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Abstract. Multimedia Content distribution is playing an increasingly prominent 

role in the Internet today, with a proliferation of diverse services and delivery 

mechanisms. Due to this increasing heterogeneity the management of next 

generation content networks is becoming increasingly complex. This paper 

presents Juno, a configurable component-based middleware designed to address 

the divergent nature of modern content networking. In Juno, functionality is 

separated into pluggable components that can be dynamically attached, 

detached and deployed, allowing the middleware to be specialised and adapted 

for different applications and environments. To demonstrate how functionality 

from (existing) content distribution networks can be realised through the 

middleware, an application operating over BitTorrent and Pastry has been 

developed using Juno. Through this, Juno is evaluated by looking at functional, 

non-functional and performance aspects of the framework. 

Keywords: Content networking, middleware, content distribution, peer-to-peer, 

component-based engineering, content services. 

1   Introduction 

Multimedia content distribution is playing an increasingly prominent role in the 

Internet with a huge array of distribution mechanisms available for a diverse range of 

application areas. Early content distribution infrastructures [2] mainly focused on 

delivering stored content. However, as network and end system capabilities have 

increased there has also been an increasing demand for more diverse access 

mechanisms. Originally this focused on media streaming, but since then, systems 

have progressively begun to deliver more sophisticated applications such as video 

conferencing [9], video on demand (VoD) [19] and Internet television (IPTV) [27]. 

This propensity has seen an explosion in services and applications available under the 

umbrella term of content networking [22]. In contrast to traditional content 

                                                           
This work is supported by the Network of Excellence CONTENT (FP6-IST-038423) 

 



distribution networks (CDN), content networks view the content itself as the focal 

point of the network.  

This next generation of content distribution, however, creates a number of issues 

when both developing and deploying systems. These issues are primarily related to 

the heterogeneity observed in content networks. This heterogeneity can be separated 

into four areas: 

a) Delivery Heterogeneity – characterised by a range of different delivery 

mechanisms employed, e.g. stored, live streamed, interactive, etc. 

b) Service Heterogeneity- determined by the range of services available to 
improve the quality of experience, e.g. transcoding, content adaptation, 

replication, etc. 

c) Device Heterogeneity– originating from the range of devices used to access the 

content, e.g. PCs, mobile phones, PDAs, etc. 

d) Network Heterogeneity – reflected in the range of network capabilities available 
to different devices, e.g. ADSL, Ethernet, Bluetooth, WiFi. 

When developing a distributed content-centric system it is therefore necessary to 

address these issues in order to provide the content network with the configurability 

required by real-world deployment. At present this is mainly dealt with by the 

application. However, we believe significant benefits can be gained by utilising 

middleware designed to handle these concerns. Traditional middleware lacks the 

required flexibility to manage this diversity as it is often restricted to dealing with 

limited aspects of functionality. A number of configurable middleware platforms 

[11][13][17][25] have been proposed but they do not address the specific issues 

relating to next generation content networking.  

This paper introduces Juno, a configurable content networking middleware that 

addresses the heterogeneity of next generation content distribution. To achieve this, 

Juno promotes high levels of (re)configurability, allowing the middleware (and 

therefore the application) to be specialised and adapted to a variety of environments 

and constraints. In order to successfully provide a holistic architecture for content 

networking we believe it has to be: configurable, adaptable, functionally scalable, 

and development oriented. These properties are integral to providing effective support 

for content networking and therefore form the core principles of Juno. 

Juno is designed in a component-based manner and has been implemented using 

the OpenCOM v1.4 [12] component model in Java. In order to demonstrate the 

feasibility of the approach we show how BitTorrent functionality can be implemented 

in Juno. Using an application developed over the middleware, the capabilities of Juno 

are then investigated; specifically i) by analysing how its (re)configurable approach 

deals with heterogeneity, ii) by examining the resource overhead associated with 

exploiting such (re)configurability, and iii) by assessing how its architectural design 

patterns can assist in the development and deployment of new applications. 

The rest of the paper is organised as follows; section 2 offers an overview of 

related work in the field. Section 3 provides an overview of the Juno framework, 

using BitTorrent to highlight the development process. Section 4 subsequently 

provides an evaluation, using a prototype application developed in Juno. Lastly, 

section 5 concludes the paper outlining future work that is intended to be carried out. 



       

2   Related Work 

There has been a large body of work carried out in the field of content distribution, 

recently with a particular focus on P2P systems. Popular distribution paradigms 

include high bandwidth stored content delivery [4][5], live streaming [27], on-demand 

multicast [7][10], and video on-demand streaming (VoD) [19]. These systems are 

specialized to offer well-tuned services for the particular requirements endemic to 

those applications. Such systems, however, lack configurability as they are 

specifically designed to address issues endemic to those areas. This often makes them 

infeasible for deployment in diverse environments. Further their limited scope makes 

it impossible to adapt to variations in requirements and constraints. 

Over recent years, content networking has also come to involve services such as 

content adaptation [21], transcoding [8] and replication [16]. These services augment 

the delivery in order to improve such things as performance and user experience.  

Traditionally these services have been operated in a client-server manner however 

research has also looked into hosting these in a P2P manner [14][18]. We believe this 

to be an important progression as the recent success of modular distributed systems 

(e.g. Web services) represents a significant trend in distributed computing.  

There are a number of middlewares (e.g. JXTA[15]) that have been designed to 

offer convenient P2P abstractions for these systems alongside a number of 

development tools for implementing overlays [3][20]. These middlewares offer a 

platform over which P2P applications can be developed without the complexity of 

dealing with lower level issues. However, systems such as JXTA are built as a black 

box which limits configurability. This makes it hard to specialize or adapt a system 

for individual applications. Further, the low-level nature of these middlewares and 

toolkits mean that the construction of high-level systems such as content networks can 

become laborious.  

To remedy the problems with existing approaches, a number of configurable and 

reflective middlewares have been developed [6][13][17]. These middlewares exploit 

architectural software patterns to provide a framework in which independent 

pluggable software components [12] can be attached. These middlewares, through 

reflection, can then inspect the operation of these components to select optimal 

architectural configurations. This allows a middleware to be specialized by attaching 

appropriate components, creating a bespoke platform for the application to operate 

over. Such middleware can then be dynamically reconstructed during runtime to adapt 

to changes in the environment. This occurs without direct intervention of the 

application. Instead, the application provides details of its requirements allowing the 

middleware to interpret and implement them. This removes a significant amount of 

complexity from the application without compromising such things as adaptability. 

Research areas such as Grid computation [17], distributed objects [6] and 

multimedia QoS [11][25] have featured highly in configurable middleware 

development. However, little has been performed in the area of next generation 

content networking [22]. Unlike existing work, however, content networking 

embodies much higher level principles (e.g. the importance of user experience) 

alongside traditional low level aspects (e.g. QoS). This means that middleware for 

such an environment must be cross-cutting. We therefore believe considerable 

benefits can be gained from utilising configurable models. Through this approach, we 



believe it possible to address the complexities of developing, deploying and 

specialising different applications for their individual requirements and constraints.  

3   The Juno Framework 

The Juno Framework is a configurable middleware designed to address the divergent 

nature of next generation content networks. To achieve this it is therefore necessary to 

provide a configurable and extensible framework in which a diverse range of content 

related services and delivery mechanisms can be supported. The middleware consists 

of two aspects: pluggable functional components and utility support. The former 

constitutes the functionality of the middleware whilst the latter offers convenient 

support for these components (e.g. state management).  

Juno has been implemented using the OpenCOM v1.4 [12] component model in 

Java. In order to illustrate how Juno realises content delivery functionality and 

demonstrate the feasibility of the underlying concept, it is shown how BitTorrent [5] 

can be implemented and extended in the Juno Framework. 

3.1   Juno Overview 

When an application is developed over Juno it provides Juno with the details of its 

requirements. Using this information Juno will then construct itself from the optimal 

components. Subsequently, it will also reconfigure itself dynamically to use different 

components as requirements and environmental factors change. This approach allows 

an application to operate over a bespoke middleware without the complexity of 

dealing with such issues as adaptation itself. 
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Fig. 1. Overview of Juno Framework 

Juno is constructed from three layered contexts, shown in Fig. 1; each of these 

deals with a different type of heterogeneity: network, service and application. These 

contexts are each built from components. This approach separates concerns and 

creates a well structured management framework.  

The lowest layer is the Network Context which deals with the overlay aspects of 

the content network. This allows different overlays to be dynamically installed, 

adapted and managed to support more sophisticated functionality. Above the Network 

Context sits the Service Context. This context contains components that provide a 

variety of content distribution services operating over the lower overlays. These can 

range from delivery aspects such as chunk selectors, to services such as caching and 

transcoding. Lastly, above the Service Context, is the Application Context which 



       

offers a convenient interface for the application to interact with. Further to this, it also 

deals with combining multiple services for the ease of the application.  

To support the three contexts, Juno also provides state and event management. 

Juno components do not maintain persistent state so to facilitate the easy 

reconfiguration of the middleware. This assists in open component introspection as 

well as allowing component to be easily removed without data loss. 

3.2   Network Context 

The Network Context forms a platform for more sophisticated distributed services to 

operate over. It consists of a set of components that interact through interfaces to 

manage and operate an overlay. These overlays are attached to Juno to provide the 

necessary distributed support for running higher level services and distribution 

paradigms. It consists of four primary components shown in Fig. 2. Construction 

deals with initiating, joining and leaving an overlay. Maintenance deals with 

monitoring and repairing the overlay. Forward deals with the routing of data in the 

overlay. Finally, Transport deals with transporting data between nodes.  

Each component implements a defined interface that provides access to its 

capabilities. These interfaces can also be extended to be specialized for individual 

overlays. Furthermore, Juno’s open and extensible nature allows different component 

architectures to be used. The details of finer grained alternate architectures can be 

found in [26]. 
 

Construction

{initiate, join, leave}

Maintenance
{start, stop}

Transport
{send, receive}

Forward
{send, Forward, Broadcast, 

Receive,  Call Back}

 

Fig. 2. Overview of Network Context 

The Network Context is built by installing a set of compatible components that 

provide the necessary overlay level functionality required by the Service Context. 

Multiple overlays can be instantiated in the Network context either in a layered 

manner (e.g. SplitStream [7] over Pastry [24]) or side-by-side to offer multiple 

capabilities (e.g. DHT lookup [24] and streaming [27]). 

Table 1. Overview of Generic Mesh Functionality 

Component Interface Operations 

Generic Mesh Construction Join, Leave, Add Link, Remove Link. 

Lazy Mesh Maintenance Initiate, End. 

Generic Mesh Forward Send, Forward, Broadcast, Receive, Call Back 

Object Transport Send, Receive 

 

In the BitTorrent example, the Network Context is built using a Generic Mesh 

overlay; this is a highly reusable unstructured overlay that abstracts the topology to 

simple links between peers; its interfaces are provided in Table 1. It can be seen that 



the construction component is extended to also support add and remove operations in 

order to allow links to be manipulated. BitTorrent also uses a Lazy Mesh 

Maintenance component; this does not perform active probing and simply updates 

state information on the detection of a fault. Lastly, an Object Transport component is 

attached; this uses Java ObjectStream objects to transport chunks and protocol 

message. 

3.3   Service Context 

The Service Context consists of a number of content services and delivery 

mechanisms embodied in a set of cooperating components. These components use the 

Network Context as a platform over which they perform distributed interactions. 

There are three primary types of components in the Service Context: Managerial, 

Functional and Policy. There is one Managerial component per service; this 

component will deal with managing multiple components to work in conjunction. For 

example, it will deal with the reconfiguration of cooperating components to react to 

environmental events. A Functional component embodies aspects of functionality to 

perform a particular service in the system. It is defined by its ability to actively 

initiate procedures itself. Alternatively, Policy components make decisions passively 

on behalf of the other components; an example of this is a source selector component 

which decides on the optimal source to use in a distribution scenario. 

The Service Context is where the majority of BitTorrent’s functionality resides; 

this functionality deals with a number of aspects operating over the Network Context: 

a) Bootstrapping – It is necessary to obtain a list of potential sources. 

b) Request Generation – It is necessary for requests to be issued to remote nodes. 
c) Request Handling – It is necessary for chunk requests to be handled. 

d) Chunk Selection – It is necessary to select which chunks to request first. 
e) Source Selection – It is necessary to select which sources to utilise. 

f) Incentive Management – Incentive mechanisms must encourage contribution. 

Fig. 3 shows the Service Context of BitTorrent; bootstrapping, request generation 

and request handling are all embodied in functional components. These are 

components that perform active functions and can therefore initiate their own 

procedures. They are attached above the Network Context and use its Forward 

interface to perform distributed interactions. 

Chunk selection, source selection and incentive management are all embodied in 

policy components. This is because they are passively used to make decisions based 

on the current state of the node. For example, a chunk selector will make its decisions 

based on the current chunks that are required.  

A BitTorrent Management component is also attached to the system. It is 

responsible for coordinating the behaviour of the other components. For instance, it 

will coordinate interactions between the Bootstrapper component and the Request 

Generator. This also allows it to act as an adapter between incompatible components. 

To enable these components to cooperate it is necessary to provide them with an 

interaction mechanism. In contrast to the strictly defined nature of the Network 

Context, the divergent nature of the Service Context lends itself well to event based 

interaction. This allows components to offer functionality in a very fine grained, event 



       

based manner. Therefore, Juno can support the use of subsets of component 

functionality allowing operations to be spread over a set of multiple components. 

Unlike the Network Context, the use of this event based architecture therefore does 

not fix the Service Context to use components in a particular architecture. Instead, 

components exist in an event orientated container. This means that components can 

simply be added to augment or modify functionality by automatically manipulating 

events and shared state.  

3.4   Application Context 

The Application Context resides above the Service Context and provides a layer of 

abstraction between the application and the middleware. The Application Context 

consists of a minimum of one component that provides an interface to the application. 

The type of interface is not strictly defined therefore allowing a variety of interaction 

approaches to be utilised. For instance, remote invocations can be utilised by 

installing a remote procedure call interface. 

Generally, reusable, generic components are installed in the Application Context to 

offer abstractions to the application. However, as well as this, it is also possible for 

developers to implement their own components to offer more specialised access to the 

lower layers. For instance, a developer can extend the generic stored delivery 

interface to allow more detailed access to state information. An application utilising 

BitTorrent would therefore install a Generic Stored Delivery component. This 

component offers a simple abstraction, allowing downloads to be initiated or 

cancelled. 

4   Evaluation 

This section investigates a number of properties of the Juno middleware. The primary 

concern of this paper is how the heterogeneity encountered in content networking can 

be dealt with. This is achieved through a components based architecture that allows 

(re)configuration. Thus, the Juno (re)configurable architecture supports the utilisation 

of varieties of functionality within a single framework to cope with the heterogeneity 

of delivery, service, devices and networks. Hence, the (re)configurable properties of 

Juno, in the context of heterogeneity, is investigated first. This is then qualified 

against the resource overhead of utilising a (re)configurable approach. Lastly, an 

investigation into Juno’s developmental benefits is performed in order to inspect the 

advantages of utilising the middleware to develop content based applications. 

To aid in the evaluation a simple file-sharing application has been developed over 

Juno which utilises a Pastry [24] lookup facility alongside a BitTorrent [5] 

distribution mechanism. An overview is shown in Fig. 3. Arrows represent interaction 

between components. Further to this, the BitTorrent Management component also can 

interact with all components. This application will therefore be used to highlight a 

variety of features of Juno’s operation. 
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Fig. 3. Overview of File Share Architecture 

4.1   (Re)Configurability 

Section 1 introduced four types of heterogeneity (summarised in Table 2). These 

highlight the diversity in requirements and constraints involved in developing and 

deploying a content network. Juno addresses heterogeneity through the 

(re)configuration of individual nodes in the content network in order to embody 

optimised qualities. Configurability refers to the specialisation of the middleware for 

a particular set of requirements and constraints whilst re-configurability refers to the 

process of changing this configuration during runtime. This section therefore looks at 

how well Juno deals with the different types of heterogeneity (shown in Table 2) 

through its (re)configurable architecture. 

Table 2. Summary of how Juno Addresses Heterogeneity 

 
Lightweight 

Configuration 

Pluggable 

Mechanisms 

Fine Grained 

Adaptability 

Orthogonal 

Instantiation 

Stacked 

Instantiation 

Delivery  X X X  

Service  X X X  

Device X  X   

Network X  X X X 

 

 

Delivery heterogeneity is of particular interest in content networks. This represents 

the diversity in which users access content. Many content networks offer a number of 

different access mechanisms such as stored and live streaming, stored content 

delivery and interactive content delivery. An example of this is 4oD [1] which offers 

both stored and streamed access to its content. Juno allows such diversity to be 

managed through its (re)configurability. For example, when a file sharing application 



       

is developed over Juno, streaming can be easily introduced to it. In the file sharing 

implementation this is done by installing streaming components orthogonal to the 

existing BitTorrent mechanism. Juno also allows a variety of different streaming 

mechanisms to be installed without mandating individual approaches. For instance, 

the use of tree based streaming [10] can be utilised in reliable environments whilst the 

use of mesh-based streaming [27] can be used in more transient environments. 

Importantly, Juno’s support for installing multiple delivery paradigms also allows 

diverse delivery systems to be supported within one framework. This allows 

applications developed over Juno to adapt their delivery capabilities to interact with a 

range of systems. For example, if a user attempts to access a piece of content hosted 

in a Julia [5] network, Juno can attach the Julia components to provide compatibility. 

The use of (re)configuration therefore allows both coarse grained and fine grained 

architectural modifications to be made to ensure that delivery mechanisms coincide 

with user preference and application requirements. 

Service heterogeneity is another significant concern that must be addressed by 

content networks. Thus, there are considerable benefits associated with the easy 

deployment, instantiation and interaction of services. It is therefore important to offer 

a generic framework to facilitate this. Juno deals with these issues by allowing 

services to be dynamically installed through using its (re)configuration capabilities. 

For instance, traditionally BitTorrent does not offer a search service; instead it focuses 

on the actual distribution of the file. Juno, in contrast, allows the addition of a file 

lookup service as a separate component. This is performed by plugging the Pastry 

overlay components into the Network Context whilst attaching the Key Lookup 

component in the Service Context. This component receives user queries from the 

Application Context and uses the Pastry overlay to route the query to the necessary 

node responsible for the specific hash space. Further, the utilisation of alternate search 

mechanisms can also be made without modification to the application. This is 

possible through the level of abstraction provided by the Application Context, 

meaning that it is only necessary for the application to know how to interact with the 

higher levels of the middleware. Therefore, through Juno, BitTorrent can incorporate 

new services with limited effort on the part of developers. Importantly, it is possible 

to introduce services without predefined support. Instead, the necessary functionality 

can be attached through components to ensure correct operations. Further, Juno’s use 

of event-based interactions allows services to augment existing functionality through 

the monitoring, interception and modification of events. 

Device heterogeneity is an increasingly prominent aspect of distributed systems. 

This refers to the range of devices connected to the content network. To ensure high 

performance and acceptable user experience, content networks must make 

consideration for this heterogeneity. By allowing fine grained (re)configuration, Juno 

can ensure that each device in the content network utilises optimised components. 

Therefore, a low capacity device will utilise a light-weight configuration in which 

only essential components are installed. This has two effects: i) it limits the memory 

and processing consumption on the device and ii) it allows specialised components 

that reduce resource utilisation to be installed. For instance, in the file sharing 

application, low capacity nodes utilise specialised Pastry components in the Network 

Context. These ensure that transient nodes play no part in routing. Instead these nodes 

use reliable peers as proxies. This offers improved performance due to the adverse 



effect churn has on routing. The configuration is performed by replacing the Pastry 

components in the Network Context with a single Hidden Pastry Forward 

component. This component is initiated with the location of one of the Pastry peers 

(N), which it will use to forward messages through. This is the only reconfiguration 

required; no modifications in the Service Context are made. Therefore, when the 

standard Key Lookup component sends a message through the Network Context the 

Hidden Pastry Forward component will always redirect it through node N. This 

highlights Juno’s ability to modify functionality by reconfiguring small aspects. This 

allows the same core functionality to be performed in the system whilst exploiting the 

natural variations in end host capabilities. 

Network heterogeneity refers to the diversity in which devices are connected to 

each other. Some can possess high bandwidth, reliable connectivity (e.g. Ethernet) 

whilst others can be considerably more constrained (e.g. Bluetooth). Juno’s 

(re)configurability addresses this heterogeneity through utilising fine grained 

component configurations to ensure devices observing different network conditions 

behave differently to reflect this. For instance, the file share application could be 

placed in a number of environments (e.g. a reliable wired campus network or a mobile 

ad-hoc network). These differences can similarly be reflected in a number of different 

configurations. For instance, in the reliable environment Juno attaches lazy 

maintenance components in the Pastry overlay. These uses periodic keep-alive 

messages to maintain the leaf set. Conversely, in the unreliable environment, leaf set 

broadcasts are used to address the number of node failures. Juno can also perform this 

process dynamically in response to changes in network conditions (e.g. moving from 

a reliable connection to Bluetooth) without the need to modify the application. This 

process therefore allows overlays to have fine grained runtime modifications made to 

them to ensure resilience against different network environments.  

This section has investigated Juno’s approach of using (re)configuration to address 

the heterogeneity observed in content networks. Importantly, it can be seen that the 

process of encapsulating functionality in dynamically interchangeable components 

provides an effective mechanism for dealing with heterogeneity. This is achieved by 

abstracting services and requirements from their implementations, allowing different 

components to perform the same procedures in different environments. Further, the 

ability to easily extend the middleware through (re)configuration means that 

applications can easily incorporate new capabilities to address changes in 

heterogeneity. Importantly, the application is agnostic to these changes since Juno 

autonomously (re)configures itself allowing the application to simply interact with 

abstracted interfaces provided in the Application Context.  

4.2   Resource Overhead 

This section examines the performance overheads associated with implementing a 

content network using Juno. All tests were performed on a 3.4GHz Intel Pentium D 

processor; 2 GB RAM; Sun JVM 1.6.0.5. 

The operational throughput of BitTorrent’s new source found notification was 

measured over a 5 second period; this operation requires two parameters: a file 

identifier and a node reference. This operation was implemented in Juno using both 



       

event passing and receptacle calls. As a benchmark it was also implemented using 

native Java method calls. The results are shown in Table 3; it can be seen that when 

compared to native calls, there is a noticeable reduction in performance. 

Table 3. Invocation Throughput 

Type Throughput (Invocations/Second) 

Java Method Call 15.863570 106 (16 million) 

OpenCOM Receptacle Call 3.222367 x 106 (3 million) 

Juno Event Passing 1.510376 x106 (1.5 million) 
 

 

Juno’s use of receptacles and event passing therefore creates a clear overhead in 

the system. Receptacles and event passing, however, reduce coupling and allow 

reconfiguration; this therefore creates a trade-off between performance and 

(re)configurability. 

The memory overhead of Juno has been assessed by implementing six modules as 

both components and Java objects. These modules have been implemented with an 

increasingly large number of interfaces and receptacles. The experiments show that 

implementing the system in Juno adds approximately 370 bytes of overhead per 

component, compared to the equivalent Java object. This value increases by 

approximately 20 bytes for every additional interface. This can be compared to 300 

bytes for each extra OpenCOM receptacle. Therefore, development in Juno will lead 

to a small increment in memory overhead. However, the ability to use lightweight 

configurations (installing the minimal components), allows limited capacity devices 

to actually reduce the overall memory footprint. 

4.3   Development Capabilities 

Clearly, a significant evaluative metric is how well Juno supports the development of 

new applications. This is assessed through three approaches; firstly, looking at the 

potential for component reuse in the system; secondly, looking at how applications 

can utilise new functionality through adding new components to Juno; and thirdly, 

through the coding overhead of implementation in Juno. Development can take place 

in any of the contexts, or alternatively, above Juno. This section focuses on the former 

as it deals more specifically with Juno rather than applications built over it. 

Reusability levels in Juno are significant; most noticeably these are in the Network 

Context due to its role as a platform. This therefore allows a number of Service 

Context components to operate over reused/shared overlay components. For instance, 

the mesh components used by BitTorrent can be further used with overlays such as 

Julia [4], Narada [9] and Gnutella [23]. This offers significant development 

opportunities as it can dramatically reduce coding time. 

The Service Context also offers high-levels of reusability; components such as the 

Keyword Lookup component can obviously be ported to a number of applications that 

require this functionality. Further, fine grained components such as the Incentive 

Manager, Request Generator and Request Handler can be reused in a variety of 

different systems. For example, BitTorrent can easily be configured to support 



streaming applications. To do this, temporally-aware chunk and source selectors are 

installed, leaving all other components the same. 

Another developmental benefit of Juno is its support for functionally scaling 

applications. This is achieved through the introduction of new components that can 

dynamically manipulate events and component connections to augment functionality. 

This allows new components to be dynamically deployed between nodes to extend 

functionality ‘on-the-fly’. On a coarse level, entire sets of components can be 

installed. For instance, if a node wishes to download an item of content from another 

but they do not have compatible delivery mechanisms; this can be easily resolved 

through component exchange. More fine grained deployment can also be performed; 

for instance, a peer utilising a modified BitTorrent implementation to stream content 

can easily interact with other oblivious BitTorrent implementations. However, the 

traditional BitTorrent incentives scheme will not be effective, as chunks that are 

nearer to a node’s playback position are more valuable than distant ones. Therefore, 

new incentive mechanisms (e.g. a digital currency) can simply be deployed between 

peers to facilitate access to certain chunks. 

Table 4. Transport Component Code Complexity Overview 

 Lines of Code Difference 

Full Component 110 0 

Without Event Capabilities 102 - 8 

Without Component Capabilities 88 - 22 
 

To provide an overview of the coding overhead related to developing systems in 

Juno the Generic Mesh Construction component is inspected, shown in Table 4. This 

component has one receptacle, Transport, which provides network level transport 

functionality. The full component has 110 lines of code; 22 lines are attributed to 

managing component receptacles and 8 lines are required to deal with the event based 

notification of messages received by the Transport component. There is therefore a 

small coding overhead in implementing the Juno components. However, this 

overhead is in the form of template-like coding; further the use of Juno’s well defined 

approach can assist in such things as code maintenance and project management. 

5   Conclusion and Future Work 

This paper provides an overview of the Juno content networking middleware. Juno is 

designed to address the complexities of next generation content distribution. The 

proliferation of multimedia content distribution over the Internet has led to an 

explosion in the ways in which users choose to view content, leading to a transition 

from content distribution networks to more integrated content networks [22]. This 

diversification has resulted in huge array of content, overlays, services and delivery 

mechanisms, creating significant complexities when developing and deploying 

content networks over the Internet. 

Juno addresses these issues through its use of an open, (re)configurable component 

architecture allowing it to dynamically build and rebuild itself. This allows Juno to 



       

efficiently support a diverse range of applications by (re)configuring itself based on 

environmental constraints and application requirements. Juno has been evaluated 

through the development of a file sharing application using BitTorrent and Pastry. It 

is shown that significant levels of (re)configurability can be achieved to specialise and 

adapt content networking systems. This is evaluated by showing how Juno deals with 

the four primary heterogeneity factors (i.e. delivery, service, devices and network 

heterogeneity). More specifically, it is shown how the different requirements of these 

factors can be accommodated through using Juno’s (re)configuration. Further, Juno’s 

functional scalability and the ability to reuse components have been shown to offer 

considerable benefits to developers. These properties have also been placed in 

consideration of an overhead study, showing that there was a noticeable but 

manageable overhead, causing a trade-off between performance and configurability. 

There is a considerable body of future work that can be carried out in this area. 

Middleware support for this new generation of content networking is in its infancy 

whilst Juno is still in the relatively early stages of development. The next step is to 

develop Juno further, introducing a wider range of services and delivery mechanisms. 

One area of significance is the security of Juno; currently the use of digitally signed 

components is presumed to offer security, however, more sophisticated support for 

the secure functional scalability of applications is necessary. This will involve both 

the development of more advanced component deployment alongside more 

sophisticated remote reconfiguration of nodes. 
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