
Keddah: Capturing Hadoop Network Behaviour
Jie Deng, Gareth Tyson, Felix Cuadrado and Steve Uhlig

School of Electronic Engineering and Computer Science
Queen Mary University of London

Email: {j.deng,gareth.tyson,felix.cuadrado,steve.uhlig}@qmul.ac.uk

Abstract—As a distributed system, Hadoop heavily relies
on the network to complete data processing jobs. While
Hadoop traffic is perceived to be critical for job execution
performance, the actual behaviour of Hadoop network
traffic is still poorly understood. This lack of understanding
greatly complicates research relying on Hadoop workloads.
In this paper, we explore Hadoop traffic through experi-
mentation. We analyse the generated traffic of multiple
types of MapReduce jobs, with varying input sizes, and
cluster configuration parameters. As a result, we present
Keddah, a toolchain for capturing, modelling and repro-
ducing Hadoop traffic, for use with network simulators.
Keddah can be used to create empirical Hadoop traffic
models, enabling reproducible Hadoop research in more
realistic scenarios.

I. INTRODUCTION

MapReduce [1] automatically spreads computation
across multiple nodes, substantially lowering the adop-
tion barrier for parallel computing on very large datasets.
Abstracting the complexity of parallel computation from
users has greatly fostered multiple research in this area.
A significant amount of work explores novel data inten-
sive programming languages and computation models,
as well as efficient schedulers [2], or efficient par-
allel implementations of machine learning algorithms.
However, the network component of MapReduce has
been neglected, despite its integral role in distributed
computations.

Many possible innovations are possible with datacen-
tre networks supporting Hadoop clusters. Yet, work has
been limited to a few topics, e.g., router queues [3] or
SDN controllers [4]. A key reason is that, currently, it is
difficult to experiment with novel network technologies
with a Hadoop cluster. For instance, the network interac-
tions resulting from Hadoop are dynamically affected by
the algorithm and dataset, making it impossible to profile
from the codebase. Building a dedicated cluster for
experimentation is prohibitively expensive, while gaining
meaningful workload data can be extremely challenging.
Although recent attempts to share workload data from
clusters have been established (e.g., SWIM [5]), only
high level statistic counts are available.

The above factors make it difficult to evaluate new
network technologies (real or simulated) in Hadoop
clusters (e.g., topologies, routing protocols, transport

protocols). This is further exacerbated by a generally
poor understanding of how Hadoop actually behaves at
the network layer (§II). In this paper, we focus on two
key research questions: (i) What are the network traffic
characteristics of Hadoop jobs? and (ii) How can we
recreate realistic Hadoop traffic patterns for simulated
experiments? In this paper, we answer these questions
by characterising Hadoop traffic (§IV), so to formu-
late empirical models that can be used to reconstruct
traffic in simulators. We built a tool, Keddah (§V),
that makes it possible for cluster operators to capture
and automatically create these empirical models for use
by the research community, thereby allowing simulated
experiments with new layer 2/3/4 technologies. Keddah
is freely available to the research community, alongside
our pre-generated traffic models.1

II. BACKGROUND AND RELATED WORK

A. Hadoop MapReduce

Hadoop MapReduce is a system designed to support
parallel data processing across multiple compute servers.
It consists of a distributed storage system, the Hadoop
Distributed File System (HDFS), and a distributed exe-
cution framework called YARN [6]. Hadoop involves a
two stage execution flow where a 1-to-1 mapping process
is followed by a many-to-1 reduction process. Jobs in
Hadoop start with the YARN Resource Manager allocat-
ing map and reduce roles to different nodes, instructing
them to perform a given computation on a given set of
data blocks and intermediate keys, respectively. Follow-
ing this, mappers read the appropriate data from HDFS.
Once each mapper has retrieved its allocated data blocks,
it begins to execute the computation (e.g., sorting). All
the results from mappers are then transferred during the
shuffle step to the reducer nodes partitioned by key. Each
reducer node aggregates the individual results, and once
all computation has been completed, the reducer writes
the result back to HDFS.

B. Related work

Just a small number of studies have investigated the
network behaviour of mainstream “Big Data” platforms

1https://github.com/deng113jie/keddah



such as Hadoop. For instance, [7] discusses the perfor-
mance of Spark, finding that job completion time can be
reduced by only 2% through network improvements. A
more recent article [8] pointed out that these results are
partially an artifact of specific platform optimisations of
Spark (namely, heavy data replication to avoid network
traffic); in contrast, they found that PageRank jobs can
be improved up to 3x by increasing the network capacity
from 1 Gbps to 10 Gbps. Other works have tried to im-
prove Hadoop performance by, for example, performing
aggregation on network devices in the cluster [9]. These
works have confirmed the vital role of the network in the
performance of distributed processing platforms such as
Hadoop MapReduce.

Various studies have looked at Hadoop workloads,
primarily for the purposes of cluster benchmarking (e.g.,
comparing job completion time across clusters). Hadoop
provides a number of benchmarking tools. TeraSort [10],
later standardised as TPCx-HS [11], is the most popular
benchmarking job for cluster comparison. There are also
more diverse Hadoop benchmarking projects such as
the Big Data benchmark [12] and HiBench [13]. These
provide a more diverse set of Big Data processing use-
cases, such as machine learning or graph processing
(e.g., HiBench uses Pegasus [14] to benchmark PageR-
ank). There are however no studies that uses these
benchmarks to investigate the behaviour and role of the
network in Hadoop jobs. Previous simulation approaches
profiled the resource usage in Hadoop, including task
prediction [15], computation resources (CPU, memory,
storage [16]) and computation time prediction [17], [18].
To the best of our knowledge, we are the first to profile
and model Hadoop network traffic.

III. TESTBED AND METHODOLOGY

To extract the network patterns of a Hadoop cluster,
it is necessary to measure its live behavior. For this,
we use well known benchmarking tools to execute a
number of different jobs on a real Hadoop cluster. Packet
traces are then collected across the cluster to study,
characterise and model the traffic. Our methodology
allows us to sample the network traffic over a set of
variables, including cluster settings (number of repli-
cations, HDFS block size, cluster size), type of jobs
and job settings (output replication, number of reducers
and job specific parameters). We sample a diversity of
Hadoop jobs, including machine learning, graph algo-
rithms, and scientific computation. We focus on three
types of jobs [9], [19], taken from the benchmarking
tool HiBench [13]. The jobs are (i) TeraSort: the TPCx
benchmarking job for Hadoop clusters [11]; (ii) PageR-
ank: a graph processing operation for calculating the
weight between vertices [14]; and (iii) kmeans: one of
the most popular data clustering algorithms [20]. We

considered other types of jobs in our initial experiments
(e.g., word count, join queries, bayes), and found the
selected three provide a good sample of different types
of MapReduce computation.

To collect the traffic, we ran the jobs in two clusters: a
16 nodes physical cluster connected to the same switch,
with each node containing 8 cores and 32GB memory;
and a virtual cluster from Amazon Web Services (AWS)
with up to 30 nodes and hardware resources. Collec-
tively, these clusters can run jobs requiring up to 500GB
of memory and 6TB of storage. Given that the datasets
used in our experiments are less than 20GB, these
clusters are large enough for our purposes. Our Hadoop
codebase is built upon Cloudera Distributed Hadoop
version 5.4.7. We rely on the default settings for Hadoop
and the jobs (unless stated). An sflow agent is installed
on each machine with a dedicated sflow collector on the
same switch to obtain the traffic statistics.

To obtain an accurate coverage of the network be-
haviour, it is necessary to run jobs multiple times. For
example, data placement is not deterministic in Hadoop,2

and therefore multiple runs are necessary to sample
different data placements. To get an idea of the number
of runs required, we launch 1000 identical TeraSort
jobs. Each time we clean the cache and calculate the
aggregated traffic volume generated. We then use the
Kolmogorov-Smirnov (KS) test to check if the traffic
volume distribution after a certain number of runs is
similar to the one found with 1000 samples. Figure 1
presents the p-value and distance of the KS test after
each run. There is significant variance when performing
fewer than 200 runs. However, we find that the p-value
is close to 1 (with a very small distance) after 400
runs, indicating that a similar distribution is found. The
same convergence in distribution happens for all traffic
attributes in the paper, such as number of sessions, and
number of nodes. Therefore, all our subsequent traffic
analysis is based on 400 runs for each individual setup.

IV. UNDERSTANDING HADOOP TRAFFIC

We begin by exploring the traffic generated by several
Hadoop jobs. Our overall aim is to gain a general
understanding of Hadoop traffic, to enable us later to
(re-)generate similar traffic.

A. Traffic Decomposition

Hadoop generates several types of traffic, includ-
ing HDFS control messages, HDFS data transmissions,
Shuffle data transfers, and Yarn control messages (e.g.,
keep alives). We observed that from both virtual and
physical clusters, the amount of control plane traffic
is negligible, with in excess of 99% of traffic coming
from HDFS data transfers and Shuffle. Hence, we ignore

2See chooseRandom in org.apache.hadoop.net.NetworkTopology.
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Fig. 1: Convergence (measured as p-value and distance)
of distributional properties, through KS test against a
distribution based on 1000 samples.

TABLE I: Traffic composition of Hadoop jobs.

Job HDFS import HDFS export Shuffle
sort 0.01 0.7 0.29

wordcount 0.03 0.66 0.31
TeraSort 0.1 0 0.9
Bayes 0.54 0.46 0

kmeans(itr-1) 0.31 0.67 0
kmeans(itr-2) 0.07 0.82 0

PageRank(itr-1) 0.10 0.66 0.23
PageRank(itr-2) 0.25 0.09 0.66

control traffic. Table I presents the average fraction
of different traffic components across all Hadoop jobs
considered when using the default settings on a 16
nodes cluster. The diversity across jobs is significant.
For example, we observe no Shuffle traffic in map-only
jobs such as Bayes and kmeans compared to 90% in
TeraSort.

It is also possible to inspect how each of these traffic
components is generated across stages of a job. By
definition, each stage occurs sequentially: HDFS Read
loads the data onto mapper nodes, Shuffle exchanges data
between the mapper/reducer nodes. Finally, HDFS Write
stores the result. Due to space constraints, we focus on
how these traffic components are generated in three ex-
ample jobs (kmeans, TerraSort and PageRank). Figure 2
presents the average amount of traffic generated per-
second on the physical cluster for: the second iteration of
PageRank jobs (with 10 million vertices), TeraSort jobs
with 6GB data, and the first iteration of kmeans jobs
with 14 clusters and 14 million samples per cluster. It
can be seen that each job exhibits broadly similar trends,
but with key differences.

Closer inspection of the trends reveal that these differ-
ences emerge from the varying ratio between the three
core traffic components. For instance, TeraSort’s first
10% of traffic is HDFS Read, followed by the remaining
90% that corresponds to Shuffle traffic. Similarly for
PageRank, there is 25% HDFS Read at the beginning,
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Fig. 2: Fraction of traffic transmitted over time, for
TeraSort, PageRank and Kmeans. The horizontal lines
demarcate HDFS Read, Shuffle and HDFS Write traffic.

then 66% Shuffle, and finally the last 9% is HDFS Write.
All traffic seen on the network follows this three stage
sequence. Clearly, this stability in the structure is helpful
for modelling traffic. Still, the variability over different
runs for a given type of job is quite high (due to the
randomness in data placement). Therefore, it is necessary
to run jobs at least 400 times (c.f., Figure 1) to capture
the full range of behaviour.

B. Impact of Dataset Size

We next inspect the impact that the input dataset has
on traffic volumes generated by each job.

1) Kmeans: We run kmeans with 10 clusters and
datasets ranging from 500k to 20m samples (generated
using HiBench). The assignment step and update step are
treated as separate jobs in Hadoop. Figure 3(a) presents
the amount of traffic generated per run, while varying
the dataset size. The first to the penultimate, and the last
rounds are shown. It can be seen that traffic increases as
a linear function of the dataset size. We see this across
all iterations with the exclusion of the last. This can be
easily explained through inspection of the source code:
All iterations but the last require assigning the samples
to each cluster, while the last is only concerned with the
final computation of the clusters, which generates a fixed
volume of traffic (as we use 10 clusters throughout).

2) TeraSort: We run TerraSort over randomly gen-
erated data files ranging from 1GB to 20GB (generated
using TeraGen). Again, Figure 3(b) shows that the traffic
volume exhibits a linear trend with respect to the data file
size. Surprisingly, though, the variability is quite high,
even for identical job settings (about a quarter of the
file size, similar to Figure 4). To better understand this,
we experimented with both the computationally worst-
case and best-case datasets, but found no difference.
The reason lies in the fact that the data is processed
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Fig. 3: Total traffic volume over various jobs/data inputs.

in a distributed manner, and is spread out across the
cluster irrespective of whether it is already sorted or not.
Therefore, for the traffic seen on the network, how well
the data is sorted beforehand is irrelevant. The positive
aspect, however, is that to model TeraSort traffic, only
the data size needs to be considered (not how well this
data is already sorted).

3) PageRank: Finally, we run PageRank over graph
data containing between 2 million (1.1GB) and 10
million vertices (5.5GB), with the number of edges
following a Zipf (α=0.5) distribution with average degree
of 40. PageRank in Hadoop adopts two stages. First,
it generates partial matrix-vector multiplication results;
then, it merges the multiplication results. The sequence
of both stages run iteratively until the rank converges.
Despite this, again, Figure 3(c) confirms that traffic
volume is a linear function of dataset size. We have
also repeated this process across several other jobs, to
consistently witness this linear relationship.

C. Cluster Settings

Next, we explore how the traffic changes when we
modify the cluster settings. We have profiled parameters
including replication factor, cluster size, block size, split
size and number of reducers. We do not consider settings
that usually only affect the computation performance
rather than network (e.g., Java memory allocation [7])
at this stage, leaving their exploration as future work.

Replication factor is a well known factor that affects
the Hadoop performance [21], [22], however the traffic
is not well studied yet. We focus on native Hadoop
methods instead of techniques proposed by research
community [23], as built-in Hadoop concepts such as
replication and block size are more fundamental and
more important at this stage.

HDFS stores data on nodes across the cluster. These
nodes may also be used as mappers; hence, a mapper
that already contains the data locally generates no extra
traffic. To improve resilience, HDFS has a replication

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6

T
e

ra
S

o
rt

 t
ra

ff
ic

 v
o

lu
m

e
(G

B
)

Number of replications

HDFS read
Shuffle

Fig. 4: Volume of HDFS Read and Shuffle traffic for
TeraSort 4GB jobs over various replications. Increasing
HDFS replications in the cluster does not necessary
decrease HDFS traffic.

setting that allows the same block to be stored on
multiple nodes. Intuitively, the higher the replication
level, the lower the traffic volume.

To explore the effect of replication, we run a new set
of TeraSort (4GB) jobs, varying the replication levels.
Figure 4 presents the aggregate traffic volume generated
when varying the replication rate between 1 and 6. It can
be seen that 86% of the traffic is removed when increas-
ing the replication rate from 1 to 2. A replication level of
3 further decreases it by 56%; and by another 23% for 4
(additional replication suffers from diminishing returns).
In our cluster of 15 nodes, with the maximum replication
of 15, no HDFS Read traffic is seen. Note, however, that
the savings come with a startup cost, as it is necessary
to preload the data.

The next parameter we consider is the number of
nodes in the cluster. This may impact network traffic
significantly, as nodes will need to hold more blocks
if fewer nodes are available. We run TeraSort over a
1GB dataset while varying the cluster size. Overall, the
total traffic volume follows the same distribution across
all cluster sizes, though the traffic generated decreases
when moving from 6 to 10 nodes by 20%, and then
remains roughly static (3% variance) afterwards. With
more nodes holding the dataset in HDFS, local mapper
assignment becomes easier. However, for a fixed input
data size, the number of mappers as well as the number
of map tasks is deterministic with the same input size.
For instance, a 1GB TeraSort job will utilise a maximum
of 8 nodes. This presents an advantageous property for
traffic modeling: the traffic for TeraSort 1GB jobs on
a 15 node cluster will be identical to that of any other
cluster size above 8. We further confirmed this on other
jobs such as PageRank and kmeans. This enables us to
predict the generated traffic, as long as we know the
cluster capacity is above a certain threshold.

Finally, we profiled three parameters that directly



affect MapReduce performance, including HDFS block
size (affecting HDFS file distribution), mapper input
split size (affecting the number of mappers) and the
number of reducers. These parameters affect the network
traffic in an expected way; the same amount of total
traffic is generated, but it is split differently across the
cluster nodes. Moreover, the impact of varying each
parameter is localised to a specific traffic stage. For
example, by increasing HDFS block size linearly, the
number of blocks will reduce accordingly, but the shuffle
volume is not affected at all. This way, we reduced
the sampling space when capturing Hadoop traffic with
various parameters, as each parameter can be profiled
separately.

In this section, we profiled Hadoop traffic over a
set of variables. Those variables selected are factors
directly affect the Hadoop performance and commonly
configured in practise, including physical cluster size and
resource; Hadoop cluster configurations like number of
replications, HDFS block size and number of reducers;
and various Hadoop jobs with different job parameters.
Also with the aim of reproduce the Hadoop traffic, other
settings can be captured by the same process as we will
show in the following section.

V. KEDDAH: HADOOP TRAFFIC GENERATION

The previous section has characterised Hadoop traffic.
Here, we present Keddah, a tool to capture, model and
therefore reproduce Hadoop traffic, so that it can be used
by simulators.

A. Keddah methodology

Our goal is to create flow-level traffic models, to allow
realistic Hadoop traffic to be replayed in a simulator.
To achieve this, we have devised Keddah, a toolchain
that can execute real Hadoop jobs in a cluster, capture
the traffic and then generate appropriate empirically-
derived models. These can then be shared and passed
into a simulator to replay the traffic. Figure 5 presents
the workflow. Keddah can be deployed in any cluster in
which traffic traces can be collected.

Keddah accepts a list of jobs and dataset parameters
(see §IV-B). It then launches Hadoop jobs in the cluster
for each job and parameter combination, and repeats
each combination a default of 400 times (see Figure 1).
Upon each run, traffic traces are collected3 and reported
back to the controller. The following factors are then
extracted from the network traffic traces of each job
execution:

• Number of source nodes generating flows: This is
dictated by the Yarn resource manager together with
the MapReduce application master. Both elements

3Keddah is agnostic to how traffic is collected; it can either be on
the end hosts or the switches.

automatically select the set of nodes (mappers and
reducers) from the available cluster resources. Im-
portantly, the number is not defined by the size of
the cluster (which only sets an upper limit): A small
job will run on a small number of nodes regardless
of the cluster size. The values are non-deterministic,
as random data placement means that data will be
stored on different HDFS nodes upon every job
execution. Indeed, mappers only request data from
other nodes if the split is not available locally.

• Number of destination nodes accepting flows: This
is the number of nodes that accept connections, and
differs from the number establishing connections.
For instance, theoretically, due to random data
placement, a single node could contain all data
chunks, while multiple other nodes request data
from it.

• Number of flows generated: This is a product of the
random data placement, dataset size and the nature
of the job.

• Aggregated traffic volume: This is simply a product
of the number of flows and their individual sizes.

• Time distribution of flows: This is defined by the
time when the first packet of a flow is observed.
We measure the start-time relative to when the
job begins its execution. Although, in theory, flows
should start at the beginning of the map or reduce
tasks, we find that the start times vary quite a lot in
practice. This is due to different node CPU speeds,
and different times for mapping tasks.

Collectively, these five attributes can be used to
characterise the application-layer network activity of
Hadoop. After they have been collected across all 400
runs (of the same job/dataset), the empirical distributions
of each of these five factors are computed. Importantly,
as the three traffic components (HDFS Read, Write and
Shuffle) exhibit very different behaviors (see §IV), we
compute the five factors separately for each. An extra
consideration is that some jobs run multiple iterations.
In PageRank, for example, weights in the graph are
adjusted repeatedly after aggregating results and re-
generating the new graph. In Hadoop, this is performed
by creating a sequence of multiple separate jobs (one for
each iteration). This means that it is necessary to model
iterative jobs as several separate sequential jobs with
a certain interval between them. Keddah automatically
detects iterative jobs and records the interval.

Once the five empirical distributions for each of the
traffic components have been computed, Keddah uses
standard model fitting techniques to convert them into
probability models. By default, Keddah evaluates the
empirical distributions against several models: normal,
Poisson, exponential, gamma, chi-squared, Weibull and
Pareto (more can be plugged in). In each case, the



Fig. 5: keddah workflow, starting with execution of real jobs and ending in the generation of the traffic in a simulator.

empirical distribution is evaluated against all possible
models to parameterise the best fit (based on highest p-
value and lowest distance obtained from the KS test).
The output is a file containing three separate groups of
model parameters for HDFS Read, Write and Shuffle.
Each group contains the probability distribution model
(and parameters) for each of the 5 attributes. In essence,
this is a compact way of recording application-layer
traffic (rather than directly replaying traces). We term
this a Keddah model file.

Keddah model files can then be loaded into ns3 via
a plug-in we have developed. We emphasise that these
models should not be generalised, as they are extracted
from empirical models that only reflect the traffic they
were computed from. Thus, each job/dataset will have
its own individual file representing the traffic seen within
the cluster that generated it. Our intention is to allow any
Hadoop operator to contribute statistical traffic models,
allowing researchers to simulate the corresponding traf-
fic. Critically, by abstracting the traces via parameterised
models, operators are protected from revealing sensitive
information (e.g., network configuration).

B. Results

We have used Keddah to capture and model traffic
across a wide variety of jobs and datasets in our testbeds.
In each case, Keddah has launched the jobs, recorded the
traffic and produced the traffic models. For brevity, we
present the results from three example jobs, although
the results are similar across all other runs we have
experimented with. Figure 6 presents the empirical vs.
modelled distributions across the four attributes (due to
space constraints, we only show the number of source
nodes generating flows, rather than destinations). The fit-
tings performed by Keddah match closely the empirical
observations. As expected, all attribute distributions can
be captured using a normal distribution (with a variety
of mean and variance parameters). This is correctly
identified by Keddah’s automatic model fitting.

C. Replaying Traffic

We have built an ns3 extension that can read in a
Keddah file. In line with our findings, traffic is replayed
in three sequential stages: HDFS Read, Shuffle, HDFS
Write. The Keddah model files contain separate traffic
statistics for each of these three components.

Before starting, a researcher is expected to initiate
their cluster topology and other appropriate layer 2/3/4
parameters.4 The following steps are then repeated for
each of the three stages. Keddah first selects the num-
ber of source nodes that will generate traffic, and the
number of destination nodes that will receive. Both are
extracted from the Number of source nodes generating
flows and the Number of destination nodes accepting
flows attribute distributions respectively (stored within
the Keddah file). These roles are then randomly allocated
to nodes in the simulation. The next step is to select
the number of flows that will be generated within the
stage of the simulation, taken from the Number of flows
generated attribute distribution. The size of each flow is
computed by selecting values from the Aggregated traffic
volume and Number of flows generated distributions, and
dividing one by the other. These flows are then allocated
to sources and destination pairs in a round robin fashion.
Finally, each flow is given a start time by selecting values
from the Time distribution of flows model. Once all flows
in the particular stage have completed, Keddah moves the
simulation onto the next Hadoop stage in the following
order: HDFS Read, Shuffle, HDFS Write.

D. Validation

By design, each of the individual empirical models
(e.g., time distribution, amount of traffic) closely reflects
the original traffic. However, it is important to validate
that the combination of these attributes to replay the
flow-level traffic is also accurate. To confirm this, we
use Keddah models to replay traffic in ns3 and compare
it against the raw traffic seen in our testbed cluster. We
build a simple simulation, which mimics our testbed

4Note, the simulation must contain at least the same number of nodes
in the original cluster from which the Keddah model was generated.
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Fig. 6: Empirical model vs. fitted model for HDFS Read across TeraSort (5GB), PageRank (3m vertices) and kmeans
(10x4m vertices). Each graph shows the empirical and fitted models of a different attribute.

and utilises Keddah’s models to replay the traffic. We
run 500 simulations, and plot again the graph shown in
Figure 2. Figure 7 shows the fraction of overall traffic
generated per second across both our real testbed traces
and our replayed traces (for TeraSort 2GB). We observe
that, visually, the trends are similar, suggesting that the
replayed traffic is similar.
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Fig. 7: Cumulative traffic generated per second in (i) real
physical testbed traces; and (ii) simulated replayed
traces. The horizontal line demarcates HDFS Read from
Shuffle traffic as shown in Figure 2.

To quantify the similarity, we calculate the correlation
between the testbed traces and the simulated traffic.

TABLE II: Correlation of cumulative traffic generated
between simulation with real trace in terms of 1st
quartile, mean and 3rd quartile.

Job 1st quartile mean 3rd quartile
TeraSort 1GB 0.91 0.94 0.93
TeraSort 2GB 0.59 0.98 0.97
TeraSort 3GB 0.96 0.92 0.81

kmeans 10x5m 0.89 0.92 0.87
kmeans 10x8m 0.65 0.78 0.79

We calculate the correlations across the 1st quartile,
mean and 3rd quartile of the accumulated percentage
of traffic delivery shown in Figure 7. Table II presents
the correlations for several job types. We observe that
the correlations are generally high, confirming that the
5 attributes, indeed, allow the traffic to be replayed.

VI. CONCLUSION

This paper has characterised MapReduce’s network
traffic across several job types, decomposing their traffic
components to explore their individual characteristics.
To exploit this, we have built Keddah, an open source
toolchain1 that can capture and reproduce Hadoop traffic
for later simulation. To date, we have used Keddah to
perform a variety of experiments such as benchmarking



cluster topologies, measuring TCP incast and exploring
active queue management (see our report [24]).

While our methodology has been tested exclusively in
MapReduce jobs, a similar approach could be extended
for in-memory distributed computing paradigms, such as
Pregel [25], or Spark RDD transformations [26]. These
computation models significantly improve network ef-
ficiency for iterative and multi-stage computations, but
their base primitives can still be expressed in terms
of MapReduce transformations. In both cases, the job
execution can be expressed as a directed graph with
a set of stages, whose traffic would be captured in an
analogous manner to what is described in this paper.

Our future work will focus on deploying Keddah in
additional environments to validate how well diverse
Hadoop workloads can be captured and reproduced.
We are also exploring techniques to extrapolate traffic
patterns so that fewer jobs need to be executed in order
to characterise the traffic of the job. Our long-term vision
is that Hadoop operators may use Keddah to make their
traffic models available to researchers, so that further
innovations can be evaluated in realistic scenarios.
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