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Abstract—Mobile Live Streaming (MLS) services are now one
of the most popular types of mobile apps. They involve a (often
amateur) user broadcasting content to a potentially large online
audience via unreliable networks (e.g., LTE). Although prior
work has focused on viewer-side behavior, it is equally important
to study and improve broadcaster operations. Using detailed logs
obtained from a major MLS provider, we first conduct an in-
depth measurement study of uploading behavior. Our key find-
ings include large wasteful uploads, strong viewing locality, and
traffic dominance of loyal viewers. Specifically, 33.3% of uploads
go unwatched, and the viewership of broadcasters tends to be
localized to a small set of broadcaster-specific network regions.
Inspired by our findings, we propose two system innovations to
streamline MLS systems: adaptive uploading and edge server
pre-fetching. These optimizations leverage machine learning for
reduced waste and improved QoE. Trace-driven experiments
show that the adaptive uploading reduces the resources wastage
by 63%, and the pre-fetching boosts the startup by 29.5%.

I. INTRODUCTION

The majority of Internet traffic is now video [1], and with
the development of mobile devices, Mobile Live Streaming
(MLS) services like Facebook Live [3], and Periscope [6]
have become important contributors. In MLS, anyone can be a
broadcaster, streaming video anywhere from a mobile device,
which may reach a potentially large audience. This not only
removes the traditional live broadcaster’s reliance on hardware
devices (e.g., computers and cameras), but also helps build an
era of “live broadcast for the people”.

Due to its novelty, MLS has received increasing attention
from the research community. For example, there has been
work on adaptive bitrate streaming for MLS [35], [27], [15],
and active measurements [28], [34]. However, most efforts
have focused on the last-mile (from server to viewer) in-
stead of the first-mile (from broadcaster to server). As MLS
broadcasters are often amateurs, and in contrast to other
streaming systems, this means that both the last and first mile
are often unreliable (e.g., 3G/4G), thereby creating potential
consequences for overall Quality of Experience (QoE) [25].
This challenge is exacerbated by the unpredictable nature of
user-generated uploads, making capacity management more
difficult. We argue that we need a more refined understanding
of MLS, as well as new techniques for managing its unique
properties.

With the above in mind, we have obtained 10 days of
service logs (1.8TB) from a major MLS service. In contrast

to prior works, our data covers both the first and the last
mile information. The dataset includes 1.9M live broadcasts,
0.4M broadcasters, and 300M views from 2M viewers. In this
paper, we focus on quantifying the challenges faced in MLS
systems, and evaluating a set of optimizations to streamline the
provision of MLS workloads. To the best of our knowledge,
this work is among the first to examine and optimize the
MLS broadcaster side. Our measurements reveal three key
observations (§III):

• Wasteful Uploads: We identify significant volumes of
wasteful live video uploads (33.3% of total upstream traf-
fic). Waiting for the first viewer’s arrival and viewer clear-
outs during streaming are the two dominant contributors;
these two wastes constitute 30% of total upstream traffic.
Besides, the streams are unlikely to be popular when
encountering clear-outs in their late stages.

• Viewing Locality: Even though notionally these platforms
target a global audience, streams of individual broadcasters
tend to attract viewers from a small set of network regions,
indicating a strong viewer locality. The top regions for
individual broadcasters vary greatly. Besides, cross-region
delivery of content to viewers doubles the startup delay,
compared with same-region delivery.

• Loyal Viewers: We find that “loyal” viewers, who regu-
larly watch the same broadcasters, are small in number
but generate 59% of the total video data downloaded.
Perhaps more importantly, these loyal viewers not only
arrive earlier but also leave later.

Based on the above insights, we optimize the MLS system
from two perspectives (§IV): (i) Reducing Waste: To alleviate
upload waste caused by unwatched segments, we propose a
decision tree based adaptive uploading system, which relies
on 70 features for predicting the attractiveness level of the
content that follows individual clear-outs. As a result, the
resource wastage is reduced by 63%. (ii) Boosting Viewing
Experience: We propose an edge server pre-fetching strategy,
composed of a pre-fetching location selection scheme based
on our observations of viewing locality and loyal viewers, and
a pre-fetching timing prediction scheme using a deep neural
network. Through this, we reduce startup delay by 29.5%.



II. BACKGROUND & DATASET

A. Overview of MLS

Our data comes from a large-scale Mobile Live Streaming
(MLS) broadcasting platform that serves millions of users
per day. Anyone on such a platform can be a broadcaster,
streaming their camera feed. When a user starts broadcasting,
they upload video segments to one of the ingest servers, which
in turn re-encodes them at various bit rates and then publishes
chunks to a Content Delivery Network (CDN). The CDN
is then responsible for disseminating (appropriately encoded)
segments to viewers who request content via HTTP.

B. Dataset Description

We rely on over 1.8TB of logs, covering 10 days of
anonymous access shared by the examined MLS service. The
dataset covers all broadcasters and viewers within the exam-
ined period. Within the logs, one live broadcast corresponds to
a unique broadcast ID. Viewing logs with the same broadcast
ID can therefore be connected. The service logs consist of
1.9M live streams by 0.4M broadcasters; this covers 98 years
of video. For viewers, we have logs including 300M views
by 2M viewers, with an aggregated streaming period of 4,394
years. Within each log entry, the major data fields cover four
categories:

1) User-specific: Anonymized user (broadcast ID, resp.),
which uniquely identifies a user (broadcast, resp.);
anonymized client/server IP, BGP-Prefix, ASN, and
province-level geographical location.1

2) Session-specific: Data volume, duration of the session,
direction (upload or download).

3) Viewer-side QoE: Various QoE metrics, including startup
delay, number of buffering events, buffering duration, and
the number of retries.

4) Operating environments: Network connection type (e.g.,
4G or WiFi), platform type (e.g., Android or iOS).

Although the examined MLS also supports desktop access,
99+% of both the broadcasting and viewing traffic contained
in our dataset is from mobile devices.

Ethical Considerations: We took a number of steps to
ensure ethical use of data. We have no access to the content
of broadcasts, and can only observe metadata (e.g., session
duration). The logs are routinely gathered for operational
purposes, and no extra data collection was triggered. All the
user information, including user ID, IP address, ASN, and
even the broadcast ID, is anonymized. We are unable, and not
allowed, to link logs to users.

III. UPLOADING BEHAVIOR ANALYSIS

A. Characterizing User Behavior

Overall Popularity: We first present the overall statistics of
the platform. Figure 1(a) presents the distribution of views
per broadcaster during the examined 10 days, and Figure 1(b)
depicts the number of views per broadcast. Although an elite

1The anonymization is done by Crypto-PAn [2]
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Fig. 1: Number of views received by per broadcaster and
broadcast. We later define Light, Medium, Heavy broadcaster
groups (Table I).

group of broadcasters do gain hundreds of thousands of views,
we find that a significant fraction never exceeds 10, and
almost a quarter never have any viewers. Despite this, we
observe that the App on the broadcaster side keeps uploading
content regardless, thereby wasting resources without anybody
viewing the content. We find that in total 33.3% of upstream
traffic is wasted (see §III-B for breakdown analysis). This
suggests the potential for streamlining the delivery mechanism,
by lowering down video quality for unwatched segments. We
present such an optimization in §IV-A.

To get a handle on why this might happen, we look into the
viewing patterns of consumers. Unsurprisingly, the platform
is dominated by short-form content. Viewing times tend to
be short (median ≈10s), and only a tiny fraction (median
≈0.1%) of the overall broadcast will be consumed in a viewing
session. Despite this, most viewers watch a large number of
distinct videos. Within the examined 10 days, the median view
count per viewer is 18, and 22% of viewers watch at least 100
live broadcasts. Thus, we conjecture that many viewers skip
between videos, looking for content of interest. We find that
76% of intervals between two consecutive views are under 1
second, indicating this is indeed the case.

Broadcaster Clustering: Due to the diversity of broadcast
behaviors observed above, we next cluster broadcasters into
groups to better understand their patterns. To this end, we
choose 5 features: (i) the number of live broadcasts (Feature
1, F1), (ii) the total broadcasting duration (F2), (iii) the number
of active days (F3), (iv) the total view count (F4), and (v) the
total view duration (F5). We first use Z-Score [8] and Principal
Component Analysis (PCA) [5] to preprocess the data, on
which we apply K-Means [4], experimenting with K from 3
to 10. We select K=3 due to a relatively small Davies-Bouldin
Index [10].

Table I presents the results. The broadcasters can be divided
into 3 main categories: Light (L), Medium (M), and Heavy (H).



TABLE I: Clustering results for broadcasters (the statistics are
shown in median).

Label % F1 F2 F3 F4 F5
Light 89.0 2 0.4 1 11 0.1

Medium 10.8 15 8 6 336 14
Heavy 0.2 18 31 10 210,423 29,841
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Fig. 2: An illustration of waiting time and clear-out.

We thus return to Figure 1(a), which segmented results based
on these three groups. The least active/popular broadcasters
(Light) account for the vast majority (∼ 90%). We speculate
that this type of broadcaster is new to the system, or just
experimenting with the live function in the app. The number of
medium active broadcasters is relatively small, but the degree
of activity and popularity is far more than the Light cluster.
The most active/popular broadcasters (Heavy) are distinct from
the other two types though: They are the ”stars” of the
platform. Although the number of these broadcasters is small,
they contribute a disproportionately large amount of upstream
and downstream traffic.

B. Characterizing Unwatched Segments
We already know that 33.3% of upstream traffic is wasted

(i.e., never viewed). However, despite that 29% of live broad-
casts are never watched overall, only 3.3% of upstream traffic
is wasted due to this. Instead, the majority of waste comes
from two kinds of unwatched broadcast segments (i.e., partially
unwatched), which we examine for the first time: (i) 7% of
upstream traffic is wasted while waiting for the first viewer
to arrive (termed waiting time); (ii) 23% of upstream traffic
is wasted because all viewers exit before the broadcast ends
(termed a clear-out). For illustration, Figure 2 presents an
example stream from our dataset. The purple segment (waiting
time) highlights the initial 10% of the stream with no viewers,
while the three red clips (clear-outs) show where all viewers
have exited.
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Fig. 3: Waiting time distribution for each type of broadcaster.

Waiting for the First Viewer: Overall, 7% of upstream
traffic is wasted because contents are uploaded before the first

viewer’s arrival. Figure 3 presents the waiting time distribution
for broadcaster groups. We find that, in most Heavy group
broadcasters’ streams, the first viewer arrives within 10s, while
for broadcasters in the Light and Medium group, most of their
streams must wait for ∼ 1 minute.
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Fig. 4: Clear-out duration distribution for each type of broad-
caster.

Clear-out Periods: A clear-out refers to when all viewers
cease consuming a stream, either permanently or temporarily.
23% of total upstream traffic is wasted due to clear-outs (i.e.,
an upload continuing even if all viewers have left). Clear-
outs occur across the whole spectrum of broadcasters: 99% of
broadcasts (that have been watched at least once) experience
clear-outs, whose lengths range from milliseconds to hours.
Figure 4 plots the distribution of the clear-out duration for each
broadcaster group. Although the median clear-out duration for
Light and Medium broadcasters is around 40s, about 60%
of clear-outs in Heavy broadcasters never exceed 1 second,
indicating that the clear-out length is related to popularity. In
addition, clear-outs are likely to occur more than once per
broadcast (4 times median).
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Fig. 5: Unpopular fraction is related with broadcaster group
and where the clear-out happens.

We also find in 50% of all cases, the interval between clear-
outs is no more than 3 seconds, suggesting that a clear-out is
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Fig. 6: An illustration of unpopular fraction calculation.

likely to be closely followed by another one. This observation
indicates that, once a broadcast has started to lose attraction
(i.e., experiencing several clear-outs), it is unlikely to regain
it. To confirm this, we split the broadcast between the starting
points of clear-outi and clear-outi+1 into B 30-sec bins, and
count the maximum number of online viewers (v) for each bin.
An example of this is shown in Figure 6. We then record the
run length (R) of unpopular bins (whose v ≤ 1). Finally, we
define unpopular fraction f as f = R

B . For example, in Figure
6, B = 3, R = 2, and thus f = 2/3. The larger the value of
f , the less popular the content between the two clear-outs is.
We present the distribution of f in Figure 5(a) over all clear-
outs for the three types of broadcasters, where we observe a
bi-modal distribution: for Light/Medium broadcasts, in most
cases (75+%), a clear-out means that the following content is
not popular (f = 1); for Heavy broadcasts, in 40% of cases,
even if a clear-out happens, it gains more than one viewer
within 30 seconds (f = 0).

Next, we examine the correlation between the unpopular
fraction f of a clear-out and its (normalized) start position,
where we represent the start position as the time offset
(relative to the stream’s start time) where the clear-out happens
normalized by the stream duration. We plot the results as a
heatmap in Figure 5(b), where darker color implies more clear-
outs are within this area. We find that the clear-outs with f = 0
mostly occur at the initial stage of the broadcasts: for L/M/H
live broadcasts, they occur at 0.11, 0.03, and 0.003 (median)
of the broadcast lifetime, respectively. These early clear-outs
are probably due to the small number of viewers in the early
stage, and clear-outs will thus accidentally occur. In contrast,
those clear-outs with f = 1 usually happen in the late stages
of the broadcasts (their median start positions are 0.65, 0.72,
and 0.99 for L/M/H broadcast, respectively). That said, the
clear-outs occurring in the late stage of broadcasts indicate
the content is losing attraction, and thus can be suppressed
to save traffic. We further confirm this implication in §IV-A,
with a decision tree model.

C. Mobile Characteristics

Usage Patterns Among Connection Types: We next ex-
amine the usage patterns of broadcasting and viewing among
different network connection types (e.g., WiFi/cellular). We
observe a WiFi-dominated system, where WiFi carried 92.9%
of the uploading traffic. Broadcasters using WiFi upload
for longer, and produce more streams (compared with their
cellular counterparts).

For viewing, interestingly, we observe that viewers regularly
switch their connection types in the middle of the viewing
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Fig. 7: Percentage of views contributed by the top three
regions.

(e.g., from 4G to WiFi). This occurs for 11.5% of views. In
53% of the connection-switching views, the connection types
change within cellular genres (e.g., from 3G to 4G), indicating
that the viewer moves to a different network environment. In
a quarter of cases, WiFi connections are replaced by cellular
connections, while the opposite switch type (i.e., from cellular
to WiFi) happens in 22% of cases. The latter two switch types
potentially indicate a bad initial connection, since most of
these switches occur in the initial stage of broadcasts (me-
dian first 5%). Curiously, although these connection-switching
views experience the worst startup delay (27ms vs. an overall
average of 16ms), their viewing sessions are the longest (140s
vs. an overall average of 10s). This is likely because longer
viewing sessions are the only ones that warrant performing
switches in the access network.

View Locality: Next, we study the locality patterns of viewers.
This is important if edge caches were to be deployed. Since
we are interested in users’ network footprint, we use the BGP-
Prefix and ASN+Province2 of the user’s IP address to represent
her location. Note that we use the ASN+Province combination,
as a given ASN may have a presence in multiple provinces.

To explore the potential of network-level demand aggre-
gation, we compute the percentage of views that come from
the top k regions, where k ∈ {1, 2, 3}. We exclude the Light
broadcasters to reduce the randomness introduced by inactive
users. Figure 7 presents the proportion of views that fall into
the top three regions on a per-broadcast and per-broadcaster
basis. We see a large fraction of broadcasts attract views from
just a few locations. About half of live broadcasts receive over
50% of their total viewership from just 3 ASN+Provinces.
This percentage is 30% when considering each broadcast’s
top 3 BGP-Prefixes. This suggests strong network localized

2China’s Internet follows a hierarchical structure. For each ISP, provinces
manage their own regional networks [33].
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Fig. 8: Overall small Jaccard coefficient indicate broadcaster-
specific locality.

viewing patterns. The above observation is also mirrored
from the broadcasters’ point of view, with an even larger
(+5%) proportion of views generated from their top locales.
Moreover, the concentration of views can be observed at a
global level: the top 50 (2%) ASN+Provinces or top 500 (5%)
BGP-Prefixes contain 80% of all viewers.

We next examine whether the top regions of individual
broadcasters differ from each other, or if they overlap with the
global top regions (i.e., the regions contributing the most traffic
globally). To this end, we extract for each broadcaster b the
top 10 regions contributing the most downstream traffic from
b’s streams (rb for short). We then calculate the Jaccard Co-
efficient [17] for every pair of broadcasters (ri, rj). A higher
coefficient implies more overlap between the top regions of
the two broadcasters. Figure 8 plots the distribution of the
coefficient.3 We observe a small median Jaccard coefficient
(0.11 at ASN+Province level and 0 at BGP-Prefix level),
indicating broadcaster-specific locality.

We further report for each (Medium or Heavy) broadcaster,
the Jaccard coefficient between the set of their top 10 regions
and the set of top 10 regions globally (blue/green lines
in Figure 8). The global top regions are largely defined
by Heavy broadcasters, with a median coefficient of 0.81
at ASN+Province level, and 0.66 at BGP-Prefix level. In
contrast, the ones from the Medium group deviate from the
globally popular locations significantly, indicating the need
for per-broadcaster predictions for techniques like pre-fetching
(§IV-B).

We also observe that despite the viewing locality, the
majority of streams (from servers to viewers) cross network
boundaries: 88.6% of the viewing data is transmitted across

3We excluded Light broadcasters to prevent from randomness.
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Fig. 9: Distribution of same region
cross region QoE metrics in

ASN+Province networks (a) and BGP-prefix networks (b).

ASN+Province networks, whereas 99.8% of broadcasts stream
to a different BGP-Prefix.

Impact on QoE: The above indicates significant scope for
localizing traffic via techniques such as pre-fetching. To un-
derstand the potential QoE benefits, we calculate four relevant
viewer metrics: (i) startup delay, (ii) number of buffering
events, (iii) buffering duration, and (iv) number of connection
retries before success or abandonment. We calculate these
metrics for each network region (ASN+Province or BGP-
Prefix) that has CDN servers receiving over 10 views. We
separate views into those that come from the same region and
those that come externally. Finally, we calculate the ratio of
the two averages for each metric as vsame/vcross.

Figure 9 presents the distribution of ratios across all con-
sidered network regions. In most cases, the ratio is less than
1, which means the QoE metrics are better for same-region
delivery. Specifically, in half of the cases, cross-region doubles
the startup delay and buffering duration (the most important
two metrics for video streaming), compared with same-region
delivery. In addition, the ratio is smaller in the same BGP-
Prefix delivery than the same ASN+Province case, which is
expected as BGP-Prefix is a smaller network region. This
confirms that bringing serving content closer to consumers
(e.g., pre-fetching) could significantly improve QoE.

D. Loyal Viewers

We finally inspect “loyal viewers”, who regularly view
individual broadcasters. We posit such viewers may be highly
predictable and therefore suitable for optimization via predic-
tive content pre-fetching. To the best of our knowledge, we are
the first to explore loyal viewers without reliance on explicit
information (e.g., follower list [21]).

Identifying Loyal Viewers: To determine whether viewer v
who has watched broadcaster b’s streams is a loyal viewer of



0.0 0.2 0.4 0.6 0.8 1.0
Fraction of a broadcast

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Loyal arv.
Norm arv.
Loyal dep.
Norm dep.

Fig. 10: The position of a broadcast where loyal/normal
viewers arrive/depart.

b, for each pair of (v, b) we extract 2 features: (i) the ratio
of view counts to broadcast number; and (ii) the ratio of the
total viewing time to the total live broadcasts’ duration. To
extract broadcaster and loyal viewer relationships, we perform
clustering for pairs of (v, b) on the above 2 features using K-
means. We experiment with K from 2 to 10, and set K to 3,
due to the relatively small DBI.

TABLE II: Clustering results to find loyal viewers (the statis-
tics are shown in median).

Label % Ratio of # Ratio of dur.
Normal viewers 85 6.25% 0.01%

Borderline loyal viewers 13 18.18% 0.94%
Core loyal viewers 2 27.78% 12.41%

The clustering results are shown in Table II. The
viewer/broadcaster pairs can be divided into 3 main sub-
populations, with the least loyal group (normal viewers) ac-
counting for the largest proportion (85%). In contrast, the level
of loyalty within the other 2 groups (borderline/core loyal
viewers) is stronger. For the core group, the viewers watch
more than a quarter of a broadcaster’s streams, and the viewing
duration is higher than the other groups. We will refer to the
two groups of viewers, except normal viewers, as loyal viewers
hereafter.

Characterizing Loyal Viewers: We next inspect loyal view-
ers’ characteristics across the entire dataset. In a live broadcast,
on average, loyal viewers account for only 12% of the total
viewers. Yet they generate the most of the downloading:
the median percentage of download volume contributed by
loyal viewers per stream is 18% and 55% for Medium and
Heavy broadcasters, respectively. In total, 59% of video data is
downloaded by loyal viewers, which suggests that optimizing
for this small fraction of loyal viewers would be dispropor-
tionately beneficial.

Another interesting observation is that, compared with nor-
mal viewers, loyal viewers’ viewing is more proactive in terms
of their arrivals and departures. To quantify this, we inspect
the position where loyal/normal viewers arrive/depart, and
plot the results in Figure 10. Loyal viewers start watching
earlier than normal users (median position 0.32 vs. 0.44), and
leave later (median position 0.56 vs. 0.50). Furthermore, the
viewing sessions of loyal viewers are significantly longer than
that of normal ones (432s vs. 11s, on average). The above
confirms that, unlike normal viewers who tend to frequently

switch broadcasts (§III-A), loyal viewers consume persistently.
As such, we posit that loyal viewers are potentially good
candidates for stable peers in peer-assisted delivery [19].

E. Takehome Messages

Redundant Uploads: A significant fraction of video content
is uploaded but never consumed, resulting in 33.3% of total
upstream traffic being wasted. About 30% of live broadcasts go
entirely unwatched, but this only makes up the minority of the
wastage. The dominant contributors are partially unwatched
broadcasts (i.e., waiting time and clear-out). Thus, suppressing
redundant uploads of unwatched content could mitigate the
traffic load (§IV-A). In particular, the clear-outs that happen
in the late stage of individual streams are a good indicator of
starting suppression.

Predictable Locality Traits: Broadcasts show strong lo-
calized viewing attraction. Over half of broadcasts receive
>50% (resp. 30%) of their viewership from their top 3
ASN+Provinces (resp. BGP-Prefixes). Notably, the top regions
vary significantly among (medium active) broadcasters. In
addition, transferring content from the CDN servers to the
viewers across the network boundaries, doubles the startup
delay and buffering duration in 50% of cases. Techniques
such as end server pre-fetching to localize the delivery would
therefore have a great potential to improve viewers’ QoE
(§IV-B).

Loyal Viewers’ Contributions: Some popular broadcasters are
viewed regularly by loyal viewers. Although the number of
loyal viewers is small, they consume the majority of download
volume (59%). Further, loyal viewers come to the broadcast
channel earlier and also leave later than others. This makes
loyal viewers easy to predict for pre-fetching (§IV-B).

IV. SYSTEM OPTIMIZATIONS

A. Adaptive Uploading

Design: We have found that uploads with no viewers
during the clear-out periods cause 23% of broadcast traffic
to be wasted. Meanwhile, we find that most clear-outs (i.e.,
those happening in the late stage of streams) are a sign
that broadcasts have lost attraction to viewers (§III-B). To
alleviate this resource wastage, we propose an upload bit rate
control scheme based on the attractiveness level of broadcasts.
Specifically, every time a clear-out occurs, we use a trained
model to predict the “attractiveness” of the broadcast in the
future. Thus, we treat this as a classification task. If the
broadcast is predicted to be “unattractive”, then it will upload
at a low bit rate (e.g., 144p) until a viewer arrives, at which
time the bit rate will switch to normal. We consider a broadcast
as unattractive if its unpopular fraction, f (defined in §III-B)
equals 1. Put simply, an unattractive live broadcast will not
have more than one viewer simultaneously until the next clear-
out occurs.

We choose a decision tree [20] as our classification model
due to its efficiency and interpretability. Moreover, the white-
box nature of decision trees will help system operators to
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Fig. 11: The decision tree trained for clear-out classification.
lenb is the length of the broadcast so far; nclear means the
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maxf is the maximum f of the broadcast so far.

adjust the system [23]. For classification, we select 3 features
that are easy to measure and understand: (i) the length of the
broadcast so far (lenb); (ii) the number of clear-outs that have
occurred in the broadcast (nclear) (iii) the maximum f of the
broadcast so far (maxf ). We then train a model to predict for
each clear-out whether the corresponding unpopular fraction
f equals 1.

Results: We use 60% of the clear-out statistics for training
and the rest for testing. After training, the depth of the
unpruned decision is 245. We further exploit Cost Complexity
Pruning (CCP) [20] to prune the decision tree.

The resulting tree structure is presented in Figure 11. It
achieves 85% precision, 96% recall and the F1 score is 0.9.
The length of the broadcast so far (lenb) has the biggest impact
on the results. This confirms our previous observation that later
clear-outs in a stream are a sign of losing attraction (§III-B).

After we replay the viewing records from our dataset on
the simulation system using the above tree model, we save as
high as 63% of the data volume during the clear-out period.
This accounts for 14.5% of the total uploading traffic.

Potential Impact on Viewing Duration: A risk of the
adaptive uploading scheme is the arrival of viewers will result
in them initially experiencing poorer QoE due to the low bit
rate. To understand the impact of this on viewing duration (as
a proxy of viewer engagement), we adopt a Quasi-Experiment
Design (QED) [29]. This is a popular technique in social
science and has been previously used to study QoE [9].

In QED, we control several variables and study the cause-
effect relationships between the broadcast’s initial bit rate
and the viewing duration within our dataset. To do this,
we compare two randomly selected broadcasts (u, v) with
the same values of the controlled variables. Specifically, we
control for the broadcaster’s device type (iOS/Android) and the
streamer’s network type (4G/WiFi). We then assign broadcasts
into bins, such that all broadcasts in a bin have the same values
for the control factors.

To provide causal evidence for the initial bit rate’s potential
impact on viewing duration, we define outcome [16] for each
(u, v) pair as follows. outcome(u, v) = +1 if the broadcast
with the higher initial bit rate gains the longer view duration,

compared with the other one; outcome(u, v) = −1, otherwise.
Then, we compute Net Outcome for each bin as follows:

Net Outcome =

∑
(u,v)∈bin outcome(u, v)

|bin|
(1)

where bin is the set of pairs in the examined bin. Note,
a positive value for Net Outcome provides positive (sup-
porting) evidence for the causality, while a negative value
provides negative evidence; a value close to 0 implies less
or no causality. Overall, the Net Outcome is 0.06, which
shows that a higher initial bit rate results in a longer viewing
session, but the impact is very limited.

To measure the significance of the above QED result,
we further perform hypothesis testing, in which the null
hypothesis, H0 states that the high initial bit rate has no
impact on view duration. Then, we use the sign test results
for pairs (outcome(u, v)) to derive a bound on the p-value
by computing the two-sided tail of the binomial distribution
with n trials and probability 1/2, where n is the number of
pairs. Our result shows a low p-value: 1.17× 10−14, which is
much smaller than the required significance level of 0.001,
indicating a rejection of H0. Thus, our QED analysis is
statistically significant. This indicates that introducing short
periods of low-resolution video will not have a major impact
on viewer retention. Note that only the first few seconds of
the first viewer will be impacted by the low initial bit rate,
which will be soon repaired by techniques like ABR. Indeed,
a conservative initial bit rate is common in modern video
systems (e.g., Netflix) for preventing high startup delay [31].

B. Edge Server Pre-Fetching

High video startup delays negatively impact viewer QoE
[16], [13]. In §III-C we observed geographically localized
viewing patterns, indicating that there is scope to reduce start-
up delays by placing content in consumers’ locales. Hence, we
next propose a pre-fetching scheme to preemptively retrieve
content predicted to be viewed in a given locale.

Overview: We assume that viewers in each region
(ASN+Province or BGP-Prefix) share a local cache server.
For the purposes of our experiments, We experiment with
two setups: placing edge servers in (i) the top 50 (1%)
ASN+Provinces, or (ii) top 500 (5%) BGP-Prefixes. We term
locales equipped with a cache as server locations. If a locale
is selected for pre-fetching a particular broadcast, its video
segments will be continuously pushed to the selected cache
server(s) as a stream of Group of Pictures (GoP), according to
the pre-fetching strategy that is described below. Here, a GoP
is set to 120 frames [37].

There are three key challenges in the above pre-fetching
scheme design: (i) what to pre-fetch, (ii) where to pre-fetch,
and (iii) when to pre-fetch. We discuss each of these below.

What To Pre-Fetch: We strive to pre-fetch the most popular
content. Here, we rely on the historical popularity of broad-
casters, as this is a good predictor of future popularity. Hence,
we pre-fetch all broadcasts of Medium/Heavy broadcasters as
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Fig. 12: The DNN model for arrival time prediction.

they consistently accumulate large audiences (see Table I).
Specifically, Medium/Heavy broadcasters, who only make up
10% of uploader popularity, disproportionately produce 90%
of the total viewership.

Where To Pre-Fetch: We propose an edge server selection
strategy as follows. For each broadcaster, we select the top k
regions from edge server locations where viewers generate the
most historical views on their broadcasts. The broadcaster’s
stream will then be forwarded directly to these k server
locations. Clients wishing to consume a stream then send all
their requests via their local cache server. If a local copy exists,
it is immediately returned; otherwise, the request is forwarded
to the backend (and then cached for subsequent requests). In
all cases, only the latest GoP is cached, as older ones are not
useful for live streaming. For comparison, we use a baseline
strategy where contents will be pre-fetched to the global top
k regions.

When To Pre-Fetch: We next investigate how to determine
the proper time to pre-fetch. This is important, since pre-
fetching too early (i.e., long before viewers’ arrival) will bring
no positive influences and only waste bandwidth resources,
since no one is watching the uploaded content. Our objective
is to ensure the predicted arrival time, Arvpred, is close to
the actual arrival time, Arvactual, reserving sufficient time
for the content to be relayed from the source server to the
edge before viewers’ arrival. Formally, Arvpred and Arvactual
should satisfy the following restrictions:

Arvactual −Arvpred − trelay ≥ 0 (2)

Arvactual −Arvpred − trelay ≤ ε (3)

where ε is a very small number, and trelay is the time
consumption of relay transmission. For trelay, we use 200ms
– the median relay delay in our dataset.

To predict the viewer arrival time, we propose a deep
neural network based regression model, whose architecture
is presented in Figure 12. For each broadcast we try to
predict, we gather 70 features in 5 categories from its broad-
caster’s past 5-day of activity. Due to the page limit, we
only brief each category with its representative features: (i)
Broadcaster-specific: Number of broadcasts, broadcaster type
(i.e., Light, Medium or Heavy); the number of active days;
(ii) Viewing-specific: median views per broadcast; (iii) Arrival
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Fig. 13: CDF of error = Arvactual − Arvpred for each
broadcaster type. The x-axis is in second.

time-specific: median arrival time per broadcast (iv) Loyal
viewer-specific: number of unique viewers, number of loyal
viewers; (v) Broadcast-specific: the broadcast generation time
of the day, the time elapsed from the last broadcast to the
beginning of the predicted one.

We standardize the feature vectors by using the Robust
Scaler [7], which removes the median and scales the data
according to the quartile range to avoid the influence of
outliers. After preprocessing, the NN first encodes 6 groups of
closely related features into 6 new features by 6 1-Dimensional
Convolutional Neural Networks (1D-CNNs). Then, the new
features and the remaining features are input to a fully con-
nected network with 3 hidden layers. Noticeably, in order to
meet restrictions 2 and 3, we design the following asymmetric
loss function to penalize the overestimation of arrival time,
while ensuring that the difference is no less than trelay:

loss = diff2 × (sign(diff) + α)2 (4)

diff = Arvpred + trelay −Arvactual (5)

where sign(.) is sign function, which returns -1 if the input
is negative, 1 otherwise. α ∈ (0, 1] is used to penalize the
overestimation, and we use α = 0.95.

We use 5-fold validation to evaluate the model, and plot
the resulting distribution of prediction error = Arvactual −
Arvpred in Figure 13. As shown in the CDFs, the Heavy
broadcasts are most predictable, with a median error of 4
seconds, while the value for Medium ones (resp. Light) is 27s
(resp. 73s). We underline that the seemingly high prediction
error is unsurprising, since such pre-publication prediction is
proved to be very difficult [22], [24], due to the uncertainty
of viewers’ interests and little to no information is available
when the broadcast just initiates. Besides, our intention to
avoid overestimate also distorts the model to some degree.

More importantly, our focus is not on a very high prediction
accuracy here, but to use the result as a pre-fetching timing
reference. With that said, as long as the predicted value is
less than the actual value (satisfying restrictions 2 and 3), less
wasteful uploads will occur, thus resulting in resource saving,
without an impact on viewers. In this respect, our model can
meet the restriction conditions in over 99% of all the cases.
Finally, due to the help of our system, each broadcast can save
10 seconds of uploading content, on average.

Results: Putting the above designs together, we evaluate the
efficacy of the pre-fetching scheme. We use the first 5 days
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of viewing records as the training set (to compute the top
regions), and the remaining 5 days to test.

We define the metric view coverage as the ratio of views
localized by pre-fetching, over the number of views for
individual broadcasts. The closer the view coverage is to 1,
the better the efficacy of pre-fetching. Figure 14 presents the
results of the average view coverage for all broadcasts across
each top region. We see that, to cover half of the views
(i.e., view coverage≥0.5), we need to pre-fetch GoPs at only
1 ASN+Province or 4 BGP-Prefixes per broadcast. This is
driven by the highly localized viewing requests (§III-C). While
fewer cache servers are needed to achieve the coverage in
the ASN+Province configuration, the servers are likely to be
further from the viewers than the BGP-Prefix. Note a larger
k naturally leads to better results because more replicas are
pre-fetched across regions. But, increasing k>5 only results
in marginal improvements. Last but not least, the broadcaster-
specific server selection strategy clearly outperforms the base-
line (pre-fetched contents always go to global top locations),
thanks to the broadcaster-specific viewing attraction (§III-C).

We finally empirically evaluate the startup delay improve-
ment attained by pre-fetching. Here, the content will be pre-
fetched to the broadcasters’ top 5 ASN+Provinces. To model
the same-region and cross-region startup delay, we extract
(from the dataset) the mean startup delay values for viewers
requesting servers of the same-region and different-regions.
For each network region that is selected for pre-fetching, Gi,
we measure the improvement of startup delay as the Startup
Speedup Ratio: Ri = 1− delays

i

delayc
i
, where delaysi is the average

startup delay over the views with both viewers and servers
being located in Gi; and delayci is the average startup delay
over the views with viewers being located in Gi but servers in
different regions other than Gi. We find that the startup delay
of 92% of the cross ASN+Province views can be improved
via pre-fetching. The median R over all network regions is as
high as 29.5%.

V. RELATED WORK

MLS User Behavior Inspection: The behavioral patterns
of MLS and general live streaming systems have been ex-
amined in several works. Raman et al. [28] explored the
video characteristics, and the social engagement of Facebook
Live, and highlighted many unwatched broadcasts. Ma et al.
[21] investigated Inke Live, and identified differences between
MLS and conventional live services. Periscope and Meerkat

were examined in [34], [32], [30] from the perspectives of
latency and usage patterns. There have been several studies of
the Twitch live streaming system [12], [11], [38].

Our measurements differ from the above studies in two
major ways: (i) We explore unwatched broadcasts in depth
for the first time, and find that the greatest source of waste is
partially unwatched streams. (ii) We identify localized viewing
at the BGP-Prefix level, which underpins our subsequent edge
server pre-fetching.

MLS System Optimizations: While we focus on live broad-
cast uploading, resource wastage in the on-demand video
has been examined in [39]. The authors proposed an post-
streaming wastage analysis algorithm to achieve the best
tradeoff between QoE and resource-saving. The Pre-fetching
technique is investigated in [26], where Parate et al. designed
an app prediction system, predicting which app will be used
next and ensuring the freshness of the content. In addition,
Li et al. [18] enhanced video quality by localizing video
delivery through caching. Besides, various video optimizations
have been proposed. Ghabashneh et al. [14] conducted a
measurement study on how the CDN cache will interplay with
the viewing experience. Based on their observations, they pro-
posed an ABR algorithm incorporated with CDN awareness.
Wang et al. [36] proposed a reinforcement learning based
scheme deployed at the edge CDN server, to dynamically
select a suitable initial video segment for new live viewers,
to optimize viewing QoE. Zhang et al. [40] presented a
super resolution based adaptive video streaming framework,
which allows clients to download low bitrate video segments,
reconstruct and enhance them to high-quality video segments.

In contrast to these prior studies, we focus more on optimiz-
ing the uploading-side. We propose novel methods to adjust
unwatched segments’ bitrate to reduce uploading wastage and
present a pre-fetching scheme to reduce startup delay.

VI. CONCLUSION

This paper has used a large-scale dataset to carry out a
detailed analysis of MLS user behavior. The main findings
include redundant uploading, highly localized view locality,
and persistent contribution of loyal viewers. Based on these
insights, we propose a decision tree based system to adap-
tively control the bit rate of the uploaded content that goes
unwatched. We also devise a pre-fetching system including
a pre-fetching locations prediction module and a DNN-based
pre-fetching timing prediction module. We have shown their
efficacy in offloading server load, and improving QoE as well.
We are working with the team of the examined MLS to
incorporate these optimizations into their system. As part of
our future work, we intend to evaluate them in the wild.
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