functionality
that offers well-defined services alongside explicit dependencies. This definition
makes components a powerful approach for building software systems in a (re-
)configurable and reusable manner. This is because, unlike objects, components
can be introduced (or removed) safely as long as all dependencies are satisfied
[138].

The service(s) a component offers are defined by one or more interfaces; in-
terface naming follows the COM [7] convention by prefixing interface names with
the letter ‘I’ to represent ‘Interface’ (e.g. IStoredDelivery). These interfaces de-
scribe the capabilities of a component and allow external bodies to ascertain the
functionality that it supports. The dependencies of a component are similarly de-
fined by interfaces, allowing a component to explicitly state the services it needs
to consume. Subsequently, explicit bindings exist that allow one component’s
dependency to be satisfied by another component’s service.

To enable (re-)configuration, these explicit bindings can be manipulated dur-
ing runtime to change the way components are interconnected. By doing this
intelligently, the system can be adapted by introducing or removing components
to reflect current operating requirements. To differentiate components that offer
the same service, reflection is used. Reflection is the process of introspecting
a software implementation and allowing it to make reasoned choices about it-
self. Of particular interest to Juno is the concept of structural reflection; this
is the process of introspecting the underlying software structure of a system. In
terms of a component-based system, this involves dynamically discovering and
manipulating the component architecture of the middleware.

To support this process it is vital that Juno can comprehend not only the
service capabilities of a component (i.e. its interfaces) but also its non-functional
aspects (i.e. how it operates). To achieve this, reflection also involves the explicit
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stipulation of important meta-information relating to each component, as well
as the system as a whole. Within Juno, every component is required to expose
runtime information about itself regarding its behaviour, performance and over-
heads. This information is then used to dynamically select the best components
to utilise based on requirements issued by the application (and the environment).
To make this process less complicated, components are generally grouped to-
gether into a component configuration. This, in essence, is a description of how a
set of components can be interconnected to collectively offer a service. This there-
fore allows meta-data to be generated and exposed in a coarser-grained manner,
making optimisation more scalable and requirement descriptions simpler.

The previous principles are used to optimise system behaviour by selecting
the best component implementation to provide a particular desired service. The
process of doing this at request time (i.e. when a service is requested) is termed
configuring a service. However, equally important is the need to address later
variations that could potentially make that decision sub-optimal. This process
is termed re-configuring a service and involves removing an old component and
replacing it with a different one. This occurs when something changes in the
environment (e.g. network congestion) or, alternatively, when the requirements of
the application change (e.g. it requires a different security policy). To enable this,
the meta-data exposed by each service is monitored as well as the requirements
of the application. If either changes, the selection process is re-executed to find a
superior component configuration. Through these principles, it becomes possible
to build a flexible, extensible and adaptable system that can evolve with the
changing needs of its environment.

4.4.2 Components in Juno

This section details the use of components in Juno. Specifically, it introduces the
OpenCOM component model before detailing the important standard objects and
interfaces that are used when developing and integrating components in Juno.

Overview of Component Models

Components are the lowest level building blocks in the Juno middleware. A
component can be defined as,

“a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be de-
ployed independently and is subject to composition by third parties”
[134]

From this, it can be seen that a component goes beyond traditional object-
oriented programming to introduce explicit bindings between the different soft-
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ware entities (i.e. components). Consequently, it is necessary to utilise a compo-
nent model to manage how components are constructed and interact. A compo-
nent model is a framework used for designing and building software components;
this usually consists of a set of standard objects and interfaces that must be used
to turn a body of code (e.g. a Java class) into a component. Various component
models exist to provide the necessary support for operating in different environ-
ments. However, for Juno, a number of key requirements can be identified,

1. Open and reflective: The component model must allow the capabilities of
components to be (dynamically) discovered and modified to handle varia-
tions in the environment

2. Runtime (re-)configurable: The component model must support the dy-
namic (re-)configuration of the constituent components and their intercon-
nections

3. Lightweight: The component model must operate alongside applications
and therefore it is vital that it is lightweight in terms of processing and
memory overheads

A number of component models exist for developing software; to understand
the choices made in this thesis, a brief overview of some of the potential models
is now given,

e Component Object Model (COM): This is a language neutral component
model developed by Microsoft; components implement the Querylnterface
function to allow external parties to gain access to their functionality (ex-
posed through interfaces). However, COM does not offer any reflective
capabilities to allow re-configuration, making it unsuitable [7].

e .NET: This is another component model developed by Microsoft; it offers
a number of feature including interoperability support, a range of class
libraries and security. However, this means .NET is heavyweight, making
it unsuitable [20].

e Koala: This is a component model developed by Philips targetted at embed-
ded systems. This makes it a lightweight system, however, like many other
lightweight models (e.g. nesC [64]) it is only build-time aware, without any
support for handling components during runtime [109].

o OpenCOM: This is a lightweight component model developed at Lancaster
University for building systems software. Components and bindings are
treated as explicit runtime entities that are managed by OpenCOM. This
allows dynamic re-configuration to take place in an open manner [51].
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From this, it is evident that OpenCOM best suits the requirement previously
mentioned. As such, it has been selected to form the basis for developing the Juno
middleware. The following section now provides an overview of the OpenCOM
component model.

The OpenCOM Component Model

OpenCOM [51] is a lightweight reflective component model used for implement-
ing systems software such as middleware. An overview of OpenCOM is given
in Figure 4.3. OpenCOM is based on the principles of interfaces, receptacles
and connections. An interface expresses the ability of a component to offer a
particular service; the component in Figure 4.3 can be seen to offer the ICustom-
Servicelnterface. A receptacle is an explicit dependency that must be satisfied
by another component’s interface; this can be seen by the ICustomDependency.
Last, a connection is an explicit binding between an interface and a recepta-
cle, allowing one component to satisfy the dependency of another. These are
managed by the OpenCOM Runtime, which allows components to be created,
interconnected and deleted dynamically. A system built using OpenCOM there-
fore consists of a set of components that are interconnected using their interfaces
and receptacles. The OpenCOM Runtime then provides the necessary methods
to query these components to retrieve the required functionality.

IUnknown

ILifeCycle (O—
IConnections (O—— Custom Service ICustomDependency
OpenCOMComponent | jmpimentation
IMetalnterface (O)—— —
ICustomService

IUnknown

System

IMetaArchitecture (O)——
Graph

IMetalnterception (O)——

10penCOM O—— OpenCOM

Runtime

Figure 4.3: An Overview of the OpenCOM Runtime

A key characteristic of OpenCOM is its support for reflection; this is the
process of allowing introspection and manipulation of software during runtime.
The OpenCOM Runtime achieves this by utilising specific reflective interfaces
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implemented by each component. As shown in Figure 4.3, the OpenCOM Run-
time maintains a dynamic system graph of the components currently operating
within its control. By using explicit bindings this allows the system graph to
be manipulated during runtime to modify the behaviour of the system. This
graph is termed the meta layer and exists as a meta representation of the actual
implementation (the base layer). Importantly, these two layers are loosely con-
nected so that changes made to the meta-layer are also reflected in changes in
the base layer. To enable the OpenCOM Runtime to achieve this control, it is
necessary for each component to implement a set of interfaces. There are four
main interfaces that must be implemented by OpenCOM components,

e [Unknown: Allows a component to be queried to retrieve a handle on a
particular interface it offers

o [LifeCycle: Allows a component to be started or shutdown

e [Connections: Allows a component’s connections to be dynamically modi-
fied

e [Metalnterface: Allows a component to be inspected to ascertain the values
of meta-data associated with it

Through these interfaces, the OpenCOM Runtime can manage a pieces of soft-
ware to (i) configure it by adding or removing components at bootstrap, or (i)
re-configure it by adding or removing components during runtime. These prin-
ciples allow a piece of OpenCOM software to be both adapted and extended
through (re-)configuration. This functionality is exposed through the IOpen-
COM, IMetaArchitecture and IMetalnterception interfaces, as shown in Figure
4.3. Beyond this, the use of components also offers a management structure so
that functionality can be effectively indexed, utilised and extended. OpenCOM
is implemented in Java, making it platform independent and easy to distribute.
It has a limited overhead of only 32 KB for the Runtime and 36 bytes for a null
component.

Core Component Objects

OpenCOM provides the underlying component model to turn traditional Java
objects into components. In essence, this solely consists of turning references
between objects into explicit bindings that can be manipulated. OpenCOM can
therefore be considered as a lightweight model that only provides the base un-
derlying functionality to construct a software system. This makes it necessary to
extend certain aspects of OpenCOM to make it appropriate for Juno’s require-
ments. Juno therefore provides a set of important objects that offer some form
of utility function. Some of these are optional whilst others are necessary for
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interaction with the Juno framework. This section details the primary objects
utilised by components operating in the Juno Framework.

StateEntity. In Juno, (re-)configuration takes place by dynamically attaching
or detaching components. This, however, can result in errors when re-configuring
components that contain state. Therefore, to ease the process, components in
Juno only contain explicitly defined state. This allows state to be removed from
a component and placed into another without complexity. To support this, Juno
uses the StateEntity object; this is an abstract object that represents a collection
of state within a component. When developers build a component, they must also
build a state object containing all the related state information; this object must
extend StateEntity. To accompany these component-specific state objects, there
are also service-specific state objects that are associated with particular service
interfaces. State therefore becomes a logical extension to the interface definition,
allowing components implementing the same interface to exchange state easily.
This is vital for re-configuration as it allows a component to be shutdown and
replaced without the loss of state. It also allows a State Repository to be built
up allowing introspection into any component’s current state.

Parameters. Most components require parameters to specialise their behaviour
or to help during bootstrap. Parameters is an abstract, reflective class that devel-
opers can extend to encapsulate their parameter sets. Developers simply extend
the object and create a set of public instance variables. Corresponding files can
subsequently be created that contain name:value pairs for each of the public vari-
ables. The Parameters object provides a load(String filename) method, which can
then load the parameters from the file automatically using native Java reflection.
Like with StateEntity objects, this similarly allows a State Repository to be built
up containing each component’s current parameter set.

Bootstrap. When a component is initiated it usually requires certain pieces
of information for bootstrapping. This is encapsulated in the Bootstrap object,
described in Table 4.1. It provides a component with a unique identifier, a set of
parameters and the appropriate StateEntity object(s). The Bootstrap object is
passed to the component when it is initiated.

JunoComponent. Due to the complex and repetitive nature of developing
standard framework functionality in a new component, it is necessary to ease the
developer’s burden. This is achieved using the abstract JunoComponent object,
which performs nearly all functionality related to integration with Juno. This
generally consists of implementing generic functionality for many of the required
interfaces that will be detailed in the following section; namely,
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Method ‘ Returns ‘ Description

addStateEntity(  Sta- | void Adds a StateEntity object to the Boot-

teEntity entity) strap

addParameters( Param- | void Adds a Parameters object to the Boot-

eters p) strap

setServiceID(String id) | void Provides the component identifier to be
used by the component

Table 4.1: Overview of Bootstrap Object (exc. corresponding get methods)

e Service Acquisition: It handles requests for a given service from the com-
ponent (IUnknown)

e Bootstrap Management: Using native Java reflection it automatically loads
all Parameters and StateEntity objects into the component (IBootable)

e Service Publication: When a component is initiated it loads references into
Juno’s Configuration Repository (c.f. Section 4.4.3).

e Connection Management: It handles requests for the interconnection of
components (IConnections)

e Meta-Data Management: It handles the setting and getting of meta-data
associated with the component (IMetalnterface)

e State Management: Using native Java reflection it automatically handles
all requests to inspect state and parameters (IOpenState)

Components can therefore extend JunoComponent to gain support for the above
functionality without having to implement anything. This dramatically decreases
the overhead of developing components in Juno.

Core Component Interfaces

The majority of the objects discussed in the previous section are related to a
set of framework interfaces that allow components to interact with Juno. This
section details the most important of these interfaces. It is important to note
that all the interfaces discussed in this section are already implemented by the
JunoComponent abstract object and therefore developers can simply extend this
with limited effort.

IUnknown. This is a simple interface implemented by all components within
Juno, as shown in Table 4.2. It allows a component to be queried for its supported
interfaces (i.e. the services it offers). Importantly, every service interface in Juno
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Method \ Returns \ Description
QuerylInterface(String Object | Returns an object reference to the com-
intf) ponent’s requested interface (if avail-
able)

Table 4.2: Overview of IUnknown Interface

must extend this interface to allow its integration into the Juno middleware.

IBootable. This interface allows a component in Juno to be initiated by the
framework. Its primary function is to offer access to life cycle management. It
allows a component to be initiated and shutdown as well as resumed in circum-
stances in which the StateEntity object already has data in it. There are four
steps in a component’s life cycle, each controlled by a method in IBootable (shown
in Table 4.3) - three at its initiation and one at the end:

1. Initiation: Creates a new component and provides it with the necessary
Bootstrap object

2. Configuration: Performs any inter-component bootstrapping (the compo-
nents must be interconnected before this can happen). Instead of this, a
component can also be resumed; this is performed when it is initiated with
a StateEntity object that contains existing data

3. Ezecution: Begins the execution of the component’s operation (e.g. listen-
ing on a port)

4. Shutdown: Performs an elegant shutdown of the component

IConnections. Any component that has dependencies on other components
must implement the IConnections interface, as shown in Table 4.4. This interface
allows a connection to be formed between two components: one offering a service
and one consuming it. It also allows the given connection to be later disconnected.

IMetalnterface. Juno relies on various types of reflection to support its oper-
ation. The IMetalnterface is implemented by all components to allow meta-data
to be associated with them in the form of attribute:value pairs. IMetalnterface
provides get and set methods to access this information dynamically.

IOpenState. A further reflective mechanism that components offer is the
ability for their state and parameters to be inspected and modified. This is
highly beneficial when it becomes necessary to alter the behaviour of a specific
component. It is particularly important when re-configuring between the use of
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Method ‘ Returns | Description

initiate( Boot- | boolean | Initiates a component with the necessary pa-
strap boot) rameters and state for its configuration
configure() void This method is used when there must be a

delay between initiating the object and it be-
ing configured (e.g. if two components de-
pend on each other and therefore must both
be initiated before they can be executed)
execute() void Begins the component’s execution if it has
background tasks that it must always per-
form (e.g. listening on a socket)

resume( ) void This method is used when the component’s
StateEntity object already has data in and
therefore the component must resume using
this data (e.g. if it is replacing a previous
component)

shutdown() boolean | Safely shuts the component down

Table 4.3: Overview of IBootable Interface

Method ‘ Returns ‘ Description

connect(IUnknown boolean | Connects a component (sink) to this
sink, String intf, long component using a particular interface
connlD with a unique connection identifier

disconnect(String intf, | boolean | Disconnects the component (of type
long connlD) intf) with a given connection identifier

Table 4.4: Overview of IConnections Interface

different components. This is because it allows the state and parameters of the
original component to be extracted and put into the new component. IOpenState
allows parameters (represented by the Parameters class) and state (represented
by the StateEntity class) to be added or modified in a component. Alongside
this, it is also possible to dynamically inspect a component to ascertain what
types of state and parameters it supports. Details of the IOpenState interface
are shown in Table 4.5.

4.4.3 Services in Juno

The previous section has detailed the operation of components in Juno. The
second important principle is that of services. A component is a self contained
body of code that exposes well defined interfaces and dependencies. A service,
on the other hand, is an abstract version of a component that only exposes an
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Method Returns Description
getOpenState() Vector Returns a vector of state objects
<StateEntity > associated with the component

getOpenState(String StateEntity Returns the StateEntity object

stateType) associated with the type

setOpenState(String void Assigns a given state object to

stateType, StateEntity the component

newState)

getOpenStateTypes() Vector <Class> Returns a vector containing the
StateEntity classes of the compo-
nent

getOpenParameters|() Vector Returns the parameters associ-

<Parameters> ated with the component

getOpenParameters- Vector <Class> Returns a vector containing the

Types() Parameters classes of the compo-
nent

setOpenParameters( void Sets the given parameters vari-

String parameter- able in the component to a new

sType, Parameters Parameters object

newParams)

getOpenParameters( Parameters Returns the Parameters object of

String parameterType) the given type

Table 4.5: Overview of IOpenState Interface

interface without any predetermined implementation. This section now details
the concepts behind services in Juno as well as listing the important elements
relating to their management.

Overview of Services

A service is an abstract piece of functionality that is open to configuration and re-
configuration. It is defined by a fixed service interface that exposes some form of
functionality to external entities. It is different to a component in that it does not
specify any underlying implementation. Instead, a service can be re-configured
by dynamically changing the implementation that resides behind the abstraction.
These implementations consist of one (or more) pluggable components. This is
shown in Figure 4.4; on the left hand side is a component implementation of ICus-
tomService, which is exposed to external entities through the abstract interface.
External entities therefore only interact with this component through the service;
this therefore allows the underlying component implementation to change with-
out the knowledge or involvement of any external parties. This further allows
composite services to be composed by interconnecting multiple services to create
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more sophisticated ones.
Abstract

ICustomService

IUnknown

methodA()

ILifeCycle (O——| methodB()
IConnections (O———| OpencoMe " Custom Service
pen omponen IR
IMetalnterface (O)——— Impimentation ICustomService | methodCO
<

Return value D

x=

x

v

Figure 4.4: The Difference between a Component and a Service

When an application uses the middleware, it exclusively interacts with ser-
vices as the underlying implementation is not fixed. Instead, Juno manipulates
the underlying implementation dynamically to best match the application’s re-
quirements. This is achieved by placing one level of indirection between all in-
teractions so that method invocations can be routed to the currently attached
component (this is managed by OpenCOM).

The primary object relating the the concepts of services in Juno is the Con-
figurator. This is a container that manages one or more components to offer a
predefined service. Importantly, these components are not fixed and can be dy-
namically changed within the Configurator container without the knowledge of
any external parties. This is achieved with the Configuration object, which is
used to define how one or more components can be used to offer the desired ser-
vice. As such, different Configuration objects can be passed into the Configurator
container based on application and environmental requirements.

Core Objects, Interfaces and Components

A service, in itself, simply consists of an interface definition, however, surround-
ing these are three core objects that support their utilisation. This section now
outlines these important objects.

The Configuration Object. Often a component only offers a subset of the
necessary functionality for a complete service. For instance, a content download
service might consist of two components: one that performs the download and
one that writes it to file. This allows better code reuse and management, as
well as allowing (re-)configuration to take place by modifying the constituent
components. To this end, it is necessary to define how a set of components
can be interconnected to build an entire service. This description is termed
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a component configuration; this is represented in Juno using the Configuration
object. A Configuration is a Java class that contains the necessary functionality
to instantiate and interconnect one or more components to offer a predefined
service.

A Configuration object can be accessed and utilised through the IConfigu-
ration interface, as shown in Table 4.6. The execute() method is analogous to
a Java constructor; it dynamically builds an instance of the component config-
uration it represents. When developing a service implementation it is necessary
to implement a Configuration by extending the Configuration object and imple-
menting the IConfiguration interface. Within the execute and detach methods,
the necessary service-specific code must be inserted to construct and destroy the
component configuration. However, the other methods in IConfiguration can be
handled by extending the abstract implementations in the Configuration class.
The Configuration object also offers IMetalnterface so that each configuration
can be associated with meta-data in the same way that components are.

Configuration
Repository

O IConfiguration

IMetalnterface Repository

—o

c IC:

ICustomService

ConfigurationA

IMetalnterface

ConfigurationB

Confi i IConfi

ConfigurationC

—o
IMetalnterface

—o
Ct IC

Figure 4.5: The Configuration Repository containing Configuration Objects

The Configuration Repository. The Configuration Repository is respon-
sible for maintaining an index of all the available component configurations, as
well as all the implemented components. It provides methods to add and remove
components and configurations from the repository. Alongside this, it also offers
methods to lookup and retrieve these components and configurations on-demand.
A list of all the configurations offering a particular service interface can be re-
trieved. More sophisticated queries can also be generated for components; these
can be looked up based on their interface type, parameter sets and meta-data.
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Method Returns ‘ Description

execute() boolean Instantiates and interconnects a
set of components and returns
the result

detach() boolean Detaches and destroys the com-

ponents that it is responsible for
getExternallnterfaces() | Vector<String> | Returns a Vector of service inter-
faces that this configuration of-

fers
setConfigurator( Con- | void Sets the Configurator that the
figurator configurator) Configuration should be built in
getConfigurator() Configurator Returns the Configurator that

this Configuration is currently
associated with

Table 4.6: Overview of IConfiguration Interface

This therefore supports the easy dynamic management of Juno as well as the
ability to introduce new components and configurations during runtime.

The Configuration Repository is shown in Figure 4.5. The diagram shows how
the repository stores the Configuration objects for a particular service: ICustom-
Service. Each Configuration object is mapped to an entry in an internal database
that allows lookups to be performed. The Configuration object exposes the ICon-
figuration interface as well as the IMetalnterface, allowing each configuration to
be queried as to its meta-data.

The Configurator Object. To enable the safe (re-)configuration of services,
it is necessary to incorporate domain-specific knowledge into the process. This
is the responsibility of Configurator objects, which act as containers for instances
of a service to operate in. This is therefore the object that is responsible for im-
plementing the construction and adaptation of the service in a safe and validated
manner. Every service, defined by a particular interface, must also be associated
with a domain-specific Configurator. When a new service is requested, it is nec-
essary to first instantiate the service’s appropriate Configurator, which extends
the abstract Configurator object. Following this, a Configuration object can be
passed into it, as detailed in Table 4.7. The Configurator is then responsible for
instantiating and managing this configuration.

The internal structure of a Configurator object is shown in Figure 4.6; its
operation follow a chain in which a Configuration object is passed in and the
instantiated service is passed out. When a Configurator receives a component
configuration to instantiate, it must first validate that it is correct. This can be
done in a variety of ways and is left to the judgement of the developer. If it
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is considered safe, the Configurator builds the new component configuration af-
ter performing any necessary domain-specific pre-processing. The Configurator’s
configure(IConfiguration configuration) method can also be called again later with
a new Configuration object. The Configurator is then responsible for managing
this re-configuration by implementing the necessary changes in the service’s com-
ponent connections. Importantly, unlike containers in other component models
such as COM [7], the function of a Configurator is solely to safely manage con-
figuration and re-configuration. As such, it is very lightweight without the need
to offer any other extended functionality (e.g. persistence, remote access etc.).

Configurator

IUnknown

Configuration IConfigurator
Constructor

—-o
IMetalnterface

—]
ConfigurationA IConfiguration

]

Configuration
Validator

Figure 4.6: The Configurator Container

Once the Configurator has instantiated the necessary components, it is possi-
ble for external parties to access its supported functionality. This can simply be
performed using the standard IUnknown interface, as detailed in Table 4.2. This
allows the Configurator to be requested for a particular interface, which can then
subsequently be mapped to a component that can offer it. Importantly, this in-
direction therefore allows re-configuration to take place without the modification
of any object references within external code.

4.4.4 Configuring and Re-Configuring Services in Juno

The previous two sections have detailed the concepts of components, component
configurations and services. This section now brings together the principles ex-
plained in these sections to show how configuration and re-configuration takes

place in Juno.
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Method ‘ Returns Description
getConfiguratorID () int Returns the unique ID of this config-
urator
getCurrentConfiguration | Configurat- | Returns the current instantiated con-
() ionOpera- | figuration
tion
configure(  IConfigura- | boolean Removes the previous configuration
tion configuration) (if any) and instantiates the new one
recvConfigurationRequest| void Informs the Configurator that another
(ConfigurationRequest node is requesting that its service is
req) adapted (this enables distributed con-
figuration to take place)
getMetaRules() Collection | Returns the meta-data rules associ-
ated with this service
setMetaRules( Collection | void Sets the meta-data rules associated
<MetaDataRule> rules) with this service

Table 4.7: Overview of IConfigurator Interface

Principles of (Re)Configuration

Configuration is the process of dynamically building a service implementation
to best meet a set of requirements, whilst re-configuration then later involves
modifying this implementation to reflect certain changes in the application or en-
vironment. In Juno, both are achieved by dynamically selecting (and re-selecting)
which components are utilised to build up a service.

To enable this process, it is necessary for each component configuration to be
able to expose its capabilities whilst, equally, it is necessary for an application
to represent its requirements. With this information it then becomes the task
of the middleware to match its implementation to the requirements provided.
This process is managed by a component called the ConfigurationEngine, which
accepts requests for particular services alongside the application’s non-functional
requirements. These requirements are structured as selection predicates for the
meta-data associated with the chosen component.

The rest of this section provides a description of each of these elements, show-
ing how they fit together. First, it is detailed how a component or configuration
can expose its capabilities, and how an application can then express requirements.
Following this, the Configuration Engine is explained, which is responsible for
comparing requirements against capabilities to select the optimal configuration.
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Representing Capabilities and Requirements

The process of component-based (re-)configuration involves placing different com-
ponents behind an individual service abstraction so that different implementa-
tions can be used in different circumstances. To enable this, it is necessary to
be able to (i) describe the capabilities of each component/configuration, and (i)
describe the requirements of the application (and environment). In Juno this is
achieved using meta-data and selection predicates.

Representing Capabilities. All components and component configurations
in Juno are required to expose (i) what interfaces (i.e. services) they offer, and
(i) related meta-data for each interface that provides non-functional information
about the way in which it provides the service (e.g. performance, overheads etc.).
This is performed using a standard set of reflective interfaces. All components and
component configurations are required to implement the IMetalnterface interface,
as shown in Table 4.8. This allows the implementer to associate itself with meta-
data in the form of attribute:value pairs. For instance, a component configuration
offering a data sorting service might expose, TIME_.COMPLEXITY = O(N).
Importantly, meta-data is not immutable so it can change dynamically during a
component’s lifetime.

Alongside the ability to set and retrieve meta-data, it is also necessary for com-
ponents to generate runtime meta-data. A prominent example is that discussed
in Chapter 3, involving the need to dynamically generate performance predic-
tions. This is exposed using IMetalnterface. To assist in this, IMetalnterface
also allows a component or component configuration to be pre-loaded with im-
portant runtime information so that it can generate its meta-data. Therefore, in
the previous example, a HTTP component could be pre-loaded with information
such as DELAY = 25. This information can then be used to generate the neces-
sary meta-data that the component should export, e.g. DOWNLOAD_RATE.

Representing Requirements. Up until now, it is only possible for a com-
ponent or component configuration to expose information about itself. The next
step is to allow Juno to exploit this information to drive (re-)configuration. This
is achieved by asking applications to couple service requests with meta require-
ments that inform Juno of their non-functional requirements. In essence, these
are selection predicates that dictate the application’s preferred values for any
meta-data associated with the chosen component configuration that provides the
service. For example, an application might request a sort service that has the
meta-data, TIME_COMPLEXITY == O(N). This information is represented
using the MetaDataRule object. This is a simple object that contains three vari-
ables: attribute, comparator and value. It can therefore simply stipulate that
the given attribute must have a particular value or range of values based on the
comparator; details of the comparators are given in Table 4.9. The attribute
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Method ‘ Returns Description

getAttribute(String intf, | String Returns the value of a specific at-

String attribute) tribute for a particular exposed
interface

setAttribute(String intf, | void Sets the value of a specific at-

String  attribute,  Object tribute

value)

generateRuntimeMetaData( Hashtable | Generates its runtime meta data

String intf, Hashtable | <String, | for a particular interface based

<String, Object> info) Object> | on information provided through
a hashtable of meta-data

Table 4.8: Overview of IMetalnterface Interface

Comparator

EQUALS

NOT_EQUAL

GREATER _THAN
GREATER_THAN OR EQUAL
LESS THAN
LESS_THAN_OR_EQUAL
HIGHEST

LOWEST

Table 4.9: Overview of MetaDataRule Comparators

value is always represented with a String object, however, any Java type can be
used as the value (e.g. int, double, String etc.). For instance, this can be done
with the following code,

rule = new MetaDataRule(“TIME_COMPLEXITY"”, EQUALS, “O(N)");

Sets of these rules can subsequently be passed to Juno and into its Configu-
ration Engine to describe non-functional requirements of the component config-
uration chosen to offer the implementation behind a requested service interface.

Context Repository

To assist in the generation of meta-data for components, Juno also maintains a
centralised ContextRepository component. This is simply responsible for main-
taining up-to-date information about the operating conditions of the node. It
offers a hash table abstraction that allows context information to be inserted and
retrieved. Further, it allows the attachment of ContextSource components that
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can generate context information and insert it into the repository. Last, listen-
ers can also be attached so that they can be informed if any changes occur to
particular items of context information.

The purpose of the Context Repository is therefore to offer a means by which
individual components can understand the environment they operate in. For
instance, when selecting a delivery protocol it is beneficial to take into account
the upload capacity of the node; this can simply be ascertained by querying the
Context Repository. Further, runtime information such as the available upload
bandwidth can also be acquired. This therefore allows the different components
and frameworks to utilise IF-DO rules to shape their behaviour.

Configuration Engine

It has previously been shown how Juno represents capabilities and requirements.
It is the responsibility of the Configuration Engine to combine these two elements
to make a decision as to which component configuration to use in a particular
situation.

The Configuration Engine accepts service requests alongside their require-
ments then selects from the Configuration Repository the best configuration to
achieve those requirements; its interface is shown in Table 4.10. This is a sim-
ple process that is accessed using the buildService method. This method accepts
a request for a particular service (defined by its interface), alongside a set of
MetaDataRule objects. First, the Configuration Engine looks up all Configu-
ration objects that offer this interface in the Configuration Repository, before
comparing them against the requirements until a match is found. The appropri-
ate Configurator is then constructed and the chosen Configuration object passed
to it. This Configurator is then returned by the Configuration Engine to the
requester so the service can be accessed.

If the operating requirements of the service change, it is also possible for the
Configuration Engine to be updated using the rebuildService method. This al-
lows the rules associated with a particular service instance to be modified. If
this modification results in a different component configuration being considered
superior then this is subsequently installed, replacing the previous one. Impor-
tantly, through the use of dynamic bindings and indirection, it is not necessary
for any object references to be changed by the user(s) of the service.

Distributed Configuration Engine

The previous section has shown how a decision engine can compare meta-data
exposed by configurations with selection predicates generated by applications.
So far, this has been considered from a local perspective. However, in certain
circumstances it is also beneficial to perform (re-)configuration in a distributed
setting. For instance, if a server becomes heavily loaded with clients, it would be
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Method ‘ Returns Description

buildService(String intf, | IConfigura-| This method takes a given ser-

int configuratorID, | tor vice interface, a unique identi-

Collection<MetaDataRule> fier and a set of MetaDataRule

rules) objects and returns an IConfigu-
rator containing the instantiated
service

rebuildService(int boolean This replaces the MetaDataRule

configuratorID, set associated with a particular

Collection<MetaDataRule> Configurator and re-runs the se-

) lection process

select(Collection IConfigura-| This method takes a set of com-

<IMetalnterface> tor ponents and executes a given set

components, of rules over them to select the

Collection<MetaDataRule> optimal

rules)

requestConfiguration( Config- | void This accepts a request (from an-

urationRequest request) other node) to re-configure one of
its services

Table 4.10: Overview of IConfigurationEngine Interface

advantageous to re-configure the delivery strategy into a more scalable peer-to-
peer one. This, however, requires coordination between all parties. The primary
use-case for this is therefore when a provider wishes to modify the behaviour of
its consumers; this is because, generally, the provider is in a trusted position and
consumers will accept its requests to ensure accessibility to the content.

This process is managed by a generic component called the DistributedCon-
figurationCoordinator (DCC), which augments the functionality of the local Con-
figuration Engine to allow distributed adaptation to take place. This occurs
whenever a desired local re-configuration requires the cooperation of a remote
party. The DCC is a component that resides on every Juno node and listens for
remote configuration requests from other nodes. Similarly, it can also generate
requests to be passed to other nodes. The underlying method by which it prop-
agates this information is not fixed (i.e. it can be re-configured using different
component implementations). However, currently it is performed using point-to-
point connections; alternative propagation techniques include IP multicast and
gossip protocols.

DCCs interact with each other by exchanging ConfigurationRequest and Con-
figurationResponse objects. When a ConfigurationRequest object is received, the
DCC looks up the Configurator responsible for the service in question; this is
done using the Configuration Engine. Once the DCC locates the Configurator, it
passes the request into it using the recvConfigurationRequest(ConfigurationRequest



CHAPTER 4. A MIDDLEWARE APPROACH TO DELIVERY-CENTRIC

120 NETWORKING
Parameter ‘ Description
uniquelD A unique identifier for the request; this allows

responses to be generated that map uniquely to
each request

servicelntf The canonical name of the service interface be-
ing adapted

contentID The item of content being handled by the service

requestedConfiguration | The new configuration to utilise

remoteConfiguration The configuration being used at the remote side
(i.e. the requester)

source The node requesting the re-configuration

newRemoteContent A new RemoteContent object to represent the
new point at which the content can be accessed
through

Table 4.11: Overview of Remote ConfigurationRequest Object

req) method. The Configurator is then responsible for deciding whether or not to
accept the request. If it is accepted, the Configurator re-configures the services
as requested. This decision can be made on any criteria; the most likely being
whether or not the re-configuration would invalidate the application’s selection
predicates. Once the decision has been made, the DCC responds to the requester
with a ConfigurationResponse object containing either true or false.

Table 4.11 details the ConfigurationRequest object. To identify the service
that it wishes to re-configure, the contentlD and servicelntf fields are included.
This allows the DCC to discover which service the request refers to, as well as
the particular item of content that it is dealing with. Alongside this, it also
contains the requestedConfiguration and remoteConfiguration variables; these are
String representations of the the configuration being used at the remote side
and the configuration that the request would like to have instantiated. Finally,
a new RemoteContent object is included in case it changes. This occurs if a
provider is re-configuring its provision technique and needs the consumers to
access it in a different manner. For instance, if a provider wishes its consumers
to access content using BitTorrent rather than HTTP, the newRemoteContent
variable would contain a reference to the new BitTorrent tracker.

The previous paragraphs have detailed how the underlying remote interac-
tions of the DCC take place. However, it is also important to understand how
the local interactions occur. Table 4.12 details the IDistributedConfigurationCo-
ordinator interface. This interface can be used by any Configurator object to
perform distributed re-configuration. The decision to do this is made within the
Configuration object as part of its execute method. Therefore, when a new con-
figuration is instantiated, it can also request that other remote configurations are
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Method ‘ Returns ‘ Description
requestConfiguration(Collection void Sends a ConfigurationRe-
<Node> nodes, ConfigurationRe- quest to a set of nodes
quest req)

sendResponse(Collection<Node> boolen | Sends a ConfigurationRe-
nodes, ConfigurationResponse res) sponse to a set of nodes

Table 4.12: Overview of IDistributedConfigurationCoordinator

instantiated. This allows a distributed service to be constructed, as initiated by
a single node.

4.5 Juno Content-Centric Architecture

The previous section has detailed the core elements and principles of the Juno
framework. These underlying principles are exploited to build the content-centric
functionality of Juno. This section describes how content-centricity is imple-
mented using these principles.

4.5.1 Overview

Juno’s content-centric functionality makes up the bulk of Juno’s implementa-
tion. It operates alongside the core framework to offer a content-centric and
delivery-centric paradigm to applications. As shown in Figure 4.7, the service
is built from two primary components: the Discovery Framework and the De-
livery Framework; as well as a Content Management system. The Discovery
Framework is responsible for locating a set of potential sources for an item of
content, whilst the Delivery Framework is responsible for subsequently accessing
it. Both frameworks are composites that are built up from a set of one or more
underlying component implementations. The frameworks’ purpose is therefore
to manage these underlying components, which are termed plug-ins. This man-
agement is driven by requirements passed down to Juno from the application.
These requirements stipulate how the application wishes to use the middleware
and subsequently results in its adaptation.

Figure 4.7 provides an example of Juno’s operation. As can be seen, the
Content-Centric Framework itself is quite thin, acting primarily as a point of
redirection and management for the Discovery and Delivery Frameworks. When
Juno receives a content request from the application it first queries the Content
Manager to ascertain whether the content is locally available. If it is not, the
Content-Centric Framework utilises the Discovery Framework to locate poten-
tial sources of the content. The Discovery Framework is built from a number
of discovery plug-ins. Each plug-in is capable of querying a particular provider’s
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discovery system to locate available sources of the desired content. In the dia-
gram, the plug-in attached to the Discovery Framework is called ‘Content Index’;
in practice, however, multiple plug-ins are likely to be attached so to operate
in parallel. When multiple plug-ins are operating, the Discovery Framework ag-
gregates all the information discovered and returns it to the Content-Centric
Framework.

By the end of this process, the Content-Centric Framework is in possession
of a number of sources located through a range of discovery systems that (po-
tentially) offer the content in a variety of ways. The next step is therefore to
pass these sources into the Delivery Framework alongside the delivery require-
ments provided by the application. It is then the responsibility of the Delivery
Framework to exploit these potential sources to provide the content in the op-
timal manner. This is achieved through transparent client-side re-configuration.
In essence, this involves adapting the underlying implementation of the Delivery
Framework (by attaching plug-ins) to interoperate with the source(s) that best
match the delivery requirements. In Figure 4.7, a number of possible methods
of delivery exist for content item ‘A’ including a BitTorrent swarm, a HTTP
server and a ZigZag streaming tree. However, due to some requirement (e.g.
throughput), the Delivery Framework selects the use of BitTorrent; this plug-in
is therefore retrieved by the Configuration Engine and attached to the Delivery
Framework. Following this, Juno begins the content download, passing the data
to the application via its preferred abstraction. This flexible use of different ab-
stractions allows the application to interact with the content in a way that best
suits its requirements; for instance, this can be using a file references, a real-time
input stream or a random access lookup. This process can be summarised in the
following steps,

1. Receive request formatted as unique content identifier, alongside delivery
requirements

2. Check wether or not the Content Manager has a local copy (if so, return it
directly to the application)

3. Pass request to Discovery Framework

e Pass request to each of available discovery plug-ins
e Receive list of available content sources from one or more plug-ins
e Aggregate results and return to Content-Centric Framework

4. Pass request and list of sources to the Delivery Framework, alongside orig-
inal delivery requirements

e Compare requirements against the meta-data associated with each of
the available sources
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e Attach the delivery plug-in that can best access the content in a man-
ner that fulfils the requirements

e Pass request and source information to chosen plug-in so that it can
begin the download

e Return a content handle to the Content-Centric Framework

5. Return a content handle to the application

| Application |
Content Request “A”
? IContentCentric Juno Middleware
)
- Content-Centric Framework
FTP
\ x
Request Content HTTP
Content v |
Manager A y N Limewire
s s
. ZigZag
Content Index BitTorrent
Discovery Framework Delivery Framework ) \_Configuration Engine /
Discovery
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ZigZ .
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A
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I:I Runtime Loaded
Plug-In
|:| Available Plug-In

D Item of Content

BitTorrent
Swarm

Figure 4.7: Example of Juno Architecture and Operations

This section details the operation of the Juno Content-Centric service. First,
it describes the content-centric and delivery-centric abstraction provided to the
application. Following this, the Content Management is described, including how
content is uniquely identified. The Discovery Framework is then outlined showing
how content is discovered in various systems. Last, the Delivery Framework is
described, showing the (re-)configuration process for interoperating with different
third party content distribution systems.

4.5.2 Content-Centric Framework

The Content-Centric Framework consists of the necessary functionality to (7)
query the Content Manager, (ii) query the Discovery Framework, and (iii) pass
the discovery information to the Delivery Framework. As such, it is a thin com-
ponent that simply exposes a content-centric (and delivery-centric) abstraction to
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Method ‘ Returns ‘ Description
getContent(String mag- | Content | Requests an item of con-
netLink, int accessMechanism, tent with a set of require-
Collection<MetaDataRule> rules) ments structured as rules
updateRuntimelnformation boolean | Changes the requirements
(String magnetLink, of a previously issued re-
Collection<MetaDataRule> rules) quest

Table 4.13: Overview of IContentCentric Interface

the application. Using this abstraction, it receives requests from the application
before passing them onto the necessary frameworks.

Table 4.13 provides an overview of the IContentCentric interface, which is
both content-centric and delivery-centric. The most important method is getCon-
tent. It first accepts a content identifier (termed magnetLink), which uniquely
identifies the content. It then accepts the preferred access mechanism; currently
this can either be stored or streamed (this is extensible though). This dictates
through which abstraction the application wishes to view the content (obviously,
this also affects the possible underlying delivery protocols that can be used).
Last, the application must also provide its delivery requirements as a collection
of MetaDataRule objects. A Content object is then returned from this method,
which represents the content that is accessed. A number of different Content
objects exist for different types of content; these are used to offer access for the
application. Alongside this, an update method is also available to modify any of
the requirements during the delivery.

The IContentCentric abstraction is extremely simple to use for applications.
It is worth noting that unlike previous content-centric abstractions (e.g. [54]),
there are no methods to support publishing content. This is because IContent-
Centric is solely a consumer-side abstraction, which leaves content publication to
the discovery systems that Juno interoperates with. A user wishing to publish
content must use a different interface: IProvider. A further important observa-
tion is that due to Juno’s configurable service-oriented nature, it is possible to
dynamically replace the IContentCentric component without the modification of
application-level code.

4.5.3 Content Management
Overview

Juno abstracts the content management away from any individual delivery plug-
in, thus allowing them to share a common content library. The Content Manager
is an individual component within Juno that provides this service; it offers meth-
ods to lookup, store and manipulate local content. All delivery schemes utilise
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the Content Manager, negating the need to transfer content between delivery
plug-ins if they are interchanged. Further, this provides a mechanism by which
multiple plug-ins can be coordinated without over-writing each others’ data. In
order to allow convenient usage, the Content Manager also offers multiple inter-
faces to enable both chunk-based and range-based access to content. Therefore,
different schemes can view data in different ways, making implementation and
development easier.

Due to the content-centricity of Juno, the Content Manager is considered as
a primary entity in its operation. As such, when a request is received by the
Content-Centric Framework, the Content Manager is first queried to validate
whether or not a local copy exists. If content is found to be locally available,
a handle is returned to the application. Depending on the requirements of the
application, different content handles can be returned (e.g. file reference, input
stream etc.).

This section details the content management aspects of Juno’s design. First,
the content addressing scheme is described to show how content can be uniquely
identified. Following this, the method through which content is represented
within Juno is shown, detailing the standard objects used.

Content Addressing

A significant research challenge for overlaying content-centricity onto many ex-
isting (non content-centric) discovery systems is that of content addressing. A
content-centric system, by its definition, detaches addressing from location and
allows the acquisition of content solely using its own unique address. However, the
majority of existing delivery systems do not offer this service and therefore this
functionality must exist at the middleware layer. Critically, this must be achieved
without modifying the behaviour of existing discovery systems and therefore this
must be done in a backwards compatible way. Two possible options exist; either,
Juno must perform a mapping between global Juno content identifiers and the
various location identifiers or, alternatively, an existing deployed content-centric
addressing solution must be utilised.

The first option involves generating a mapping between a global location-
independent content identifier and a traditional location-dependent content iden-
tifier (e.g. Content-A — http://148.88.125.32/ContentA). This is similar to indi-
rection systems such as the Domain Name System and i3 [130]. Unfortunately,
this has serious deployment difficulties as it would involve an infeasibly large
crawling to generate the mappings for all content. Such a task could perhaps
be achieved by massively resourced organisations such as Google, but this would
not be feasible for the vast majority. Further, this would have to be repeated
periodically to discover new content. An obvious alternative would be to insist
providers actively register their content with the system so that the mapping can
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Hash Identifier ‘ Supported Protocols

SHA-1 Gnutella, Gnutella2

BitPrint Gnutella, Gnutella2

ED2K eD2K

Kazaa Kazaa

MD5 Gnutella2

BITH BitTorrent (e.g. Azureus, Mininova,
PirateBay etc.)

Tiger Tree Hash | Direct Connect, Gnutella2

Table 4.14: Overview of Discovery Protocols that Support Magnet Links and
their Hashing Algorithms

be performed progressively. However, this would significantly reduce the number
of potential discoverable sources.

The second option is to use an existing deployed content-centric addressing
scheme. Currently, a small number of possible content-centric addressing schemes
have been proposed, including DONA [93] and AGN [83]. These, however, have
not been successfully deployed as of yet. Similarly, they would not be compatible
with existing discovery and delivery systems, subsequently limiting interoperabil-
ity. There is, in fact, no current globally deployed addressing scheme for content;
however, a common property of most current schemes is the use of hash-based
content identification. This sees the content’s data being passed through a hash-
ing algorithm (e.g. MD5) to generate a unique identifier. This is, for example,
used within both DONA and AGN, as well as a number of other deployed content
addressing schemes.

Juno therefore follows this example and exploits hashing algorithms to uniquely
identify content. A major limitation of this, however, is that different plug-ins
generally use different hashing algorithms. Table 4.14 provides an overview of
the hashing algorithms used by a range of popular systems. Clearly, interoper-
ation with these different systems would only be possible if Juno were capable
of identifying content using all hashing algorithms. Therefore, to address this,
Juno does not pre-define a single hashing algorithm for its content identification;
instead, the Content Manager utilises a dynamically extensible set of algorithms.
To ensure high degrees of interoperability, currently the algorithms detailed in
Table 4.14 are all utilised.

Following this, the next challenge is how these different hash-based identifiers
can be managed to enable interoperation with the different systems. To handle
this concern, Juno stores identifiers as Magnet Links [19]. These are text-based
Uniform Resource Identifiers (URIs) that allow multiple hash-based identifiers to
be stored within a single content reference. The key benefit of using Magnet Links
to ‘wrap’ the content identifiers is the level of their current uptake, which is far
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beyond alternatives such as Extensible Resource Identifiers (XRIs) or Meta Links.
Figure 4.8 highlights this by showing the distribution of peer-to-peer protocol
usage, as observed in [128]. It can be observed that a massive proportion of peer-
to-peer traffic is BitTorrent (67%). Similarly a further 32% is dedicated to eD2K
and Gnutella. Importantly, all three protocols support content identification
through Magnet Links. Subsequently, the ubiquity of this addressing scheme
allows 99% of peer-to-peer traffic to be interoperated with. In fact, only 0.99% of
peer-to-peer traffic can be attributed to other protocols; the break-down of this,
however, is unavailable which means that it is likely to also consist of protocols
such as Direct Connect and Kazaa, which would subsequently allow Juno’s reach
to extend even beyond this 99% figure.
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Figure 4.8: The Distribution of Peer-to-Peer Traffic in the Internet [128]

This observation means that a single Magnet Link can be passed into mul-
tiple plug-ins to allow seamless interoperation. This simplifies the task for both
applications and Juno, as well as the plug-ins. Importantly, however, it is also
possible for Magnet Links to be replaced in the future if an alternative (hash-
based) scheme becomes more popular. This is because the Magnet Link simply
acts as a wrapper for the identifiers. Table 4.15 gives a description of the primary
fields in a Magnet Link, which have the format:

magnet: 7xt=urn:shal:FBAAJ3ILW4TRNJIVAWNAE51SJBUK8Q1G.

A Magnet Link is a text-based link similar to a traditional URL. It always
starts with the prefix ‘magnet:?’. Following this is a set of parameters that
define certain properties of the content that it identifies. Parameters are defined
as attribute:value pairs with the structure attribute=value. The most common
parameter is xt, which provides a unique hash identifier of the content based on a
given algorithm (e.g. SHA1, MD5 etc.); this is therefore a mandatory field for all
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Parameter \ Description

xt FEzact Topic: This indicates that the link contains the details of a
specific item of content. Other parameters can also be used (c.f.
Table 4.16)

urn:shal | Hash Algorithm: This indicates the hashing algorithm used by
this identifier

FBAAJS3... | Hash Value: This is the output of the hashing algorithm when
applied to the data

Table 4.15: Overview of Primary Fields in Magnet Links

Parameter | Description

xt Ezact Topic: An identifier of the content (based on a given hashing
algorithm)

dn Display Name: The human readable title of the content

x1 Ezact Length: The length of the content in bytes

as Acceptable Source: A location-oriented URL address (e.g. a HTTP
link)

XS Ezact Source: A host:port reference to a source

kt Keyword Topic: Keywords associated with the content

mt Manifest: A link to a list of further Magnet Links (e.g. a list of
Magnet Links for each song on an album)

tr Address Tracker: A location-oriented link to a BitTorrent-like
tracker service

Table 4.16: Overview of Parameters in Magnet Links

systems utilising unique addressing. Magnet Links, however, are highly flexible
with the ability to stipulate a number of other parameters relating to the content;
full details of these are provided in Table 4.16.

Juno and its Content Manager identify content using String objects that con-
tain a Magnet Link. To make the process simpler and to allow future use of
alternative hash-based identifiers, it is also possible to identify content simply
using one of the identifiers (e.g. “shal:FBAAJ3...”). At least one hash identi-
fier must be present, however, so that the content can (i) be uniquely identified
and (i7) can be validated through re-hashing it (this is necessary for fulfilling the
requirements of a content-centric network, as detailed in Section 2.2).

Content Representation

To ease the interaction between different components, there are a number of
standardised mechanisms by which content is represented and accessed in Juno.
These are encapsulated in various Content objects, which are shown in Figure
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4.9. This section details each of these objects.

Content

+getContentID()
+getSize()

+addMetaData()
+getMetaData()

JAWAWAN

StoredContent RemoteContent StreamedContent
+getFile() +addSource() +getStream()
+isComplete() +removeSource()

+getSources()

+getAllSources()
+containsSource()
+getNumSources()

RangeStoredContent

+readRange()

Figure 4.9: A Class Diagram of the Content Representation Classes

Content. The Content object is a base representation of a content item in Juno.
It does not contain any data or references to data; instead, it simply represents
it. It is abstract and cannot be instantiated. Its details are provided in Table 4.17.

StoredContent. The StoredContent object extends the Content object to rep-
resent it when stored locally. The object also provides access control to Juno
so that it can be immediately returned to the application without allowing it to
access the content. It is generally used when an application requires the content
to be stored on disk and accessed afterwards, e.g. for file sharing or a software
update. Its details are provided in Table 4.18.

RangeStoredContent. The RangeStoredContent object extends the Stored-
Content object to provide easy random access to locally stored content. The ob-
ject also provides access control to Juno so that it can be immediately returned to
the application without allowing it to access the content. It is generally used when
applications need to skip through the data. Its details are provided in Table 4.19.
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Method \ Returns ‘ Description
getContentID(  Hash- | String Provides the particular hash identifier
Function function) of the content
getSize() long Provides the size of the content
addMetaData(String void Adds an item of meta-data to the con-
attribute, Object value) tent
getMetaData(String at- | Object | Retrieves an item of meta-data associ-
tribute) ated with the content

Table 4.17: Overview of Content Object

Method ‘ Returns | Description

getFile() File Provides the java.io.File object containing the local
path to the content

isComplete() | boolean | Returns whether the file is fully available locally

Table 4.18: Overview of StoredContent Object (N.B. Extends Content object)

Method ‘ Returns ‘ Description
readRange( long start, | long Loads the data from the range into the
long end, byte data) array. Returns number of bytes read

Table 4.19: Overview of RangeStoredContent Object (N.B. Extends StoredCon-
tent object)

StreamedContent. The StreamedContent object extends the Content object
to offer the ability to access an item of content in a streamed manner. This could
be a video stream or, alternatively, simply a data stream. For instance, if an
application requests a picture for immediate display from Juno, it is easier to
return it as a StreamedContent object than write it to disk first and return it as
a StoredContent object. Its details are provided in Table 4.20.

RemoteContent. The RemoteContent object represents content residing at a
remote location. It subsequently provides all the necessary information required
to access it, i.e. a list of sources. Individual sources are represented using the
DeliveryNode object, which contains the host’s address as well as its supported
protocol(s) and any other information required to access the content (e.g. the
remote path). Table 4.21 provides an overview of the methods offered by Re-
moteContent.
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Method \ Returns \ Description

getStream() | InputStream | Provides a java.io.InputStream object to ac-
cess the content stream

Table 4.20: Overview of StreamedContent Object (N.B. Extends Content object)

Method \ Returns \ Description
addSource(DeliveryNode| void Adds a source of the content
newSource)

removeSource(  Deliv- | boolean | Removes a source of the content
eryNode removeSource)

getSources(String pro- | Set Returns a set of sources that support

tocol) a given protocol (as DeliveryNode ob-
jects)

getAllSources|() Set Returns all sources of the content (as

DeliveryNode objects)
containsSource( Deliv- | boolean | Returns whether the content has a par-

eryNode node) ticular source

getNumSources() int Returns the number of sources of the
content

getNumSources(String | int Returns the number of sources sup-

protocol) porting a given protocol

Table 4.21: Overview of RemoteContent Object (N.B. Extends Content object)

4.5.4 Content Discovery Framework
Overview

The Discovery Framework is responsible for locating available sources of the de-
sired content. It is important to note that it is not responsible for discovering
which item of content an application or user may desire (e.g. through keyword
searching). Instead, it assumes the application is already aware of exactly which
item of content it wishes to download, uniquely identified through one or more
hash identifiers.

There are currently a number of providers that operate in the Internet utilising
a range of discovery mechanisms. A discovery mechanism can be defined as
any protocol that is used to locate sources of a given item of content. Once
an application has decided to access a particular item of content, a provider’s
discovery mechanism is used to ascertain whether or not it can serve it.

Generally, each discovery mechanism will provide indexing functionality for a
small number of providers and delivery systems. For instance, Google provides
indexing for a number of websites (HTTP and FTP); Mininova.org provides in-
dexing for BitTorrent swarms; and Gnutella provides indexing for Limewire and
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other Gnutella clients. In many situations, a desired item of content is indexed
in multiple discovery systems (and available through multiple providers). For in-
stance, sources of the latest Ubuntu ISO are indexed using Google, Mininova.org,
Gnutella and eMule, to name a few. Therefore, to locate complete sets of sources
it is necessary to interact with multiple discovery systems.

To allow access to content in all these different systems, the Discovery Frame-
work utilises multiple configurable discovery plug-ins that each provide access to
a given discovery system. The Discovery Framework therefore attaches a set of
plug-ins, which it queries whenever an application requests content from Juno.
Each plug-in returns its result containing any possible sources of the requested
content indexed within that particular discovery system. Requests are formatted
as Magnet Links, as described in Section 4.5.3, which allows easy interoperation
with plug-ins due to the widespread support for this addressing scheme. Any
plug-ins that utilise alternative hash-based addressing schemes can also be used
by simply converting the Magnet Link into their desired format (e.g. Meta Link,
XRI).

Plug-ins are both dynamically pluggable and extensible, offering an effective
means by which applications can gain access to many discovery systems without
dealing with the complexity themselves. This also allows new discovery mecha-
nisms to be added at a later date, therefore providing support for the introduc-
tion of new protocols (potentially including network-level content-centric lookups)
without modification to applications. The Discovery Framework thus provides
the foundations for content-centricity in the middleware layer as, through this
mechanism, the application is agnostic to content location or the use of any
particular discovery system. Instead, the applications views the content-centric
network as simply the Juno abstraction.

This section covers the design of the Discovery Framework, alongside the
discovery plug-ins. First, the Discovery Framework abstraction is detailed. Fol-
lowing this, the design of the plug-ins is provided. Last, the plug-in management
is described; this outlines the core of the Discovery Framework and shows how it
selects which plug-ins to query and how they are then interacted with.

Content Discovery Abstraction

The Discovery Framework is directly interacted with only by the Content-Centric
Framework. When the Content-Centric Framework receives a request from an
application and the content is not locally available, it first passes it to the Dis-
covery Framework. The purpose of the Discovery Framework is then to discover
any possible sources of the content. If the Discovery Framework is successful in
this task, it returns a list of the sources to the Content-Centric Framework, which
then utilises the Delivery Framework to access the content.

Table 4.22 details the IDiscoveryFramework interface; this is used by the
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Method ‘ Returns ‘ Description

locateSources(String Remote- | Locates sources for a given content
magnetLink) Content | identifier

setTimeout(int  time- | void Sets the timeout period for queries
out)

updateSources( Re- | boolean | Allows new source information to be
moteContent  remote- injected by external parties (e.g. the
Content) application)

Table 4.22: Overview of IDiscoveryFramework Interface

Content-Centric Framework to interact with the Discovery Framework. This
abstraction is very simple and offers access to the necessary functionality to locate
content. The primary method used is lookup(String magnetLink), which returns
a RemoteContent object. The RemoteContent object is a representative object
for an item of content that is remotely accessible (c.f. Section 4.5.3). It can
contain one or more sources that the content is accessible through; this can be,
for instance, a HTTP URL or, alternatively, the address and port of a peer
operating in Gnutella. Therefore, the RemoteContent object returned to the
Content-Centric Framework is always an aggregation of all results obtained from
the different discovery plug-ins.

There is also a setTimeout(int timeout) method, which allows the Content-
Centric Framework to stipulate a maximum length of time the Discovery Frame-
work can spend searching for content. This method dictates that the results
must be returned within this period regardless of whether all the plug-ins have
returned their results. Setting this value to 0 results in a timeout of co.

Discovery Plug-ins

The Discovery Framework maintains an extensible set of discovery plug-ins, as
indexed by the Configuration Repository. A plug-in contains the functionality
for querying a particular discovery system to ascertain the location (host:port
or URL) of any sources of the content indexed by that system. Plug-ins are
implemented as self-contained Juno configurations; each plug-in is therefore rep-
resented by a Configuration object (c.f. Section 4.4.3) that contains one or more
components. As described earlier, a Configuration object is an object that con-
tains the necessary functionality to interconnect one or more components to build
a service defined by a given service interface.

The service interface exposed by a discovery plug-in is show in Table 4.23.
This interface is very simple, offering only a single method to allow the plug-in to
be queried. It receives a Magnet Link and a timeout; after this period the plug-
in must return a RemoteContent object containing any sources it has located,
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Method \ Returns \ Description
lookup(String mag- | Remote- | Locates sources for a given content
netLink, int timeout) Content | identifier

Table 4.23: Overview of IDiscovery Plug-in Interface

alongside their supported protocols. Plug-ins solely interact with the Discovery
Framework. A plug-in must implement all functionality required to query a
particular discovery system in a self-contained way. For instance, a Gnutella
plug-in must contain the functionality to connect and interact with the Gnutella
overlay; to issue queries to the overlay; and to interpret any results received. As
with any Juno component, it is possible for the plug-ins to be configured with
any parameters that they might require, using the approach outlined in Section
4.4.2. This allows, for instance, a Gnutella plug-in to be configured to not actively
cooperate in the routing of requests to reduce overhead on low capacity devices.
An overview of the interconnections between the Discovery Framework and the
plug-ins is shown in Figure 4.10; here it can be seen that three plug-ins are
connected to the framework (although this can be extended).

IDiscovery
Framework
O

DiscoveryFramework

IDiscovery

IDiscovery IDiscovery

Bitzi Gnutella Mininova

Figure 4.10: Overview of Discovery Framework and Discovery Plug-ins

Discovery Plug-in Management

In essence, the Discovery Framework is a management unit for handling the
plug-ins. It involves two steps, (i) selecting which plug-ins to query (and in what
order), and (ii) querying them and aggregating their results. This section now
details these two processes.
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Method \ Returns ‘ Description

getPluginQueryOrder( | Execution-| Returns an ExecutionOrder containing

String magnetLink) Order String representations of the plug-ins
to query alongside their order and par-
allelism.

setPluginQueryOrder( void Sets the ExecutionOrder for a particu-

String magnetLink, lar Magnet Link

ExecutionOrder)

Table 4.24: Overview of DiscoveryPolicyMaker Interface

Selecting Discovery Plug-ins. When a request is received by the Discovery
Framework it is necessary to first select which plug-in(s) will be queried. This can
either be managed automatically by the Discovery Framework or, alternatively,
explicitly by the application.

When managed by the Discovery Framework, this is handled by a further
(pluggable) component, which is set by the application: the DiscoveryPolicyMaker.
This component, shown in Table 4.24, accepts a Magnet Link and returns the
order in which the plug-ins should be queried. The DiscoveryPolicyMaker returns
an ExecutionOrder object, which represents a sequence of events with each event
being associated with a plug-in and a timestamp relative to the request-time. The
ExecutionOrder always also stipulates an ‘END’ point at which the execution
ceases; this constitutes the timeout at which the Discovery Framework stops
waiting for results.

The purpose of this is to allow applications to influence the discovery process
based on their own knowledge. The extent of this knowledge will vary based on
how involved the application is with the provision of content. For instance, if the
application developers were also responsible for publishing the content, it is likely
that they could introduce a DiscoveryPolicyMaker component that could exploit
this awareness (e.g. to provide the best locations to search). By supporting this
ability, the discovery process can therefore be improved dramatically.

The DiscoveryPolicyMaker component is pluggable and can be re-configured
for use with different applications. In the most extreme of cases, it can even be
re-configured to use different implementations for each request. Currently, the
default DiscoveryPolicyMaker component is implemented using a file that can be
used to stipulate a default ExecutionOrder alongside any content-specific orders
required. This, however, can be extended to utilise more sophisticated features
such as performing remote lookups to decide the best ExecutionOrder. Impor-
tantly, the DiscoveryPolicyMaker can, like any other component, be dynamically
replaced therefore allowing modifications to be easily made during runtime.

Using Discovery Plug-ins. Once an order has been selected, the Discovery
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Framework queries each of the necessary plug-ins using the relative timestamps
provided by the DiscoveryPolicyMaker component. The Discovery Framework
subsequently collects each of the results returned by the plug-ins. Results are
returned using the RemoteContent object, shown in Table 4.21. The Remote-
Content object represents any item of content residing at a remote location. This
can be a single location or, alternatively, many locations using different protocols.

Due to the diversity of delivery plug-ins, it is usual for the results to arrive
progressively. This is because different plug-ins require different periods to obtain
their results (e.g. a Gnutella plug-in takes longer than a Pastry one). As each
RemoteContent object is received, the data is extracted and inserted into a new,
shared RemoteContent object. After the timeout has been reached, the Discovery
Framework returns the aggregated RemoteContent object.

4.5.5 Content Delivery Framework
Overview

The Delivery Framework is responsible for accessing content once possible sources
have been located by the Discovery Framework. Its duty is to provide the desired
content to the application in a way that best suits its requirements. This is
achieved through dynamic (re-)configuration of the framework to interoperate
with the most suitable provider(s). Generally, an item of content will be available
through a multitude of sources operating with different capabilities and protocols.
Thus, many different requirements can be satisfied (or unsatisfied) based on the
selection of which source(s) and protocol(s) to use.

This process is realised through the use of delivery plug-ins. These are plug-
gable components that offer the functionality to access content from a particular
delivery system. They are, however, managed in a different way to the plug-ins
used by the Discovery Framework. When the Content-Centric Framework re-
ceives a request from the application it first uses the Discovery Framework to
locate a set of accessible sources for the data. This information is then passed to
the Delivery Framework, which is responsible for accessing the content on behalf
of the application. To achieve this, the Delivery Framework parses any require-
ments for the delivery issued by the application; these can range from relatively
static preferences such as the level of security required, to far more dynamic as-
pects such as performance. Using these requirements, the Delivery Framework
selects the source(s) and protocol(s) that offer the content in the most appropriate
manner. Once this decision has been made, the Delivery Framework attaches the
necessary plug-in to interoperate with the optimal source(s) and then begins the
download. Following this, the content can be returned to the application in an
abstracted way using the preferred means (using one of the content representation
objects, c.f. Section 4.5.3).
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Method ‘ Returns ‘ Description

startDownload( RemoteCon- | Content | Starts a download for a particu-

tent content, String intf, lar content item using a particu-

Collection <MetaDataRule> lar service interface (e.g. stored

rules) or streamed) with a set of meta
rules

startDownload( RemoteCon- | Content | Allows a file location for the
tent content, String intf, download data to be specified
Collection <MetaDataRule>
rules, File file)

updateRuntimeInformation( | boolean | Allows a new set of meta-data re-

RemoteContent content, quirements to be introduced
Collection <MetaDataRule>
rules)

Table 4.25: Overview of IDeliveryFramework Interface

The plug-ins are dynamically attachable and extensible, allowing new plug-ins
to be acquired if an item of content is published using a currently incompatible
protocol. The use of delivery plug-ins therefore offers a powerful mechanism by
which applications can request content without having to manage any of the lower
level concerns. This section details the design of the Delivery Framework. First,
the abstraction used to interact with the framework is detailed. Following this,
the delivery plug-ins are described. Finally, the management functionality of the
framework is outlined, showing how plug-ins are selected and attached.

Content Delivery Abstraction

The Delivery Framework is solely accessed by the Content-Centric Framework;
its interface is detailed in Table 4.25. Once a set of possible sources have been
located by the Discovery Framework, they are passed into the Delivery Framework
alongside the application’s requirements. Requirements are structured as sets of
MetaDataRule objects (c.f. Section 4.4.4), which stipulate the preferred values of
particular items of meta-data exported by each delivery plug-in. The framework
abstraction provides the ability to start a download as well as to store the data in a
stipulated file. Importantly, it also offers the ability for the application to update
its delivery requirements at any given time using an updateRuntimelnformation
method. This allows a new set of MetaDataRule objects to be passed to the
framework, thereby driving re-configuration.
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Method \ Returns \ Description
startDownload ( Re- | Stored- Starts downloading a remote item of

moteContent content, | Content | content
String file)

stopDownload (String void Stops a download and deletes all tem-
contentID) porary data

pauseDownload(String | void Temporarily ceases the download
contentID)

Table 4.26: Overview of IStoredDelivery Plug-in Interface

Delivery Plug-ins

The Delivery Framework maintains an extensible set of delivery plug-ins. A plug-
in is responsible for accessing an item of content on behalf of the framework. Plug-
ins are implemented as Juno configurations; each plug-in is therefore represented
by a Configuration object (c.f. Section 4.4.3). The service interface exposed
by the plug-in depends on its underlying method of delivery. Currently, Juno
has defined service interfaces for both downloading and streaming content. An
individual plug-in can implement multiple service interfaces; for instance, the
HTTP plug-in supports both streamed and stored delivery and therefore offers
both interfaces.

A delivery plug-in is not restricted in how it accesses an item of content. Cur-
rently, most plug-ins implement an individual protocol (e.g. HTTP) and there-
fore offer the functionality required to access content in that individual system.
However, it is also possible for plug-ins to consist of multiple existing plug-ins
operating in a composite manner. By handling multiple delivery systems in co-
operation like this, it becomes possible to manage their individual complexities
in a more controlled manner. Further, the implementation of functionality in
components allows easy reuse.

The stored delivery plug-in interface is defined in Table 4.26. When the
startDownload method is invoked, the content is downloaded and the data written
to file. The chosen file can be explicitly stipulated or, alternatively, the Content
Manager can automatically select the location of it. This method subsequently
returns a StoredContent object representing the local instance of the content so
that the application can gain a handle on the data. This object also allows access
control by preventing the application from retrieving a handle on the data until
Juno has authorised it.

The streamed delivery plug-in interface is defined in Table 4.27. It offers the
functionality to provide the application with content using a streamed abstrac-
tion. Ordinarily, a streamed delivery plug-in contains the functionality to access
content in a delivery system that support streaming. However, the nature of
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Method ‘ Returns ‘ Description

startStream( Remote- | Streamed- Starts streaming a remote item of con-
Content content, String | Content | tent

file)

stopStream(String con- | void Stops a stream and removes temporary
tentID) data from memory
pauseStream(String void Temporarily ceases the stream
contentID)

Table 4.27: Overview of IStreamedDelivery Plug-in Interface

the abstraction even allows stored delivery systems to be used by downloading
the entire file and then beginning the streaming. This limitation is obviously
manifested in the plug-in’s meta-data (i.e. a very high start-up delay).

Delivery Plug-in Management

In essence, the Delivery Framework is a management unit for handling the use
of multiple plug-ins. This involves two steps, (i) selecting the optimal plug-in,
and (i7) utilising it. Alongside this, it can also be necessary to perform re-
configuration, which involves repeating these steps.

Selecting Delivery Plug-ins. When a request is received by the Delivery
Framework it is necessary to select which plug-in should be utilised to access the
content. At this point in time, the Delivery Framework possesses a RemoteCon-
tent object that provides it with,

e Content Identifier(s): The Magnet Link containing the identifier(s) of the

content

e Potential Source(s): A list of sources, including their supported protocol(s)
embodied in a RemoteContent object

The first step taken is to extract the protocols that each available source
supports. Protocols are identified using the format: protocol:variation. The pro-
tocol identifier refers to the particular base protocol that the source utilises (e.g.
BitTorrent, HTTP etc.). The variation parameter then stipulates a possible
provider-specific variation; this allows a provider to release a specialised plug-in
that can exploit some provider-specific functionality (e.g. using network coordi-
nates for locality awareness).

Equivalents of these protocol tags are used by the delivery plug-ins to adver-
tise which protocols (and variations) they support. This information is advertised
through the IMetalnterface of each plug-in (c.f. Table 4.8). This allows Juno to
match up sources with the plug-ins capable of exploiting them. For each protocol
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Provider ‘ Protocol ‘ Indexed by
Limewire HTTP:Limewire Gnutella
Rapidshare HTTP RapidSharelndex
BitTorrent Swarm | BitTorrent:Tracker | Mininova

Table 4.28: Example Set of Available Plug-ins

found to offer the content, the Delivery Framework invokes a buildService method
call on the ConfigurationEngine, passing in the need for a delivery plug-in that
supports the identified protocol. This is easily achieved with the following code,

Vector rules = new Vector()
rules.add(new MetaDataRule(" PROTOCOL", MetaDataRule.EQUALS, "HTTP");
IStoredDelivery plugin =

(IStoredDelivery) ConfigurationEngine.buildService (" StoredDelivery”, 0, rules);

After this process has completed, the Delivery Framework holds a collec-
tion of plug-ins; one for each of the sources located. Table 4.28 provides an
example set of plug-ins and their protocols. Note that there are two variations
of HT'TP; Limewire actually utilises HI'TP for point-to-point connections with
each Limewire peer whilst Rapdishare uses HT'TP in the traditional sense.

The next stage is to allow each plug-in to generate and expose its meta-data.
Some of this information is static and can therefore easily be provided. However,
certain items of meta-data must be dynamically generated, e.g. the predicted
download throughput. If the provider has deployed a protocol variation plug-
in then it may be capable of interacting with the provider’s infrastructure to
ascertain this information (e.g. through a remote query interface). However,
if the provider is represented through a standard plug-in implementation, then
mechanisms must be employed that can generate this information without the
explicit cooperation of the provider. This is required to maintain backwards
compatibility with traditional delivery schemes.

Any runtime meta-data must be dynamically generated by each plug-in. Each
plug-in will generally utilise a different mechanism by which its own meta-data is
generated. This functionality is usually embodied in a separate pluggable compo-
nent that performs the generation on behalf of the plug-in. As such, this allows
different prediction mechanisms to be used based on the requirements, environ-
ment and resources of each node. Subsequently, any plug-in can use any means it
is capable of including active probing, simulation, remote service invocation and
modelling. These prediction mechanisms are explored in detail in Chapter 5. To
assist in this, RemoteContent objects can also contain meta-data that might be
used by the process. Generally, the source information is only required, however,
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this ability can also be used to provide extra information such as source location
and content properties. The following code allows a plug-in to generate its meta-
data,

Hashtable info = remoteContent.getMetaData();
plugin.generateRuntimeMetaData(" IStoredDelivery”, info);

Once all the delivery plug-ins have generated their meta-data, the selection
process is simple. The Discovery Framework passes all the plug-ins to the Config-
uration Engine alongside the original meta-data rules provided by the application.
This is achieved by the following code,

Collection<MetaDataRule> applicationRules = rules from application;
Vector plugins = collection of all plug-ins offering the content;
IStoredDelivery selectedPlugin =

ConfigurationEngine.select(plugins, applicationRules);

The selectedPlugin variable will subsequently reference the plug-in that has
meta-data that best matches the rules provided by the application. The se-
lection process is therefore abstracted away from the Delivery Framework and
encapsulated in the Configuration Engine. As with any other component, the
Configuration Engine can easily be replaced with different implementations. De-
tails of the current implementation is provided in Section 4.4.4.

Using Delivery Plug-ins. Now that the optimal plug-in has been selected,
it can be interacted with through one of its service interfaces (e.g. IStoredDe-
livery). The other instantiated plug-ins are also left active until the delivery has
completed; this is because if the currently chosen plug-in later becomes subop-
timal, it might become necessary to replace it. As such, the other components
must remain in memory so that they can continue to offer runtime meta-data.
The chosen plug-in can easily be interacted with using the following code,

RemoteContent content = contentToDownload;
String file = locationToStore;
selectedPlugin.startDownload(content, file);

The plug-in will then begin to download the content using the compatible
source(s) and storing the data in the provided file using the Content Manager. If
the download is successful, there is no further function for the Delivery Frame-
work to perform because it has already returned a reference to the content (e.g. a
StoredContent object, c.f. Section 4.5.3) when the Content-Centric interface first
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invoked the download operation. However, during the download it is possible for
either the meta-data of the plug-in to change or, alternatively, the selection pred-
icates issued by the application to change. This will occur if there are runtime
variations or if the application decides to change its requirements by issuing new
MetaDataRule objects. When this situation occurs, it is necessary to perform
re-configuration.

Re-configuring Delivery Plug-ins. Delivery re-configuration takes place
when the currently utilised plug-in becomes suboptimal for some reason. This
can be because of a runtime variation (e.g. network congestion) or, alternatively,
because the application changes its requirements (e.g. it needs different security).
For instance, if an application issues high security requirements, Juno might con-
figure itself to use BitTorrent whilst running over the Tor network [30] to ensure
anonymous, encrypted communications. However, if the Tor connection fails,
Juno would have to stop using BitTorrent to ensure the required level of secu-
rity; this might therefore involve using a different provider offering the content
through HTTPS. The actual process of re-configuration in Juno is detailed in
Section 4.4.4, however, a brief overview of how this specifically takes place in the
Delivery Framework is now given.

Each service in Juno is associated with (i) meta-data and (i7) and selection
predicates that define the required values of the meta-data. This information
is maintained in the the service-specific Configurator object, which acts as a
container for each service (such as a plug-in). If a delivery undergoes some form
of runtime modification, it is necessary for the plug-in to reflect this in its meta-
data. Whenever a component’s meta-data changes, the Configuration Engine
is notified. Similarly, this also occurs if the application changes its selection
predicates.

Whenever this occurs, it triggers a rebuildService operation in the Configura-
tion Engine; this is to validate that the currently selected configuration is still
optimal for the associated selection predictions. To do this, the Configuration
Engine simply extracts the selection predicates from the plug-in’s Configurator
and then compares them against the current plug-in’s meta-data. If the plug-in is
no longer suitable, the selection process is re-executed to find the optimal plug-in.
This simply involves repeating the previous process by looking at the meta-data
of all the compatible components. If this results in a new plug-in being selected,
it is simply passed into the existing Configurator using its configure method. This
Configurator then extracts the previous plug-in’s state before injecting it into the
new plug-in and resuming the previous delivery. During this entire process, the
higher layers of the middleware, as well as the application, remain unaware of
these changes. Further, because content management is always performed exter-
nal to any given plug-in, there is no need to transfer content between different
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plug-ins.

4.6 Conclusions

This chapter has presented the Juno middleware, which offers a content-centric
and delivery-centric abstraction for use with existing content systems. First, a
number of key requirements were elicited based on the findings of the previous
chapters. Following this, a component-based service framework was outlined, be-
fore presenting the design of Juno’s content-centric functionality. Juno utilises
software (re-)configuration to allow consumer-side interoperation with third party
content systems, thereby opening up and unifying a huge body of content and
resources. Using this position, Juno then intelligently selects between multiple
content sources to best fulfil requirements issued by the application. To sum-
marise,

e A middleware has been detailed, Juno, that places content-centric and
delivery-centric functionality at the consumer-side

e Juno presents applications with a standardised abstraction that allows them
to request content whilst stipulating their preferred access mechanism (e.g.
stored, streamed etc.), alongside any other delivery requirements they have

e Juno utilises software (re-)configuration to adapt the underlying implemen-
tation of its content discovery and delivery protocols to interoperate with
a range of existing systems

— It uses the Magnet Link standard to uniquely discover content in mul-
tiple third party systems

— It uses meta-data comparison to select the optimal provider(s) to serve
an application’s delivery requirements

e Juno therefore offers a content-centric and delivery-centric abstraction with-
out requiring modifications within the network or the providers

e This can be performed whilst remaining transparent to the application

So far, this chapter has dealt primarily with software and architectural is-
sues of building and designing Juno. It therefore has provided the foundation
for offering a middleware-layer content-centric service. It should also be noted
that this framework has been used by third party developers to develop discovery
protocols [129], thereby further validating its design. However, many important
practical real-world deployment issues have not yet been covered. In relation to
the Discovery Framework, this involves the required optimisation process for im-
proving the performance and overhead of dealing with many divergent discovery
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systems. Further, in relation to the Delivery Framework, is has not yet been
discussed how meta-data is generated to inform the source selection process. The
next chapter builds on this chapter to explore these issues and offer solutions to

make Juno truly deployable in the real-world.



Chapter 5

Addressing Deployment
Challenges in Delivery-Centric
Networking

5.1 Introduction

The previous chapter has detailed the design of the Juno middleware, which
utilises dynamically attachable plug-ins to allow consumers to interoperate with
existing discovery and delivery infrastructure. This allows applications to seam-
lessly utilise the content and resources of existing deployed systems, whilst fur-
ther offering the ability to achieve delivery-centricity through (re-)configuration
between optimal providers and protocols. A major advantage of building content-
centricity in the middleware layer is therefore that it can be deployed effectively
without major expense or the need for new infrastructure. This, however, creates
a trade-off: maintaining client-side interoperability without modification to the
provider increases availability and ease of deployment; but, by doing so, efficiency
is reduced and client-side complexity is increased.

This chapter describes and addresses key deployment challenges relating to
Juno’s design philosophy. Specifically, it looks at offering techniques to transpar-
ently deploy content-centric and delivery-centric support without requiring the
modification of existing providers (although it is hoped providers will begin to
adopt explicit support in the future). This involves allowing Juno to more effec-
tively discovery content in third party systems, as well as allowing it to generate
dynamic meta-data without explicit provider cooperation.

This chapter now explores these unique issues that challenge Juno’s successful
deployment. First, these challenges are explored in more detail. Following this, a

145



CHAPTER 5. ADDRESSING DEPLOYMENT CHALLENGES IN
146 DELIVERY-CENTRIC NETWORKING

mechanism is described by which the information indexed in the different discov-
ery plug-ins can be aggregated and offered as a (higher performance) Juno-specific
lookup service. Last, the challenge of generating runtime meta-data for the de-
livery plug-ins is explored; using the modelling techniques explored in Chapter
3, it is shown how Juno integrates prediction capabilities into its architecture.

5.2 Deployment Challenges

This section briefly explores the key deployment challenges facing Juno’s ap-
proach to the discovery and delivery of content.

5.2.1 Content Discovery

Content discovery relates to the discovery of possible sources of a particular item
of content. Recent content-centric networking proposals [83][93] place this func-
tionality within the network, which involves deploying infrastructure to perform
content routing. As discussed in Chapter 2, however, this creates significant bar-
riers to deployment. These barriers centre on cost and complexity, as well as the
frequent need for third party cooperation (e.g. ISPs).

The primary deployment challenge relating to content-centric discovery is
therefore finding a way in which a content-centric networking abstraction can be
exposed to the application without requiring the deployment of new and expensive
network infrastructure/protocols. Juno’s solution is to build a middleware-based
integration layer that maps abstracted content-centric identifiers to traditional
location-based identifiers. This is done using Magnet Link addressing, which
allows content to be uniquely identified using hash-based identifiers. This allows
the use of existing infrastructure without the need to utilise new protocols or
introduce expensive hardware. Instead, the middleware layer must manage the
interoperation with these existing content systems.

As discussed in Chapter 4, the discovery of content is performed by the Dis-
covery Framework, which utilises dynamically pluggable discovery plug-ins to
interoperate with external discovery systems. The beauty of this approach is
that it allows clients to interoperate with a wide-range of content networks re-
gardless of their individual methods of discovery. This means that Juno can be
deployed quickly without expense or the need to modify existing providers. How-
ever, a major limitation is that there is an overhead associated with the use of
multiple simultaneous plug-ins. This overhead comes in the form of memory and
processing costs as well as bandwidth consumption. Perhaps, more importantly,
there is also a disparity between the performance of plug-ins, in that that each
will take a different length of time to answer queries. This therefore results in a
trade-off at the client-side based on how long the application is prepared to wait.
This obviously adds complexity to an application specification and can result in
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suboptimal decisions being made rather than waiting for more extensive results
to be received.

Subsequently, the primary deployment challenge relating to content discovery
in Juno is the need to optimise the use of plug-ins to build high performance
lookups. Importantly, however, the Discovery Framework must still maintain the
advantages of using plug-ins, i.e. (i) fast and efficient deployment, and (ii) the
ability to discover sources in multiple existing content systems. The challenge
can therefore be summarised as needing a single integrated (high performance)
lookup system that ideally offers all information indexed by all plug-ins.

5.2.2 Content Delivery

Content delivery is the process by which a node accesses an item of content.
Generally, recent content-centric proposals such as AGN [83] have built their
own delivery protocols within the realms of the overall content-centric network.
However, due to their low level nature, these delivery protocols are not flexi-
ble or configurable to adapt to changing requirements. This is a key observa-
tion that this thesis strives to address. Juno does this by placing support for
delivery-centricity within the middleware-layer, alongside the traditional discov-
ery functionality. Once again, it uses this position to interoperate with any given
provider/protocol capable of providing the desired content. This ability is ex-
ploited to allow a consumer to adapt (at the middleware layer) to be able to
interact with any chosen source based on its ability to fulfil the specific require-
ments issued by the application.

To allow this, it is therefore necessary to allow a node to gain an under-
standing of each source’s ability to fulfil a set of requirements. In Juno, this is
done by associating each source with descriptive meta-data that can be compared
against requirements structured as selection predicates. Requirements based on
static items of meta-data can easily be modelled because such meta-data can be
set at design-time within the plug-in. Further, ‘relatively’ static meta-data (i.e.
meta-data that only rarely changes, e.g. the location of a server) can be automat-
ically acquired during a node’s bootstrap from a remote source (e.g. centralised
repository). However, this cannot be achieved with highly dynamic meta-data,
which can be constantly changing. An important example is that of performance,
which can vary dramatically based on runtime parameters, as explored in Chap-
ter 3. Consequently, to enable deployment, these runtime parameters must be
dynamically acquired and modelled without provider-side modification.

Subsequently, the primary deployment challenge in terms of content delivery
is allowing this meta-data to be generated dynamically without the explicit co-
operation of third party providers. As detailed in Chapter 3, this can be achieved
using various models that translate vital runtime parameters into accurate meta-
data. The key challenges are therefore (i) collecting the necessary parameters,
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and (77) converting them into meta-data without provider-side cooperation.

5.3 Juno Content Discovery Service

The previous section has outlined the key deployment challenges facing Juno’s
design. If deployment were not a focus of this thesis, the easiest approach to
discovery would be to force all providers to register references to their content with
a global lookup service. Unfortunately, however, it is unlikely that in the near
future many providers would support the usage of a single, unified global indexing
service for their content. Further, with peer-to-peer systems such as Gnutella, it
would be near impossible to achieve this in a scalable manner. Juno’s configurable
nature supports the later introduction of such global indexing services, however,
to resolve this concern in a deployable manner it is necessary for a consumer-side
approach to be also taken. This is in-line with the primarily uni-sided deployment
of Juno that has so far been described. The challenge in this is therefore to allow
the high performance mapping: content identifier — location identifier, without
explicit cooperation from the providers.

To achieve this, Juno builds a service called the Juno Content Discovery
Service (JCDS). This is an indexing service for content so that it can be both
passively and actively indexed. Passive indexing occurs when a consumer locates
an item of content and then uploads a reference to the JCDS. This can be a new
item of content or, alternatively, a new source for an existing item. In contrast,
active indexing is where a provider decides to explicitly upload a reference. The
JCDS therefore supports immediately instigating passive indexing whilst also
offering the potential for providers to later cooperate with active indexing.

This section details the JCDS; first, its principles and design is outlined.
Following this, it is shown how providers can actively contribute to the JCDS
by using it to index their content. Lastly, the cooperative indexing process is
outlined showing how consumers can contribute to the JCDS.

5.3.1 Overview of JCDS

The Juno Content Discovery Service (JCDS) is an indexing service based on a
traditional hash table abstraction. It allows content references to be uploaded and
retrieved using one or more unique content identifiers. This publication process
can be done by both consumers and providers alike.

The JCDS is built as a discovery plug-in that can be attached to the Juno
Discovery Framework. It offers the standard plug-in service interface (detailed
earlier in Table 4.23), which allows the Discovery Framework to perform queries.
The JCDS’s indexing method is simple; it works using a hash table abstraction
through which it issues requests for content information based on one or more
of its content identifier(s). Figure 5.1 provides an exemplary abstract overview
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of the JCDS; in this diagram a single lookup server maintains a table mapping
‘Content-A’ to the four different providers*. When the consumer wishes to access
‘Content-A’, it sends a request to the JCDS server using the content’s unique
identifier. In response, it returns a list of all the providers that offer the content.
Using this information, the consumer then selects its preferred source and accesses
the content. Currently a server-based implementation is utilised to allow easier
testing but, in practice, a KAD [106] implementation would be deployed due to
its high performance and scalability. Importantly, through Juno’s configurable
architecture, the existing server-based implementation can be replaced with the
KAD implementation without modifying any other code.

Provider-A 'I
¢

Consumer

Lookup Content-A Q

Q
Response: Provider A, B, C, D )@

Figure 5.1: An Abstract Overview of the Juno Content Discovery Service (pre-
sented as a client-server implementation )

To allow the JCDS to function on a large-scale, it is necessary for its index to
be propagated with information regarding content. This can be achieved using
two approaches,

e Provider Publication: A provider that offers an item of content uploads a
reference to it

o Cooperative Indexing: A consumer that accesses a previously unindexed
item of content uploads a reference to it

Both approaches require that a simple mapping is performed from content iden-
tifier — location identifier. As such, content transfers do not take place using
the JCDS; instead, the JCDS is used as a redirection service to lookup potential
location-addressed sources. Unlike previous designs (e.g. DONA [93]), however,

*This is an exemplary diagram, a real deployment would be unlikely to use a single server
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there is no binding to particular delivery systems and protocols. The JCDS is an
open service that allows any provider using any protocol to publish their content.

5.3.2 Provider Publication

The most effective means by which the JCDS can be propagated with informa-
tion is for all providers to voluntarily upload references to their content. For
instance, if a provider places a new item of content (Content-A) on a web server
(www.content.com), it can upload this information to the JCDS. This would make
the source instantly discoverable. Briefly, it is important to note the distinction
between the content and the source becoming discoverable. Within Juno, dis-
covery refers to the ability to locate a set of sources for a given item of content.
As such, strictly speaking, content is not published on Juno; instead, sources are
published. Therefore when a source is published, the following record is placed
on the JCDS: Content-A — http://www.content.com/content-a. The placement
of this record on the JCDS takes three steps,

1. Uploading Content: The content must first be made accessible through
some medium (e.g. a HTTP server, BitTorrent tracker etc.)

2. Generating Identifiers: The content identifiers (i.e. hash values) must be
generated

3. Publication: A RemoteContent object must be built that contains the con-
tent meta-data alongside the location(s) it is accessible from. This must
then be published on the JCDS using the hash identifier(s) to index it

The first step, uploading content, involves the same procedure that any provider
must undergo when publishing sources. Traditionally this involves protocols such
as FTP, HTTP or BitTorrent, however, any delivery system can be utilised as
long as a delivery plug-in exists.

The second step, generating identifiers, involves calculating the hash values
from the content’s data. Following this, the Magnet Link can also be generated
by integrating the hash values. Any hash algorithms can be utilised, however,
the recommended ones are SHA1, Tiger Hash and ED2K as these are the most
frequently used in discovery systems. This entire step can be easily managed
using existing, stand-alone software such as BitCollider [3]. This is also packaged
with Juno and allows Magnet Links to be generated automatically when content is
introduced to the Content Manager. The process is relatively lightweight without
excessive computational costs, even for large files (e.g. ~25 seconds for a 720 MB
film).

The third step, publication, involves building a RemoteContent object that
contains a reference to the location(s) of the content, any meta-data, and the
Magnet Link (including the hash values). An overview of this information is
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Parameter ‘ Description

IP address(es) | The IP address(es) of the access point of the content

Port(s) The port(s) of the access point that can be connected
to

URL(s) If necessary the URL path(s) of the content

Protocol(s) The protocol(s) supported by each source

Meta-Data Any meta-data related to the content e.g. author,
composer etc.

Table 5.1: Overview of Data within RemoteContent Object

Method ‘ Returns | Description

provide() void Publishes all content in the Content
Manager on the JCDS (as well as mak-
ing it locally available through the de-
fault provider plug-ins)

provide (Collection | void Publishes a collection of items of con-

<StoredContent> tent (as well as making it locally avail-

content) able through the default provider plug-
ins)

getRemoteContent void Retrieves the RemoteContent object

(String contentID) for a particular item of content

Table 5.2: Overview of IProvider Interface

provided in Table 5.1. This RemoteContent object is then simply published on
the JCDS using the put method; to enable flexible querying, it should be stored
under all of its content identifiers. If there is an existing RemoteContent entry
for the given file on the JCDS, the two entries are merged.

To assist in the process, Juno also offers the |IProvider interface, which allows
applications to publish content in this manner without handling the complexities
themselves. Table 5.2 details it methods; in essence, this interface allows appli-
cations to request items of content are made available. This involves performing
the above three steps, as well as initiating a configurable set of provider plug-ins,
which then make it locally available. These provider plug-ins can, of course, also
upload the content to other remote point (e.g. Amazon S3). The default provider
plug-ins are set using a standard configuration file.

5.3.3 Cooperative Indexing

Content sources can easily be published by providers, however, for this to be
globally successful it would be necessary for every provider to conform with Juno’s
usage. This is largely unrealistic and subsequently it becomes impossible to build



CHAPTER 5. ADDRESSING DEPLOYMENT CHALLENGES IN
152 DELIVERY-CENTRIC NETWORKING

a truly content-centric network, as much content would remain inaccessible. In
principle, a content-centric network should, instead, provide access to every item
of content in the world. To help address this, Juno utilises cooperative indexing.
This involves using the resources and knowledge of every peer in the system to
build up a database of accessible content.

The principles involved are simple; if a node discovers a new item of content,
or a new source for an existing item of content, it contributes this information to
the JCDS. This subsequently allows other nodes to discover the content, therefore
making it visible to Juno. These two processes are now outlined.

Discovering a new item of content. This situation occurs when an item of
content enters the Content Manager of a Juno node that isn’t already indexed
on the JCDS. This occurs when a new item of content or Magnet Link is passed
to Juno by the application. A new item of content can be discovered in one of
two ways, as now detailed.

First, the application might provide Juno with a new Magnet Link that can be
passed into one or more plug-ins. If any of these plug-ins discover the content, it
can then be downloaded; if this successfully takes place, the Magnet Link can be
verified and uploaded to the JCDS. In this situation, the application must find
the Magnet Link through some higher level mechanism, which is not detailed
here; an example of this might be through a software management service.

The second way is if the Juno Content Manager encounters a new item of
content through alternate means. This would happen if the application utilises
an out-of-bands discovery mechanism (i.e. a non Magnet Link). In this case,
the Content Manager would generate a new Magnet Link from this content and
upload it onto the JCDS alongside the source information.

The former would be the most frequent situation, i.e. the introduction of a
new Magnet Link to Juno via an application. As an application would usually be
deployed on multiple nodes, it would only take a single node to use the application
before the JCDS indexes the appropriate content. When this first node receives
the Magnet Link the following steps take place,

1. Acquire a Magnet Link through an application-specific mechanism

2. Query the Discovery Framework with the Magnet Link and download the
content (if available)

3. Validate that all the Magnet Link’s content identifiers are correct by re-
executing the necessary hashing algorithms

4. Augment the Magnet Link with any missing hash algorithms and meta-data
extracted from the content
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Method \ Description
registerSource (Re- | Publishes an item of content on the JCDS if it is
moteContent) not already indexed. If it is already indexed, the

RemoteContent object is checked for any sources
that aren’t already indexed

Table 5.3: Overview IJCDS Interface

5. Upload the Magnet Link onto the JCDS as well as any sources of the content
that have been discovered and verified; it should be stored using each of
the content’s hash values

The JCDS functionality is implemented within a discovery plug-in. However,
to enable the above cooperating indexing procedure to take place, the JCDS
plug-in also supports an extended interface, as shown in Table 5.3. The IJCDS
interface simply allows a RemoteContent object to be passed into the plug-in.
This object can either contain a new item of content or, alternatively, a new
source for an existing item of content. The Discovery Framework, however, does
not need to handle this; instead, every RemoteContent object encountered by
the Discovery Framework can simply be passed into the JCDS plug-in, which
will then analyse it to check if there is anything new. Therefore, whenever the
Discovery Framework discovers an item of content through a plug-in that is not
the JCDS, it is passed into the JCDS to extract any possibly new information.

When the JCDS component receives the RemoteContent object, it first per-
forms a lookup to verify whether the item of content is already indexed. If it
is not, the piece of content is retrieved from the Content Manager (when it is
available) and validated against the Magnet Link and any missing hash identifiers
generated. If this process successfully completes, the RemoteContent object is
uploaded onto the JCDS.

Discovering a new source of content. This situation occurs when an item
of content is already indexed on the JCDS but a node discovers a new source
that is not indexed. Every RemoteContent reference on the JCDS is associated
with a list of possible sources (e.g. Limewire peers, HT'TP servers etc.). Every
time a client queries a plug-in with a Magnet Link, it is possible for a new source
to be discovered; in peer-to-peer systems such as Limewire this may occur on a
highly frequent basis as peers come and go. The process of contributing content
sources is simple and can be outlined as follows,

1. Acquire a Magnet Link though an application-specific mechanism

2. Query the Discovery Framework with the Magnet Link. This results in the
plug-ins (including the JCDS) being queried
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3. If any sources are discovered that are not also returned from the JCDS,
upload the references to the JCDS

4. The JCDS will verify the sources are not already indexed and then add
them to the RemoteContent object

The functionality for this is implemented in the JCDS component alongside
the functionality for discovering new items of content. Therefore, whenever the
Discovery Framework performs a lookup using other plug-ins, the aggregated Re-
moteContent object is passed to the JCDS (using the IJCDS interface). The
JCDS component then compares its own results against the RemoteContent ob-
ject generated by all the other plug-ins. If any new sources have been discovered,
these are then uploaded to the JCDS index. These, however, must be first vali-
dated against the Magnet Link’s hash identifiers; consequently, only sources that
are downloaded from are uploaded to the JCDS. It should also be noted that
many delivery protocols such as BitTorrent, Limewire and eD2K support the ex-
change of source information between peers and therefore the JCDS often will
only require a single valid source to act as a gateway into the system. Follow-
ing this, it is often possible to acquire a larger set of up-to-date sources through
this gateway peer. This is most evident in BitTorrent-like protocols that use a
centralised gateway (a tracker) that can be used to retrieve a set of current peers.

5.3.4 Managing Plug-ins

So far, the standard approach for querying plug-ins has been to pass a request
into all available plug-ins; this is to gain access to as many sources as possible.
However, the use of the JCDS means that it is possible for a single JCDS plug-in
to potentially index the content of all the other plug-ins. As such, sometimes
there is no benefit in querying all the plug-ins as this simply creates an undue
overhead. It is therefore important to manage this process; this is done within the
DiscoveryPolicyMaker component, as detailed in Section 4.5.4. This component
is contacted by the Discovery Framework whenever a request is received from
the application. It is the responsibility of the DiscoveryPolicyMaker to return
a description of which plug-ins to query and over what timeframe. This allows
queries to be treated differently; for instance, a query for a small picture file
might only utilise the quickest plug-ins alongside a short timeout (< 500 ms) to
ensure that there isn’t a significant delay during the query.

Like any other component, the DiscoveryPolicyMaker component is pluggable
and can be re-configured during runtime. As such, a specialist JCDS Discovery-
PolicyMaker component is attached to the Discovery Framework whenever the
JCDS is used. This allows the Discovery Framework’s behaviour to be shaped by
the knowledge of the JCDS. The JCDS DiscoveryPolicyMaker component is im-
plemented using a simple probabilistic algorithm that creates a trade-off between
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the overhead and accuracy of results. Its purpose is to minimise overhead whilst
maintaining an acceptable degree of accuracy. This trade-off must be made on a
per-node level to take into account individual preferences and resources.

When the JCDS DiscoveryPolicyMaker is first attached to the Discovery
Framework, all available plug-ins are utilised (this includes the JCDS plug-in).
This means every plug-in is queried for every request. This process has an obvi-
ously high overhead but allows (i) optimal results to be gained, and (i) statistics
to be generated based on each plug-in. After every lookup, the JCDS plug-in
compares its own results against the results of the other plug-ins (this is pos-
sible because the Discovery Framework always passes the information in using
the registerSource method). The results of this comparison are then passed to
the JCDS’s DiscoveryPolicyMaker component. In fact, these are actually imple-
mented within the same software component, i.e. a single component offers both
the IDiscoveryPlugin and IDiscoveryPolicyMaker interface.

This comparison consists of comparing the percentage of total sources that are
discovered by the JCDS. For instance, if the plug-ins collectively find 10 sources
of the content and the JCDS plug-in discovers 8 of those, this means that the
the JCDS indexes 80% of available sources. Therefore, a node that consistently
accesses well indexed content is likely to continue accessing well indexed content
in the future, thereby negating the need for the other plug-ins. Importantly, this
comparison is performed against each plug-in individually. For example, for two
plug-ins, P! and P2, it is possible that the JCDS indexes all sources provided
by P! but none of the sources indexed by P?. In such a situation, P! can be
detached without any loss of performance whilst the opposite exists for P2.

To enable this, the JCDS DiscoveryPolicyMaker maintains a moving average
hit rate for each plug-in. A hit occurs when a plug-in finds a source that is also
found by the JCDS, whilst a miss occurs when a plug-in finds a source that is
not indexed by the JCDS. This is calculated for plug-in ¢ using the equation,

hit!
hit* + miss®
By calculating this hit rate over time, the JCDS DiscoveryPolicyMaker can then
make appropriate decisions as to which plug-ins to remove and which to keep. To

enable this decision process it is necessary to provide three important parameters,

o Detachment Threshold: The average percentage of sources that must be
discovered by the JCDS before a plug-in can be detached

o Minimum Queries: The minimum number of queries before comparing the
running average to the threshold

e Probe Probability: The probability of re-initiating old plug-ins to re-check
their performance
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Using these parameters, once the minimum number of queries have been gener-
ated, the DiscoveryPolicyMaker begins to compare the moving averages for each
plug-in against the threshold. Any plug-in that offers an average that exceeds
the threshold is detached. Using the previous example, this means that P! would
be detached whilst P? would remain attached. Last, it is also important to allow
plug-ins to ‘redeem’ previous bad performance. This is particularly beneficial
for peer-to-peer discovery systems that can have highly variable performance.
Therefore, every minute each plug-in has the probabilistic opportunity to be re-
attached for the minimum number of queries again. This allows a plug-in to
re-enter use to verify whether or not the JCDS still indexes the sources that it
offers. This process is formalised in the following algorithm,

Source[] jedsSources = all sources discovered by JCDS

Source]| pluginSources = all source discovered by other plug-ins

int[] hitCounter = # of sources for each plug-in also found by JCDS
int[] missCounter = # of sources for each plug-in not found by JCDS

for ¢ = 0 to pluginSources.length do
if pluginSources[i] € jedsSources then
++ hit counter for plug-in ¢

else

._.
@

++ miss counter for plug-in ¢
end if
: end for

_= = = =
oW o

//Tterates through each plug-in i

: for ¢ = 0 to hitCounter.length do

if hitCounter[i]/(hitCounter|i] + missCounter[i]) > threshold then
Stop using plug-in 7 and replace it solely with the JCDS

end if

: end for

o e e
L »®» 3>

5.4 Delivery-Centric Meta-Data Generation

5.4.1 Overview

Section 5.2 has provided an overview of the deployment challenges facing Juno’s
design. The previous section has shown how passive indexing can be used to dis-
cover content sources in existing systems without explicit support from providers.
However, once these providers have been found to offer an item of content, it is
necessary to generate accurate meta-data that represents their abilities to satisfy
a set of requirements. This is a simple process when dealing with static meta-
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data that does not vary at runtime. A good example of this is whether or not a
provider supports data encryption; this is because the meta-data is a static facet
of the delivery protocol being used. For instance, BitTorrent would implicitly not
offer encryption whilst HT'TPS would. Consequently, all such meta-data can be
defined at design-time within each delivery plug-in.

In contrast, dynamic meta-data is based on varying runtime characteristics
that cannot be predicted at design-time. The primary example used up until now
is performance, which is based on a number of runtime parameters that are impor-
tant to individual systems. Chapter 3 has provided an in-depth analysis of three
large-scale delivery systems to show how their performance varies dynamically.
Consequently, from this it has been concluded that a collection of application
instances would only be able to optimise their performance if it were possible for
each to be able to dynamically configure between the use of different providers,
based on its specific environment. However, to enable this, it is necessary for a
node to be able to ascertain the potential throughput that it will receive from
each of the providers in advanced. This can be generalised to say that, any meta-
data based on dynamic characteristics must be generated accurately at runtime
to represent the predicted values that will exist if the application chooses to use
a particular plug-in. If this is not possible, or if it is not accurate enough, it will
not be possible to correctly configure between the use of different providers.

This section explores the deployment challenges related to this issue. First,
a provider-based solution is detailed in which a provider is required to expose a
reflective interface that offers runtime information about its current characteris-
tics (e.g. loading). However, evidently, this requires provider-side cooperation;
subsequently, it is likely that only a subset of providers will offer this support. To
address this, it is then detailed how the passive techniques detailed in Chapter
3 can be introduced into Juno’s software architecture to generate runtime meta-
data on behalf of the delivery plug-ins. This is done by embodying the various
prediction algorithms within components that can be attached at runtime based
on the characteristics and requirements of the individual node.

5.4.2 Reflective Provider Interface

The first approach that can be taken represents the ideal scenario in which
providers are prepared to expose information about the capabilities and resources
of their services. This, for instance, is already implicitly done by many content
distribution networks (e.g. Akamai [1]) by performing redirection between edge
servers based on performance metrics. This is done by monitoring the status
of the available resources and then internally publishing the information to the
redirection service [146]. Subsequently, this could easily be extended to allow
external access to such information as well.

As detailed in Chapter 4, reflection is the ability to gain introspection into
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Method Returns ‘ Description

lookupMetaData | Vector Provides meta-data containing a descrip-

(String mag- | <MetaData> | tion of a provider’s behaviour and perfor-

netLink) mance when serving a particular item of
content

lookupMetaData | Vector Provides meta-data containing a descrip-

(String mag- | <MetaData> | tion of a provider’s behaviour and per-

netLink, formance when serving a particular item

Hashtable<String, of content based on certain characteristics

Object>) provided by the consumer (e.g. its loca-
tion, user group)

Table 5.4: Overview of Delivery Reflective Interface

the behaviour of a particular entity. In essence, it turns a black-box system into
a white-box one. A possible way that this could be implemented is to place addi-
tional meta-data into the RemoteContent objects that are retrieved through the
JCDS and the discovery plug-ins. This meta-data could describe the behaviour,
capabilities and performance of any sources that it lists. However, this would
often be an ineffective approach as such information is highly runtime dependent
and, as such, would need frequent updates, creating a significant overhead for the
discovery systems.

As an alternative to this, this thesis promotes the provider-side exposure of
this information through remotely accessible interfaces (i.e. a web service). Sub-
sequently, every provider would voluntarily offer this interface to allow (potential)
consumers to first query it as to its current operating conditions, alongside any
other meta-data of interest. Table 5.4 details the proposed interface, which would
be exposed using a remote procedure call mechanism such as SOAP. This allows
a consumer to query a provider as to any item of meta-data relating to its pro-
vision of a given item of content. In a controlled environment such as Akamai
this would be offered through a single logical web service interface. In contrast,
a decentralised system such as Limewire would require each potential source to
be contacted and queried individually before the data is aggregated.

The actual information returned by the interface would be an extensible set
of meta-data that could vary between different systems. Using such information,
the consumer could then make an informed choice about which provider to se-
lect. Examples of important meta-data include such things as available upload
bandwidth, network coordinates, monetary cost, as well as reliability and security

issues.
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5.4.3 Techniques for Passively Generating Meta-Data

The previous section has detailed one approach for allowing consumers to differ-
entiate between the runtime characteristics of different providers. However, for
this to work it is necessary for (ideally) all providers to support the standardised
interface. This, unfortunately, makes its deployment unlikely as uptake would
probably be very slow. Further, some providers would likely refuse its usage due
to privacy and security concerns; for example, a server-based provider would be
hesitant to expose information regarding its loading for fear of attackers taking
advantage.

To address this, it is also important for Juno to be able to passively generate
any pertinent meta-data for each potential provider, without explicit support.
Consequently, Juno also supports the use of consumer-side meta-data generation.
This involves passively collecting information relating to a provider so that a
model can be built of its current operating conditions. Therefore, in this sense,
passive refers to the ability for the consumer to collect the information without
the explicit support of the provider. This means that such techniques can be
used with any providers, regardless of their knowledge of Juno.

As previously discussed, the key item of dynamic meta-data considered im-
portant is performance. A number of approaches can be taken to generating
meta-data in a passive manner. Generally, three approaches exist for predicting
the performance that will be received from a provider,

e Active Probing: This involves generating probe traffic and sending it to the
provider to gauge the performance that can be achieved

e History-Based Predictions: This uses past interactions to extrapolate the
performance that will be achieved in future interactions

e Monitoring Services: This uses third party services that monitor a system
to collect information that can be shared amongst many consumers

These techniques can be used to directly acquire throughput predictions or,
alternatively, to acquire relevant parameters that can be transformed into pre-
dictions based on a model. Chapter 3 explored the dynamics of three important
delivery protocols to understand their runtime behaviour. Alongside this, meth-
ods for generating runtime performance predictions were detailed (and validated)
for each delivery protocol. These techniques can therefore be immediately used
to accurately generate throughput predictions without the need for any prior
deployment. The three techniques can be summarised as follows,

e HTTP: Throughput is calculated using the TCP model detailed in [110];
the necessary parameters are obtained using the iPlane monitoring services
[102]
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e BitTorrent: Throughput is calculated using the model detailed in [115]; the
necessary parameters are obtained using public upload capacity measure-
ments [79]

o Limewire: Throughput is calculated using history-based predictions; the
throughput of past downloads is logged to generate a moving average

The above procedures have been validated in Chapter 3, to discover that such
passive approaches can accurately generate performance-oriented meta-data with
a controlled degree of overhead. Alongside these mechanisms, a currently utilised
delivery system can also provide accurate meta-data about itself simply by mea-
suring its own download rate. This allows bad decisions to be quickly rectified by
repeating the meta-data generation process for each potential source and com-
paring it against the meta-data of the active delivery system.

5.4.4 Meta-Data Generation Plug-ins

The previous section has provided a brief overview of the passive techniques
detailed in Chapter 3 for generating predictive performance meta-data. These,
however, only offer an example set of possible approaches that are conducive with
the general requirements of most applications. There are, in fact, many different
approaches that can be taken that vary greatly. Consequently, a number of
trade-offs can be observed when generating meta-data. For instance, an active
probe in which a small download is performed will generally result in superior
accuracy than using a model based on parameters acquired from monitoring
services. This, however, will clearly result in a far greater delay and overhead,
making it unsuitable for small items of content or low capacity devices.

These trade-offs mean that it is undesirable to build delivery plug-ins with
predefined generation mechanisms. To do so would force many devices and appli-
cations to use unsuitable prediction techniques or, alternatively, create the need
for multiple delivery plug-ins to be implemented for use in different environments.
To address this, meta-data generation in Juno is performed using pluggable com-
ponents that offer the ability to generate meta-data on behalf of the delivery
plug-ins. Table 5.5 provides an overview of the component’s interface, |Meta-
DataGenerator. This interface accepts a request for a given item of meta-data
for a particular item of content from a remote point. Such plug-ins can be used
extensively to generate meta-data on behalf of the delivery plug-ins without the
need to handle the burden themselves.

Each technique detailed in Chapter 3 is therefore embodied in an independent
pluggable component that can be accessed by any delivery plug-in. An important
question is therefore how nodes can select between the different possible meta-
data generator components. Generally, this is managed by the application that
operates above Juno by simply stipulating the preferred meta-data generators
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Method ‘ Returns \ Description
generateMetaData(String at- | Object | Generates a particular type of meta-
tribute, RemoteContent con- data and returns it to the caller
tent)

generateMetaData(Vector Vector | Generates a given set of meta-data
<String> attributes, Re- and returns it to the caller
moteContent content)

Table 5.5: Overview of IMetaDataGenerator Interface

within a configuration file. This file contains entries such as,
juno.delivery.http.HT TPDelivery=juno.generators.http.HT TPMetaDataGenerator

which indicate that a particular plug-in should have its meta-data generated by
another component (both identified using their canonical class names). Multiple
entries can also be given to allow a delivery plug-in to have meta-data generated
by more than one component.

One limitation of this approach, however, is that often an application would
not wish to handle this level of detail. To address this, if no configuration file is
offered, Juno manages the selection process itself. This is done using the same
mechanism used for the selection of any other component. Therefore, when the
Discovery Framework issues a buildService request to the Configuration Engine for
a new delivery plug-in, it also attaches further selection predicates. These selec-
tion predicates describe certain requirements that the node has for its meta-data
generators. Consequently, the Configuration Engine will select a Configuration
that contains both a delivery plug-in and a meta-data generator that matches
these requirements.

Meta-Data Type Description

Accuracy double | The average correlation coefficient of its
accuracy

Delay int The time required to generate the predic-

tion (in ms)

Download Overhead | long The download bandwidth required to gen-
erate the prediction

Upload Overhead long The upload bandwidth required to gener-
ate the prediction

Table 5.6: Meta-Data Exposed by IMetaDataGenerator Components

Table 5.6 details the default meta-data that must be exposed by each of the
generator components. These are performance and overhead metrics that can be



CHAPTER 5. ADDRESSING DEPLOYMENT CHALLENGES IN
162 DELIVERY-CENTRIC NETWORKING

used as a trade-off. Evidently, the values of this meta-data might change depend-
ing on the node that it is operating on; for instance, the generation delay would
be greater for a high capacity client when using active probing because it would
need a greater length of time to reach TCP steady state. An IMetaDataGenera-
tor component must therefore take this into account by retrieving the necessary
information from the Context Repository.

Meta-Data ‘ Comparator ‘ Value

Accuracy HIGHEST | N/A

Delay < 0.05 * contentSize / ContextReposi-
tory.get( “availableDown”)

Download < ContextRepository.get( “availableDown” )

Overhead

Upload Over- < ContextRepository.get( “availableUp”)

head

Table 5.7: Selection Predicates for IMetaDataGenerator Components

Currently, the selection predicates utilised by the Discovery Framework are
relatively simply. They are calculated dynamically on every request using a com-
bination of the content size and available upload bandwidth. Table 5.7 provides
the selection predicates, which request the generator with the highest accuracy
whilst operating within strict delay and overhead requirements (based on the
content size and the available upload bandwidth). These selection predicates are
therefore bundled with the selection predicates provided by the application to
construct a component configuration that consists of a delivery plug-in that is
connected to the optimal generator component.

5.5 Conclusions

This chapter has explored the deployment challenges facing Juno’s design. Re-
garding content discovery, it was identified that the primary challenge is reducing
the overhead of using multiple simultaneous discovery plug-ins, whilst also im-
proving the performance of slower ones. Regarding content delivery, the primary
challenges was identified as generating accurate predictive meta-data to reflect
current (and future) operating conditions. To assist in the discovery process, a co-
operative lookup system called the Juno Content Discovery Service was detailed,
whilst the deployment challenges of delivery were addressed using a combination
of the passive modelling techniques detailed in Chapter 3, as well as architectural
adaptation. To summarise, the following conclusions can be drawn from this
chapter,

e Two key deployment challenges exist with Juno’s design philosophy
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— The need to reduce the overhead and delay of using multiple hetero-
geneous plug-ins

— The need to generate dynamic meta-data passively to ensure back-
wards compatibility with providers

e An indexing system, the Juno Content Discovery Service (JCDS), can be
used to address the above discovery challenge

— It allows providers to actively upload references to themselves for dis-

covery

— It allows consumers to collectively upload both identifier and source
information about third party providers

e The integration of meta-data generation components into the Juno frame-
work can address the above delivery challenge

— It is possible for the Discovery Framework to dynamically select the
generation technique used at request-time

— Different approaches can be utilised in different environments to opti-
mise the process

e An open reflective interface can be used to allow providers to offer meta-
data relating to their own operating conditions

This chapter has dealt with the key deployment challenges facing Juno. There-
fore, alongside Chapter 4, a full system specification has been offered to address
the first two goals of this thesis. It is now necessary, however, to evaluate how
effectively these goals have been achieved. The next chapter evaluates Juno’s
design as presented.






Chapter 6

Analysis and Evaluation of the
Juno Middleware

6.1 Introduction

The previous chapters have explored the notion of content-centric networking
to create a new abstraction that extends content-centricity to also include the
concept of delivery-centricity. The key research goals of this thesis are realised
through the design and implementation of the Juno middleware, alongside key
techniques to enable its deployment. This implementation therefore constitutes
the manifestation of the principles developed during this thesis. Consequently, it
is necessary to investigate this implementation to evaluate this thesis.

This chapter analyses and evaluates this realisation of delivery-centricity by
inspecting Juno’s design. Specifically, it evaluates how effectively the key deci-
sions made during Juno’s design offer support for a content-centric and delivery-
centric abstraction. This involves evaluating the Discovery and Delivery frame-
works to understand how effectively Juno can offer the required support.

First, the approach taken by the evaluation is detailed, looking at how the
techniques used map to the core research goals of the thesis. Following this is the
Discovery Framework evaluation, which inspects the performance and overhead
aspects of using Juno’s discovery techniques. Next, the Delivery Framework is
evaluated through a number of relevant case-studies that show how Juno achieves
delivery-centricity, with a focus on improving delivery performance. Last, a crit-
ical evaluative summary is provided based on the design requirements detailed in
Chapter 4.

165
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6.2 Overview of Applied Evaluation Methodology

This section provides an overview of the evaluation performed within this chapter.
First, it is necessary to revisit the original research goals to understand how
the work in previous chapters, as well as the evaluative work in this chapter,
contribute towards the overall thesis. Following this, details are provided relating
to the methodology taken for evaluating the thesis.

6.2.1 Research Goals Revisited

Before entering the evaluation, it is important to gain an understanding of the
overall perspectives and methods taken. To achieve this, the research goals pre-
sented in Chapter 1 are revisited,

1. To define an extended notion of a content-centric abstraction encompassing
both discovery and delivery, capturing the requirements of (existing and
future) heterogeneous content systems

2. To design and implement an end-to-end infrastructure that realises this

(new) abstraction in a flexible manner

3. To show that this concept is feasible and can be deployed alongside existing
systems in an interoperable way

These research goals have been investigated within the previous chapters of
this thesis; the first and second goals have been fulfilled in Chapters 4 and 5 by
defining a new delivery-centric abstraction, as well as a middleware framework
to implement it. The third goal has further been fulfilled by using a highly
deployable approach that supports backwards compatibility with existing content
systems. The primary outcome of this thesis is therefore the realisation of these
concepts through the development of the Juno middleware. Consequently, the
key question to be asked is how effective is Juno at fulfilling these goals?. To
achieve this, a range of techniques are used to evaluate the fulfilment of the
above three goals, before performing a critical evaluative summary focussing on
the five design requirements detailed in Chapter 4.

Juno can be decomposed into two primary elements. First, the Discovery
Framework is responsible for offering traditional content-centric functionality
through its ability to map content identifiers to location identifiers. Then, second,
the Delivery Framework, which is responsible for supporting delivery-centricity
through transparent component (re-)configuration. Collectively, these two frame-
works offer an end-to-end middleware infrastructure for supporting the key tenets
of this thesis. A number of differences, however, can be observed between these
two frameworks, thereby making a single system-wide evaluation inappropriate.
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The rest of this section investigates the possible evaluation techniques that can
be used to address this problem.

6.2.2 Evaluation Methodology and Techniques

The previous section has revisited the research goals to ascertain the necessary
aspects of Juno that must be analysed and evaluated. When performing an eval-
uation, it is important to understand the techniques available. In a distributed
system such as Juno, three key approaches can be identified,

e Simulation involves “the imitation of the operation of a real-world process
or system over time” [37]. Specifically, it allows a software model of a
system to be executed (with certain environmental and parametric inputs)
to create a set of evaluation outputs. The advantages and disadvantages

are,

+ It allows large-scale, controlled experiments to be performed to ascer-
tain results based on a range of potential situations.

— It is possible, however, for incorrect assumptions in the simulation

model to invalidate results.

o Mathematical Modelling involves building a formal mathematical represen-
tation of the system, in a similar manner to simulation. Specifically, it
allows a set of equations to be devised that can utilise certain environ-
mental and parametric inputs to create a set of evaluation outputs. The
advantages and disadvantages are,

+ It allows large-scale, controlled experiments to be performed, generally
in a short period of time.

— It is highly limited in its ability to capture real-world complexity, mak-
ing a sophisticated systems-based evaluation difficult.

e Emulation involves building a real-world implementation of a system and
deploying it on a set of nodes connected via an emulated network. An
emulated network possesses the ability to “subject traffic to the end-to-
end bandwidth constraints, latency, and loss rate of a user-specified target
topology” [142], thereby placing the system in a controlled environment.
The advantages and disadvantages are,

+ It allows a prototype implementation to be tested, alongside real-world
protocols, software and networks, thereby mitigating possible prob-

lems with the results and improving accuracy.
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— The scalability of such tests, however, is reduced due to the increased
resource requirements of using real-world implementations. Conse-
quently, large-scale experiments often cannot be performed.

e Real-world testing involves deploying a system implementation for use in
the real-world, potentially by third party testers. The advantages and dis-
advantages are,

+ It allows a prototype implementation to be tested on a large-scale,
alongside real-world protocols, software and networks, thereby remov-
ing the potential to make incorrect assumptions in a system model.

— It is rarely possible to achieve such tests as it necessary to provide
incentives for testers to use the system. Also, all experiments must
take place outside of controlled conditions making the results non-
deterministic and less tractable.

As outlined, each approach has different advantages and disadvantages, mak-
ing their suitability variable for different tasks. Consequently, all three ap-
proaches are utilised within this thesis.

The Discovery Framework relies on the cooperative indexing of content by
a wide range of nodes, applications and users. Consequently, it is necessary to
utilise an evaluation method that can model Juno’s discovery aspects on a large-
scale. The techniques that fulfil this need are simulation and real-world testing.
Obviously, a real-world deployment would be beneficial in that it would allow
real user behaviour to be investigated. However, it would be impossible to per-
form this on a sufficiently large-scale to gain the necessary results. Further, as
this would be performed in a non-controlled environment, it would be difficult
to build a results set that could assist developers in understanding how their
applications might perform with Juno. Consequently, to address this, the Dis-
covery Framework is evaluated using large-scale simulations with models taken
from existing measurement studies. This allows the discovery algorithms to be
tested in a wide-range of environments to gain an understanding of how various
applications would operate over Juno.

In contrast to the above, the Delivery Framework operates on a far smaller-
scale as each instance makes individual per-node choices that do not involve the
cooperation of other nodes. However, unlike the discovery evaluation, it involves
a number of third party protocols that are already deployed in the Internet. The
evaluation of the Delivery Framework must therefore validate the ability of Juno
to perform (re-)configuration and interoperation to achieve delivery-centricity.
Clearly, this cannot be achieved using modelling or simulations as it is neces-
sary to evaluate Juno’s underlying architectural design and implementation. The
techniques that fulfil these needs are therefore emulation and real-world experi-
ments. Several real-world experiments have already been performed in Chapter 3
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to quantify the potential benefits that could be achieved using dynamic delivery
(re-)configuration. Therefore, the next step must be to validate that these bene-
fits can actually be gained by Juno. This cannot be performed using real-world
testing as it is impossible to control the characteristics of third party content sys-
tems. Thus, making it difficult to gain an evaluative understanding of how Juno
responds to different situations. Consequently, the Delivery Framework is evalu-
ated (in conjunction with the measurement results from Chapter 3) by performing
a number of controlled emulations in which a variety of case-study environments
are created to evaluate how Juno performs. Through this, a number of providers
can be setup (and configured between) using real-world implementations whilst
also maintaining a strict level of control over the test environment.

The rest of this chapter is structured into three main sections. First, the Dis-
covery Framework is evaluated, looking at the performance and overhead issues
of building content-centric lookups in an interoperable and deployable manner.
Following this, the Delivery Framework is also evaluated to validate whether or
not the design approach is feasible, as well as to highlight the strengths and limi-
tations of offering a delivery-centric abstraction at the middleware layer. Finally,
a critical evaluative summary is presented in which the design requirements are
revisited to validate how effective Juno has been at fulfilling them.

6.3 Content-Centric Discovery in Juno

The first aspect of Juno’s operation is the discovery of content. This is generally
considered the paramount operation in a content-centric network. The process
involves mapping a unique content identifier to one or more potential sources.
In Juno, content-centric discovery is handled by the Discovery Framework using
a number of configurable discovery plug-ins, in conjunction with a cooperative
indexing service called the Juno Content Discovery Service (JCDS). Collectively,
this allows a Juno node to interact with existing content providers to ascertain
their ability to serve an item of content.

This section evaluates the Discovery Framework based on the research goals
and design requirements of this thesis. First, the methodology is outlined, detail-
ing the techniques used. Following this, a performance analysis is performed using
simulations; this studies the ability of the Discovery Framework to extract infor-
mation from the plug-ins and cooperatively index it on the JCDS. Alongside this,
the overhead is detailed to show the costs associated with performing discovery in
this fashion. Last, two case-studies are explored in which existing measurement
studies are used to simulate real-world systems to provide a detailed overview
of how the Discovery Framework would operate if it were actually deployed in
current Internet environments.
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6.3.1 Methodology

This section provides a detailed overview of the methodology used to evaluate
Juno’s content discovery.

Evaluation Overview. Juno’s Discovery Framework offers support for in-
teroperable content-centric discovery in third party systems. This is achieved
using plug-ins that offer the necessary protocol support to interact with external
lookup systems. Consequently, it has been designed to support a content-centric
abstraction that is instantly deployable alongside existing systems (in-line with
research goals 2 and 3).

The primary evaluation question that must be asked regarding the Discovery
Framework is therefore, how effectively can Juno discover content in third party
systems? Fvidently, this is required to validate the claim that Juno’s design,
indeed, satisfies the interoperable and deployable needs of the research goals.
This question can be decomposed into both performance and overhead aspects.
First, it is necessary to validate that using Juno’s approach can offer sufficient
performance to allow content sources to be effectively discovery. The measure
of this is generally application-specific (e.g. query delay); however, a common
factor is the need for as many sources as possible to be discovered. This is
necessary to ensure optimal delivery-centric decisions can be made; consequently,
this is considered as the primary metric of performance. Following this, it is also
necessary to ensure that this takes places with controlled levels of overhead.

To perform the evaluation, a large-scale simulation study is undertaken, which
allows a range of controlled environments to be investigated in detail. The jus-
tification for this choice has been explored in Section 6.2.2. Through the use of
well-known models, it becomes possible to highlight how Juno’s discovery mech-
anisms would operate in the real Internet. The following sections provide an
overview of the simulator and models used before detailing the evaluation met-
rics chosen.

Simulations. To understand the behaviour of the JCDS, a simulator has been
built that models its operation based on a number of important parameters. The
simulator operates from the perspective of a single application utilising Juno
without the possibility for any other applications to access the same content.
The results presented in this section therefore provide details of the worst-case
scenario. An alternative to this is, of course, the existence of a set of applications
that share many content interests. In such a situation, far higher performance
would be achieved because the population of users accessing the content would
be greater therefore ensuring more up-to-date information is contributed.

The simulator utilises three primary parameters: popularity (p), request rate
(M) and number of objects (n). These parameters collectively dictate which items
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of content are indexed on the JCDS; p dictates which items are requested by each
node; A dictates the time it takes for these requests to be issued; whilst n has
a significant effect on both these parameters. The probability of object i being
available at time ¢ on the JCDS can therefore be modelled by A - ¢ - p(i), where
p(i) is the per-request probability of item i being requested.

The simulator is a discrete time simulator that operates in rounds. Every
round, on average, \ requests are generated using a Poisson distribution [119];
this involves first checking the JCDS and then the discovery plug-ins. If the
content is not indexed on the JCDS yet, the content is downloaded (and verified)
before uploading a reference to the JCDS. The download time is defined by two
factors: (i) file size and (ii) consumer download speed. The file sizes are based on
the traces taken from the macroscopic BitTorrent measurement study detailed in
Section 3.3; Figure 6.1 shows the cumulative distribution of file sizes for all file
types. The consumer download rates are taken from [56]; this data set includes

the download bandwidth of 1894 American DSL and Cable users. Using these

legj}zze An

obvious limitation of this, however, is that it is not always possible for a client

data sets, the download time can be generated using the equation,

to saturate its download link; to take this into account, a random saturation
level is generated between 0.1 and 1. This therefore results in the download time
being filesize
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information are verified and uploaded to the JCDS.

Once a download has completed, the Magnet Link and source
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Figure 6.1: Cumulative Distribution of File Sizes observed in BitTorrent Traces

By default, four discovery systems are utilised in the simulation, as detailed
in Table 6.1. The plug-in success rate refers to the probability that a plug-in can
provide information regarding a given content item; evidently, at least one plug-in
will always return information. This represents a likely situation in which there
is some relationship between the deployed discovery systems and the provider of
the content identifiers. The providers returned from each discovery system have
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Plug-in ‘ Type ‘ Plug-in Success Rate \ Churn
Server Lookup | Web Service 1 No
Gnutella Flooding Overlay | 0.4 Yes
eD2K Client-Server 0.6 Yes
KAD Iterative DHT 0.8 Yes

Table 6.1: Overview of Inspected Discovery Protocols

a uniform probability of being selected for delivery. Alongside this, each plug-in
is associated with a boolean to indicate whether or not if suffers from churn. To
model churn accurately in affected discovery systems (i.e. peer-to-peer systems),
the Gnutella churn trace is taken from [132]. This model provides a mapping
between the age of an entry on the JCDS and the probability of it being stale.

Finally, to study overhead, each plug-in is also associated with a background
and per-request overhead. To configure the simulator with representative infor-
mation, a number of overhead measurements have been taken from real-world
systems. Table 6.2 details the overheads of these various dominant discovery
protocols. These were gained by performing local measurements using Wireshark
and SocketSniff, which allow the inspection of the network interactions of different
applications. The server lookup is a centralised indexing system (measurements
taken from the Bitzi web service [4]); Gnutella [10] is a fully decentralised query
overlay; and KAD [106] is a popular DHT. Note that the JCDS uses the same
overhead values as KAD; this is because KAD is the most likely DHT to be used
for deployment due to its robustness and proven performance in the real-world
[61].

Table 6.2 also provides an overview of the different applications used to mea-
sure the protocols (all support Magnet Link addressing). To gain the request
overhead, 10 requests were generated for each protocol and then the averages
taken. To gain the background overhead, each application was monitored for
a period of 15 minutes without activity and then the average taken. For both
values, this includes both upload and download overhead. It is important to note
that these are exemplary figures that are used to provide a representative evalua-
tion; they do not, however, offer exact details as many more complicated aspects
have been abstracted away from. For instance, a Gnutella client will witness
various levels of background overhead based on the behaviour of its neighbours;
the model does not take this into account, instead a single standard background
overhead is used.

Evaluation Metrics. To study the performance of the JCDS, it is important
to compile a set of evaluation metrics. These inspect the ability of the JCDS
to provide a given piece of information after a certain period of operation. To
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Plug-in Per-Request Background Application Used
Overhead (bytes) | Overhead (bytes
per min)
Server Lookup | 7342 0 IE Explorer
Gnutella 20,617 6020 Limewire
eD2K 16,899 570 eMule
KAD 1168 9753 eMule
JCDS (KAD) | 1168 9753 N/A

Table 6.2: Overhead of Discovery Plug-ins (in Bytes)

measure the performance, three metrics are used; the first is hit rate,

hit
hitrate = mes

At

where hits is the number of successful requests that are issued to the JCDS.

(6.1)

A request is considered successful if a Magnet Link has been registered on the
JCDS under the requested content identifier. This therefore only requires that
one previous consumer has accessed the file and uploaded the Magnet Link. This
metric therefore measures the frequency at which an application instance with
only a single identifier can gain access to a full set of identifiers (to allow subse-
quent access to any discovery system). The limitation of this, however, is that
a consumer would have to generate further queries in each of the plug-ins using
the acquired Magnet Link to locate a set of available sources. To measure this,
a further metric is therefore defined,

sourcehits
At
where sourcehits is the number of requests to the JCDS that successfully yield

sourcerate =

(6.2)

one or more available sources. This models the percentage of requests that are
provided with at least one source without the need to query further plug-ins. This
therefore captures the frequency at which an application can solely use the (low
latency and low overhead) JCDS to gain access to the content. A final metric
is also defined to ascertain the number of requests to the JCDS that return a
complete list of all potential sources,

fullsourcehits
At

where fullsourcehits is the number of requests to the JCDS that yield the full set

of available sources without the need to query any further plug-ins. Consequently,

fullsourcerate = (6.3)

this metric measures the percentage of times a node can solely use the (low latency
and low overhead) JCDS to select between all available sources without needing
to utilise any plug-ins to gain extra information. Collectively, these three metrics
represent the effectiveness of the JCDS at achieving its primary aims.
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6.3.2 Performance

The performance of the Discovery Framework is highly dependent on the request
characteristics of the application operating above it. For instance, an application
that accesses content uniformly from a huge content set (e.g. > 107) is likely
to get inferior performance when compared to an application with only a small
content set. This is because the Discovery Framework depends on the JCDS,
which is a cooperative discovery system that depends on contributions made by
users. It is therefore impossible to perform a thorough evaluation based on a
single application. Instead, this section explores performance by identifying and
inspecting a number of key parameters that collectively define an application’s
content profile. This therefore makes the evaluation extensible to a large range
of applications and environments.

Throughout the evaluation, it is assumed that all providers remain ignorant
of the JCDS and refuse to upload any information about themselves. As such, the
evaluation solely deals with the consumer-side indexing process, thereby focussing
on the deployability aspects of the service (i.e. allowing the system to be deployed
without explicit cooperation from providers). This is because when providers
choose to actively upload their information to the JCDS, the various hit rates
increase to 100%; instead, it is far more interesting to investigate the worse and
average case scenarios. Regardless of this, however, it is always possible for a
node to query plug-ins to discover content if the JCDS fails.

To provide a representative starting point, the simulator is configured with
values taken from a Kazaa measurement study [72], as detailed (later) in Ta-
ble 6.5. Collectively, these values represent an application’s content profile. As
highlighted in [37], an advantageous property of simulation is the ability to gain
insight into a system through the modification of various inputs whilst moni-
toring the resulting outputs. In-line with this, each parameter is selected and
modified from this set to inspect how it affects the performance of the system.
First, the content popularity distribution is looked at (p), then the number of
objects (n), followed by the request rate (A). This approach therefore allows
any third party developer to gain an understanding of how an application with

a given content profile would perform when utilising Juno’s Discovery Framework.

Popularity. The first parameter investigated is the popularity of files (p); this
is modelled using a Zipf [151] probability function where p(i) > p(i + 1). Vari-
ations of this function also exist such as the fetch-at-most-once model proposed
by Gummadi et. al. [72]. This follows a Zipf trend but limits each client to
requesting a given item of content only once, thereby modelling the presence of
persistent caching on each peer (i.e. by the Content Manager).

To investigate the importance of p, Figure 6.2a shows the various hit rates
whilst varying the a parameter of the Zipf distribution. Figure 6.2b also shows the
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hit rates whilst varying the « parameter of the fetch-at-most-once distribution.
The « parameter dictates the skew of the content popularity with a larger value
indicating that the users probabilistically select from a smaller range of items.
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Figure 6.2: Performance of JCDS with Different Popularity Distributions and «
Parameters

For both popularity distributions, it is immediately evident that the perfor-
mance of the JCDS is unacceptably low when operating with non-skewed content
demand (e.g. a < 0.4). However, this increases dramatically as the skew in-
creases. A higher skew results in fewer items of content being probabilistically
selected from. This effectively decreases the number of items in the content set,
making it easier and faster to index them. Both popularity distributions get
a fairly similar hit rate, with a skew of 1 reaching 70% for Zipf, and 69% for
fetch-at-most-once (hit rate).

Different applications can have vastly different popularity distributions. Sim-
ple software update systems are likely to have highly skewed demand as recent
updates will be downloaded many times. In contrast, large-scale content archive
services may have far less skew. Fortunately, most content systems have been
found to follow a Zipf-like distribution meaning that most applications utilising
the JCDS will similarly have quite skewed demand. Studies of VoD services, file
sharing applications, video archives and web access all show a Zipf distribution.
Table 6.3 provides an overview of the Zipf parameters observed within a number
of important content applications. Interestingly, recent work has also proposed
alternative probability models for looking at content popularity such as stretched
exponential [74] and log-normal [41] distributions. All studies, however agree
that content systems show a highly skewed demand. Consequently, the Discov-
ery Framework would offer a high performance for most applications.

Number of Objects. The second parameter investigated is the number of
objects (n); this is closely related to p as they both impact the perceived popu-
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Application ‘ Zipf

Video on Demand | 0.801 [147], 0.56 [67]
Streaming 0.47 [45]

File Sharing 1 [72], 0.62 [127]

Web Access 0.98 [52], 0.719, 0.609 [143]

Table 6.3: Overview of Skew in Zipf-like Content Applications

larity. For instance, even a highly unpopular item from a set of 10 is likely to be
accessed at least once (and therefore indexed on the JCDS). To study the effect
of different content set sizes, Figure 6.3 shows the performance of the JCDS when
operating with various n values. Note that the x-axis is in a log scale.
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Figure 6.3: Performance of JCDS with different n Values

It can be observed that as the number of objects increase, the various hit rates
decrease. This occurs because the popularity distribution (defined by p) becomes
spread over a far greater number of objects. This makes it less likely that two
nodes will request the same item of content. Intuitively, it can also be seen that
a larger content set will take longer to index as even in the best case scenario
it will take at least n requests before every item can be accessed and indexed.
Unfortunately, however, this best-case is rarely achieveable as less popular items
must wait far longer before a request for them is generated.

Different applications can have vastly different content sets; archive systems
such as YouTube [32] possess huge content sets whilst applications utilising Juno
for software updates may have sets below 10. Applications with small sets of
content (i.e. < 1000) will get an extremely high performance from the JCDS,
especially if their demand trends are highly skewed. Unfortunately, however,
content sizes of a similar level to YouTube (i.e. > 108) are likely to gain low
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performance levels, even with high levels of skew. In such circumstances, it is
therefore necessary for providers to take a more proactive role in indexing their
content by uploading references themselves. Despite this, even with one million
items, a hit rate of 51% is achieved indicating that a noteable proportion of con-
tent can still be indexed.

Request Rate.  The third parameter is the request rate (\); this similarly
has a significant impact on performance because applications that generate more
requests are likely to access more non-indexed items and subsequently assist in the
indexing process. This will occur if either (i) each application instance generates
many requests, or (i7) there are many deployed instances of the application. It
has previously been stated that a content set that is fully indexed must have
received at least n requests. Consequently, the lower bound of this time period
is defined by § making the request rate a highly important parameter.

To study this, Figure 6.4 shows the effect that per-node request rates have
on the JCDS. It can be seen that as the number of requests increase, so does
the hit rate. Depending on the application’s content popularity distribution,
this can result in different outcomes. If the popularity is highly skewed (as in
Figure 6.4), the performance will be largely unchanged as the same items (that
are already indexed) will be frequently re-requested. However, if the popularity
distribution is more uniform, then significant gains will be made as there is a
higher probability that a non-indexed item will be accessed. Regardless of this,
a high request rate is often required to maintain high source hit rates in systems
that suffer from churn (i.e. peer-to-peer providers). This is because out-of-date
sources need to be refreshed periodically; in contrast, more persistent sources
(e.g. HTTP servers) can remain indexed because they do not suffer from churn.

It can be seen that the performance gains are most significant as the request
rate increases from 0 to 20 requests per minute. Following this, the gradient shal-
lows, as the consumers simply re-request the same items of content. Evidently,
applications with low request rates will benefit dramatically from small increases
whilst applications with already high request rates will gain little.

Different applications will have vastly different request patterns depending
on the type of content being distributed. An application playing music might
generate requests every few minutes, whilst a software distribution service might
have request intervals in the order of weeks. Arguably, however, the more signif-
icant contributing factor is the number of deployed instances of the application.
For instance, even an application with a low request rate, such as 1/month, will
have a huge request frequency with 10 million application instances (/~231/min).
Such request rates can easily be handled by the Juno middleware, as shown in
Appendix A.
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Figure 6.4: Performance of JCDS with Different A Values

6.3.3 Overhead

The previous section has explored the performance of the Juno Content Discovery
Service (JCDS). Alongside this, it is also important to understand the overhead
of using the Discovery Framework’s design philosophy. In the worst-case, the
Discovery Framework uses a full set of plug-ins for every request. To mitigate
this, however, the JCDS also allows certain plug-ins to be detached once they
have been sufficiently indexed.

This section explores the overhead of utilising multiple plug-ins and the sub-
sequent benefits that can be gained by dynamically detaching them. It does not,
however, look at the overhead of running the JCDS as, in essence, this is simply
a lookup system (e.g. a DHT). As such, this is redirected towards evaluations
of various prominent lookup systems [61][106]. Details about the memory and
processing overheads related to the Discovery Framework can also be found in
Appendix A.

The overhead of the Discovery Framework is based on two factors. First, the
plug-ins that are attached and, second, the content profile of the application.
This is because collectively these define the Discovery Framework’s ability to
detach the plug-ins (to be replaced by the JCDS). Therefore, when using a fixed
set of plug-ins, the overhead will be constant; however, when also using the JCDS
it will vary over time. This variance is based on a number of key parameters,
detailed in Table 6.4.

To evaluate the overhead costs of the Discovery Framework, these parame-
ters are altered in a similar way to the previous section. The simulator is again
configured with the Kaz parameter set and the results presented are those from
the perspective of a single monitor node.
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Parameter \ Default ‘ Description

Detachment 0.75 The minimum fraction of results from the JCDS

Threshold that must match plug-in ¢ before it is detached

Request 2/hour | The average interval between a given node gen-

Rate erating queries through the Discovery Frame-
work

Churn [132] | The probability that a reference on the JCDS
will be stale

Sim Length | 14 days | The length of time cumulative results are accu-
mulated over

Table 6.4: Overview of Primary Parameters Relating to Discovery Framework
Overhead

Detachment Threshold. The first parameter is the detachment threshold;
this dictates the required level of similarity between the JCDS’s and a plug-in’s
results before it can be detached. A value of 1 indicates that the JCDS and a
given plug-in must generate identical results before it can be detached. Clearly,
this parameter must be low enough to ensure that plug-ins are removed to reduce
overhead, yet high enough to ensure that plug-ins are not removed before their
information is indexed on the JCDS.

Figure 6.5 shows the Discovery Framework’s cumulative request overhead
after 14 days based on a range of thresholds (note that this does not include
background overhead). It can be seen that lower thresholds result in lower over-
head. This is because a low threshold results in plug-ins being detached faster.
For instance, a threshold of 0.5 indicates that only 50% of results generated by
a plug-in must also be generated by the JCDS. As the threshold increases, it be-
comes less likely that the JCDS will provide results of a sufficient quality to allow
the plug-in to be detached. In such circumstances, the plug-ins remain attached
to the Discovery Framework and overhead continues to be high.

Although lower thresholds result in lower overhead, it is evident that an un-
wise decision regarding detachment can lead to inferior performance. If a plug-in
is detached without its information being indexed on the JCDS; it is likely that
the node will remain ignorant of many sources that could have been discovered.
This can be measured by comparing the JCDS results against the results of each
plug-in after they have been detached. The optimal case would be that the two
result sets are identical for the rest of the node’s lifetime; this can be calculated

by,

. maisses
missrate = —— (6.4)
numrequests

where misses is the number of requests that could have returned results from a
detached plug-in, which are not indexed on the JCDS. It is therefore the fraction
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Figure 6.6: Miss Rate of JCDS Based on Detachment Threshold

Figure 6.6 shows the miss rate for various threshold values. Evidently, the
miss rate decreases with higher values set for the detachment threshold. This is
because with low thresholds, it becomes impossible to make an informed decision
about the removal of a plug-in. Figures 6.5 and 6.6 can therefore be contrasted
to see that there is an obvious trade-off: detaching plug-ins reduces overhead but
also reduces the accuracy of results. The stipulation of the detachment threshold
is therefore an application/user specific decision based on the needs of the system,
as well as any resource constraints. In environments with sufficient resources (e.g.
a PC with a DSL connection) it is recommendable to set the detachment thresh-
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old to > 0.9 to ensure that only those plug-ins that have been extremely well
indexed are detached. However, in low capacity environments this threshold can
be progressively lowered (automatically) until an acceptable overhead is reached.

Request Rate. The next important parameter is the local request rate. This
can be modelled by looking at the average interval between requests generated
by a given client. If all plug-ins are attached, approximately 46 KB of traffic is
generated per request; assuming the 2 request per/day model of [72] this would
only result in 92 KB of traffic a day. This is, of course, acceptable although this
will increase linearly with more intensive request patterns. Generally, of more
concern is the background traffic as this remains regardless of an application’s
request pattern. Certain plug-ins generate no background overhead, however,
others generate large amounts of overhead even when not being queried (i.e.
peer-to-peer systems). The attachment of all plug-ins results in approximately
730 KB per minute (12 KB per second). On a typical 5.5 Mbps connection this
only constitutes 1.7% of capacity; however, it is still undesirable.

As well as directly impacting overhead in this manner, the request rate is also
important because it largely defines the length of time it takes a node to profile
a plug-in. This is required so that a node can decide whether or not a plug-in
should be removed. A higher local request rate subsequently allows this to be
calculated sooner. For instance, when generating one request every 30 minutes,
it takes 76 hours to remove the first plug-in; in contrast, it only takes 25 hours
when generating one request a minute. A very important aspect to note is that
this time also includes the period that it takes the JCDS to passively index the
content in that plug-in. Therefore, even if a node generates 100 requests per
minute, it will not be detached unless the JCDS has sufficiently indexed that
plug-in’s information. An increased local request rate therefore only allows a
node to make a decision faster; it does not affect the outcome of that decision.
As can be seen from the Section 6.3.2, this is, instead, defined by the three key
global parameters: p, A and n.

Figure 6.7 shows the overhead incurred based on various request patterns
over 14 days. Note that the results are significantly higher than those shown
in Figure 6.5 due to the inclusion of background traffic. However, it is clear
that nodes with higher request rates get lower overhead. At first this seems
counter-intuitive, however, this occurs because such nodes are capable of profil-
ing their plug-ins faster. This subsequently allows such nodes to detach their
plug-ins sooner, thereby reducing overhead. This is particularly beneficial when
utilising plug-ins with a high background overhead. This is because in such situa-
tions, overhead would increase linerally with time rather than with the number of
requests. Consequently, the overhead of generating a single request becomes pro-
protionally lower when using such plug-ins. A good example of this is Gnutella,
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quest Interval

which generates 6 KB of background traffic per minute and 20 KB of traffic per
request. An hour of idleness therefore still creates the equivalent of 18 requests.
This can be contrasted with the server lookup plug-in which has no background
overhead; proportionately a further request therefore has a greater impact.

Churn.  The third vital parameter affecting bandwidth overhead is that of
churn. This is not because of maintenance traffic but, instead, due to the effect
that it has on the JCDS’s ability to maintain up-to-date information. Plug-ins
can offer real-time search information for their respective discovery systems. The
JCDS, however, is restricted to results that have been uploaded previously. If
the intervals between requests (in the global system) are longer than the inter-
vals between providers going offline, then content indexed on the JCDS will be
consistently stale. This does not create an issue in a low churn system (e.g. a
web server) but dramatically increases overhead in a high churn system because
it becomes impossible to detach the plug-ins without creating high miss rates.

Figure 6.8 shows the overhead for two nodes over 14 days using different plug-
ins: one with all churn-susceptible plug-ins and one without. It is evident that
the overhead is higher when operating with plug-ins that are susceptible. This is
because a node that is utilising plug-ins without any churn can generally detach
them all and exclusively use the JCDS after a relatively short period of time. In
contrast, any plug-in that suffers from churn can only be detached if the global
request rate (for a given item of content) is higher than the churn rate. This,
however, is only feasible for extremely popular content. As such, nodes using
many churn-susceptible plug-ins will have a relatively constant overhead.
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6.3.4 Case Studies

The previous sections have investigated how the different key parameters identi-
fied affect the performance and overhead of the the Discovery Framework. These
parameters collectively build up a content profile that defines how an application
utilises content. These parameters can therefore be varied by developers to pre-
dict the performance of their application when using Juno. To further evaluate
the JCDS and to concretise the discussion, two example case studies are now
inspected based on measurements of previous content applications: a Video on
Demand (VoD) system and a file sharing system. This shows how the previous
experiments can be extended and specialised to benchmark a given application,
as well as highlighting Juno’s performance in typical environments. Consequently
this helps validates Juno’s ability to aid deployment through its ability to inter-
operate and index third party discovery systems.

The first parameter set, shown in Table 6.5, is taken from [72] based on mea-
surements taken from the Kazaa file sharing application (Kaz set). The second
set, shown in Table 6.6, is taken from [147] based on measurements of the China
Telecom VoD service (VoD set). These parameter sets offer the ability to gain
insight into how the Discovery Framework would behave under realistic request
trends. To also simulate representative file sizes, the macroscopic BitTorrent
measurement study detailed in Section 3.3 is used; VoD uses the film file size
traces whilst Kaz uses the traces for all files.

As previously identified, there are three core parameters that define an ap-
plication’s content profile: p, A, and n. These are therefore the only parameters
taken from these studies, as to extract system parameters (e.g. churn) would
taint the results with details of the individual protocols and implementations
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Parameter Default Value

Popularity (p) Fetch-at-most-once (a = 1)
Request rate () Poisson (A = 1.39/min)

# objects (n) 40,000

# Users 1,000

Churn (churn) Stutzbach et. al. [132]
Bandwidth (bw) Dischinger et. al. [56]
Saturation (saturation) | Uniform

File Size (filesize) Trace-Based (All files)

Table 6.5: Overview of Kaz Parameters [72]

Parameter ‘ Default Value

Popularity (p) Zipf (e = 0.801)

Request rate () Poisson (A = 108/min)

# objects (n) 7036

Churn (churn) Stutzbach et. al. [132]
Bandwidth (bw) Dischinger et. al. [56]
Saturation (saturation) | Uniform

File Size (filesize) Trace-Based (Video Files)

Table 6.6: Overview of VoD Parameters [147]

that the measurement studies look at. The rest of this section now explores these
parameter sets to see how they would operate in the real-world.

Control Benchmark. Before investigating the importance of the different
parameters, it is first necessary to inspect the standard performance achieved
by the two case studies using their default parameters. Figure 6.9a shows the
three performance metrics for the Kaz parameter set, whilst Figure 6.9b shows
the three performance metrics for the VoD results. For the Kaz set, after 14
days, the hit rate is 69%, with 64% of requests gaining at least one valid source
from the JCDS. In contrast, the VoD set shows a far higher performance level
for all metrics. After 14 days, both the hitrate and the sourcerate is at 99%.
The fullsourcerate is also different between the two systems; Kaz has a very
low value (3%) whilst the VoD values is over 20%. Clearly, the characteristics
of these two applications mean that they achieve vastly different performance
levels, however, whether or not these metrics are acceptable is a decision left to
the application developer. The reason for these deviations can be found in the
values of the important parameters. The rest of this section now investigates and
contrasts their results.
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Figure 6.9: Performance of Case Studies with Default Parameters

Popularity. The first important parameter is p. Interestingly, the VoD param-
eter set has a less skewed popularity than Kaz, despite its higher performance.
Importantly, however, Kaz uses a fetch-at-most-once popularity function, which
means that the popularity of a given item of content is limited by the number of
peers in the system. In contrast, VoD uses a pure Zipf function, which means
that a given client can request an item of content multiple times, thereby improv-
ing hit rates. A prominent example of this is the Google logo which will likely be
re-requested many times in a single day by each user.

To look at the impact of popularity, Figure 6.10 shows the performance re-
sults again whilst swapping the popularity parameters of the two sets, i.e. VoD’s
p becomes fetch-at-most-once (o = 1) and Kaz’s p becomes Zipf (o = 0.801). It
can be observed that the hit rate of VoD stays constant whilst the hit rate of Kaz
decreases by 15% to 54%. From this it can be concluded that p is not a dominant
factor in the VoD parameter set but is highly important in the Kaz set. In both
cases, the most noticeable change is that of the fullsourcerate, which drops sig-
nificantly. For Kaz, this involves achieving an extremely low rate; this is because,
the Zipf o parameter is lowered from 1 to 0.801, which has a significant effect
when dealing with such large content sets. In contrast, the VoD set achieves
an initially higher fullsourcerate due to the more skewed nature of its demand
(o = 1); however, this tails off due to the fetch-at-most-once distribution. This
means items cannot be re-requested by individual users making it easy for churn
to make the source entries stale.

Number of Objects. The next parameter is n, which refers to the number of
items of content used by the application. Kaz has a large content set (40,000)
whilst VoD has a much smaller number of items (7036). Depending on the
nature of the application, these values will vary dramatically. Once again, to
inspect the importance of these parameters, their values are swapped between
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Figure 6.10: Performance of Case Studies with Changed p Values

the two parameter sets so that Kaz’s n is 7036 and VoD’s n is 40,000.

Figure 6.11 shows the results. It can be seen that the swap has a positive
effect on the Kaz set for all performance metrics, with a hitrate increase of 14%.
This is obviously because the popularity distribution is over a smaller content
set. This reduces the number of popular content items, thereby increasing the
probability of a hit. In contrast, unsurprisingly, the VoD results have a hit rate
that increases with a far more shallow gradient than previously. This is because
the size of the content set takes longer to index. Despite this, after 14 days,
the hit rate has reached 97% - only 2% less than when operating with an n of
7036. As such, it is evident that an increase in the number of objects can be man-
aged as long as the request rate is high enough to ensure that they can be indexed.
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Figure 6.11: Performance of Case Studies with Changed n Values

Request Rate. The last parameter is A, which dictates the frequency of
requests. The VoD parameter set has a far higher request rate than Kaz. The
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file sharing application only has, on average, 1.39 requests per minute (2 requests
from each user a day); in contrast, the video on demand system receives an
average of 108 requests per minute.

Figure 6.12 shows the results of swapping the A parameter between the two
parameter sets. It can be seen that the variance has a significant effect on both
systems. Kaz now gains an extremely high hit rate (98%) with a similarly high
source rate (96%); this can be compared to the default results of 69% and 64%,
respectively. The VoD results, in contrast, achieve far lower performance than
in the default configuration. The hit rate drops by 20% to 79% whilst the source
rate drops to 70%.
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Figure 6.12: Performance of Case Studies with Changed A Values

It is evident from these results that the request rate plays a significant role in
defining the effectiveness of the JCDS, specifically in these case-studies. When
swapping the A value, the two case studies exchange their performance levels al-
most exactly. This means that in this particular circumstance, the request rate
is the dominant factor. Closer inspection shows that this is a logical finding as
this value varies most dramatically out of the two parameter sets; the request
rate of Kaz is only 1.2% of the request rate of VoD. In contrast, the equivalent
percentages for o and n are 124% and 17% (note that Kaz’s « is greater than
VoD’s).

6.3.5 Summary

This section has evaluated the Discovery Framework with the intent of answering
the following question, how effectively can Juno discover content in third party
systems?. The ability to access third party systems has been implicitly designed
into Juno through the use of plug-ins. Therefore, to answer this question, perfor-
mance and overhead aspects of the Discovery Framework have been investigated.
Specifically, the performance of the Juno Content Discovery Service (JCDS) has
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been investigated using detailed simulation studies. Alongside this, the overhead
of the JCDS has been inspected, as well as the costs of using multiple plug-ins in
parallel. It has been shown that the JCDS can effectively index content in third
party systems for retrieval by Juno nodes. Further, the ability of the JCDS to
mitigate the use of multiple plug-ins has also been validated. Collectively, this
has shown the Discovery Framework to effectively fulfil its function as part of
Juno.

6.4 Delivery-Centric Delivery in Juno

The second aspect of Juno to be evaluated is the delivery of content. This process
involves selecting and accessing the optimal providers to meet certain delivery-
centric requirements issued by the application. In Juno this is managed by the
Delivery Framework using a number of (re-)configurable plug-ins, which are ex-
ploited to provide access to a range of sources.

This section evaluates the Delivery Framework based on the research goals and
design requirements of this thesis. First, the methodology is outlined, detailing
the techniques used. Following this, Juno’s capabilities are evaluated using a
number of key case-studies that represent the most common use-cases. These are
exploited to show how the benefits detailed in Chapter 3 can be realised by Juno.
After this, a number of further case-studies are also provided to show how Juno
could operate under a range of diverse delivery requirements.

6.4.1 Methodology

This section provides an overview of the methodology taken for evaluating Juno’s
approach to building delivery-centricity in the middleware layer.

Evaluation Overview. The Delivery Framework is the key building block
for supporting delivery-centricity in Juno. This is achieved by performing intelli-
gent consumer-side (re-)configuration to enable interoperation with various third
parties. Consequently, the Delivery Framework has been explicitly designed to
support a delivery-centric abstraction that is instantly deployable alongside ex-
isting systems (in-line with research goals 2 and 3).

Chapter 3 has provided a quantitative analysis of both the need for runtime
(re-)configuration, as well as the benefits that can be gained through the pro-
cess. This is due to the heterogeneity that has been discovered based on both
consumer and temporal variance (i.e. the propensity for a provider’s ability to
satisfy requirements to vary over time and between different consumers). Conse-
quently, the design of the Delivery Framework has been shaped by these findings
to offer explicit support for delivery (re-)configuration. This means the primary
evaluation question that must now be asked regarding the Delivery Framework is,
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can Juno’s design feasibly exploit this heterogeneity to enable the measured bene-
fits? Evidently, this must be validated to ensure that Juno’s design does, indeed,
fulfil the research goals outlined in Chapter 1 by supporting a delivery-centric
abstraction.

The main challenge is therefore defining an evaluation that can validate this
thoroughly. This question cannot be satisfied using quantitative means, as the
ability to offer delivery-centricity in the way defined throughout this thesis is
simply a binary metric (yes or no). Consequently, the evaluation presented must
operate in conjunction with the results presented in Chapter 3. One possible
option would be to deploy a real-world implementation that users could actually
test. This, however, is unfeasible as it would be necessary for a large range of
application to be developed and adopted. Further, by operating outside of a
controlled environment, it would become difficult to monitor behaviour. An al-
ternative approach would be to use simulations; this, however, has already been
accomplished in Chapter 3. Further, this would not allow the prototype of Juno
to be investigated, thereby preventing a practical validation. To address these
limitation, a number of key case-study experiments are designed and deployed
using the Emulab network testbed instead. The justification for this choice has
been explored in detail in Section 6.2.2. Emulab [9] is a testbed consisting of a
number of hosts that can be configured to possess various network characteris-
tics. This allows the Juno prototype to be deployed in a controlled and realistic
setting, alongside real-world protocol implementations. This approach can there-
fore be used to validate that Juno can, indeed, be (re-)configured to interoperate
with third party systems based on various delivery requirements.

Case-Studies. A case-study is a well-defined environmental context that hosts
a particular system attempting to a perform a given function. The principle
purpose of this is to explore the behaviour of a use-case to understand how it
would operate in similar real-world situations. The key requirements of a case-
study are therefore that it is representative and extensible. This means that it
must explore a realistic scenario and that its results must be applicable to a range
of situations that follow that given use-case.

These requirements have been closely followed when designing the case-studies
used to evaluate Juno’s delivery-centric support. They capture the primary ex-
amples of its operation, namely configuration, re-configuration and distributed
re-configuration. These three use-cases represent the key modes of Juno’s oper-
ation, starting with the most dominant; Table 6.7 provides a brief summary.

Within the following sections, each case-study is first defined, alongside the
relevant motivation. After this, an analysis of the case-study is given, including
both performance and overhead metrics. Finally, the findings of the case-study
are summarised to show the outcomes as well as how they can be applied to
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Case-Study \ Summary

Case-Study 1: | This explores the process of configuring a delivery based on
Configuration certain requirements. It focusses on optimising the delivery
when faced with a range of consumer variance.

Case-Study 2: | This explores the process of re-configuring a delivery to react
Re-Configuration | to variations in the environment. It focusses on addressing
temporal variance from the perspective of a single consumer.

Case-Study 3: | This explores the process of re-configuring multiple nodes
Distributed cooperatively. It focusses on handling both consumer and
Re-Configuration | temporal variance in a way that ensures each node can in-
dividually address changes in its environment.

Table 6.7: Summary of Delivery-Centric Case-Studies

alternate scenarios.

Emulab Testbed. The evaluative case-studies detailed within this section
have been deployed and measured on the Emulab testbed [144]. Emulab consists
of almost 400 interconnected PCs that can be configured to possess a range of
network characteristics (delay, bandwidth etc.). Any number of these nodes can
be reserved for dedicated usage, allowing an emulated network (or internetwork)
to be constructed with the chosen software running. In the case studies, collec-
tions of node are used to act as content providers (e.g. BitTorrent swarms, web
servers etc.), whilst one or more nodes are used to act as consumers. Consumers
host the Juno middleware with a simple content application operating above; the
middleware then utilises (re-)configuration to achieve delivery-centricity based on
the available providers. Finally, a single node also operates as a JCDS server to
resolve content queries on behalf of the consumers.

6.4.2 Case-Study 1: Consumer-Side Configuration

The first evaluative case-study investigates Juno’s ability to handle consumer
variance. As identified in Chapter 3, this refers to the variance in a provider’s
ability to fulfil requirements when observed from the perspective of different con-
sumers. The purpose of this case-study is therefore to validate the feasibility of
addressing this need through Juno’s approach to dynamic delivery configuration.

Case-Study Overview

The primary use-case of Juno is the situation in which multiple delivery sys-
tems are discovered to offer a desired item of content. In such a circumstance,
Juno executes selection algorithms to dynamically choose the best one before
dynamically configuring itself to interoperate with it. To address consumer vari-
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ance, this is performed individually by each node. The process can be broken
down into two steps: (i) selection and (i7) configuration. The selection process is
performed by comparing selection predicates to meta-data associated with each
possible provider/protocol. In its simplest form, this involves stipulating some
static boolean property (e.g. ENCRYPTED==true), however, this can also be
extended to involve more complicated co-dependent selection predicates. Follow-
ing a decision, the configuration process is performed by dynamically loading the
necessary functionality (within a component configuration), interconnecting all
the components and then initiating the download.

The first case-study explores this key situation, in which multiple sources are
found by multiple nodes that observe consumer variance. In-line with previous
examples in the thesis, it is assumed that the application’s primary requirement
is to satisfy some performance need, whilst operating within certain constraints.
Within this case-study, an application (operating on multiple nodes) wishes to
consecutively download two items of content: a 4.2 MB music file and a 72 MB
video file. To explore this, the case-study has been implemented in Emulab using
two nodes of different capacities. In the first experiment a low capacity node,
Node LC. is operating over a typical asynchronous DSL connection with 1.5 Mbps
download capacity alongside 784 Kbps upload capacity. In the second experiment
another node, Node HC, operates over a much faster 100 Mbps synchronous
connection. A Juno client application operates on both nodes, first requesting
the download of the 72 MB video followed by the 4.2 MB music file. This therefore
introduces two variable factors: content size and consumer capacity.

A number of content providers are also set up within the testbed. After the
discovery process, the content is found to be available on three providers by Node
LC, whilst four are found by Node HC, as listed in Table 6.8. The three common
delivery providers are a web server, a BitTorrent swarm and a set of Limewire
peers. Node HC further discovers a replication server offered as a service on
its local network. Both nodes therefore generate their necessary meta-data for
each of these sources using the techniques detailed in Chapter 5; as previously
discussed, these are low overhead mechanisms that can be completed in under a
second.

Clearly, when the application generates the content requests, it associates
them with a set of selection predicates. Table 6.9 details the selection predicates
issued by Nodes LC and HC for the 72 MB delivery*. The first predicate is
the estimated download rate; in this case, the application simply requires the
content as quickly as possible. Node LC also has limited resources (only 784
Kbps upload capacity) and therefore the Content-Centric Framework introduces
the upload predicate, which stipulates the delivery scheme should not consume
upload resources. In contrast, Node HC has no such limitations and consequently

*Similar predicates are used for the 4.2 MB delivery
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Available | Delivery Scheme
for

Node LC, | HTTP: There is 2 Mbps available capacity for the download to
Node HC | take place. The server is 10ms away from the client.

Node LC, | BitTorrent: A swarm sharing the desired file. The swarm consists
Node HC | of 24 nodes (9 seeds, 15 leeches). The upload/download bandwidth

available at each node is distributed using a real world measure-
ments taken from existing BitTorrent studies [3].

Node LC, | Limewire: A set of nodes possessing entire copies of the content.
Node HC | Four nodes possessing 1 Mbps upload connections are available.

Node HC | Replication Server: A private replication server hosting an in-

stance of the content on Node HC’s local area network. The server
has 100 Mbps connectivity to its LAN and is located under 1ms
away. The server provides data through HTTP to 200 clients.

Table 6.8: Overview of Available Delivery Schemes

Meta-Tag Selection Predicates
Node LC | Node HC
DOWNLOAD_RATE | HIGHEST | HIGHEST
REQUIRES_UPLOAD | FALSE N/A
MIN_FILE_SIZE <=72 MB | <=72 MB
MAX_FILE_SIZE >=72 MB | >=72 MB

Table 6.9: Selections Predicates and Meta-Data for Delivering a 72 MB File

Meta-Tag | HTTP | BitTorrent | Limewire
DOWNLOAD_RATE | 1.4 Mbps | 480 Kbps | 970 Kbps
REQUIRES_UPLOAD | FALSE | TRUE TRUE
MIN_FILE_SIZE 0 MB 8 MB 0 MB
MAX_FILE_SIZE o MB | o MB oo MB

Table 6.10: Delivery Scheme Meta-Data for Node LC

does not use this selection predicate. The final two predicates define the file size;

these indicate the minimum and maximum file sizes that the plug-in should be
suitable for. Tables 6.10 and 6.11 provide the values of the relevant meta-data

exported by the providers for each node.

The rest of this section now explores this case-study to understand how Juno

fulfils these requirements, alongside the benefits gained in this particular setting.

Clearly, the results presented are extensible to any environment in which multiple

sources are discovered, as quantified in Chapter 3.
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Meta-Tag ‘ HTTP ‘ BitTorrent ‘ Limewire ‘ Rep Server
DOWNLOAD_RATE | 1.9 Mbps | 2 Mbps 3.6 Mbps | 41 Mbps
MIN_FILE_SIZE 0 MB 8 MB 0 MB 0 MB
MAX_FILE_SIZE oo MB oo MB oo MB oo MB

Table 6.11: Delivery Scheme Meta-Data for Node HC

Analysis of Case-Study

The above case-study has been setup in Emulab; Figures 6.13 and 6.14 show
measurements taken from both Nodes LC and HC as they were downloading the
two files. It shows the average application layer throughput for the large and
small file downloads when utilising each provider. It also shows the throughput
of Juno, which is capable of selecting any plug-in.

It is first noticeable that the results between Node LC and HC are disjoint,
i.e. the results for Node LC are in direct opposition to Node HC. This means that
an application optimised for Node LC would be suboptimal for Node HC, and
vice-versa. Consequently, a statically configured application would not be able
to fulfil the delivery requirements for both nodes simultaneously. This therefore
confirms the presence of consumer variance. Thus, an application would need to
implement control logic to follow different optimisation paths depending on the
host. In contrast, Juno manages this process on behalf of the application.

The reasons for these disjoint results between the two nodes can be attributed
to three key sub-categories of consumer variance. First, the two nodes have access
to different providers; second, the consumers possess different characteristics; and
third, the two items of content requested have different properties (i.e. size).
Consequently, different combinations of the above factors can drastically alter a
node’s ability to satisfy given performance requirements. Each of these forms of
consumer variance are now addressed in turn.

The first and most obvious consumer variance is that of provider availabil-
1ty. This refers to the differences in content availability when observed from the
perspective of different consumers. For instance, in the case-study, Node HC op-
erates in a network that offers a replication service with very strong connectivity.
In contrast, Node LC does not have any such service available because it is limited
to members of a particular network (or often paid members). Variations of this
can happen in a range of different situations; Gnutella, for example, will allow
different sources to be discovered based on a node’s location in the topology. Any
content-centric system should therefore be able to exploit this consumer variance
to ensure that the delivery requirements are best fulfilled and Node HC gains the
content from its local replication server. Evidently, Juno supports this through
allowing each node to individually select the access mechanism that best fulfils
its requirements.
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Figure 6.14: Average Throughput of Deliveries for 100 Mbps Connection (Node
HC)

The second type of divergence is caused by differences in consumer charac-
teristics. This variance is best exemplified by the observation that, for the 72
MB delivery, HT'TP is the optimal plug-in for Node LC but the most suboptimal
plug-in for Node HC. This is because Node HC can better exploit the resources of
the peer-to-peer alternatives (i.e. BitTorrent or Limewire), whilst Node LC fails
to adequately compete. In essence, Node LC is best suited to utilising the least
complicated method of delivery because the more complicated approaches simply
increase overhead without the ability to contribute real performance gains. Once
again, this form of consumer variance is effectively addressed by Juno, which
configures itself to satisfy requirements on a per-node basis.

The final type of divergence is caused by differences in the content being
accessed. The previous two paragraphs have shown that in this case-study it
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is impossible to fulfil the delivery requirements for divergent consumers without
performing per-node configuration. However, a further important observation
can also be made: the delivery mechanism considered optimal for one item of
content is not always the best choice for a different item of content. This is best
exemplified by the observation that the optimal delivery system for accessing the
72 MB file is not necessarily the best for accessing the 4.2 MB file. For instance,
when operating on Node HC, BitTorrent is faster than HTTP for the 72 MB file
but slower than HTTP for the 4.2 MB file. In fact, the 4.2MB delivery achieves
only 66% of the throughput measured by the 72MB delivery using BitTorrent.
This is due to the complexity and length of time associated with joining a peer-to-
peer swarm. Consequently, optimality does not only vary between different nodes
but also between different individual content downloads. An application using
BitTorrent that cannot re-configure its delivery protocol would therefore observe
significant performance degradation between the two downloads. Consequently
delivery system selection must not only occur on a per-node basis but also on a
per-request basis. Juno addresses this by seamlessly re-configuring between the
different optimal delivery plug-ins, thereby effectively addressing this problem
whilst removing the development burden from the application. This divergence
therefore highlights the fine-grained complexity that can be observed when han-
dling real-world content distribution. This complexity makes it difficult for an
application to address all possible needs and therefore provides strong motivation
for pushing this functionality down into the middleware layer.

The above analysis can now be used to study the behaviour of Juno dur-
ing this case-study. Table 6.12 details the decision process undertaken, showing
which plug-ins are selected for each content request. In this situation, for both
items of content, Node LC selects HTTP (due to the high download rate and no
need for upload resources), whilst Node HC selects the replication server (due
to the high download rate). In terms of fulfilling performance requirements, this
therefore allow a quantification of the supoptimality of not using Juno’s philoso-
phy of delivery (re-)configuration. Table 6.13 provides the percentage increase in
throughput when using Juno during these experiments. The worst case scenario
compares Juno against an application that has made the worst possible design-
time decision (using the above figures). The best case is when the application
has made the best decision (obviously resulting in the same performance as Juno
in this situation). Evidently, these results highlight Juno’s ability to effectively
improve performance based on delivery requirements provided by the application.

Summary of Findings

In summary, this experiment has (i) confirmed that the consumer variance iden-
tified in Chapter 3 is prevalent, and (ii) shown it can be effectively handled us-
ing Juno’s approach to delivery configuration. Importantly, by placing content-
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Meta-Tag Predicates Valid Configurations
Node LC | Node HC || Node LC | Node HC
72 MB Content Request
DOWNLOAD_RATE | HIGHEST | HIGHEST || HTTP Rep
Server
REQUIRES_UPLOAD | FALSE N/A HTTP N/A
MIN_FILE_SIZE <=72MB | <=72MB || Any Any
MAX_FILE_SIZE >=72MB | >=72 MB || Any Any
4.2 MB Content Request
DOWNLOAD_RATE | HIGHEST | HIGHEST || HTTP Rep
Server
REQUIRES_UPLOAD | FALSE N/A HTTP N/A
MIN_FILE_SIZE <=4.2 MB | <=4.2 MB || HTTP, HTTP,
Limewire | Limewire,
Rep
Server
MAX_FILE_SIZE >=4.2MB | >=4.2 MB || HTTP, HTTP,
Limewire | Limewire,
Rep
Server

Table 6.12: Predicates for Delivering a 72MB File (Top) and 4.2 MB (Bottom);
the right lists the plug-ins that are compatible with the selection predicates (em-
boldened shows the selected plug-in)

App Worst Case
42 MB | 72 MB
+343% | +185%
+2979% | + 2141%

‘ App Second Best Case ‘ App Best Case
|42MB [72MB  |[42MB [ T72MB

+57% +48% +/-0% | +/- 0%
+1013% | +1174% +/-0% | +/- 0%

Table 6.13: Predicates and Meta-Data for Delivering a 72MB File to Node LC

DSL
100

centricity in the middleware layer, these benefits can be gained by individual
clients without prior network deployment or a complicated coding overhead for
applications. The key findings from this section can be summarised as,

e When accessing content there can often be a divergence in the available
providers

— Different consumers will locate different sources and can subsequently
only be optimised by enabling the exploitation of their particular ‘view’
of the network

e Diversity between consumers can often result in an inability for a single
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static delivery system to satisfy given requirements for all

— The varying properties of different consumers will often result in dif-
ferent levels of satisfication (for a given set of requirements) when
accessing content. This means it is only possible to achieve optimi-
sation by taking these variances into account and allowing per-node
configuration to be performed

e Diversity between content can result in an inability for a single delivery
system to satisfy given requirements for multiple items of content

— Diversity between content will affect the ability for a given provider/
protocol to best serve the content; consequently, decisions must be
made on not only a per-node but also a per-request basis

6.4.3 Case-Study 2: Consumer-Side Re-Configuration

The second evaluative case-study looks at how Juno can handle temporal vari-
ance. As defined in Chapter 3, this refers to the variance of a provider’s ability
to fulfil a set of requirements over time. The purposes of this case-study is there-
fore to validate that Juno’s approach to delivery re-configuration can adapt an
application to varying environmental conditions.

Case-Study Overview

The second case-study focusses on addressing temporal variance, in which a pre-
viously made decision becomes suboptimal. Generally, delivery protocols do not
explicitly support sophisticated adaptation to address such changes. Juno there-
fore extracts the required adaptive functionality and manages it on behalf of de-
livery protocols. As such, plug-ins remain relatively simple entities that are exter-
nally managed. Performing consumer-side re-configuration involves three steps,
(1) detection of an environmental change, (i) re-selection, (7ii) re-configuration.
The first step is performed by the active plug-ins by dynamically modifying their
meta-data during the delivery (i.e. to reflect current conditions), whilst the latter
two steps are performed in a similar way to described in the first case-study.
In-line with the previous case-study, it is assumed that the key requirement
is performance-oriented. Within this case-study, a high capacity node is down-
loading a 698 MB video using FTP at ~2.5 Mbps. This node is resident on a
campus network with a 100 Mbps connection to the Internet. The node’s user
has an account with a content distribution network (CDN) that uses a number
of strategically placed replication servers. When the application initiates the
download, the CDN does not possess a copy of the desired content. However, 20
minutes after the download starts, the CDN acquires a replicated copy. This is
discovered by periodically repeating previous queries to ensure that up-to-date
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Meta-Data Item Selection
Predicate
DOWNLOAD_RATE | HIGHEST
MIN_FILE_SIZE <=698MB
MAX_FILE_SIZE >=698MB

Table 6.14: Selection Predicates for Accessing File

provider information is available. At this point in time, the replication server
has =6.5 Mbps of available upload capacity, thereby making it vastly superior
to the currently selected provider. The server, however, only offers the content
through HTTP; to access it, the node must therefore re-configure its delivery to
interoperate with the new source.

Table 6.14 shows the selection predicates for the delivery request. The rest
of this section now explores the behaviour of Juno when operating with this
case-study. Importantly, this case-study is extensible to any two sets of delivery
protocol and therefore this just shows an exemplary usage of the functionality.

Analysis of Case-Study

The above case-study has been implemented and deployed on the Emulab testbed.
Figure 6.15 shows the instant download rate of the client when utilising Juno. It
can be observed that the consumer initially receives a steady rate of ~2.5 Mbps
from the FTP server it is utilising. However, after 20 minutes, the replication
server is discovered to also possess the content. This information is acquired
through the periodic re-execution of queries by the Discovery Framework to en-
sure that up-to-date source information is available. This is therefore followed by
generating meta-data for the new HTTP source; as detailed in Chapter 5, this is
done using the iPlane service with only a small delay (<1 second).

Following this, the consumer re-executes the selection process to choose be-
tween the FTP server and the now available replication server (HTTP). The new
server offers the content at ~6.5 Mbps and is obviously selected based on the
HIGHEST selection predicate detailed in Table 6.14. To re-configure the deliv-
ery, the FTP download is terminated before detaching the plug-in. Following
this, the HT'TP plug-in is attached and the content requested again; this time,
however, the HTTP plug-in generates a range request to avoid downloading the
previous data again. Clearly, the frequency of this re-configuration process is lim-
ited by a configurable value (default 1 minute) to ensure that oscillation does not
occur and to give each plug-in an opportunity to reach its optimal performance.

In this case-study, the re-configuration only takes approximately 0.5 seconds,
making its effect on the delivery negligible. Importantly, once the re-configuration
has taken place, the download rate can be seen to increase significantly. This
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allows the delivery to complete 18 minutes earlier, achieving a 36% faster delivery.
Consequently, it is evident that delivery-centricity can only be achieved if the per-
request configuration is extended to allow re-configuration at any point during
the delivery due to temporal variance.
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Figure 6.15: Download Rate of Juno Node with Re-Configuration

Figure 6.16 also shows the application layer throughput of the different down-
load options; this is measured from the point at which the application requests
the content to the point at which it is fully received. It can be seen that
Juno’s throughput (with re-configuration) is significantly higher than without
re-configuration. This is due to the higher download rate achieved after the first
20 minutes. These two results can also be compared to the alternative of simply
discarding the original data retrieved through FTP and starting a new HTTP
delivery from the replication server (this would be a necessary step if using most
applications such as Microsoft Internet Explorer). By discarding the first 20 min-
utes of delivery (286 MB), the throughput drops to 66% of Juno’s, resulting in
a 17 minute longer delivery. Other undesirable side effects also occur such as
increased client bandwidth utilisation.

This case-study therefore shows that it is possible for Juno to adapt to the
temporal variance identified in Chapter 3. On the one hand, this could be used
to exploit a positive change to the environment (e.g. the discovery of a superior
provider) or, alternatively, to address a negative change (e.g. network conges-
tion at the current provider). The conclusions from the previous case-study can
therefore be extended to state that it is necessary to not only allow per-node and
per-request decisions to be made, but also to allow such decisions to be re-made at
any point during a delivery. Juno’s approach of abstracting the delivery process
from the application, and allowing it to be dynamically re-configured therefore
offers an effective solution to these issues. Importantly, by constantly monitor-
ing the current choices and comparing them against alternatives, an application
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Figure 6.16: Average Application Level Throughput of Deliveries

operating over Juno can confidently ensure that its delivery requirements will
always be met (within the constraints of the environment).

Summary of Findings

In summary, this experiment has (i) highlighted the presence of temporal vari-
ance, as identified in Chapter 3, and (ii) shown it can be effectively handled using
Juno’s approach of delivery re-configuration. With small files (e.g. 1 MB), it is
often not critical to consider decisions beyond the initial request time. However,
with large files, the likelyhood of decisions becoming suboptimal increases due
to longer download times. Juno’s approach to delivery-centricity, which involves
constantly monitoring the environment in regards to the application’s require-
ments, therefore offers an effective solution to this case-study. This is because it
can modify previous decisions at any point in time by re-configuring the under-
lying way it accesses content. The key findings that can be extracted are,

e [t is possible for a runtime decision to become incorrect later on due to
environmental changes (i.e. temporal variance)

— Changes to the provider(s), consumer(s) or network can mean that a
previous decision becomes suboptimal compared to alternative sources

— These can be both positive changes (e.g. discovery of a new source)
or negative changes (e.g. increased network congestion)

e Request-time decisions can be as equally restrictive as design-time decisions.
To perform a delivery without support for re-configuration can therefore
result in an inability to guarantee that certain requirements can be satisfied
for the entirety of a delivery
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Node ‘ Download \ Upload
A 784 Kbps | 128 Kbps
B 1.5 Mbps | 384 Kbps
C 3 Mbps 1 Mbps

Table 6.15: Bandwidth Capacities of Initial Nodes

e Juno’s re-configurable approach effectively offers a feasible solution to ad-
dress these problems

6.4.4 Case-Study 3: Distribution Re-Configuration

The third evaluative case-study investigates Juno’s ability to address both con-
sumer and temporal variance at the same time, as well as the potential of dis-
tributed re-configuration. The previous sections have inspected these concepts
individually, however, it is also necessary to ensure Juno can handle this com-
plexity holistically. The purpose of this case-study is therefore to validate that
Juno’s distributed re-configuration support can be exploited to address the vari-
ance observed in Chapter 3.

Case-Study Overview

The previous two case-studies have involved the uni-sided configuration and re-
configuration of behaviour to best fulfil certain performance requirements. These
are obviously the most common use-cases due to the ease at which Juno can be
deployed in a uni-sided manner. However, an interesting variation of this is the
situation in which all nodes utilise Juno (including the provider). This would
obviously be the case when a new application has been fully developed using
Juno. Such a scenario subsequently allows adaptation messages to be exchanged
between nodes to enable distributed re-configuration.

The third use-case explores this space; within this case-study there are a num-
ber of clients downloading a 698 MB file from a single server hosting Juno with
HTTP configured. The server has 10 Mbps of upload bandwidth to distribute this
content. In contrast to the previous experiments, the client application issues no
delivery requirements. This is because the content is only available from a single
(application controlled) server. Instead, the server application issues provision
requirements to Juno stating that the UPLOAD_RATE meta-data should remain
below 9 Mbps to ensure it that is not overloaded.

Initially three clients begin to download the content, thereby entitling them to
3.33 Mbps each. Each client possesses a different bandwidth capacity as shown in
Table 6.15, thereby creating consumer variance within the experiment. After 20
minutes the demand for the content increases and 22 further nodes issue requests
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to the HT'TP server. This obviously constitutes a form of temporal variance, in
which the operating environment changes. These nodes each request the content
sequentially with 20 second intervals. The bandwidth capacities of the new nodes
are distributed using the data from [40].

At the server, Juno detects this drain on its resources by monitoring the up-
load rate for each item of content; when it exceeds the given threshold (9 Mbps)
it initiates a distributed re-configuration. This re-configuration involves chang-
ing its chosen delivery scheme from HTTP (limited scalability) to BitTorrent
(high scalability). This constitutes probably the most common distributed re-
configuration use-case, as is evident from the wealth of previous literature that
looks at exploiting peer resources during flash crowds (e.g. [55][112]). This is
therefore one example of a re-configuration response, although any other strat-
egy can also be introduced, as detailed in Section 4.4.4. Unlike previous examples
of peer-to-peer flash crowd alleviation, Juno therefore supports the easy addition
of new strategies that are external to the protocol implementations.

Analysis of Case-Study

The above case-study has been setup in Emulab over a number of nodes; Juno has
then been deployed on each node (including the server) and measurements taken.
Once again, as the case-study operates with performance-oriented requirements,
this section now explores the performance benefits of utilising Juno’s distributed
re-configuration.

Figure 6.17 shows the gain, in terms of download time, of re-configuration for
each node when compared to non-re-configuration. Nodes are ordered by their
download capacity with the slowest nodes at the left. First, Figure 6.17a shows
the circumstance in which the server mandates that all peers re-configure so it
can lower its own utilisation. It can be seen that lower capacity nodes actually
suffer from the re-configuration; 12 out of the 25 nodes take longer to complete
their downloads. This occurs because during the initial bootstrapping period
of the swarm, nodes tend to cluster into neighourhoods of similarly resourced
peers [62]. In the case of the lower capacity peers, this leaves them interacting
with fellow peers possessing as little as 128 Kbps of upload capacity. Due to
their similarly limited upload resources, it is impossible for these peers to acquire
download slots from the higher capacity peers. This leaves the lower capacity
peers with low download rates.

The above observation emerges as a significant problem because a given re-
configuration strategy is likely to benefit certain peers but disadvantage others.
This clearly is an example of consumer variance and raises the question of how
to incentivise peers that would potential become disadvantaged if they conform
to the collective re-configuration. Juno takes steps towards addressing this by
supporting fine-grained per-node re-configuration, i.e. allowing different nodes to
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select their own re-configuration strategy. This allows each peer to accept or reject
a re-configuration based on its own requirements, thereby improving fairness
within the process. However, ultimately, the decision is made by the provider to
ensure consistency within the system. This is because the provider has a position
of dominance (and often trust), allowing it to perform a re-configuration that best
matches it requirements. These requirements, however, are not necessary selfish
ones; instead, it is likely that many providers will wish to improve the common
good and offer the optimal configuration(s) to achieve this. In the case-study, each
node is therefore allowed to select whether or not they implement the strategy,
leaving the provider with both BitTorrent and HTTP support. Figure 6.17b
shows the situation in which the server also provides the content simultaneously
through HTTP, allowing each node to select its own plug-in. It can be observed
that every peer improves its performance when utilising this strategy. It allows
high capacity peers to exploit each others’ resources whilst freeing up the server’s
upload bandwidth for use by the lower capacity peers. On average, through this
mechanism, peers complete their download 65 minutes sooner. This is an average
saving of 30% with the highest saving being 51%.
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Figure 6.17: Benefit of Juno using Different Re-Configuration Strategies

Figure 6.18 also shows the measured download bandwidth of a representative
Juno node! possessing a 3 Mbps/1 Mbps down/upload capacity. The graph
shows the bandwidth with re-configuration both enabled and disabled. This peer
joins before the flash crowd and receives a steady bit rate of =600 Kbps early
in its lifetime. However, after 20 minutes the flash crowd occurs, resulting in
the degradation of its bit rate to ~350 Kbps (-41%). Without adaptation of the
delivery scheme, this situation remains until the flash crowd has alleviated (seen
slightly after ~150 minutes). Juno, however, re-configures 6 minutes after the
beginning of the flash crowd. This occurs after the server has observed resource
saturation for a given item of content. At first there is a significant drop in the

fSimilar behaviour can be observed in the other nodes
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bit rate to ~200 Kbps; this occurs due to the bootstrapping period of BitTorrent,
which involves peers exchanging chunk maps and bartering for each others’ upload
resources. Importantly, however, the bit rate quickly returns to that before the
flash crowd (/700 Kbps) with the usual end game period at the end [40].
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Figure 6.18: Download Rate of Consumer (i) with Re-Configuration (i) without
Re-Configuration

So far, two re-configuration strategies have been explored: per-node and
system-wide. The decision of which to use is left to the provider as it is in
the most important bartering position (i.e. it possesses the content). A per-node
strategy is clearly the best approach if the provider is intent on improving perfor-
mance for consumers; this is a likely situation if the provider is operating in a fluid
commercial setting. In contrast, a system-wide strategy is likely to be preferred
if re-configuration is initiated with the intent of reducing the resource overhead
for the provider. This can be seen in Figure 6.19, which shows the upload rate
of the provider when it both enforces system-wide re-configuration as well as
allowing HTTP access to continue (per-node). It can be seen that the loading
on the server increases rapidly in proportion to the number of nodes requesting
the content. Without system-wide re-configuration, this results in a high level of
server utilisation (upload saturation). However, with re-configuration enabled,
the server reacts and adapts appropriately to its new operating environment.
This can be seen by the rapid fall in utilisation. Over a short period of time
the server remains seeding chunks to the BitTorrent swarm. However, after 105
minutes this process largely ceases with over 95% of bandwidth being freed.

These results can also be contrasted with the overhead of performing dis-
tributed re-configuration. The bandwidth costs of adaptation messages are triv-
ial; of more interest is the re-configuration delays. Due to the fact that a number
of different types of node operated in the experiment, Table 6.16 details the
average, maximum and minimum re-configuration and bootstrapping times (on
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Figure 6.19: Upload Rate of Provider
‘ Average ‘ Maximum ‘ Minimum

Re-Configuration | 29 Sec 42 Sec 13 Sec
Bootstrapping 6 Sec 18 Sec 3 Sec

Table 6.16: Re-Configuration and Bootstrapping Times for Clients

a per-node basis). The re-configuration time is the length of time required to
re-configure the node for use with BitTorrent, whilst the bootstrapping time is
the subsequent time it takes for a node to receive its first chunk. Consequently,
these represent the period over which no download is being performed. Assuming
the average download rate taken from the microscopic BitTorrent measurement
study detailed in Section 3.3 (1613 Kbps), this would result in between 2.5 and
8 MB of bandwidth being lost by each node during the re-configuration period.
This, however, can be considered as justified due to the increase in overall ben-
efits; further, this can be alleviated by simply continuing the download with the
previous system (HTTP) until the next system is ready (BitTorrent). At the
server-side, the re-configuration time is much shorter (12 seconds) as it executes
on a higher specification node and does not require any distributed interactions.
It only initiates itself and waits for requests.

Summary of Findings

In summary, this experiment has (i) highlighted the holistic effects of consumer
and temporal variance, and (i7) shown it can be handled effectively using Juno’s
support for distributed re-configuration. Importantly, by encapsulating protocols
within plug-ins, this can be managed externally by Juno without either applica-
tion or protocol developers being involved. This case-study has shown a relatively
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straight-forward adaptation, however, far more significant alternatives can also
be envisaged that involve various negotiations and the use of different plug-ins
and services (e.g. transcoding). In summary, the main findings from this use-case

are,

e Some changes in the environment can only be addressed through the coop-
erative adaptation of multiple nodes

— This is most prevalent when there are only a limited number of (het-
erogeneous) available providers, thereby preventing consumer-side re-
configuration

e Advantages can include both performance and overhead improvements

— Generally, the preference as to which is managed by the provider as it
is in a position of dominance

e Such functionality is best placed in the lower layers to reduce the burden
on application developers

e Such functionality should be externalised from individual protocols to im-

prove extensibility

6.4.5 Further Case-Studies

The previous three sections have provided detailed case-studies of the three pri-
mary (re-)configurable operations performed by Juno. These are consumer con-
figuration, consumer re-configuration and distributed re-configuration. Through
these case-studies, it has been shown that Juno’s design is both (i) feasible, and
(ii) effective at fulfilling performance-oriented requirements. It has also shown
that Juno’s approach of supporting both per-node and per-request configuration
is best suited to achieving this. Performance has been used as a primary require-
ment use-case because of its dynamic nature as well as the predominance of its
usage. However, there are also a large number of alternative requirements that
might be considered important to an application, e.g. overhead, security etc.
The purpose of this section is to briefly explore a more extended set of re-
quirements that applications may choose to issue to Juno. Each section explores
why an application might choose to generate a particular requirement as well as
the configuration response that Juno will perform. Table 6.17 provides a brief
overview of the extended meta-data investigated alongside the values set for a

variety of protocols.
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Protocol ‘ Encryption \ Anonymity \ Upload Resources \ Cost

HTTP false partial false various
HTTPS true partial false various
BitTorrent false none true 0
Limewire false none true 0
ed2K true none true 0
RTP false partial false various
FreeNet true full true 0

Table 6.17: Overview of Extended Meta-Data for Various Protocols

Security

Security is a term that covers many aspects of content system design. In a
broad sense, it refers to the provision of mechanisms to prevent the unauthorised
access to or modification of system resources. These resources can range from the
content itself (at the data-level) to the infrastructure that serves it. In the context
of a consumer accessing content, security generally refers to three functional
aspects that can be offered by a delivery system,

o Network Encryption: This prevents intermediate parties observing or mod-
ifying the interactions between a consumer and its provider(s)

e Data Validation: This allows a consumer to validate (post-delivery) that
an item of content is, indeed, the one requested

o Anonymity: This prevents certain parties from discovering that a consumer
has accessed a particular item of content

Alongside these needs, providers will generally also have more extended require-
ments. The most obvious ones being access control and digital rights manage-
ment. Both of these issues, however, are generally managed within the content-
layer; for instance, using an encrypted shell. In-line with the rest of the thesis,
this section focusses on consumer-oriented requirements. Security needs, from the
perspective of different consumers, are likely to vary dramatically. Many appli-
cations will simply want their content’s integrity to be validated, however, other
applications will have far more stringent requirements. Due this observation, the
different aspects of security are decomposed into individual items of meta-data
that can be requested by the application. These are now discussed in turn.

Encryption. The first security-related item of meta-data is encryption. En-
cryption refers to a delivery system’s ability to encode a data stream so that any
intermediate parties cannot ascertain what is being accessed or alter the data

being exchanged. This is a static item of meta-data that is exposed by each
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delivery plug-in. It will primarily be requested by applications that view the
content accessed by a consumer to be sensitive. This might occur, for instance,
if the content is personal to the consumer or if access to the content is provided
through monetary exchange. Examples of delivery protocols that support en-
cryption include HTTPS, FreeNet and FTPS. Juno can easily be configured to
utilise an encrypted delivery by adding the following requirement,

new MetaDataRule( "ENCRYPTION", MetaDataRule.EQUALS, true);

This creates a new selection predicate (to be passed to Juno) that dictates
that the chosen delivery protocol must offer encryption. Subsequently, the chosen
delivery protocol will be restricted to ones that expose the correct meta-data.

Data Integrity. The next, highly important, aspect of content security is
that of data integrity. This refers to an application’s ability to validate that a
received item of content is, in fact, the one that was requested. Within Juno,
this is an implicit function that is offered through the use of hash-based content
identification. Whenever a request is generated, the content is addressed using
a hash-based identifier that uniquely identifies the content through the use of
hashing algorithms such as MD5 and SHA-1. These are created by executing
the hashing functions on the content’s data. Consequently, once an item of con-
tent has been received, its integrity can be checked by re-executing the hashing
process and comparing the output to the content’s identifier. If they match, the
content can be considered valid.

Anonymity. The third security aspect considered is anonymity; this refers to
a delivery system’s ability to hide a consumer’s identity (e.g. IP address). Unlike
the previous item of meta-data, this is not always static. On the one hand, some
protocols such as FreeNet do implicitly support anonymity, thereby making it an
entirely static piece of meta-data. However, other protocols such as HT'TP do not
implicitly offer the support; instead, it is a policy decision left to the provider.
In contrast, there are also other protocols such as BitTorrent, which simply do
not offer any anonymity.

To address this, anonymity meta-data is constructed on a sliding scale from
zero to two. Zero indicates the provider does not offer anonymity; one indicates
the provider offers partial anonymity; and two indicates the provider offers full
anonymity. Subsequently, using the previous examples, BitTorrent is set to zero,
HTTP is set to one, and FreeNet is set to two. This is because any node can
connect to a BitTorrent swarm and discover the members; whilst, alternatively,
in HTTP only the provider can discover a consumer’s identity. Last, a FreeNet
node offers full anonymity because no third party can discover what a consumer
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is accessing. In the future, this can also be extended to include provider-specific
information so that different providers can expose their personal anonymity poli-
cies.

One other mechanism by which a node can gain anonymity is through the
use of services such as Tor [30], which offer an anonymous VPN-like network con-
nection. Consequently, any higher level services become completely anonymous
when connected to the Tor network. Clearly, this should be taken into account
by Juno when exposing the meta-data because all plug-ins would subsequently
become anonymous. To address this, the Context Repository maintains a global
ANONYMOUS_UNDERLAY item of boolean meta-data. When exposing meta-
data, each plug-in can subsequently check this to ascertain whether or not their
configuration is anonymous by default.

Resilience

In the context of content delivery, resilience refers to the certainty with which an
application can successfully retrieve an item of content. Juno’s design implicitly
offers a greater degree of resilience when compared to previous approaches. This is
because Juno is not limited to utilising an individual provider/protocol. Instead,
it can exploit any available sources, thereby providing a far greater degree of
redundancy in the face of failures. Juno therefore can re-configure to use alternate
sources when a previous one becomes unavailable. Further, because Juno utilises
a shared content manager this can be done without the loss of prior downloaded
data.

Beyond this, certain applications are also likely to issue resilience requirements
that specifically refer to the confidence with which a provider can serve an item of
content. Juno supports this by allowing plug-ins to expose resilience meta-data.
For instance, a BitTorrent swarm can serve an item of content with varying
degrees of certainty based on the replication level of the rarest chunk [88]. If,
for example, there is only one copy of the rarest chunk, then it is highly likely
that at some point the content will become unavailable due to the departure
of this chunk from the swarm. This resilience level can therefore be exposed
to applications. A measure of resilience from a consumer’s perspective can be
modelled by a probability indicating the certainty with which an item of content
will be delivered successfully. Evidently, a value of 1 would indicate that there
is no possible manner in which the delivery can fail (this, however, is clearly
impossible). This meta-data can therefore be generated dynamically based on
any pertinent runtime properties and exposed to applications in a similar way to
performance meta-data.
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Upload Bandwidth Resources

Upload resources refer to the upload bandwidth consumed by a delivery protocol.
This is a static consideration for certain protocols (e.g. HTTP) whilst being a
dynamic aspect for others (e.g. BitTorrent).

Generally, client-server systems such as HI'TP and FTP have no upload band-
width consumption, excluding the obvious TCP ACKs. In contrast, however,
peer-to-peer systems such as BitTorrent and Limewire also offer resources for
uploading content to other peers. In fact, protocols such as BitTorrent rely on
this to ensure high reciprocal download performance. Currently, to represent the
required upload resources, Juno simply uses a boolean item of meta-data that
can be expressed with the following code,

new MetaDataRule( “REQUIRES_UPLOAD", MetaDataRule. EQUALS, true);

This is therefore very coarse grained because it only allows a consumer to
avoid using delivery systems that require upload resources. However, it is still
extremely useful in certain circumstances. For instance, it allows a low capacity
device or a node utilising a rate-based connection to avoid the usage of such
systems.

Monetary Cost

The monetary cost is an extremely important aspect of most real-world systems.
It refers to the monetary charge issued to any consumers that wish to access a
specific item of content from a provider. This therefore applies to any providers
that request money on a per-view basis.

Generally, protocols that handle this are separate from the underlying delivery
system. For instance, a user might be required to securely login to a website to
purchase an item of content before being granted access via HTTP. This, for
instance, is the approach of the current iTunes implementation, which has access
to the iTunes Store provider. In the Juno approach, however, multiple providers
are accessible, allowing the application to select the cheapest one that fulfils
its criteria. In terms of music providers, the list is extensive including iTunes,
Amazon, HMV and Napster, to name a few.

Juno applications can easily introduce the principles of monetary cost; for
instance, if an application were only willing to pay less than 50 pence, this could
be stipulated using the following rule,

new MetaDataRule("MONETARY_COST", MetaDataRule.LESS_THAN, 50);

When issued with this meta-data, Juno would therefore only utilise providers
that were sufficiently cheap. Obviously, the plug-in that accesses this provider
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would have to be configured with the user’s account details (which would be pro-
vided through its parameters). Alternatively, other applications may simply wish
to access the content in the cheapest manner, regardless of other concerns such
as performance; this can similarly be performed using the following rule,

new MetaDataRule( “MONETARY_COST", MetaDataRule.LOWEST);

6.5 Critical Evaluation Summary

The previous two sections have provided a quantitative evaluation of both the
discovery and delivery aspects of Juno’s design. This section revisits the core
design requirements of Juno to critically evaluate how well they have been ful-
filled. These were detailed in Section 4.2 in the form of five key requirements
for a content-centric solution. From these requirements, four questions can be
derived; specifically, these are,

e Open Abstraction: Does the middleware offer a content-centric and delivery-
centric abstraction?

o Delivery-Centric: Can the middleware successfully fulfil delivery require-
ments issued by the application?

o Interoperable: Can the middleware successfully interoperate with multiple
diverse third party content systems?

e Deployable: Is it possible to deploy the middleware instantly without sig-
nificant cost?

e FExtensible: Can the middleware be extended to utilise new protocols and
support future delivery requirements?

The first requirement has already been implicitly shown through the design sec-
tion. Therefore, this section now briefly explores how the four other requirements
have been holistically addressed by Juno’s design.

6.5.1 Delivery-Centric

Delivery-centricity refers to a content-based system’s ability to accept and ful-
fil potentially diverse delivery requirements. Section 6.4 has explored delivery-
centricity using a number of case-studies. Alongside the results from Chapter
3, this has shown there to be a number of benefits associated with deploying
delivery-centricity. To achieve this, Juno relies on three stages of operation: dis-
covery, selection and delivery. The effectiveness of each of these processes is now

explored in turn.
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Discovery is the process by which potential sources are acquired. This is
vitally important as delivery-centricity in Juno is based on the ability to re-
configure between different providers. Due to the skewed nature of content popu-
larity and replication [74][147], this is a highly effective approach when accessing
popular objects. This is because there will generally be many providers offering
the content in many different ways. It has been shown that, when available, this
diversity can be effectively exploited to satisfy application requirements. In con-
trast, unpopular content is generally not so well sourced, making it more difficult
for Juno to re-configure between different providers. To address this, however,
Juno also supports distributed protocol re-configuration, allowing consumers to
adapt providers based on personal requirements.

Once a set of potential sources have been located, it is necessary to select the
one(s) that best fulfil the delivery requirements. Selection predicates are used
to intuitively describe requirements. The selection process is therefore simply
a matter of applying the selection predicates to the meta-data of the available
sources. The challenge is generating accurate and representative meta-data for
each of the available providers; this has been investigated in Chapters 3 and
5. It has been shown that effective mechanisms exist for performing this task
in a low overhead way. Further, Juno’s component-based implementation also
allows these mechanisms to be replaced and adapted at any point to reflect the
operating conditions of the node. Clearly, it is hoped that such components will
be developed and deployed by third parties in the future.

Delivery is the final stage in the process; this occurs once an optimal provider
has been chosen. Juno has shown itself to achieve this task effectively as its inter-
operable nature allows it to effectively re-configure between the use of different
delivery protocols. Further, it has been shown that it does this whilst maintaining
a standard abstraction between itself and the application. To ease development,
this abstraction can even be dynamically selected by the application to match
its preferred access means (e.g. file reference, live stream etc.). So far, a number
of protocols have successfully been implemented in this way (including HTTP,
BitTorrent, Limewire and RTP) and therefore it can be confidently inferred that
this will extend to a range of other protocols as well.

Juno has been shown to effectively address these three functional steps col-
lectively. Unlike previous content-centric designs, it does not restrict itself to
individual statically selected delivery protocols. Instead, it can adapt to reflect
application needs and operating conditions to best access the content. Conse-
quently, through this flexibility, it can be inferred that Juno will continue to offer
strong delivery-centric support for a variety of future applications.
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Plug-in ‘ LoC ‘ Concrete Invocations
HTTP (java.net) 45 2
BitTorrent (HBPTC) | 51 1
BitTorrent (Snark) 65 1
RTP 42 )

Table 6.18: Coding Complexity of the Initiate Delivery Methods of various Stored
and Streamed Plug-ins

6.5.2 Interoperable

Interoperability refers to a system’s ability to interact with third party sys-
tems. Many of the principles investigated in this thesis, such as deployability
and delivery-centricity, are founded on Juno’s ability to achieve interoperation.
It can be identified that interoperation with content-based systems has two key
requirements, (i) protocol interoperation and (ii) address interoperation. Proto-
col interoperation is the ability of a system to interact on the protocol-level with
another system; whilst, address interoperation is the ability to uniquely identify
content within multiple systems.

Within Juno, protocol interoperation is achieved using configurable plug-ins.
The purpose of these plug-ins is to translate abstract method calls to concrete
protocol interactions. To achieve this, a suitably high level abstraction has been
constructed to hide the underlying discovery and delivery functionality. To study
this approach, Table 6.18 shows the number of lines of code required to per-
form the abstract-to-concrete mappings of the currently implemented delivery
plug-ins. This details the number of required lines within the delivery initiation
method, alongside the number of concrete invocations to the underlying toolkit
implementation (these plug-ins were implemented with re-used APIs). Evidently,
the complexity is very low, indicating that the generic abstraction does a suitably
good job of abstracting their functionality. From this it can further be derived
that the current abstraction is sufficiently generic to map easily onto a number of
different protocols; it can therefore be inferred that this trend will continue with
alternative protocols.

The second form of interoperation is address interoperability, i.e. the ability
to interact with any arbitrary addressing scheme. Natively, Juno does not sup-
port this, as it is impossible to translate one-way hashing functions (as different
systems use different hashing algorithms). Instead, Juno allows multiple hash-
based identifiers to be embodied within a single identifier using the Magnet Link
standard [19]. This is further supported by the JCDS, which allows individual
addresses (e.g. a SHA1 address) to be mapped to other types of hash-based ad-
dressing (e.g. Tiger Hash, MD5 etc.). Consequently, Juno has a high degree of
address interoperability, with the ability to uniquely identify content in a wide



214 CHAPTER 6. ANALYSIS AND EVALUATION OF THE JUNO MIDDLEWARE

range of systems. Its major limitation, however, is when interoperating with sys-
tems that do not support unique addressing. For instance, keyword searching is
a popular method for users to interact with indexing systems (e.g. Google); such
mechanisms, however, cannot be used by Juno because Juno requires an underly-
ing method of unique content addressing, i.e. some form of hash-based identifier.
To index such systems it is therefore necessary to manually perform the mapping
using the JCDS. It can therefore be stated that Juno can interact with any third
party discovery system as long as it supports the underlying ability to uniquely
identify content.

6.5.3 Deployable

Deployability refers to a system’s ability to be practically deployed. This is an
important research challenge in any distributed system as it has previously proven
prohibitory for a number of technologies including IPv6 and multicast [34]. Two
deployment issues exist when building new networking paradigms, (i) hardware
deployment, and (7i) software deployment.

Hardware deployment is by far the most difficult deployment challenge: it is
slow, expensive and often unsupported by third parties. Juno effectively addresses
this challenge by entirely removing the need for new infrastructure. Instead,
Juno exploits its interoperable capabilities to interact with existing infrastruc-
ture, thereby removing the complexity and infrastructural needs of building new
network protocols. Further, Juno’s approach similarly means that providers and
ISPs do not need to introduce any new hardware.

Software deployment is generally an easier problem to address, as it offers bet-
ter potential for progressive deployment. Generally, this takes place in either the
operating system and/or the application, at both the provider’s and consumer’s
side. Juno does not require modifications at the provider-side, which therefore
results in far greater deployability. This is because existing providers can sim-
ply be interoperated with, regardless of their knowledge of the content-centric
system. Similarly, no network-level software deployment need be performed (e.g.
router updates). It is clearly necessary, however, for software to be updated at
the consumer-side because Juno is a consumer-side middleware. Consequently,
the middleware must be installed on every node that wishes to utilise the content-
centric functionality; this is, however, more convenient than performing operating
system modifications, considering that it can simply be bundled with the appli-
cation (its Java implementation also makes it highly portable).

6.5.4 Extensible

Extensibility refers to a system’s ability to be extended to include new function-
ality and support. This is a vital property for most real-world systems that are
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subject to frequent advances and changes in their environment. Content network-
ing is an example of a domain that has witnessed a huge variety of technological
advances during the last decade.

The development process has shown Juno to be a highly extensible framework
due to its component-based design. Its functionality is separated into individ-
ual building blocks that maintain explicit dependencies whilst offering predefined
services. Consequently, Juno can modify these interconnections to introduce new
components into its architecture. The primary use-case for this is the introduc-
tion of new content protocols (i.e. discovery and delivery plug-ins). However,
another key aspect of Juno’s extensibility is the ability to introduce new meta-
data generator components to allow a delivery plug-in to have new meta-data
associated with it (c.f. Section 5.4.4). In both these use-cases, the process of ex-
panding functionality simply involves building the new plug-in and then adding
a reference to it in the Configuration Repository. By implementing the standard-
ised interfaces required for this, Juno simply detects the new functionality and
integrates it into the decision making process.

Obviously, this process has been validated multiple times as new plug-ins
have been developed. This has also been validated by third party developers;
Skjegstad et. al. [129] detail the development of two discovery protocols using
Juno. Specifically, this involved the development and integration of a number of
peer-to-peer components into Juno’s architecture. At the time of writing, Juno
is still being used in the project. Clearly, this provides strong evidence for the
ease at which Juno can be extended.

Beyond this, Juno also supports the extension of its core framework func-
tionality through a similar process. As previously mentioned, all components
are connected using explicit bindings, which can be subjected to manipulation.
The core aspects of Juno can therefore be similarly modified at runtime in the
same manner. This is further assisted by Juno’s design philosophy of building
components with life cycle awareness, as well as the use of explicit parameters
and state that can be exchanged between new and old components.

6.6 Conclusions

This chapter has evaluated the Juno middleware in terms of its content-centric
and delivery-centric services. First, the Discovery Framework was investigated,
looking at the performance and overhead of using plug-ins alongside the JCDS.
Following this, the Delivery Framework was evaluated using a number of case-
studies to show how the heterogeneity quantified in Chapter 3 could be achieved
using Juno. Following this, was a critical evaluative summary, which returned to
the design requirements described in Section 4.2 to ascertain how effectively they
had been fulfilled. The following conclusions can therefore be drawn from this
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chapter,

e Juno effectively realises a content-centric and delivery-centric abstraction

— Through this abstraction, applications can access content in a way that
is best conducive with their needs (e.g. streamed with >500 Kbps)

e Juno effectively achieves unified discovery over a range of third party con-
tent systems

— Any system using hash-based unique content identification can be
seamlessly interoperated with using plug-ins

— Cooperative indexing offers an attractive way through which these
third party systems can be further integrated

x The performance, however, is based heavily on the request profile
of the application

x An ideal request profile is: a high request rate, and a small number
of objects with highly skewed content popularity

*x However, various combinations of these still achieve a high perfor-
mance

— The overhead of Juno’s plug-in approach is of a manageable size and
can be further lowered by using the JCDS

e Delivery-centricity can be achieved through intelligent source selection and
consumer-side (re-)configuration

— This can only be achieved using Juno’s approach of per-consumer and
per-request (re-)configuration

— Juno’s approach, however, is restricted to utilising existing providers
and can therefore only achieve delivery-centricity if appropriate providers
are available

— Juno, however, can also perform distributed re-configuration amongst
multiple Juno-aware nodes

— Further diverse delivery requirements can also be stipulated and sat-

isfied using Juno, e.g. anonymity, monetary cost etc.

e Content support in applications can be dynamically extended through Juno
without code modification



Chapter 7

Conclusion

7.1 Introduction

The previous chapters have investigated the challenges of building and deploying a
content-centric and delivery-centric paradigm in the Internet. A new abstraction
has been defined that allows applications to generate location-agnostic content
requests associated with specific delivery requirements. This has been realised
through the design and implementation of a configurable middleware framework
called Juno. It utilises reflective software (re-)configuration to allow seamless in-
teroperation with existing content providers (using heterogeneous discovery and
delivery techniques). This ability puts Juno in the unique position of being able
to exploit the availability of content and resources provided by third parties. In
its simplest form, this allows immediate deployment to take place without the
need for network operators or providers to modify their behaviour. However, by
supporting access to many different providers, Juno is further able to achieve
delivery-centricity by dynamically selecting between them based on various re-
quirements issued by higher level applications.

This section concludes the thesis; first, a brief overview of the thesis is given,
looking at each of the chapters in turn. Next, the major contributions of the
thesis are detailed, followed by other significant results. Then, several avenues of
future work are described before, finally, providing the concluding remarks.

7.2 Overview of Thesis

Chapter 1 introduced the broad topic of research undertaken within this thesis.
It presented the key research goals as well as placing the work within the field of
existing work in the domain.

Chapter 2 provided a detailed background to content networking. It first
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detailed the key content discovery and delivery technologies available today. Fol-
lowing this, it explored the primary techniques used for achieving interoperation
in network systems. Alongside this, it also performed a detailed analysis of exist-
ing work in the domain of content-centric networking, looking at previous support
for deployment, interoperation and delivery-centricity.

Chapter 3 measured and modelled the dynamics of current popular delivery
systems. It identified key parameters in each system and explored how they
varied both temporally and between consumers. The primary finding was that
it would generally be impossible for static delivery provider/protocol selection to
achieve global optimisation, therefore requiring the use of some form of delivery
adaptation.

Chapter 4 proposed a new content-centric and delivery-centric abstraction
that was realised through the design of the Juno middleware. This abstraction
allowed applications to associate location-agnostic content requests with delivery
requirements that must be fulfilled by the underlying system. The design pro-
moted the use of software (re-)configuration to enable interoperation with existing
content systems, thereby improving deployment and enabling the exploitation of
this wealth of content and resources. Through this, it was shown how Juno can
achieve delivery-centricity by dynamically switching between the use of different
providers and protocols.

Chapter 5 investigated deployment challenges regarding the middleware de-
sign, as well as appropriate solutions. Specifically, a shared lookup system called
the Juno Content Discovery Service (JCDS) was designed to address the limi-
tations of contacting multiple discovery systems simultaneously. Alongside this,
the challenge of deciding which provider/protocol to use to satisfy given deliv-
ery requirements was investigated. The use of meta-data generation components
was proposed to allow consumers to calculate predictions regarding a particular
provider /protocol’s ability to satisfy requirements.

Chapter 6 evaluated the Juno middleware based on the research goals detailed
in Chapter 1. First, it inspected the performance and overhead issues of utilising
the Discovery Framework’s interoperable approach to discovering content in third
party systems. Following this, the Delivery Framework was evaluated using a
set of key use-cases to highlight the strengths and weaknesses of the design.
It was shown that Juno could effectively discover and access content in third
party systems, as well as feasibly gaining the performance advantages detailed in
Chapter 3.
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7.3 Major Contributions

The Introduction of a new Delivery-Centric Abstraction

A key contribution of this thesis is the introduction of delivery-centricity into the
existing content-centric abstraction. A delivery-centric abstraction is one that
allows applications to associate content requests with sets of delivery require-
ments. These requirements collectively stipulate the quality of service required
by an application, and can relate to such issues as performance, resilience and
security.

This thesis has explored how requirements can be based on either static or
dynamic properties. The stipulation of static requirements allows an application
to ease the development burden by abstracting away the delivery process and its
associated complexities. Despite this, it has been shown that an application could,
instead, make these decisions at design-time and statically implement support
within the software; this makes the benefits solely developmental. In contrast,
however, requirements based on dynamic properties must be resolved during
runtime. This is because the ability of a particular provider or protocol to satisfy
such requirements can only be decided on a per-node basis. Consequently, this
makes design-time decisions suboptimal, creating a strong need for the runtime
support offered by Juno.

Chapter 3 investigated this hypothesis in detail to show that three of the major
delivery protocols suffer from high degrees of runtime variance. This chapter
focussed on the provision of performance-oriented requirements in these delivery
protocols, through the use of measurement studies, emulated experiments and
simulations. The findings showed that often two nodes accessing content from the
same provider are likely to get different qualities of service if either (i) they have
different runtime properties (e.g. location, upload bandwidth etc.) (consumer
variance), or (ii) they access the content at different times (temporal variance).
This problem was found to be exacerbated further if those consumers choose to
access different items of content. Consequently, abstracting applications away
from this complexity allows sophisticated ‘behind-the-scenes’ adaptation to be
performed to ensure that content is accessed from the source(s) that offers the
best match for the requirements at any given time.

The Juno Middleware Design and Implementation

The next significant result from this thesis is the design and implementation of
the Juno middleware, which offers a solution to the existing failings identified
in content-centric network designs; namely, no support for delivery-centricity,
a lack of interoperability and poor deployability. It was identified that these
problems emerged from the lack of flexibility that is associated with operating at
the network-layer. Therefore, to address this, a middleware approach was taken.
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Juno therefore realised the delivery-centric abstraction, alongside providing the
underlying support to implement it.

A component-based architecture was designed that consisted of three abstract
bodies of functionality, (i) a Content Manager to handle all interactions with local
content, (i) a Discovery Framework to manage the discovery of content residing
in multiple third party content systems, and (iii) a Delivery Framework to dy-
namically select the optimal provider(s) to access the content. All this is managed
by a middleware framework that offers a standardised delivery-centric abstrac-
tion to the application. This abstraction allows applications to issue requests
for content whilst dynamically stipulating their preferred access mechanism (e.g.
stored, streamed etc.), alongside any delivery requirements they have. Impor-
tantly, behind this abstraction, Juno dynamically adapts to ensure that these
requirements are met. The evaluation showed that the two key stages in Juno’s
operation (discovery and delivery) are performed effectively with acceptable levels
of overhead.

Content-Centric Interoperation with Existing Providers

The next significant result from this thesis is the introduction of technologies
and support for the content-centric interoperation of applications with third
party providers. Importantly, by introducing this within a unified middleware in-
frastructure, this can be achieved without complicated application involvement.
Further, new protocols can be dynamically introduced at the middleware layer,
thereby transparently expanding the capabilities of the application. Through this,
applications are provided with access to all content previously available through
a simple delivery-centric abstraction, without the need to develop support them-
selves. Similarly, providers are also not required to modify their behaviour, indi-
cating that applications utilising Juno would gain access to a far greater pool of
content and resources than alternate design. Juno therefore offers a way in which
applications can immediately improve their development practices without high
complexity or deployment challenges.

7.4 Other Contributions

Detailed Analysis of Delivery System Dynamics

A notable contribution of this thesis is the detailed analysis of a variety of popu-
lar content distribution protocols. Through simulation, emulation and real-world
studies, it was shown that HT'TP, BitTorrent and Limewire all suffer from sig-
nificant runtime heterogeneity. This heterogeneity was categorised as either con-
sumer or temporal variance. This referenced how the ability of a given provider to
satisfy requirements varies both over time and between different consumers. This
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detailed study therefore offers new evidence for the explicit need for runtime (re-
)configuration between providers and protocols. Specifically, it was shown that
this (re-)configuration must be performed on a per-request and per-node basis to
ensure that optimality can be achieved.

Techniques for the Dynamic Resolution of Delivery Requirements

An important result from this thesis is an architectural approach to generat-
ing and comparing content system capabilities with dynamic requirements. This
involves decomposing delivery functionality and meta-data generation into in-
dependent pluggable components that can be (re-)configured at runtime. This
allows meta-data generators to be attached based on the operating environment
and the provider support. Therefore, non-aware providers can have meta-data
generated passively on their behalf by one of the approaches proposed in Chap-
ter 3, whilst other Juno-aware providers can explicitly offer information through
reflective interfaces. This therefore offers a new way in which multiple delivery
systems can be compared at runtime, as opposed to previous attempts that solely
deal with comparing individual systems (e.g. server selection). Further, this pro-
cess can continue after a delivery has begun to ensure that poor decisions can
be remediated through later re-configuration (i.e. addressing temporal variance).
Last, it also offers development support for extending requirements to include
many diverse aspects, far beyond the remit of previous approaches. Clearly, this
vital contribution is therefore paramount for enabling the deployment of a new
delivery-centric abstraction.

Cooperative Content-Centric Indexing

The promotion of interoperability as a mechanism for improving content-centric
networking has been an important contribution. However, the use of consumer-
side (re-)configuration to achieve this means that there is an overhead involved.
A further contribution is therefore a cooperative indexing scheme for aggregating
information discovered in individual third party discovery systems. The Juno
Content Discovery Service (JCDS) performs this operation, whilst allowing the
Discovery Framework to intelligently detach plug-ins that (mostly) index content
already available in the JCDS. It therefore extends previous work on interop-
erability middleware [68] and multi-protocol applications [27] to improve both
performance and overhead issues. This also extends this work into a new do-
main, thereby addressing the unique problems of content-centric interoperation
(e.g. unique addressing). It has been found that this offers a highly effective
means to overlay content-centric lookups over many different heterogeneous sys-
tems.
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A Development Environment for Content System Functionality

Currently, no standardised development frameworks are available for building
content systems and protocols. Therefore, an important contribution of this thesis
is the design of a supportive development environment in which such systems can
be built. First, this thesis has promoted a number of design principles; namely,
component-based decomposition, the use of standardised APIs and the dynamic
(re-)configuration of services. However, to further support this, Juno also offers
a number of utility classes that can assist in the development process; this allows
such things as interface definition, service instantiation, content management
and software deployment to be easily handled. Further, by building new content
protocols within Juno, they become immediately compatible and accessible to any
applications built over Juno. This contribution has been validated by the third
party usage of Juno; Skjegstad et. al. [129] detail the construction of two peer-
to-peer discovery protocols in Juno, highlighting the degree of (re-)configurability
offered by the middleware.

7.5 Juno in the Wider Context: Challenges and Limita-
tions

It has been concluded that Juno’s approach to building content-centric appli-
cations is highly effective at fulfilling the research goals discussed within this
thesis, namely improving interoperability, deployability and delivery configura-
bility. However, it is important to understand these contributions in the wider
context of current content distribution systems. Specifically, this refers to the fu-
ture challenges and limitations of utilising Juno in the context of the real-world.
These come about due to the use of third party infrastructure, alongside the need
for applications to subsequently modify their own behaviour. This section briefly
summarises the challenges and limitations when looking at Juno from the wider
perspective.

Performance and Overhead

To enable the use of third party resources, it is necessary for Juno to interact
with providers that are outside of Juno’s immediate control. This means that,
unlike clean-slate solutions, it is impossible to design new bespoke discovery and
delivery optimisations. Instead, it is necessary to operate within the confines of
the infrastructure interoperated with. This means that Juno is restricted to the
performance and overheads of any such third party systems. For instance, if only
low performance content providers are available, it is impossible to gain a higher
performance than these providers allow. One way this problem could be addressed
is through the successful deployment of Juno at the provider-side, thereby allow-
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ing distributed (re-)configuration to take place. Despite this, initially Juno must
operate within the confines of available content providers. However, it is also
important to understand that any future (superior) content protocols can easily
be integrated into Juno’s architecture, thereby improving any prior performance
and overhead limitations.

Consumer Uptake

This thesis has focussed on supporting consumer access to content; therefore,
clearly, an evaluative mark of success is the future uptake of Juno by applica-
tion developers. This, however, is often the most difficult challenge, as simply
providing the technological support for deployment does not necessarily result in
wide-spread adoption.

There are two stages involved in the uptake of Juno by developers at the
consumer-side. First, it is necessary to persuade developers to incorporate Juno’s
abstraction into their applications; and, second, it is necessary to actually im-
plement the support using Juno’s prototype. The introduction of Juno into new
applications is therefore largely a marketing challenge, in which developers must
be persuaded of the benefits discussed in this thesis. Considering the simplic-
ity of Juno’s interface, it is unlikely that alternative approaches (e.g. using a
HTTP API) would be necessarily more attractive from a development perspec-
tive. Therefore, detailed and simplistic documentation is necessary to assist de-
velopers that are previously used to existing location-oriented toolkits. In terms
of more sophisticated software projects, it is likely that many applications will also
have greater concern with potential overhead and complexity issues (e.g. memory
footprints, dependency management). Within the wider context, it is therefore
important to ensure the complexity of Juno remains low. Further, it must be
capable of build-time optimisation to ensure that only the minimum support is
provided for a given application. Last, this clearly must be accompanied by in-
creasingly sophisticated requirement support to provide sufficient functionality
for various important real-world aspects such as security, resource management
and monetary exchange. Importantly, however, through Juno’s deployable and
interoperable technologies, it becomes possible to progressively introduce this
support, thereby easing these uptake challenges.

Provider Uptake

The second form of uptake, is the introduction of Juno into content provider
infrastructure. One observation made during Chapter 6 is that the cooperation
of providers can dramatically improve both performance and overheads. Conse-
quently, this is a vitally important challenge.

As with consumer uptake, it is necessary to persuade providers that the bene-
fits of utilising Juno outweight any associated costs with re-engineering software.
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Clearly, this is an easier task when dealing with new providers that have not
invested significant funds into previous technologies (e.g. Akamai’s redirection
infrastructure). Therefore, because there are fewer providers than consumers, it
is likely that this task will be more difficult. This is because there are a small
set of well established providers that already control a significant market share
(e.g. YouTube, RapidShare, Akamai etc.). Therefore, it would be necessary for
these companies to utilise Juno to ensure its widespread provider-side uptake. It
is because of this that backwards compatibility with providers has been a focus
of Juno’s consumer-side design. The major challenge regarding provider-side up-
take is therefore incentivising providers to modify their behaviour. This could be
done by promoting the benefits detailed in this thesis (e.g. supporting distributed
re-configuration for scalability reasons). However, this also requires consumer-
side uptake to allow such benefits to be gained. Consequently, it is likely that an
intermediate stage would be necessary in which third party providers cooperate
with Juno without actually utilising it (e.g. uploading information to the JCDS).
Beyond this, progressive provider-side deployment is obviously fully support in
Juno and therefore this could take place over an extended period of time.

7.6 Future Work

The previous section has detailed a set of challenges regarding this thesis. The
section now details a prominent set of specific future work that can be undertaken
to extend this research.

Extended Requirement Support

This thesis has focussed on the provision of support for performance-oriented
requirements. However, alongside this, it is also important to explore the variety
of other requirements that applications may generate. These have been briefly
discussed in Section 6.4.5 (e.g. encryption, anonymity, overheads, monetary cost
etc.). A key aspect of future work is therefore to study these in far greater detail.
This will involve both developing the necessary meta-data generators to model
the requirements, as well as performing a study to understand how applications
might generate such needs. Clearly, it would similarly be necessary to evaluate
Juno’s ability to satisfy such requirements through its architectural approach to
requirement resolution.

Further Evaluative Testing

So far, Juno has only been evaluated in a controlled research environment (i.e.
through simulations, emulations and measurement studies). However, it is also
important to gain an understanding of how Juno would perform in a real-world



7.6. FUTURE WORK 225

setting. This includes performance aspects regarding its fulfilment of require-
ments, as well as various uptake issues. An important area of future work is
therefore to perform a more comprehensive evaluation of Juno when operating
in the real-world (with real applications and users). This would allow a true un-
derstanding to be gained of the potential of content-centric networking, as well
as Juno’s design philosophy.

Expanding Content Abstractions

So far, the main focus has been on accessing stored content. This is suitable
for many applications, however, it is also important to better explore the use
of Juno’s streamed media abstraction, alongside the requirements that are im-
portant to applications in this domain [140] (e.g. startup delay, continuity etc.).
Beyond this, it would also be interesting to investigate the use of other content
abstractions with Juno such as interactive and 3D content. Clearly, this must
take place in conjunction with the development of further standard interfaces.
The exploration of this space would therefore allow the extensibility of Juno to
be exploited to its full potential.

Expanding Distributed Re-Configuration Approaches

Juno currently supports only a limited form of distributed re-configuration, which
involves one (or more) nodes issuing re-configuration requests to other nodes.
This obviously can be expanded to include a far wider range of aspects. Most
important is the integration of more sophisticated dissemination techniques for
propagating the requests. This also includes introducing a more sophisticated
learning process by which nodes can improve their decisions (early work regarding
this is detailed in [139]). Further, in conjunction with this, it should be made
possible for negotiation to take place between multiple conflicting nodes. Last,
incentive mechanisms should be introduced that encourage peers to cooperate
in distributed re-configuration; this is a vital prerequisitive in the real-world, as
some nodes might not benefit themselves from performing re-configuration.

Introduction of Greater Provider Support

Currently, Juno is primarily a consumer-oriented middleware that focusses on
improving content access. An important area of future work is therefore to in-
troduce greater support for applications that also wish to provide content. Juno
already exposes the IProvider interface to allow this, however, this functionality
has not been focussed on, or evaluated thoroughly. Any future work should there-
fore look at allowing applications to generate provision requirements that can be
satisfied by Juno; this would be particularly interesting when using these to fuel
negotiation between providers and consumers.
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7.7 Research Goals Revisited

A number of research goals were detailed in Chapter 1; this section now revisits
these to ascertain how effectively they have been fulfilled.

To define an extended notion of a content-centric abstraction encompassing
both discovery and delivery, capturing the requirements of (existing and future)
heterogeneous content systems. The need for this goal was explored in Chapter 3
through the quantitative analysis of three key delivery systems using simulations,
emulations and real-world measurement studies. It was found that due to runtime
delivery system dynamics, it would be impossible to achieve this goal without an
adaptive approach to content delivery. This is because the ability of a provider to
serve an item of content varies dynamically both over time and between different
consumers. This goal was therefore addressed in Chapter 4 through the design of
a new delivery-centric abstraction that allows applications to stipulate delivery
requirements when requesting content. The underlying process by which it is
accessed, however, is abstracted away from the application, thereby allowing the
type of adaptation identified as being required in Chapter 3. This approach was
evaluated within Chapter 6, looking at how the abstraction could be utilised by
applications. It was shown that through this abstraction, it is possible to perform
a range of optimisations to ensure that requirements are met. Importantly, it was
shown that the necessary adaptations discovered in Chapter 3 could take place

transparently to higher level applications.

To design and implement an end-to-end infrastructure that realises this (new)
abstraction in a flexible manner. This goal was addressed within Chapters 4 and
5 through the design and implementation of the Juno middleware. This realised
the above delivery-centric abstraction by exploiting the findings of Chapter 3
to allow the dynamic (re-)configuration between different content providers and
protocols. This design was evaluated in Chapter 6, looking at how effectively it
could discover content in third party systems before re-configuring itself to inter-
act with the optimal sources. It was shown that Juno’s approach could offer the
performance advantages identified in Chapter 3 effectively, whilst maintaining
controlled levels of overhead.

To show that this concept is feasible and can be deployed alongside existing
systems in an interoperable way. This goal was addressed within Chapter 6
by thoroughly evaluating the key aspects of Juno’s design. Using a prototype
implementation, a number of emulated case-studies were explored to show how
the advantages discovered in Chapter 3 could be realised be Juno. This involved
validating Juno’s ability to interoperate in a backwards compatible way with
various unaware providers. It was further shown that through this ability, Juno
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could dynamically be adapted to achieve delivery-centric requirements. Alongside
this, simulations were performed to take a large-scale view of the content discovery
process to show its performance and overhead. Collectively, these showed Juno’s
design to be an effective approach to addressing limitations of existing content-
centric networks. Beyond these quantitative gains, it was also shown that the
approach offers an effective platform for development, as well as the potential
to assist greatly in the extension of content system support. These claims were
further validated by the third party development of discovery protocols in Juno,
which highlight how Juno’s protocol interoperability can easily be extended [129].

7.8 Concluding Remarks

This thesis has identified the need for more dynamic and flexible content delivery
support within the Internet. A number of delivery systems are currently used
by applications, however, their ability to fulfil delivery requirements generally
fluctuates both between consumers and over time. This makes optimising a
global set of applications impossible without explicit runtime awareness. This
thesis has proposed the abstraction of applications away from such complexities
using a standardised content-centric and delivery-centric interface. This allows
applications to simply generate requests for uniquely identified content, alongside
any pertinent delivery requirements. The Juno middleware has been designed and
implemented to offer such an interface by utilising software (re-)configuration to
dynamically adapt between the use of different providers and protocols (based
on their ability to fulfil given requirements). By doing this in a transparent and
backwards compatible way, the abstraction can be instantly deployed for use with
existing content providers.

As content distribution becomes more and more prevalent in the Internet, it is
likely that the need for such technologies will increase even further. Importantly,
the use of Juno offers an effective and simple way of achieving much-needed con-
tent delivery support without placing an unnecessary burden on the application
developer.
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Appendix A

System Overheads

This appendix provides a set of overhead measurements taken from the Java
implementation of Juno. It focusses on the costs of running the system in a
component-based manner, alongside issues such as configuration times. The ex-
periments are all executed on an Intel Core 2 Duo 2.1 GHz PC with 4 GB RAM;
running Ubuntu 8.04 and the OpenJDK JRE 1.6.

A.1 Component Overheads

This section measures the overheads introduced by using components in Juno.
Specifically, this relates to extra memory and processing requirements placed on
the system. This is incurred due to the need to manage the explicit bindings that
exist between the components.

A.1.1 Construction Time

The first overhead measured is the construction time. The usage of components
introduces certain extra processes that must be performed during the initiation
(e.g. manipulating the system graph).

To test this, a dummy object, a dummy OpenCOM component and a dummy
Juno component are created. They do not contain any functionality apart from
that necessary to be instantiated. The time taken to construct each type is then
measured 100 times; the first part of Table A.1 shows the results. It is imme-
diately evident that there is a performance disadvantage from using OpenCOM
components. This is even worse for constructing Juno components, which possess
extra functionality. On average, it takes 805 us to construct a Juno component,
which can be compared to an average time of 5 us for an equivalent Java object.
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‘ Min (us) ‘ Average (us) \ Max (us)

Empty Java Class 1 5 342
Empty OpenCOM Component | 136 480 16,620
Empty Juno Component 216 805 34,536
HTTP Java Class 1 37 3,591
HTTP OpenCOM Component | 213 884 30,911
HTTP Juno Component 471 1498 70,384

Table A.1: Comparison of Java object, OpenCOM Component and Juno Com-
ponent Construction Times

The previous tests were performed using empty components without any func-
tionality. This, however, ignores the costs associated with loading the necessary
code. To investigate this, three forms of the HTTP delivery plug-in are created.
The first places the functionality in solely a Java object; this does not possess any
Juno/OpenCOM functionality such as dependency management or reflective in-
terfaces. The second places the functionality in solely an OpenCOM component;
this does not possess any of the Juno functionality such as open state manage-
ment, event subscription or advanced life cycle control. The third is simply the
original Juno component implementation. The second part of Table A.1 shows
the results. It is clear that the difference between the components and objects
lowers; with dummy functionality, a native Java object takes 0.2% of the time
it takes to construct an OpenCOM component. Instead, it now takes 4% of the
time; although this difference is limited, it is evident that the cost of loading the
contents of the object has an impact.

A.1.2 Processing Throughput

The next overhead measured is processing throughput; this represents the ex-
tra cost incurred by components that interact with each other through dynamic
bindings (i.e. receptacles). This is measured by benchmarking two identical
classes that contain five dummy methods containing no code and varying num-
bers of parameters of type int. The first test performs invocations on the class
using direct Java method calls, whilst the second test performs invocations using
OpenCOM receptacles. To ascertain the maximum invocation throughput, both
tests are performed using a while loop that cycles for one second whilst calling
the method on every round.

Table A.2 shows the number of invocations per second for both direct Java
method invocations and Juno component invocations. Clearly, there is a decrease
in invocation throughput for all experiments when utilising receptacles. This can
also be observed in Table A.3, which shows the average execution time for a single
invocation. There is very little difference, however, in the processing throughput
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between the various number of parameters passed in, with a steady decrease of
~36%.

Parameters | Receptacle Invoca- | Direct Java Invoca- | Overhead
tions per Sec tions per Sec

0 1210814 1266299 55485

1 788927 1252342 463415

2 806245 1260852 454607

3 801094 1253439 452345

4 800208 1259498 459290

5 800983 1263520 462537

Table A.2: Invocations per/sec for OpenCOM Components using Different Num-
bers of Parameters

Parameters | Receptacle Execution | Direct Java Execution | Overhead
Time (ns) Time (ns)

0 825 790 35

1 1267 790 477

2 1240 793 447

3 1248 797 451

4 1249 793 456

5 1248 791 457

Table A.3: Execution Times for OpenCOM Components using Different Numbers
of Parameters

A.1.3 Memory Costs

The next overhead is the memory costs of implementing components, as opposed
to native Java objects. To create a benchmark, an individual OpenCOM run-
time is initiated without any components; this consumes 5592 bytes of memory.
Table A.4 subsequently shows the memory overhead associated with implement-
ing functionality in an OpenCOM component when compared to a native Java
class. This shows a range of empty components that are associated with different
numbers of receptacles and interfaces.

These results constitute measurements of purely the OpenCOM component
model. However, a number of extensions have been developed that turn an Open-
COM component into a Juno component. This involves such things as state man-
agement, parameter management and various interactions with the framework.
To enable this, all components in Juno extend the JunoComponent abstract class
(c.f. Section 4.4.2). To measure the added cost of this, a dummy Juno component
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Module ‘ OpenCOM Component ‘ Java Class ‘ Overhead
One (1 intf, 0 recps) 990 623 367

Two (2 intf, 0 recps) 1703 1307 396
Three (3 intf, 0 recps) | 2123 1703 420

Four (1 intf, 1 recps) | 2999 2051 941

Five (1 intf, 2 recps) | 3299 2051 1248

Six (1 intf, 3 recps) 3555 2051 1504

Table A.4: Memory Overhead of OpenCOM Components (in Bytes)

is instantiated without any functionality. The tests show integrating the Juno
code creates a 2384 byte overhead.

A.2 Configuration Overheads

This section measures the overhead of building Juno in a (re-)configurable man-
ner. Specifically this relates to the processing delay associated with building
component configurations.

A.2.1 Configuration Time

Table A.5 details the configuration time for creating various configurations. This
process does not involve the generation of meta-data or any distributed inter-
actions. Instead, it is simply the creation of a Configurator and the loading of
the necessary components. These results can be contrasted with the results from
Table A.1, which show that the construction of components takes place in nano
seconds. As such, it is evident that Juno does introduce a degree of overhead
when creating configurations.

Configuration Instantiation Time (ms)
HTTP 35

BitTorrent (HBPTC) 126

BitTorrent (Snark) 95

Limewire 42

BitTorrent Tracker (HBPTC) | 349

BitTorrent Tracker (Snark) 357

Table A.5: Average Instantiation Time for Configurations
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A.2.2 Connection Delay

The previous section has detailed the overall configuration time. This consists
of loading components and then interconnecting them. Section A.1.1 details the
loading overhead. This section now measures the overhead of interconnecting
components. To study this, Table A.6 details the minimum, maximum and aver-
age time taken to connect two components. Evidently, the delay is tiny compared
to the time required to instantiate a single component.

Min (ns) ‘ Average (ns) ‘ Max (ns)
938 | 1,190 | 1,327

Table A.6: Connection Time for Interconnecting Two Components

A.3 Framework Overheads

The previous sections have inspected Juno’s general approach to design, i.e. the
use of runtime components. This section now details the Juno-specific overheads
incurred by utilising the current Java implementation.

A.3.1 Bootstrapping Delay

The first overhead considered is the time required to initiate each framework. This
consists of both the memory load time, as well as any further processing required.
To measure this, each framework is bootstrapped and the delay recorded; Table
A.7 details the results.

Framework Bootstrap Time (ms)

Content Manager 10
Discovery Framework | 27
Delivery Framework 17
Configuration Engine | 163

Table A.7: Average Bootstrapping Times for Frameworks

A.3.2 Memory Overhead

Table A.8 shows the memory footprints of the different frameworks in Juno.
These were measured without any plug-ins attached using the runtime stack
memory; consequently, they do not include the overhead of the Java Virtual
Machine (JVM). In contrast, Table A.9 also shows the full memory footprints
(including JVM) of Juno with various plug-ins configured.
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Framework Memory Footprint
Content-Centric Framework | 15 KB

Content Manager 3.2 KB

Discovery Framework 44.7 KB

Delivery Framework 44.6 KB

Table A.8: Runtime Memory Footprint of Frameworks (exc. JVM)

Configuration | Memory Footprint
Empty 472 KB
HTTP 512 KB
BitTorrent 522 KB
Limewire 573 KB

Table A.9: Runtime Memory Footprint of Configurations (inc. JVM)

A.4 Magnet Link Generation Overhead

The last overhead measured is that of content identifier generation. Due to the

cooperative nature of the Juno Content Discovery Service, this is a process that

would be performed by all consumers. Table A.10 provides an overview of the

processing time required to build the necessary hash identifiers for a variety of

popular delivery systems; specifically, for BitTorrent, Kazaa and eD2K.

Music Music Cartoon | TV Show | Movie
(4.2MB) | (9.6MB) | (72MB) (350MB) | (720MB)
Time 5 5 9 20 26
(sec)

Table A.10: Processing Time of Content Identifier Generation
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