
Charting an Intent Driven Network
Yehia Elkhatib∗, Geoff Coulson∗, and Gareth Tyson†

∗MetaLab, School of Computing and Communications, Lancaster University, UK
Email: {i.lastname}@lancaster.ac.uk

†EECS, Queen Mary, University of London, UK

Abstract—The strong divide between applications and the
network control plane is desirable, but keeps the network in the
dark regarding the ultimate purpose of applications and, as a
result, is unable to optimize for these. An alternative approach is
for applications to declare to the network their abstract desires;
e.g. “I require group multicast”, or “I will run within a local
domain and am latency sensitive”. Such an enriched semantic has
the potential to enable the network to better fulfill application
intent, while also helping optimize network resource usage across
applications. We refer to this approach as intent driven networking
(IDN). We sketch an incrementally-deployable design to serve as
a stepping stone towards a practical realization of IDN within
today’s Internet.

I. INTRODUCTION

A key principle of the early Internet was the provision of
a simple send/receive interface. As the Internet grew with
new capabilities added (multicast, streaming, mobility, etc.),
we have attempted to continue to live with this very simple
interface, although clear downsides are emerging. Essentially,
applications operate in the dark with respect to the capabilities
and functioning of the underlying network and are therefore
obliged to include (potentially complex) logic to handle net-
work related events such as faults, performance fluctuations,
service changes, etc. Similarly, network operators do not un-
derstand application needs beyond the issuance of seemingly
isolated send and receive calls, and are thus unable to conserve
resources or optimize performance for applications.

At the heart of the matter is the inability of the network
to see the underlying intent of the application. Instead, the
network only sees a series of micro-transactions. One solution
is to extend the network API to give direct access to all
the individual network elements such as caches, middleboxes,
routers, etc. But this is clearly problematic for many reasons:
application developers would find it too hard to understand,
the API would regularly mutate in line with corresponding
changes in the technologies, and it would promote unforeseen
interactions between per-technology API elements, with un-
predictable and undesirable consequences.

In this paper, we propose Intent Driven Networking (IDN)
as an alternative approach. It enables the formulation of an
application’s intents as high level statements of its macro-level
behaviour, i.e. an abstract formulation of what it desires from
the network, while remaining agnostic about the means used
to satisfy them (protocols, etc.). For example, an intent might
be to communicate with a group of users (e.g. collaborative
document editing); another might be to stream a video while
switching between using a laptop on a 802.11 network and

a smartphone on a cellular one. Whereas the current Internet
sees sets of independent micro-transactions, an intent driven
Internet would understand the aims and optimize accordingly.

IDN allows us to simplify application development by
removing the need to provide “cover all cases” logic. Instead,
user application requirements are fed down to the network,
providing flexibility in how different requirements are met
without predefined restrictions. For instance, one intent might
implicitly ensure the availability of a certain service despite
the failure of a remote server; another would ensure a certain
level of Quality of Experience (QoE) even if the application is
not designed to seek alternative potentially better routes; etc.

In order to attain the IDN vision, we need means by which
application intents are formulated, compiled, and ultimately
reified, i.e. acted upon, (Fig. 1). This paper presents the con-
cept of an intent driven network using both a straw man design
(§II) and illustrative examples (§III). We focus particularly on
the practical concern of how IDN might be incrementally and
partially deployed in the existing Internet without restarting
at year zero. We comment on the implications (§IV) of this
design, and on difference from related work (§V), before
concluding (§VI).

Intent 
Formulation 

Intent 
Reification 

A
p

p
lic

a
ti

o
n

 
N

et
w

o
rk

 

Intent 
Compilation 

Fig. 1. High level view of an intent driven network.

II. INTENTS

This section defines what an intent is (§II-A), proposes an
approach for the formulation of intents based on compositions
of primitive verbs (§II-B), and discusses the mechanics of
reifying intents using in-network mediators (§II-C).

A. What is an Intent?

An intent is an abstract declaration of what the application
desires from the network on behalf of the user. It is a compo-
sition of a set of primitive “verbs”, each describing a specific
but high-level operation. For example, an intent to update
an Instagram feed might be composed of primitive verbs to
reconfigure the application topology (connect to a service and

978-3-901882-98-2 c© 2017 IFIP



to peers), exchange data (update the content), and uphold a
certain QoE level (allocate sufficient network resources). The
network, thus, carries out the necessary configuration to best
serve such an intent; e.g. setting up direct connections between
users, and allocating fair shares of router queues considering
other network services.

Intent expression is based on the verb-object-subject sen-
tence structure used in linguistics, supplemented by modifiers
as an additional set of words. Primitive intents expressed using
such sentences are then composed using recursive encapsula-
tion to form a full intent.

In more detail, the primitive elements that comprise intents
are expressed using <verb, object, modifiers, subject> tuples.
A verb is an operation that describes the intent based on an
ontology (described next in §II-B). Object identifies a service,
process or item that is the objective of the verb. Modifiers
are used to specialize or parameterize this; each modifier
can be tagged as either ‘essential’ or ‘desirable’, indicating
prioritization preference. Subject is an (optional) identifier of
another service/process/item to be linked to the object.

Intents are not limited to only user applications; they extend
to other network players (e.g. ISPs, cloud service providers,
content providers) to express their own intents.

B. Formulating Intents

An intent verb is expressed using one of the basic opera-
tions in Fig. 2. The ontology is divided into three operation
categories: Construct, Transfer, and Regulate. Each of these
categories has a number of sub-operations from which the
verb is chosen. Categories are just logical groupings; it is the
verbs that signify the primitive intent. This is an introductory
ontology not a comprehensive one; modification and expansion
is possible through collaboration with the research community.

Verb
Transfer

Regulate

Construct

Push

Pull

Prioritize

Block

Advertize

Discover

Allocate

Level 1
Categories

Level 2
Primitive verbs

Fig. 2. A basic ontology of primitive verbs.

Construct is used when an application needs to form con-
nections to another application (the object) in a peer-to-peer
fashion, either locally over a broadcast address or remotely.
An example is an intent for a VoIP client to connect to
another. Discover is issued to look for certain applications,
while Advertize allows an application to announce a new
service that is able to fulfill the intents of other applications.

Examples include nodes spawning a caching or load balancing
service. Announcing various applications to be discovered
or advertized enables an application to dynamically employ
external modules without the latter being a component of the
native application code. This is of particular use to applications
running with scarce resources, e.g. a mobile gaming applica-
tion offloading transcoding processes.

Transfer allow applications to pull and push content (the
object). A Transfer intent is analogous to an Information-
centric networking (ICN) abstraction, where the Push verb
corresponds to a prefix announcement whilst Pull corresponds
to an interest packet.

Finally, Regulate intents capture the desire of an application
to have traffic handled in a certain way in the network rather
than locally. This is helpful for propagating traffic management
logic closer to the source, which facilitates better network
management and aggregation of interests. An example is an
intent to block ssh login attempts from a certain address block,
or to prioritize traffic from a service like hulu.com.

C. Reifying Intents

Our conceptual architecture relies on a hierarchical structure
of mediators deployed in the network. These are middleboxes
that arbitrate between user intents, network and service oper-
ator policies, and the current state of the network. We refer to
this mediation presence as Maat and each of the middleboxes
as a Maat agent, in reference to the ancient Egyptian concept
of conflict resolution to achieve harmonious equilibrium.

User intents are sent on a specific broadcast address to
be picked up by a local Maat agent. If a Maat agent is not
available as signified by the expiry of a timer since issuing
the intent, the application can widen the address scope to seek
another agent in the parent subnetwork (and recursively so), or
alternatively it could choose to fall back to non-IDN behaviour.

If a Maat agent is available, its job is to “reify” this intent
by deploying or activating the required mechanisms (such as
an in-network function) or identifying candidate services (a
nearby deployment), and consequently sending the relevant
information back to the user application to realign itself
accordingly. The Maat agent is also required to create a session
to keep track of how the intent was met. This is important for
auditing mediation efficiency (see §IV-B).

III. EXAMPLES

We now further illustrate the formulation of an intent
through a set of use cases. We also use these to discuss how
the corresponding intent reification would work.

A. Use case #1: Discovery

An important application of serendipitous peer discovery
is in Internet of Things (IoT) environments where a large
number of hosts would be operating different services in
any one locality. Currently, discovery relies on the presence
of directory or similar services, an approach with obvious
limitations in terms of consistency and scalability.

In such a context an application might signal an intent to
build a new overlay structure from a set of suitable nodes



(e.g. [1]). In other words, an intent could be used to oppor-
tunistically compose an edge system that was not statically
constructed at design time. This would work in a fashion
similar to ARP; a node would seek other nodes that fit certain
criteria on the service(s) they operate, location, communication
mode, QoS metrics, etc. The network then propagates the
announcement according to criteria laid out by the modifiers.

Consider for instance an actuator in an IoT deployment that
wants to find a nearby node capable of running a MapReduce
analytics workflow over a collection of sensor data. The intent
is formed by composing a discover verb (for the MapReduce
service and QoS requirements) within an encapsulating push
one (with additional non-functional requirements) as follows:
<push,

dataset-20170723-1800,
(net=1.2.3.0/24,ess),
<discover,

hadoop,
(rtt<50ms,des)&(rtt<80ms,ess),
hadoop-workflow.jar>

>

This would be examined by Maat to allow the intent to
traverse different networks (if within the specified criteria).
As another example, an intent could emanate from a node in
a sensor network seeking secure data storage, and use IDN
to explore options as diverse as local fixed-power nodes and
remote data centers. Such discovery may also include intents
formed at different levels, such as the ability to choose which
middlebox (proxy, anonymizer, etc.) to go through.

B. Use case #2: Edge Deployment

This example involves different stakeholders: content and
service providers, both of which have a lot to gain from a
strong and adaptive presence towards the edge of the network.

Consider a content provider that finds an increase in the
consumption of certain content (say the 1960s “Batman” series
following the death of Adam West) in a particular area (say
large metropolises in continental USA). It is in the provider’s
interest to provide good viewing QoE for its customers and
also manage increased load on backend services.

Consequently, the content provider would decide to push
copies of the content to cache in different cities. An intent will
be expressed as a composition of a verb that discovers suitable
caching services (the object) in certain locales (the modifiers),
a verb that pushes content to the discovered caching points,
and a final verb to announce the new content once cached.
An example of such an intent follows, where asn is the AS
number signifying a certain customer base.
<push,

Batman,
(auth=https://www.foxmovies.com/oauth),
<push,

831FD96B0.mp4,
NULL,
<discover,

cache,
(asn=123456,ess),
NULL>

>
>

Other modifiers could be used to identify target locales
at a finer grain. Similarly, a service provider might deploy
applications to nodes offering hosting services to balance load
at the edge, mitigate flash crowds, or improve user QoE.

IV. IMPLICATIONS

In realizing IDN we do not propose the re-writing of the
network stack, but instead to overlay the concept of intents
onto the existing Internet architecture. Our straw man archi-
tecture has been designed to support backward compatibility
and incremental/ partial deployment. As such, IDN opens up
a whole new set of opportunities in research, and also creates
some challenges. We now discuss some of these.

A. Opportunities

IDN opens up self-adaptation opportunities for all players
in the network space: users, developers and service providers.
Users benefit from improved QoE through service provi-
sioning that is dynamic and adaptive to their requirements
and contexts. Application developers gain access to higher
programming primitives that facilitate fluid application be-
haviour at runtime, with less reliance on ad hoc means of
connecting services and mitigating failures. Service providers
are empowered to provision their services in a migration-ready
form to be able to provide better QoE for their end users.

IDN also opens a market for hosting services towards the
edge. This is beneficial particularly for small and medium
sized service providers who cannot afford a highly customized
CDN presence like the Googles and Facebooks of the world.
Instead, they would be able to bid for edge resource provi-
sioning that in many parts of the world has a wider reach that
traditional CDNs [2], [3], [4].

B. Challenges

The most prominent challenges relate to trust – specifically:
security and efficacy – and deployment.

The security challenge could be summarized by the fol-
lowing question: Could the application trust the network to
interfere with its communications, potentially redirecting it to
an unintended destination? This is indeed a major challenge
that we recognize. We should first clarify that the in-network
Maat agents receive and compile intents, not the subsequent
communication which is more likely to contain sensitive info-
rmation. Based on this, Maat would have information about
the desires of the application such as connecting with peers,
advertising services or content, regulating network traffic, etc.
There is potentially a lot of risk in divulging such information
to outside parties. It is noteworthy that such challenges are
also being faced by the current Internet architecture.

The efficacy concern is summarized with a subtly different
question: Would the application trust the network to not
impede or interfere with its performance? Maat will have
significant influence on where the application is redirected to
serve its intent. As far as the application is concerned, Maat
mediators are black boxes that might have interests conflicting



with those of the application users. They could also be mis-
configured, resulting in non-optimal mediation. We perceive
this challenge to in fact be an opportunity for auditing schemes
that ensure efficacy of mediation. For this, we envisage regular
reporting of intent, and resulting mediation logs that could be
scrutinized to ascertain efficacy. In a multi-mediator market,
the mediation score resulting from such auditing mechanisms
would engender competition.

Another challenge relates to deployment and scalability.
The core IDN design lends itself to partial deployment through
independent rollout of Maat agents most likely at the edge.
There are different ways of doing this, one of which is to
augment routers with additional modules, perhaps through
NFaaS [5]. Such devices, however, are typically resource
constrained and might suffer from performance issues if a large
number of services are advertized on their local address spaces.
One way of avoiding this is to deploy dedicated Maat agents
instead of piggybacking on existing infrastructure. This comes
with its own cost, but is feasible on commodity hardware.

V. RELATED WORK

Bringing application awareness to networks has long been
sought after [6]. We now review relevant efforts in this domain.

Resource-centric. The REST architectural principle [7]
reduces network interactions to a few verbs (GET, POST,
etc.) transitioning between states using in-request data, making
infrastructure scalability and manageability easier. However,
REST continues to adopt the “narrow” network API approach
and, thus, continues to suffer from associated problems (§I).

Network-centric. ICN solutions are proposed to convert
networks into inherent content delivery systems [8], [9]. The
service-centric networking (SCN) concept [10], [11], [12],
[13], [14] extends ICN principles to apply to services too. Both
ICN and SCN attempt to align the application and the network,
which helps to break away from statically binding to specific
network resources. However, they only partly address the
problems we have outlined in the specific cases of accessing
content/services: they do not generalize to other scenarios, e.g.
those involving switching of networks.

Stakeholder-centric. Some work (e.g. EONA [15]) has
been proposed for application and content providers as well
as infrastructure operators to exchange information from their
respective control loops in order to improve user experience.
However, we are concerned about the viability of this ap-
proach. In a world where data is the new oil, we can not
imagine such cooperative exchange of information happening
between parties that ordinarily have conflicting interests [16].

Policy-centric. Policy-Based Management (PBM) lan-
guages and tools are well established for defining high
level policies and refining that into actionable and quantifi-
able network-level targets [17]. PBM is typically constructed
around rule-based, goal-driven, or event-driven principles that
are mapped to specific operations. Literature includes a host
of work on specifying, managing, and refining DiffServ policy
hierarchies (e.g. [18], [19]) and enabling autonomic network-

ing (e.g. [20], [21]). Other PBM work is also emerging under
the ‘network synthesis’ subfield [22], [23], [24].

Recent extensions to this philosophy include the RFC on
autonomic networking [25], which defines some high level
design goals of automated implementation of abstract opera-
tional goals. The RFC does not provide any indication of how
to implement or deploy this. A recent paper [26] provides a
solution to quantify soft goals associated with such abstract
intents, and to use Network Function Virtualization (NFV)
chains to implement them. The work focuses on middlebox
configuration and deployment, but not service discovery.

However, this work is largely on facilitating malleable net-
work management driven by QoS goals or business constraints.
Hence, they cater to network operators dealing with wholesale
traffic. They cannot, for instance, be used for facilitating
application-defined opportunistic service binding at the edge.

Application-centric. Closer to our work are recent efforts
on enabling applications to express their requirements and
allowing these to percolate down to the underlying network.
The Pyretic [27] framework raises the level of abstraction
of writing sophisticated network policies. Merlin [28] is a
declarative language for specifying global networking policies
as a collection of logical predicates to identify traffic subsets
and a set of statements indicating the action(s) to be taken on
each subset. Both Pyretic and Merlin focus on issues relating
to unifying network administration rather than identifying and
addressing application requirements.

VI. SUMMARY

We propose Intent Driven Networking (IDN) as a concept in
which applications and other players such as content providers
formulate their communication-related ‘intents’ in high-level
terms that get transformed into network-level reifications that
better support the declared intents. We put forward a straw man
design that specifies how intents might be formulated (§II-A),
involving an ontology of verbs to signify various application
desires (§II-B) and a syntax that allows encapsulation of
intents. Reification relies on the Maat system to provide in-
network mediation between user intents on the one hand,
and policies of network and service operators on the other
(§II-C). IDN is purposefully designed to be incrementally and
partially deployable. Further, we elaborated on our straw man
design using different intent examples (§III), and resulting
implications on research opportunities and challenges (§IV).

As a consequence, IDN facilitates more fluid development
of end user applications and is conducive to better alignment
of the network to application needs. No longer are applications
expected to ship with intricate and brittle logic to work around
unexpected network behaviour.

There is a huge body of future work required to develop IDN
into a viable implementation. Therefore, we solicit contribu-
tions from the wider systems research community, architects
and developers of different disciplines.

ACKNOWLEDGMENT

This work has been partly funded by CHIST-ERA under
UK EPSRC grant reference EP/M015734/1.



REFERENCES

[1] G. S. Blair, Y.-D. Bromberg, G. Coulson, Y. Elkhatib, L. Réveillère,
H. B. Ribeiro, E. Rivière, and F. Taı̈ani, “Holons: Towards a systematic
approach to composing systems of systems,” in Workshop on Adaptive
and Reflective Middleware, 2015, pp. 5:1–5:6.

[2] Y. Elkhatib, “Building cloud applications for challenged networks,” in
Embracing Global Computing in Emerging Economies, ser. Communi-
cations in Computer and Information Science, R. Horne, Ed., 2015, vol.
514, pp. 1–10.

[3] R. Fanou, G. Tyson, P. Francois, and A. Sathiaseelan, “Pushing the
frontier: Exploring the African web ecosystem,” in WWW, 2016.

[4] Y. Elkhatib, “Mapping Cross-Cloud Systems: Challenges and Opportu-
nities,” in HotCloud, 2016.

[5] M. Król and I. Psaras, “NFaaS: Named function as a service,” in
Proceedings of the 4th ACM Conference on Information-Centric Net-
working. ACM, 2017, pp. 134–144.

[6] C. Rotsos, D. King, A. Farshad, J. Bird, L. Fawcett, N. Georgalas,
M. Gunkel, K. Shiomoto, A. Wang, A. Mauthe, N. Race, and D. Hutchi-
son, “Network service orchestration standardization: A technology sur-
vey,” Computer Standards & Interfaces, vol. 54, no. Part 4, pp. 203 –
215, 2017, sI: Standardization SDN&NFV.

[7] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[8] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in CoNEXT, 2009.

[9] G. Tyson, S. Kaune, S. Miles, Y. Elkhatib, A. Mauthe, and A. Taweel,
“A trace-driven analysis of caching in content-centric networks,” in
Proceedings of the 21st International Conference on Computer Com-
munications and Networks (ICCCN’12). IEEE, AUG 2012.

[10] M. J. Freedman, M. Arye, P. Gopalan, S. Y. Ko, E. Nordstrom,
J. Rexford, and D. Shue, “Service-centric networking with
SCAFFOLD,” http://www.dtic.mil/cgi-bin/GetTRDoc?Location=
U2&doc=GetTRDoc.pdf&AD=ADA571380, Princeton University,
Tech. Rep. 885-10, September 2010.

[11] T. Braun, A. Mauthe, and V. Siris, “Service-centric networking exten-
sions,” in Symposium on Applied Computing, 2013, pp. 583–590.

[12] D. Griffin, M. Rio, P. Simoens, P. Smet, F. Vandeputte, L. Vermoesen,
D. Bursztynowski, and F. Schamel, “Service oriented networking,” in
European Conf. on Networks and Communications, 2014.

[13] C. Tschudin and M. Sifalakis, “Named functions and cached computa-
tions,” in CCNC, 2014, pp. 851–857.

[14] A. Sathiaseelan, L. Wang, A. Aucinas, G. Tyson, and J. Crowcroft,
“SCANDEX: Service centric networking for challenged decentralised
networks,” in DIYNetworking, 2015, pp. 15–20.

[15] J. Jiang, X. Liu, V. Sekar, I. Stoica, and H. Zhang, “Eona: Experience-
oriented network architecture,” in HotNets, 2014, pp. 11:1–11:7.

[16] D. D. Clark, S. Bauer, W. Lehr, K. C. Claffy, A. D. Dhamdhere,
B. Huffaker, and M. Luckie, “Measurement and analysis of internet
interconnection and congestion,” in Telecomm. Policy Research, 2014.

[17] R. Boutaba and I. Aib, “Policy-based management: A historical
perspective,” Journal of Network and Systems Management, vol. 15,
no. 4, pp. 447–480, 2007. [Online]. Available: http://dx.doi.org/10.
1007/s10922-007-9083-8

[18] R. Rajan, D. Verma, S. Kamat, E. Felstaine, and S. Herzog, “A policy
framework for integrated and differentiated services in the internet,”
IEEE Network, vol. 13, no. 5, pp. 36–41, Sep 1999.

[19] A. K. Bandara, E. C. Lupu, A. Russo, N. Dulay, M. Sloman, P. Flegkas,
M. Charalambides, and G. Pavlou, “Policy refinement for ip differen-
tiated services quality of service management,” IEEE Transactions on
Network and Service Management, vol. 3, no. 2, pp. 2–13, April 2006.

[20] B. Jennings, S. V. D. Meer, S. Balasubramaniam, D. Botvich, M. O.
Foghlu, W. Donnelly, and J. Strassner, “Towards autonomic manage-
ment of communications networks,” IEEE Communications Magazine,
vol. 45, no. 10, pp. 112–121, October 2007.

[21] F. Meyer and R. Kroeger, “A framework for autonomic, ontology-
based it management,” in 11th International Conference on Network
and Service Management (CNSM), Nov 2015, pp. 78–84.

[22] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t
mind the gap: Bridging network-wide objectives and device-level con-
figurations,” in Proceedings of the ACM SIGCOMM Conference. ACM,
2016, pp. 328–341.

[23] A. El-Hassany, P. Tsankov, L. Vanbever, and M. T. Vechev, “Network-
wide configuration synthesis,” in Proceedings of the International Con-
ference on Computer-Aided Verification (CAV), July 2017.

[24] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Net-
work configuration synthesis with abstract topologies,” in Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). ACM, June 2017, pp. 437–451.

[25] M. H. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. Carpenter,
S. Jiang, and L. Ciavaglia, “Autonomic Networking: Definitions and
Design Goals,” RFC 7575 (Informational), RFC Editor, Fremont, CA,
USA, pp. 1–16, June 2015. [Online]. Available: https://www.rfc-editor.
org/rfc/rfc7575.txt

[26] E. J. Scheid, C. C. Machado, M. Franco, R. L. dos Santos, R. Pfitscher,
A. Schaeffer-Filho, and L. Z. Granville, “INSpIRE: Integrated NFV-
baSed Intent Refinement Environment,” in Proceedings of the 16th
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2017). IEEE, May 2017.

[27] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN programming with Pyretic,” Technical Report of USENIX, 2013.

[28] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, “Managing
the network with merlin,” in HotNets, 2013, pp. 24:1–24:7.


