
Dissecting the Communication Latency in Distributed Deep
Sparse Learning

Heng Pan† ‡, Zhenyu Li† ‡, JianBo Dong§, Zheng Cao§, Tao Lan§, Di Zhang§, Gareth Tyson♭,
Gaogang Xie∗

†ICT, CAS, China ‡ Purple Mountain Laboratories §Alibaba Group ♭QMUL, United Kingdom
∗CNIC, CAS, China

ABSTRACT
Distributed deep learning (DDL) uses a cluster of servers to train
models in parallel. This has been applied to a multiplicity of prob-
lems, e.g. online advertisement, friend recommendations. However,
the distribution of training means that the communication network
becomes a key component in system performance. In this paper, we
measure the Alibaba’s DDL system, with a focus on understanding
the bottlenecks introduced by the network. Our key finding is that
the communications overhead has a surprisingly large impact on
performance. To explore this, we analyse latency logs of 1.38M
Remote Procedure Calls between servers during model training
for two real applications of high-dimensional sparse data. We re-
veal the major contributors of the latency, including concurrent
write/read operations of different connections and network con-
nection management. We further observe a skewed distribution
of update frequency for individual parameters, motivating us to
propose using in-network computation capacity to offload server
tasks.

CCS CONCEPTS
• Networks→ Network performance analysis;
ACM Reference Format:
Heng Pan† ‡, Zhenyu Li† ‡, JianBo Dong§, Zheng Cao§, Tao Lan§, Di
Zhang§, Gareth Tyson♭ , Gaogang Xie∗. 2020. Dissecting the Communication
Latency in Distributed Deep Sparse Learning. In ACM Internet Measurement
Conference (IMC ’20), October 27–29, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3419394.3423637

1 INTRODUCTION
Deep learning (DL) is used by a range of Internet applications, e.g.
computer vision, natural language processing, and speech recog-
nition. With the increasing sophistication of algorithms and the
volume of data, the size of DL models have become very large.
This is particularly extreme for models that involve large and high-
dimensional sparse data, such as recommendation systems, online
advertising and search engine. For example, the Alibaba advertising

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IMC ’20, October 27–29, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8138-3/20/10. . . $15.00
https://doi.org/10.1145/3419394.3423637

system generates petabytes (PB) of user behavior logs everyday,
and the training samples from this data contain billions of features,
of which only a few are non-zero for each sample [12].

To train such large models, distributed deep learning (DDL) has
emerged as a common practice. It leverages a large-scale cluster of
servers (called workers), each equipped with one or more GPUs, to
perform the training task cooperatively. Thus, the most common
way to scale out and accelerate DL training is parallelisation. Nev-
ertheless, the performance is often sub-linear with the scale of the
cluster. To highlight this, we show in Figure 1 the training time
reduction when varying the number of workers in Alibaba’s DDL
platform and training a real online search engine (see Section 2.2)
in asynchronous mode. Here, the Alibaba’s DDL platform follows
the parameter server (PS) architecture [14], where each worker
is assigned almost equal-sized data for training. Specifically, we
vary the scale of the cluster from 32 to 512 (i.e. # of workers), de-
noted by 𝑛, to perform the same training task, and evaluate their
training latency (‘experiment’). For comparative purposes, we train
the same neural network model on a small fixed-scale cluster that
consists of only 16 workers but with 1/𝑥 of the whole training data,
where 𝑥 is 𝑛/16, and also record its training latency (‘baseline’). As
a result, no matter in the experiment or baseline, the workload of
each worker is identical (i.e. 1/𝑛 of the whole training data). We
observe a notice gap between the baseline and experiment. This is
caused by the communication overhead, which lowers the speedup
factor by 50% when 512 workers are used for parallel training. This
result is echoed by recent literature [19].

32 64 128 256

0

1000

2000

3000

4000

5000

T
ra
in
in
g
ti
m
e
(s
)

Scale

Experiment

Baseline

512

50%

Figure 1: Training time when varying the scale of the dis-
tributed DL cluster.

Although there have been several attempts to reduce communica-
tion overhead through scheduling algorithms [11, 19, 23], data trans-
mission compression [5, 26] or new network technologies [4, 16],

528

https://doi.org/10.1145/3419394.3423637
https://doi.org/10.1145/3419394.3423637

we still lack a deep understanding of DDL platforms. Similarly,
compared to conventional distributed computation systems (e.g.
Hadoop [1] and Spark [17]) or a distributed query system [6], the
communication patterns of DDL platforms are distinct, e.g. periodic
communications per iteration and long-lived connections during
training. Thus, we argue it is vital to better analyse DDL to develop
targeted improvements.

To this end, we present a measurement study of the communica-
tion latency of Alibaba’s DDL system. We instrumented a system
to gather breakdown latency data for each Remote Procedure Call
(RPC) during the training of two applications: advertising recom-
mendations and their search engine. Our dataset contains latency
logs for 1.38M RPC calls. We also analyse the number of concur-
rent connections to individual PS nodes and the parameter update
frequencies during the training process. With this data, we first
investigate the dominant contributors to latency, and then examine
possible bottlenecks. Based on our findings, we discuss the potential
of using in-network computation to mitigate the bottlenecks. Note
that Alibaba’s DDL platform follows the popular PS architecture.
We thus believe our measurement results are generalizable to other
systems using the similar architecture for sparse data training, and
can be used to direct the optimizations of other DDL platforms.

To summarize, we make the following three contributions:
• We find that the communication overhead significantly lowers

the performance of the training process. A breakdown analysis
reveals that the parameter server (PS) processing time domi-
nates the latency for both local parameter updating (from work-
ers to PS nodes) and global model synchronisation (from PS
nodes to workers). Network transmission time (including the
network stack time at both sides) is another major contributor
to delay.

• We identify that large transmitted messages, frequent com-
munications and concurrent active connections are the three
key causes of the high PS processing time and network trans-
mission time. Furthermore, increasing the number of workers
while keeping the ratio of workers-to-PS nodes results in an in-
creased PS CPU utilisation, because of the increased burden on
connection management and read/write competitions among
connections.

• We find a skewed distribution of update frequency of individual
parameters. The top 20,000 hot parameters that are updated
most frequently account for 50% and 70% of total updates for
recommendation and search applications, respectively. We pro-
pose to use the computation capacity of programmable switches
to aggregate hot parameters to alleviate the read/write burden
of PS nodes.

2 BACKGROUND AND DATASET
In this section, we present a brief overview of DDL, as well as our
industrial dataset that drives our analysis.

2.1 Alibaba’s DDL Platform
Alibaba’s DDL platform adopts the parameter server (PS) architec-
ture [14], which uses data parallelization to perform DDL training
in an asynchronous mode (see Figure 2). In data parallelization

Training data

Global Model

Local Model

Worker 1 Worker 2 Worker 3

PS 1 PS 2

Network

PushPull

Partition

Figure 2: Overview of parameter server architecture.

mode, the training data is divided into equal-sized parts, each of
which is assigned to a training node (a.k.a worker) to start its lo-
cal training. The platform uses RDMA (Remote Direct Memory
Access) [9] for underlying data transmission, and machines are
connected by 10Gbit networks in a LAN.

A PS node is in charge of a set of parameters that do not overlap
with those of other PS nodes. A worker maintains a long-lived
reliable connection to each of the PS nodes during training. In
each iteration, a worker reads data samples to form a mini-batch
and pulls the updated model parameters that it will use in this
integration from the corresponding PS nodes. After finishing the
local training (which may take a relative long time, i.e. a long
interval), the worker will push the locally computed gradients back
to PS nodes for aggregation and parameter updates. This marks
the end of an iteration on this node. The node will then read a new
mini-batch for the next iteration of training. Note that pipelining
may be used to accelerate the above process [12]. Furthermore, a
pull/push operation may involve several RPC (Remote Procedure
Call) messages, each of which contains part of the data that needs
to be pulled from or pushed to the PS node.

2.2 Datasets
To explore the nature and bottlenecks of DDL, we rely on a dataset
collected from Alibaba’s DDL system, which trains models for high-
dimensional sparse data. Note that, different from XDL which uses
two neural networks for one application [12], the examined DDL
system trains one neural network (a.k.a one model) per application.
The system consists of 20 PS nodes and 80 workers.

We have 3 types of data: (i) processing latency for each RPC;
(ii) concurrent active connections at individual PS nodes; and (iii) the
statistics on parameter update frequency. Our datasets cover the
whole training process for two applications: recommendation sys-
tem (R1) and search engine (R2). Both involve high-dimensional
sparse data and are very challenging for DDL [12]. Table 1 summa-
rizes the data that we used in this paper. It presents the number of
logs we have for the latency statistics and the concurrent active
connections; as well as the number of parameters in each model.
The rest of this section describes the three types of data in detail.

529

Table 1: Summary of used datasets.

App. #lat. logs # conn. logs # parameters
R1 480 k 130 k 0.9 m
R2 900 k 200 k 150 m

Latency data . A log is generated for each RPC at the worker that
initiates the call. It contains: the worker ID, PS node ID, iteration
number, a flag indicating push or pull, the timestamp marking the
sending time (in 𝜇s), the size of RPC request (in bytes), the size of
the response (in bytes) and five latency metrics (in 𝜇s) that together
measure the time overhead of this RPC (see Figure 3). These latency
metrics are measured by instrumenting the training programs at
both worker and PS sides. Note that it is not necessary to synchro-
nize all machine clocks. During the experiment, we calculate the
difference only between two timestamps that are recorded on the
same machine. The metrics are as follows:

N_tx: network transmission
time

Network

Receive ()

Worker Proc

RPC queue

RDMA enable NIC

OS
IP stack

RDMA verbs

interfaces Kernel

User space
Receive()

PS Proc

RPC queue

RDMA enable NIC

Kernel

User space

RDMA verbs

interfaces

W_queue:work
er queuing

delay

PS_proc: PS
processing overhead

W_proc: worker
processing overhead

PS_queue:
PS queuing

delay

IP stack
OS

t0t1

Figure 3: Five latency metrics in our data.

• 𝑊 _𝑝𝑟𝑜𝑐 (worker side) measures the time that the worker
spent in processing the RPC response (e.g. parsing the model
parameters pulled from the PS node.). Note that it does not
contain the time for model training.

• 𝑊 _𝑞𝑢𝑒𝑢𝑒 (worker side) measures the wait time in the queue.
This is because all received RPC responses are first pushed
into a software receiving queue, waiting for the worker to
read and parse them.

• 𝑃𝑆_𝑝𝑟𝑜𝑐 (PS side) measures the time that the worker spends
in processing the RPC request. For a pull operation (i.e. re-
questing parameter values), this is to prepare the requested
model parameters along with their values; for a push op-
eration (i.e. updating parameters), this process includes an
arithmetic calculation to aggregate gradient parameters, and
a write operation to update the parameters with the values
contained in the message. This metric along with the next
(𝑃𝑆_𝑞𝑢𝑒𝑢𝑒) are piggybacked on the response to the worker,
which finally outputs the log for this RPC.

• 𝑃𝑆_𝑞𝑢𝑒𝑢𝑒 (PS side) measures the wait time of the request
message in its receiving queue (similar to𝑊 _𝑞𝑢𝑒𝑢𝑒).

• 𝑁_𝑡𝑥 measures the transmission time over the network (in-
cluding network stack processing time). The RPC message
sent to the PS contains the timestamp (𝑡0) recorded at the
worker when it is sent to the network stack. The PS copies
𝑡0 to the response, which arrives at the worker’s receiving
queue at 𝑡1. Then 𝑁_𝑡𝑥 = 𝑡1 − 𝑡0 − 𝑃𝑆_𝑞𝑢𝑒𝑢𝑒 − 𝑃𝑆_𝑝𝑟𝑜𝑐 .

Concurrent active connections. A PS node records the times-
tamp and worker ID for every RPC request. It divides the whole
training process into windows of equal duration, 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 . For each
window, it counts the unique worker IDs as the concurrent active
connections.
Parameter statistics . A PS node records for each parameter the
number of gradients it received from the workers during the whole
training process. After finishing the whole training process, the
PS nodes dump its local statistics to a log server, which aggregates
the statistics and generates for each parameter the total number of
updates.

3 ANALYSIS OF DDL LATENCY
We next present our experimental results, characterizing the latency
of DDL training.

3.1 Latency Overview and Breakdown
As already mentioned, training models involves push and pull oper-
ations which are, in essence, a series of RPC calls. In this section, we
first give an overview of RPC latency for push and pull respectively,
and then break down each RPC call into the five metrics.

0 0.5 1 1.5 2

RPC latency (µs) ×10
5

0

0.2

0.4

0.6

0.8

1
C

D
F

pull RPCs

push RPCs

(a) CDF of latency in R1.

0 2 4 6 8

RPC latency (µs) ×10
5

0

0.2

0.4

0.6

0.8

1

C
D

F

pull RPCs

push RPCs

(b) CDF of latency in R2.

Figure 4: Distribution of latency in R1 and R2.

Distribution of Latency. We utilize the latency data of R1 and
R2 to collect the total latency of each RPC calls. Figure 4 presents
CDFs of the RPC latencies.1 We observe a heavy tail distribution,
in which the push operation is larger than that of the pull opera-
tion. This is because push operations enable workers to transmit
their trained gradients to the centralized PS node, which not only
involves large payloads but also creates an in-cast problem. We
1Note that each RPC latency involves all five latency metrics described above.

530

(a) Push operation in 𝑅1. (b) Pull operation in 𝑅1. (c) Push operation in 𝑅2. (d) Pull operation in 𝑅2.

Figure 5: Each portion overhead of push and pull operations.

find that one push operation consists of one or more RPC requests
for transmitting different layer gradients of the neural network.
Consequently, the push operation ends only when the worker has
received all corresponding RPC responses. Thus the cost of the push
operation does depend on the last RPC processing. This decreases
the performance. In addition, the measurement results in R2 (see
Figure 4(b)) show that the push operations contain some central-
ized long latency, as indicated by the spike around 6x105. This is
driven by the dependency between (push) RPC invocations at the
PS, which means that one RPC may need to wait for the results of
another RPC, which inevitably incurs long tail latency.
Breakdown. To explore the key components of the above RPC
delays, we next quantify the cost of each portion in one RPC. Note
that we do not change the breakdown over iterations. Figure 5
shows the breakdown of time spent on each metric for push and
pull operations. This reveals that the primary performance costs
involves two parts: the computation task processing in PS nodes
(denoted by 𝑃𝑆_𝑝𝑟𝑜𝑐) and the network transmission time (denoted
by 𝑁_𝑡𝑥).

The proportions of the total RPC cost are different for pull and
push operations though. Overall, the 𝑃𝑆_𝑝𝑟𝑜𝑐 proportion in pull
operation is larger than that in push. This applies to both R1 and
R2 latency data. On the contrary, 𝑁_𝑡𝑥 holds a larger proportion in
pull operations. A possible reason is that the pull operation makes
the PS node transmit the up-to-date model parameters, each of
which is represented by a 32-bit floating-point number, to workers.
This leads to more communication volumes. Thus, we see that
𝑃𝑆_𝑝𝑟𝑜𝑐 and 𝑁_𝑡𝑥 occupy the largest portion of RPC latency. The
next section explores this in more detail.

3.2 Explaining Possible Bottlenecks
The previous section has shown that 𝑃𝑆_𝑝𝑟𝑜𝑐 and 𝑁_𝑡𝑥 contribute
the most to training delay. Overall, we find out three key causes by
correlation analysis as follows.
RPCmessage size. Asmentioned earlier,𝑁_𝑡𝑥 constitutes a larger
portion of pull operations than push operations. We believe that
the traffic volume is its key cause. Note that we collect only the size
of RPC response messages from R1 latency data. This is because
we find the size of RPC request messages is relatively fixed and
small (only 100∼ 200 bytes) due to message segmentation. Figure 6
presents a CDF of the response size, for both push and pull invoca-
tions. We see that the pull operation is much larger than the push
operation. This is because the response messages of push opera-
tion often play a TCP ACK like role, and therefore its message size

10
1

10
2

10
3

10
4

10
5

10
6

Response size (Bytes)

0

0.2

0.4

0.6

0.8

1

C
D

F

push RPCs

pull RPCs

Figure 6: The response message size in pull and push opera-
tion.

is limited. In a word, 𝑁_𝑡𝑥 is positively correlated with the RPC
message size.
Communication frequency. As previously identified, 𝑃𝑆_𝑝𝑟𝑜𝑐
occupies a large proportion of the total RPC cost. However, 𝑃𝑆_𝑝𝑟𝑜𝑐
only involves the read parameters in a pull operation, while the
arithmetic calculation and the write parameters are included in a
push operation. We assume that the overhead of read and write
operations is identical. Consequently, the cost of arithmetic calcula-
tion can be estimated by the average overhead of 𝑃𝑆_𝑝𝑟𝑜𝑐 in push
operations minus that in pull operations. This shows that the cost
of an arithmetic computation is relatively small, occupying no more
than 2.5% of the total 𝑃𝑆_𝑝𝑟𝑜𝑐 for a push operation. Consequently,
the bottleneck of 𝑃𝑆_𝑝𝑟𝑜𝑐 may be the frequent (concurrent) read
andwrite operations. In other words, frequent communication leads
to a high 𝑃𝑆_𝑝𝑟𝑜𝑐 cost.

To confirm this, we explore the communication frequency be-
tween workers and PS nodes. To this end, we analyze the RPC time
intervals between one PS node and one worker based on the R1
and R2 latency data. We find out that the interval of two consecu-
tive RPCs is always very short while only a few intervals are long
(see Figure 7(a)). This is because one push or pull operation will be
divided into multiple consecutive RPCs so that their intervals are
short. The long intervals are caused by the computation task (a.k.a
training) on the workers. Consequently, in a short time interval, the
PS node has to process multiple RPCs from one worker. In addition,
we count the number of unique connections operated by the PS
node in a very short interval (i.e. 1,000 𝜇s). Figure 7(b) shows the
result that the PS node processes 50∼200 unique connections within
1,000 𝜇s. Thus, it is clear that the communication frequency has an
impact on the PS node.

531

0 10 100 1000 10000 100000 1e+06 1e+07

intervals between RPCs (µs)

0

0.02

0.04

0.06

0.08

0.1

C
D

F

recommendation (R1)

search (R2)

(a) Frequency distribution for the time intervals in R2

(b) # of concurrent connections that are processed by one PS.

Figure 7: Distribution of communication time intervals be-
tween workers and the PS node (a); and the number of con-
current connections per PS within 1,000 𝜇s (b).

Concurrent connections. Frequent concurrent communication
may also lead to increases in 𝑃𝑆_𝑝𝑟𝑜𝑐 . To this end, we conduct two
experiments as follows.

We first measure the CPU cost both on the worker and PS sides
under six different setups, which we delineate in Table 2. Each
setup varies the number of workers and PS nodes. Figure 8 presents
the CPU utilization across each setup. As we increase the scale of
the training system, the CPU utilization rate on the worker side is
reduced while that of the PS side is increased. In other words, the PS
node becomes more heavily loaded, and becomes a key bottleneck,
achieving 90% utilization rate at most. The larger scale setup we
use, the more concurrent active connections the PS node needs
to manage because it needs to connect to all workers. Confirming
intuition, this means that the resource consumption on the PS
increases as the number of workers grows.

An obvious conjecture is that this is caused by the computational
load placed on PS nodes. To control for this, we eliminate the
effects of read-write operations by sending empty RPC requests to
one PS node. Figure 9 shows the results. We see that, regardless
of read-write operations, the delay suffers linear increases as the
number of connections grow. This shows that concurrent active
connections do lead to significant overhead. This is because they
not only introduce concurrent read-write operations which lead to
competition, but also incur connection costs, e.g. context switches,
connection tracking and status maintenance.

4 TOWARDS BOTTLENECK MITIGATION
Offloading Computation. The above has shown one of the per-
formance bottlenecks is concurrent read’ andwrite operations in the

Table 2: The different setups of the system. Note that the
scale of worker nodes and PS nodes is preserved in a propor-
tion of 4 to 1.

Setup S1 S2 S3 S4 S5 S6
workers 80 120 160 200 240 280
PS nodes 20 30 40 50 60 70

80

74
70

65 63
60

80

86 88 89 90 90

S1 S2 S3 S4 S5 S6

0

20

40

60

80

100

C
P
U
u
ti
liz
a
ti
o
n
(%
)

Different setups

Worker PS

Figure 8: CPU utilisation when varying the scale of the dis-
tributed DL cluster.

5K 10K 15K 20K
0

500

1000

1500

2000

2500

3000 4000

20

3000

10 15

1000

5

C
o
s
t
(m
s
)

RPC Requests

2000

Figure 9: The cost of concurrent connections. This cost is
introduced by connection management on the server side.
We use different scales of connections to perform the same
amount of RPC requests. The numbers on top of the his-
tograms represent the volume of concurrent connections
sending 𝑥 RPC requests.

PS node. Recently, programmable switches have been introduced
and deployed in data center networking. Similarly, in-network com-
putation has emerged [25] by exploiting the computation capability
of the network. Thus, we can potentially offload the read/write
operations (e.g. gradient aggregation) to the network in order to
reduce the overhead of the PS node. Some recent works also discuss
such explorations [21, 22].

Unfortunately, the memory of the programmable switches only
contains tens of megabytes. Hence, they cannot store all parameters
(e.g. 150 million parameters in 𝑅1). If we randomly offload the oper-
ations of only some parameters (e.g. tens of thousands parameters),
it will not bring significant improvements. Even if we adopt some
cache mechanisms (e.g. Least Recently Used, LRU), it may lead to a
large number of cache misses and lower down the performance.

532

1000 5000 10000 15000 20000 30000 40000 50000 100000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro
p
o
rt
io
n
(%
)

Top hot parameters (#)

R1 R2

Figure 10: The distribution of the hot parameters in high-
dimensional sparse application.

To explore this, we analyze our high-dimensional sparse datasets
from Alibaba. Figure 10 presents the proportion of communication
frequency for buckets of the top parameters. This shows that they
contain “hot” parameters (i.e. those that are often read or written).
Across the 150 million parameters, the top 20,000 parameters consti-
tute over half of all updates. We can exploit this skewed distribution
to only offload the read/write operations of the top hot parameters
to the switches, and the rest of the parameters (a.k.a cold param-
eters) can be processed in the PS node side. If we offload the top
20,000 hot parameters, half of the total read/write operations will be
offloaded to switches. Consequently, 50% of 𝑃𝑆_𝑝𝑟𝑜𝑐 can be saved.
Streamlining Concurrent Connections. As mentioned earlier,
the number of concurrent connections is also one of the key factors
that affects performance. Thus, reducing the number of connections
to the PS node could improve performance. We could exploit the
capability of the programmable switches and aggregate connec-
tions between workers and PS nodes. In essence, switches could
be viewed as a connection proxy. Although modern programmable
switches are often equipped with a general CPU, it is unlikely
capable of running a connection proxy. We therefore argue that
simplified network, transport or application protocols that can en-
able connection aggregation would be useful.

5 RELATEDWORK
Distributed DL has emerged as a common practice, widely used in
a range of areas [7, 13, 20]. However, its performance often suffers
from distributed communication [26, 27]. To this end, there are nu-
merous existing works for speeding up the communication in DDL
training. NCCL [4], MPI [10] and Gloo [2] offer high-performance
communication libraries to improve the communication efficiency.
RDMA [16] is adopted to accelerate data transmission with an extra
in-network support. Another direction that has been explored is
compressing data transmission volume via gradient quantization
or sparse parameter synchronization [24, 26].

Others have focused on network flow scheduling and communi-
cation scheduling. The former is to minimize the flow completion
time by using flow control [8, 18]; the latter decouples the depen-
dence between gradients and changes their transmission order
to reduce communication overhead, such as ByteScheduler [19].

Recently, in-network computation has emerged [25], and some ap-
proaches propose to utilize programmable switches to improve the
training efficiency [15, 21, 22].

Our work differs in that we are among the first to characterize
the communication latency in a practical DDL system. Specially,
we characterized the communication patterns and identify key
performance bottlenecks. Our results can inform further system
innovation.

6 DISCUSSION AND FURTHERWORK
Summary. DDL has been used in a range of applications. How-
ever, the introduction of distributed computation means that per-
formance is impacted by the network. This paper has studied the
communication latency of Alibaba’s DDL system using two high-
dimensional sparse data applications, relying on 1.38M RPCs logs.
We have shown that the main bottlenecks of the communication
involve concurrent write/read operations and the connection man-
agement. We further find a skewed distribution of update frequency
of individual parameters, which motivates the use of in-network
computation to offload operations and reduce concurrent connec-
tions. We believe that our work can pave the way to optimize the
distributed DL training.
Generalization of results. Though our measurement study only
focuses on Alibaba’s DDL platform, the results are generalizable for
other DDL platforms for two reasons: (i) Alibaba’s DDL platform
follows the popular parameter server (PS) architecture, which has
been widely adopted in industry (e.g. Microsoft Multiverso [3]);
(ii) We train two high-dimensional sparse models for common
industrial applications (i.e. advertising recommendation and search
engine) and measure their communication patterns on Alibaba’s
DDL platform. We believe this is enough to capture a broad range
of communication features during DDL training.
Mitigation techniques. Overall, the measurement results show
that large the number of concurrent active connections and frequent
communications results in the PS becoming the bottleneck. Thus we
discuss the potential of using in-network computation and propose
two mitigation techniques: (i) aggregating active connections on
programmable switches; (ii) offloading some read/write operations
to the switches as well. For other potential techniques, we can
consider optimizing the host stack, replacing RPC mechanism or
aggregating small messages.
Fine-grained measurements. Our current measurement metrics
mainly focus on processing latency. In addition, for the PS process-
ing, our metrics are relatively coarse-grained given the complicated
tasks the servers process. In our future work, we will consider other
metrics, such as memory usage, to perform more fined-grained
measurement on the PS processing under different system choices.

ACKNOWLEDGMENTS
We thank our shepherd Alan Mislove and the anonymous reviewers
for their insightful feedback. This work is supported in part by
National Key R&D Program of China (Grant No. 2019YFB1802800),
the National Science Fund of China (Grant No. 61725206) and the
Youth Innovation Promotion Association CAS. The corresponding
author is Zhenyu Li.

533

REFERENCES
[1] [n. d.]. The Apache Software Foundation. Apache hadoop. http://hadoop.apache.

org/core/.. ([n. d.]).
[2] [n. d.]. Facebook, Gloo. https://github.com/facebookincubator/gloo. ([n. d.]).
[3] [n. d.]. Microsoft multiverso. https://github.com/Microsoft/multiverso/wiki.. ([n.

d.]).
[4] [n. d.]. NVIDIA Collective Communication Library (NCCL). https://developer.

nvidia.com/nccl. ([n. d.]).
[5] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.

QSGD: Communication-efficient SGD via gradient quantization and encoding.
In Advances in Neural Information Processing Systems. 1709–1720.

[6] Ashish Goel Bahman Bahmani and Rajendra Shinde. 2012. Efficient distributed
locality sensitive hashing. In ACM CIKM.

[7] Kyunghyun Cho, Bart Van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
arXiv: Computation and Language (2014).

[8] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient coflow schedul-
ing with varys. In Proceedings of the 2014 ACM conference on SIGCOMM. 443–454.

[9] Zhong Deng Gaurav Soni Jianxi Ye Jitu Padhye Chuanxiong Guo, HaitaoWu and
Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In ACM
SIGCOMM.

[10] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra,
Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, et al. 2004. Open MPI: Goals, concept, and design of a next genera-
tion MPI implementation. In European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting. Springer, 97–104.

[11] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gennady
Pekhimenko. 2019. Priority-based parameter propagation for distributed DNN
training. SysML (2019).

[12] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui Zhou, Yang Zheng, Sui
Huang, Xinyang Guo, Dongyue Wang, Yue Song, et al. 2019. XDL: an industrial
deep learning framework for high-dimensional sparse data. In Proceedings of the
1st International Workshop on Deep Learning Practice for High-Dimensional Sparse
Data. 1–9.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. (2012), 1097–1105.

[14] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
distributed machine learning with the parameter server. In 11th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 14). 583–598.

[15] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian
Huang. 2019. Accelerating distributed reinforcement learning with in-switch
computing. In Proceedings of the 46th International Symposium on Computer
Architecture. 279–291.

[16] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda. 2004. High performance
RDMA-based MPI implementation over InfiniBand. International Journal of
Parallel Programming 32, 3 (2004), 167–198.

[17] T. Das A. Dave J. M. Ma M. McCauley M. J. Franklin S. Shenker M. Zaharia,
M. Chowdhury and I. Stoica. 2012. Fast and interactive analytics over Hadoop
data with Spark. In USENIX ;login:.

[18] LuoMai, Chuntao Hong, and Paolo Costa. 2015. Optimizing network performance
in distributed machine learning. In 7th {USENIX} Workshop on Hot Topics in
Cloud Computing (HotCloud 15).

[19] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. 2019. A generic communication scheduler for dis-
tributed DNN training acceleration. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles. 16–29.

[20] Hasim Sak, Andrew W Senior, and Francoise Beaufays. 2014. Long Short-Term
Memory Recurrent Neural Network Architectures for Large Scale Acoustic Mod-
eling. (2014), 338–342.

[21] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-network computation is a dumb idea whose time has come. In
Proceedings of the 16th ACM Workshop on Hot Topics in Networks. 150–156.

[22] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan RK Ports, and
Peter Richtárik. 2019. Scaling distributed machine learning with in-network
aggregation. arXiv preprint arXiv:1903.06701 (2019).

[23] Sangeetha Abdu Jyothi Sayed Hadi Hashemi and Roy H. Campbell. 2019. TicTac:
Accelerating distributed deep learning with communication scheduling. SysML
(2019).

[24] Ananda Theertha Suresh, Felix X Yu, Sanjiv Kumar, and H Brendan McMahan.
2017. Distributed mean estimation with limited communication. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70. JMLR. org,
3329–3337.

[25] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé, and Noa
Zilberman. 2019. The case for in-network computing on demand. In Proceedings

of the Fourteenth EuroSys Conference 2019. 1–16.
[26] Wei Wen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen, and Hai

Li. 2017. Terngrad: Ternary gradients to reduce communication in distributed
deep learning. In Advances in neural information processing systems. 1509–1519.

[27] Hao Zhang, Zeyu Zheng, Shizhen Xu,Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting
Hu, Jinliang Wei, Pengtao Xie, and Eric P. Xing. 2017. Poseidon: An Efficient
Communication Architecture for Distributed Deep Learning on GPU Clusters. In
2017 USENIX Annual Technical Conference (USENIX ATC 17). 181–193.

534

http://hadoop.apache.org/core/.
http://hadoop.apache.org/core/.
https://github.com/facebookincubator/gloo
https://github.com/Microsoft/multiverso/wiki.
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl

	Abstract
	1 Introduction
	2 Background and Dataset
	2.1 Alibaba's DDL Platform
	2.2 Datasets

	3 Analysis of DDL Latency
	3.1 Latency Overview and Breakdown
	3.2 Explaining Possible Bottlenecks

	4 Towards Bottleneck Mitigation
	5 Related Work
	6 Discussion and Further Work
	References

