
An Empirical Study of the Cost of DNS-over-HTTPS
Timm Böttger, Felix Cuadrado, Gianni Antichi, Eder Leão Fernandes,

Gareth Tyson, Ignacio Castro and Steve Uhlig
Queen Mary University of London

ABSTRACT
DNS is a vital component for almost every networked application.
Originally it was designed as an unencrypted protocol, making user
security a concern. DNS-over-HTTPS (DoH) is the latest proposal
to make name resolution more secure.

In this paper we study the current DNS-over-HTTPS ecosystem,
especially the cost of the additional security. We start by survey-
ing the current DoH landscape by assessing standard compliance
and supported features of public DoH servers. We then compare
different transports for secure DNS, to highlight the improvements
DoH makes over its predecessor, DNS-over-TLS (DoT). These im-
provements explain in part the significantly larger take-up of DoH
in comparison to DoT.

Finally, we quantify the overhead incurred by the additional
layers of the DoH transport and their impact on web page load
times. We find that these overheads only have limited impact on
page load times, suggesting that it is possible to obtain the improved
security of DoH with only marginal performance impact.

CCS CONCEPTS
• Networks → Transport protocols; Network measurement;
Network security.

KEYWORDS
DNS-over-HTTPS, Transport, Performance
ACM Reference Format:
Timm Böttger, Felix Cuadrado, Gianni Antichi, Eder Leão Fernandes,
Gareth Tyson, Ignacio Castro and Steve Uhlig. 2019. An Empirical Study
of the Cost of DNS-over-HTTPS. In IMC ’19: ACM Internet Measurement
Conference, October 21–23, 2019, Amsterdam, Netherlands. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3355369.3355575

1 INTRODUCTION
Introduced in 1983, the Domain Name System (DNS) has become a
critical component of the Internet. In addition to its original purpose
of domain name resolution, DNS has also gained relevance due to its
intensive use by Content Distribution Networks (CDNs) for traffic
redirection [5, 8]. Most websites nowadays include content from
third parties, hence requiring multiple DNS queries [7] to access a
single page. To highlight this, Figure 1 shows the number of DNS
queries required to fully retrieve each page in the Alexa global top
100k sites. Each website was retrieved through Firefox, logging the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IMC ’19, October 21–23, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6948-0/19/10.
https://doi.org/10.1145/3355369.3355575

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Number of queries

Figure 1: CDF of the number of DNS queries required to re-
trieve all embedded objects for each of the top 100k Alexa
sites.

DNS requests at the stub resolver. Caches of both Firefox and the
DNS stub resolver were emptied before requesting the next website.
The figure illustrates that multiple DNS queries per page are the
norm rather than the exception: about 50% of the sites require at
least 20 DNS queries.

DNS impacts networked application performance [6] and can re-
veal information about the destination of a connection [4]. Address-
ing increasing concerns about security, DNS-over-TLS (DoT) [11]
and more recently DNS-over-HTTPS (DoH) [10] have been pro-
posed within the IETF. To increase security, these protocols rely
on a TLS session between the client and the resolver. In the case of
DoH, this TLS session also contains a HTTP connection. So far, DoT
has only gained limited traction, whereas DoH has gathered sub-
stantial momentum already [13], with the help of notable players
like Mozilla, Cloudflare and Google.

In this paper, we take a first look at the implications of securing
DNS with DoH. We also compare DoT and DoH to shed some
light on why the latter has recently gained so much interest. The
following are the main contributions:

(1) We survey and characterize the current landscape for secure
DNS via HTTP and TLS.

(2) We compare different transport protocols for securing DNS
resolution, to understand the momentum behind DoH.

(3) We quantify the overheads incurred by the additional HTTP
and TLS layers in DoH.

(4) We take a first look at the impact that switching to DoH has
on web performance, more specifically DNS resolution times
and page load times.

2 THE DOH LANDSCAPE
To better understand the current landscape of DoH resolvers, we
take the list of DoH servers curated by the curl project,1 and assess
their supported feature set. We initially retrieved all information
1https://github.com/curl/curl/wiki/DNS-over-HTTPS

https://doi.org/10.1145/3355369.3355575
https://doi.org/10.1145/3355369.3355575
https://github.com/curl/curl/wiki/DNS-over-HTTPS

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Timm Böttger et al.

Provider DoH URL MK

Google (i) https://dns.google.com/resolve G1
Google (ii) https://dns.google.com/dns-query G2
Cloudflare https://cloudflare-dns.com/dns-query CF
Quad9 https://dns.quad9.net/dns-query Q9
CleanBrowsing https://doh.cleanbrowsing.org/doh/family-filter CB
PowerDNS https://doh.powerdns.org/ PD
Blahdns https://doh-ch.blahdns.com/dns-query BD

https://doh-jp.blahdns.com/dns-query
https://doh-de.blahdns.com/dns-query

SecureDNS https://doh.securedns.eu/dns-query SD
Rubyfish https://dns.rubyfish.cn/dns-query RF
Commons Host https://commons.host/ CH

Table 1: Compared DoH resolvers. Markers (MK) refer to col-
umn identifiers used in Table 2. Blahdns offers DoH services
on three different URLs.

in this section on 10 October 2018. We then verified it and, where
necessary, updated entries in both tables again on 10 September
2019.

As Table 1 shows, major players like Google, Cloudflare and IBM
(Quad9), as well as some smaller players, support DoH. We observe
diversity in their service configurations. While different base URLs
for every service can be expected, it is surprising to see four differ-
ent URL paths (/, /resolve, /dns-query, /family-filter) just
among these nine providers. Google even uses different paths to
two different services with the same base URL. While technically
the DoH RFC [10] does not mandate a specific path to be used and
leaves it up to the service operators, the majority of services still
use the path /dns-query, which is the one used in all examples in
the RFC. Given the huge efforts spent by operators to obtain easy-
to-remember and thus easy-to-configure IP addresses for their UDP
based DNS servers [12, 24], seeing such a potentially confusing
variety and choices for the DoH service parameters is noteworthy.
DoH operators indeed seem to have realised this, when we first
collected this information in October 2018 we observed six different
base paths for the same set of providers, while now we only observe
four.

We now examine the features supported by the individual re-
solvers. HTTP supports the transmission of different content types.
As per the DoH RFC, all DoH servers and clients must support
the application/dns-message content type, which essentially is
an encapsulation of the UDP DNS wireformat in HTTPS. Another
widely supported type is application/dns-jsonwhich represents
DNS messages in JSON format. While a draft RFC for the JSON DNS
format [3] exists, its support is not mandatory for DoH servers. The
application/dns-message content type is supported by all imple-
mentations except Google’s. Google in fact operates two different
services with two different paths (/resolve and /dns-query) on
the same domain, with each service only supporting one content
type. Curiously enough, the service supporting the RFC mandated
format was initially named /experimental and has since then be-
ing renamed to /dns-query. This again highlights that operators
have understood that too many different URLs are confusing and

Feature G1 G2 CF Q9 CB PD BD SD RF CH

dns-message ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

dns-json ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗

TLS 1.0 ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗

TLS 1.1 ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗

TLS 1.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TLS 1.3 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓

CT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DNS CAA ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

OCSP MS ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

QUIC ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

DNS-over-TLS ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Traf. Steering DL* DL* AC+ AC+ AC+ UC± UC± UC± UC± AC+

* DNS Load Balancing + Anycast ± Unicast

Table 2: Comparison of DoH resolver features. Column
names refer to markers in Table 1.

might lead to configuration errors. Of the remaining eight providers
four also support the JSON format on the same path as the DNS
wireformat.

DoH was designed as a secure service with transport encryption
via TLS. TLS support is thus a strict requirement. There has been
significant change on the TLS front recently, with TLS 1.3 becoming
an official RFC and security vulnerabilities POODLE and BEAST
rendering TLS 1.0 and lower standards insecure. All DoH servers
support TLS 1.2, and seven of the nine providers also support TLS
1.3. This is a positive sign towards broader acceptance of DoH, since
when we assessed these features in October 2018 only Cloudflare
and SecureDNS supported TLS 1.3. On the other hand, we also see
that some servers still support the deprecated TLS versions 1.0 and
1.1. We suspect the reason is that some operators are concerned
about compatibility issues with older client libraries and thus also
support older TLS versions. While the client can always insist on
negotiating a connection with TLS 1.2 or higher, it would make
sense that operators also use this opportunity to provide secure
DNS and simultaneously put pressure on dropping TLS versions
1.1 or lower.

Four of the servers surveyed (Google, Cloudflare, IBM, and Pow-
erDNS) also support DNS-over-TLS [11], the previous RFC for en-
crypting DNS requests using TLS. Despite having a three-year
headstart over DoH, DoT has failed to gain significant traction com-
pared to the previous specification. We will further explore both
protocols in the next section.

Finally, DNS-over-HTTPS relies on the PKI-certificate system to
ascertain the identity of the DNS resolver. To compensate known
weaknesses and flaws of this system, techniques such as Certifi-
cate Transparency (CT)2, Certification Authority Authorization
(CAA) [9] records andOnline Certificate Status Protocol (OCSP) [22]
have been proposed. We check for support of CT, DNS CAA records
and OCSP in the Must-Staple (MS) configuration. While all certifi-
cates used for the DoH-servers are registered in the CT system,

2https://www.certificate-transparency.org

https://www.certificate-transparency.org

An Empirical Study of the Cost of DNS-over-HTTPS IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

 0.001
 0.01
 0.1

 1
UDP

R
e
s
o
lu

ti
o
n
 t
im

e
 (

s
)

TLS HTTP/1.1 HTTP/2.0 B
a
s
e
lin

e

 0.001
 0.01
 0.1

 1

 0 2 4 6 8 10

UDP

Query sent (s)
 0 2 4 6 8 10

TLS

Query sent (s)
 0 2 4 6 8 10

HTTP/1.1

Query sent (s)
 0 2 4 6 8 10

HTTP/2.0 D
e
la

y
e
d

Query sent (s)

Figure 2: Impact of head-of-line-blocking on resolution times for DNS over different transport protocols. The upper charts
depict the baseline and the lower ones the effect of a delay (1000ms for one in 25 queries).

only Google offers DNS CAA records and no server demands OCSP
MS. Again, we argue that the introduction of a new secure DNS
protocol would be an ideal opportunity to establish and require
support for all techniques that can further improve the security of
DoH.

3 TRANSPORTS FOR SECURE DNS
In this section, we investigate the impact of different (secure) trans-
port choices for DNS messages. We compare DNS-over-TLS with
DoH using both HTTP/1.1 and HTTP/2.0.3

We compare the effect of these different choices of transport
via a controlled experiment. We set up a local CoreDNS resolver,
and use it to resolve 100 domain names via UDP, TLS, HTTP/1.1
and HTTP/2.0. As we are evaluating the impact of the transport
protocol, we instruct our resolver to always return the same IP
address independently of the domain name. Using unique domain
names for each query rules out any impact of caching while still
being able to attribute differences in resolution time to the transport
protocol instead of the resolved domain name. We construct the
queried domain names with a random prefix of constant length five
followed by a fixed base domain. This construction ensures that
effects of compression of query names are uniformly distributed
across all queries, hence ensuring that differences in compress-
ability of domain names do not impact our results. To introduce
workload variability, we use non-deterministic query arrival time,
where query arrival times follow a Poisson distribution with an
average arrival rate of 10 queries per second. Experiments were
carried out on a machine running CentOS 7 on a 4-core Intel Core
i5-2500KCPU (3.30 GHz) and 8GB of RAM. Python 3.6 and CoreDNS
1.2.2 were used. Experiments were isolated with Docker containers.
Python’s standard packages for sockets, TLS and HTTP/1.1 were
used, DNS handling was done with the dnspython package, for
HTTP/2.0 support Facebook’s doh-proxy package was used.

We carry out two measurement runs. In the first run, we obtain
a baseline of the achievable performance by answering queries as

3We do not consider DNScrypt here since it takes an orthogonal approach. Whereas
DoT and DoH encapsulate the original DNS UDP wireformat with TLS and HTTP
headers respectively, DNScrypt uses a redesigned wireformat combining all these
features into a single message.

fast as possible. We then instruct our resolver to delay one in every
25 queries by 1000ms, to observe whether delays in resolution time
affect subsequent answers.

Figure 2 provides the results in both scenarios for each transport
protocol. Resolution time is the time it takes the application to re-
ceive and fully parse a reply, not just the time it takes the network to
transmit the message. The upper row shows baseline performance
without delay. The second row shows per query resolution times
with the introduced delay. The HTTP/1.1 scenario employs HTTP
request pipelining, as we are assessing the resilience against slow or
delayed queries of the individual transports (so HTTP/1.1 without
pipelining would be an unfair comparison).

For the baseline case without delay, we observe that both UDP
and TLS deliver responses to queries in less than one millisecond.
These values are expected for a controlled experiment setup run-
ning on the localhost.4 HTTP/2.0 consistently delivers results in
less than ten milliseconds. Only for HTTP/1.1, the baseline perfor-
mance fluctuates significantly, which we attribute to issues in the
pipelining support. Most major browsers tried to support HTTP/1.1
pipelining, but have ceased to support it due to too many interop-
erability issues negatively affecting performance [16, 21].

In the bottom row experiments, we observe that DNS via UDP
is hardly affected by the delay. We clearly see four outliers for the
four delayed queries, without any visible impact on subsequent
queries. Indeed, DNS via UDP can utilize different connections via
multiple port numbers to effectively multiplex queries and thus
make them independent.

For TLS as transport protocol, we see that the delayed queries
have a knock-on effect on subsequent queries; the serialization of
the TLS connection implies that a reply to a subsequent query is
only sent after the reply to the delayed query. Out-of-order delivery
of replies via TLS is also possible since every request/reply pair
can be identified by their unique ID. The DNS-over-TLS (DoT)
RFC states that this feature should be supported, although it is not
mandatory. In practice, out-of-order delivery greatly complicates
the server implementation compared to standard UDP, as it requires
state management on the server side to handle these requests. From
4The first query is slower than the following ones due to additional packet round-trips
by TCP and TLS handshakes during connection setup.

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Timm Böttger et al.

 0

 2

 4

 6

 8

 10

U
/C

F

U
/G

O

H
/C

F

H
/G

O

H
P

/C
F

H
P

/G
O

D
N

S
 r

e
s
o

lu
ti
o

n
c
o

s
t

(K
B

)

Figure 3: Total bytes per resolution. Domain names were re-
solved via UDP-DNS (U), DNS-over-HTTPS without persis-
tent connection (H) and with a persistent connection (HP).
The DNS servers of Cloudflare (CF) and Google (GO) were
used. Whiskers span the full range of values.

the only three existing DoT servers in the wild (as per Wikipedia at
the time of writing this paper), we have verified that only Cloudflare
supports out-of-order delivery. Implementing out-of-order delivery
via TLS is akin to (re-)implementing the stream multiplexing part
of SCTP, QUIC or HTTP/2.0. We believe that this is one of the main
reasons why DoT failed to gain significant traction. Surprisingly,
we are not aware of any other work explicitly demonstrating the
potential performance impact of simple TLS transport on DNS.

For HTTP/1.1, we observe similar knock-on effects as for TLS.
In the case of HTTP/1.1, there is no way to circumvent these as the
in-order-delivery of requests is demanded by the RFC [18]. It is only
when we turn to HTTP/2.0 that we observe a similar insensitivity
to delayed queries as with UDP. Indeed, the DoH RFC states that
HTTP/2.0 is the minimum recommended version of HTTP to be
used.

In this section we have seen that DNS-over-TLS and DNS-over-
HTTPS/1 suffer from head-of-line-blocking. Only with HTTP/2.0
DoH manages to provide similar results to UDP DNS with respect
to head-of-line blocking. This difference in behavior might (at least
in part) explain why it was easier for DNS-over-HTTPS/2.0 to gain
traction than for DNS-over-TLS.

4 OVERHEAD
In the previous section, we have seen that DNS-over-HTTPS/2
offers significant advantages over DNS-over-TLS and DNS-over-
HTTPS/1. However, the requirement for HTTP/2 introduces addi-
tional layers and thus more headers and overhead. In this section,
we compare the overhead incurred by DNS-over-HTTPS/2 and
regular UDP-based DNS.

To obtain a set of domain names that is representative of the real-
world, we fetch the top 100,000 webpages as per global Alexa rank-
ing and gather all domains that were resolved during these fetches.
We instruct the local stub resolver to log all queries. The Alexa
list was retrieved on 15 September 2018. In contrast to browser-
generated HTTP Archive (HAR) files, this allows us to obtain the
domains that are not part of the actual webpage but are contacted
by common web browsers during page load, e.g., OCSP records for
secure TLS connection establishment. While fetching these 100,000
webpages, 2,178,235 DNS queries were sent. As domain names can

 0

 10

 20

 30

 40

U
/C

F

U
/G

O

H
/C

F

H
/G

O

H
P

/C
F

H
P

/G
O

D
N

S
 r

e
s
o

lu
ti
o

n
c
o

s
t

(p
a

c
k
e

ts
)

Figure 4: Total packets per resolution. Domain names were
resolved via UDP-DNS (U), DNS-over-HTTPSwithout persis-
tent connection (H) and with a persistent connection (HP).
The DNS servers of Cloudflare (CF) and Google (GO) were
used. Whiskers span the full range of values.

be embedded in more than one page, these 100,000 page fetches
resolved 281,414 unique domain names. Notably, almost 25% of
all DNS queries can be attributed to the fifteen most frequently
queried domain names. We then resolve these domain names from
a university vantage point via regular UDP-based DNS and DNS-
over-HTTPS, using the respective resolvers of both Google and
Cloudflare.

Figure 3 shows the distribution of request sizes for all six sce-
narios. Figure 4 depicts the number of packets. When comparing
UDP-based DNS with DoH, we see that the UDP transport system-
atically leads to fewer bytes and fewer packets exchanged, with the
median DNS exchange consuming only 182 bytes bytes and 2 pack-
ets. A single DoH resolution in the median case on the other hand
requires 5737 bytes and 27 packets to be sent for Cloudflare and
6941 bytes and 31 packets for Google. A single DoH exchange thus
consumes more than 30 times as many bytes and roughly 15 times
as many packets than in the UDP case. Persistent connections allow
to amortize one-off overheads over many requests sent. In this case,
the median Cloudflare resolution consumes 864 bytes in 8 packets,
the median Google resolution 1203 bytes in 11 packets. While this
is significantly smaller compared to the case of a non-persistent
connection, DoH resolution still consumes roughly more than four
times as many bytes and packets than UDP-based DNS does.

While in the legacy case there is no significant difference, in the
DoH case Google’s server leads to larger transactions than Cloud-
flare’s. This is caused by Google needing more bytes to establish
and maintain the TLS connection than Cloudflare. The reason is
Google’s usage of a certificate larger than Cloudflare’s: in our spe-
cific setup, Cloudflare transmits two certificates worth 1,960 bytes
and Google transmits two certificates worth 3,101 bytes. When
using a persistent TLS connection, the overheads get amortized
over the many requests made.

We now break down the overhead for DoH. As a by-product,
we showcase some of the new features of HTTP/2 in compari-
son to HTTP/1. Next to header compression using HPACK [20],
HTTP/2 also supports a differential transmission mechanism that
only transmits the changed headers during the subsequent ex-
changes. HTTP/2 also defines new message frames to manage the
connection. Figure 5 shows a breakdown of overheads into indi-
vidual layers and protocols. Across all four cases, the distribution

An Empirical Study of the Cost of DNS-over-HTTPS IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

 0.01

 0.1

 1

 10

B
o
d
y

H
d
r

M
g
m

t

T
L
S

T
C

P

Cloudflare

D
N

S
 r

e
s
o
lu

ti
o
n

 c
o
s
t
(K

B
)

B
o
d
y

H
d
r

M
g
m

t

T
L
S

T
C

P

Cloudflare (persis.)

B
o
d
y

H
d
r

M
g
m

t

T
L
S

T
C

P

Google

B
o
d
y

H
d
r

M
g
m

t

T
L
S

T
C

P

Google (persis.)

Figure 5: Overheads per DNS resolution for DNS-over-HTTPS/2. First two columns show sizes for (HTTP) bodies and headers
exchanged. Mgmt refers to messages being exchanged to maintain the HTTP/2 connection like settings and windows updates.
TLS and TCP refer to sizes of the respective layers.

of body sizes is similar, albeit Google tends to send slightly larger
bodies in the extreme case.

Every additional layer of complexity adds overhead that is at
least the same size as the original DNS payload. Notably, even the
overhead incurred by TLS encryption and TCP headers and addi-
tional messages is already of the size of the complete DNS payload.
Regarding the HTTP/2 overhead (headers and mgmt), we see that
using a persistent connection leads to less data being exchanged.
For the headers, this is caused by HTTP/2’s differential headers fea-
ture, which in sequential requests and replies only transmits those
headers that have changed. The management messages are required
to manage the HTTP/2 connection and multiplexing of different
streams. They do not need to be sent for every single client-server-
interaction. Therefore, when using a persistent and thus re-usable
connection, the amount of management bytes sent per request-
response-cycle is smaller in comparison to non-persistent connec-
tions. For the overhead incurred by TLS, for the non-persistent
connections, the overhead is dominated by the server certificate as
discussed above. In the case of persistent connections, the upper
whiskers in Figure 5 are caused by the (at least once) necessary
certificate exchange. The median values however are significantly
lower as an established connection is re-used many times. This
variability in the TLS overhead also causes different overheads at
the TCP and outer layers, as the higher number of bytes transmitted
for the TLS layer also leads to more packets.

In summary, many of the one-time overheads required for TCP,
TLS and HTTP connection setup andmanagement can be amortized
if a persistent connection is used. However, even in this case, the
median overhead caused by the TLS and TCP layer are each already
of the size of the actual DNS message. For DNS resolution over
HTTP, this effect is pronounced because of the comparably small
size of the DNS message. When considering transmitting web pages
via HTTPS, this effect will be less pronounced in comparison to
DNS messages, given the larger size of websites.

5 DOH PERFORMANCE
In the previous sections we have quantified the potential impact of
head-of-line-blocking as well as the additional overheads of DoH.
In this section, we assess whether DoH impacts performance, more
specifically we look at a web browsing scenario and investigate
how a change to DoH affects page loading times.

We use the Firefox web browser to measure webpage load times
for the 1,000 highest ranked webpages in the global Alexa ranking.
The Alexa list was retrieved on 18 April 2019. We choose Firefox
because as of the time of writing this paper it was the only browser
with documented support for DoH. We use Firefox 66.0.3 for the
experiments. We rely on the Browsertime framework from the
sitespeed.io project5 to instruct Firefox for the measurements and
collect HAR files with the performance statistics.

We measure performance using the locally configured resolver,
and also using the public resolvers from Google and Cloudflare over
legacy DNS as well as DoH. This way, the performance obtained
with the local resolver provides a baseline, allowing us to assess how
a change to a cloud-provided DNS service affects performance. For
the cloud provided DNS services, we also assess the performance
difference between using the traditional UDP-based DNS protocol
and DNS-over-HTTPS. In this setup, each website was loaded three
times with the browser cache purged before each measurement
iteration. This was done from a university-local server.

The left plot in Figure 6 shows the CDFs of the cumulative DNS
resolution times per webpage in milliseconds. By cumulative DNS
resolution times, we mean the time it would take to perform all
DNS queries serially, whereas in reality they can be parallelised.
We crop the CDF plot at 20,000ms, since the results have a very
long tail.

We first observe that the cloud-based name resolution via UDP
leads to faster resolution times than using the local resolver. From
the cloud-based ones, Cloudflare leads to faster resolution times
than Google. When comparing DoH-services from Cloudflare and
Google, we observe that using DoH leads to longer DNS resolution
times than when using the traditional DNS resolution. This is to
be expected from the added overhead for encryption and transport.
Also, we observe that the DoH resolution provides comparable
resolution times to the local resolver, with again Cloudflare slightly
faster than Google.

Even though these results show that changing to DNS resolution
via DoH leads to longer DNS resolution times, this does not nec-
essarily translate into longer page load times. The second plot in
Figure 6 shows CDFs of the complete page load time, measured as
the time when the onload event was triggered. The onload event is
triggered when the whole page including all dependent resources

5https://www.sitespeed.io

https://www.sitespeed.io

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Timm Böttger et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 5000 10000 15000

DNS time (ms)

C
D

F

U/LO U/CF U/GO H/CF H/GO

0 5000 10000 15000

onload time (ms)

0 5000 10000 15000

DNS time (PL, in ms)

0 5000 10000 15000

onload time (PL, in ms)

Figure 6: CDF of DNS resolution and page load times (time of onload event): U/ indicates legacy resolver, H/ indicates resolution
via DoH, /LO indicates local resolver, /GO indicates Google and /CF indicates Cloudflare.

like stylesheets and images has been loaded [17]. Note that overall
page load times are faster than DNS resolution times as the browser
sends requests in parallel, whereas DNS plots shows cumulative
DNS resolution times without parallelism. The figure shows that
page load times are comparable for all resolution approaches. As for
the previous DNS resolution times, using a cloud-based DNS service
offers slightly faster page load times. There is however little differ-
ence between page load time via legacy DNS or DNS-over-HTTPS:
both resolution mechanisms achieve similar page load times.

Note that we also attempted to run the same experiments from
PlanetLab. Unfortunately, at the time of writing this paper, only 39
nodes were able to run these experiments, as most of them were
unreachable, and among those that were reachable, many were
running an OS that was too old to support a recent enough version
of Firefox that supports DoH. The limited results (plots on the right
in Figure 6) we obtained from PlanetLab however are consistent
with those we have obtained locally: DNS resolution via DoH takes
longer, but page load times overall change only little when changing
the resolution method.

Overall, the results of this section show that a switch to DNS-
over-HTTPS does not seem to incur significantly longer page load-
ing times. This means it is feasible to benefit from the better privacy
guarantees of DoH without sacrificing user-perceived page loading
times.

6 RELATEDWORK
DNS-over-HTTPS still is a relatively new protocol. To the best of
our knowledge, this paper is the first to look into the differences
between DNS-over-HTTPS, DNS-over-TLS and UDP-based DNS.
Mozilla has published a blog post [15] briefly describing their expe-
rience with a DoH trial in Firefox. This blog post however focuses
more on reporting experiences of using a third-party resolver than
on implications that stem directly from using DoH, especially the
transport aspect. In a blog post [13], Geoff Huston also asks for
the advantage of DoH over DoT. This post discusses application
features like HTTP push and namespaces, but does not discuss
insensibility against slow queries as we do.

Since the inception of DNS, the Internet has evolved and changed,
exposing the DNS protocol to new threats and challenges. The
unencrypted transport of DNS leads to security and censorship
issues [4, 14], whereas using UDP makes DNS usable for distributed
denial-of-service attacks [2]. Other works have proposed protocol

changes to use persistent connections and encryption [26]. These
works list and discuss issues with the traditional UDP-based trans-
port for DNS, of which most can be addressed by using DNS-over-
HTTPS instead. In that sense, they provide good arguments to
change to DoH, but do not discuss details of DoH directly.

Content delivery networks often use DNS to perform their traffic
redirection. It is an active research area, with works aiming at
better understanding these redirection strategies [5, 8, 19]. Other
works study DNS resolver behavior in the wild with respect to
latency and traffic redirection [1], look at the impact of DNS on
overall application delays in the Internet [6, 25] or look at DNS
infrastructure provisioning at the client side [23]. While all these
works also target DNS, they have a stronger focus on the actual
applications of DNS than the protocol itself.

7 CONCLUSION
DNS is one of the most important protocols for many networked
applications today and was originally designed as an unencrypted
protocol. Growing concerns about user privacy have led to pro-
pose more secure approaches. In this paper, we have surveyed
the current DoH landscape. We have exposed the diversity in the
supported content types, in the support for DNS-over-TLS, and in
the supported TLS versions. We have seen, that while most DoH
servers support a good set of security parameters, many of them
still do support deprecated legacy settings. We have then studied
the behavior of DoT and DoH against delayed queries, showing
that HTTP/2 offers advantages over HTTP/1 and DNS-over-TLS.
In the process, we have exposed the likely reason why DoT has not
gained traction compared to DoH, despite having had a head start
of a few years before DoH. We have then quantified the overheads
incurred by the HTTP and TLS layers of HTTP/2. Finally, we have
measured how DoH impacts page load times. This has shown that
it is possible to obtain the additional security of DoH with only
marginal performance penalties.

ACKNOWLEDGMENTS
We thank our shepherd Taejoong Chung and the anonymous re-
viewers for their reviews and constructive feedback.

This research is supported by the UK’s Engineering and Physical
Sciences Research Council (EPSRC) under the EARL: sdn EnAbled
MeasuRement for alL project (Project Reference EP/P025374/1).

An Empirical Study of the Cost of DNS-over-HTTPS IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

REFERENCES
[1] Bernhard Ager, Wolfgang Mühlbauer, Georgios Smaragdakis, and Steve Uhlig.

2010. Comparing DNS resolvers in the wild. In Proceedings of IMC.
[2] Marios Anagnostopoulos, Georgios Kambourakis, Panagiotis Kopanos, Georgios

Louloudakis, and Stefanos Gritzalis. 2013. DNS Amplification Attack Revisited.
Computers & Security (2013).

[3] Stéphane Bortzmeyer. 2013. JSON format to represent DNS data. Internet-
Draft draft-bortzmeyer-dns-json-01. https://datatracker.ietf.org/doc/html/draft-
bortzmeyer-dns-json-01 Work in progress.

[4] Stéphane Bortzmeyer. 2015. DNS Privacy Considerations. RFC 7626. https:
//doi.org/10.17487/RFC7626

[5] Timm Böttger, Felix Cuadrado, Gareth Tyson, Ignacio Castro, and Steve Uhlig.
2018. Open Connect Everywhere: A Glimpse at the Internet ecosystem through
the Lens of the Netflix CDN. SIGCOMM CCR (2018).

[6] Ilker Nadi Bozkurt, Anthony Aguirre, Balakrishnan Chandrasekaran, P Brighten
Godfrey, Gregory Laughlin, Bruce Maggs, and Ankit Singla. 2017. Why is the
Internet so slow?!. In Proceedings of PAM.

[7] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar. 2011. Understanding
Website Complexity: Measurements, Metrics, and Implications. In Proceedings of
IMC.

[8] Matt Calder, Xun Fan, Zi Hu, Ethan Katz-Bassett, John Heidemann, and Ramesh
Govindan. 2013. Mapping the Expansion of Google’s serving Infrastructure. In
Proceedings of IMC.

[9] Phillip Hallam-Baker and Rob Stradling. 2013. DNS Certification Authority
Authorization (CAA) Resource Record. RFC 6844. https://rfc-editor.org/rfc/
rfc6844.txt

[10] Paul E. Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS (DoH).
RFC 8484. https://doi.org/10.17487/RFC8484

[11] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul E.
Hoffman. 2016. Specification for DNS over Transport Layer Security (TLS). RFC
7858. https://rfc-editor.org/rfc/rfc7858.txt

[12] Geoff Huston. [n.d.]. APNIC Labs enters into a Research Agreement with Cloud-
flare. https://labs.apnic.net/?p=1127.

[13] Geoff Huston. [n.d.]. DOH! DNS over HTTPS explained. https://blog.apnic.net/
2018/10/12/doh-dns-over-https-explained.

[14] Philip Levis. 2012. The Collateral Damage of Internet Censorship by DNS Injec-
tion. SIGCOMM CCR (2012).

[15] Patrick McManus. [n.d.]. Firefox Nightly Secure DNS Experimental Re-
sults. https://blog.nightly.mozilla.org/2018/08/28/firefox-nightly-secure-dns-
experimental-results.

[16] Mozilla. [n.d.]. Bug 264354 - Enable HTTP pipelining by default. https://bugzilla.
mozilla.org/show_bug.cgi?id=264354.

[17] Mozilla. [n.d.]. Window: load event. https://developer.mozilla.org/en-US/docs/
Web/API/Window/load_event.

[18] Henrik Frystyk Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim
Gettys, Paul J. Leach, and Tim Berners-Lee. 1999. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616. https://rfc-editor.org/rfc/rfc2616.txt

[19] John S Otto, Mario A Sánchez, John P Rula, and Fabián E Bustamante. 2012.
Content Delivery and the Natural Evolution of DNS: Remote DNS Trends, Per-
formance Issues and Alternative Solutions. In Proceedings of IMC.

[20] Roberto Peon and Herve Ruellan. 2015. HPACK: Header Compression for HTTP/2.
RFC 7541. https://rfc-editor.org/rfc/rfc7541.txt

[21] The Chromium Projects. [n.d.]. HTTP Pipelining. https://www.chromium.org/
developers/design-documents/network-stack/http-pipelining.

[22] Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani, Slava
Galperin, and Dr. Carlisle Adams. 2013. X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP. RFC 6960. https://doi.org/10.17487/
RFC6960

[23] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2013. On
measuring the client-side DNS infrastructure. In Proceedings of IMC.

[24] Marty Strong. [n.d.]. Fixing reachability to 1.1.1.1, GLOBALLY! https://blog.
cloudflare.com/fixing-reachability-to-1-1-1-1-globally.

[25] Srikanth Sundaresan, Nazanin Magharei, Nick Feamster, Renata Teixeira, and
SamCrawford. 2013. Web performance bottlenecks in broadband access networks.
In SIGMETRICS Performance Evaluation Review.

[26] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin, and Nikita
Somaiya. 2015. Connection-oriented DNS to improve privacy and security. In
IEEE Symposium on Security and Privacy (SP).

https://datatracker.ietf.org/doc/html/draft-bortzmeyer-dns-json-01
https://datatracker.ietf.org/doc/html/draft-bortzmeyer-dns-json-01
https://doi.org/10.17487/RFC7626
https://doi.org/10.17487/RFC7626
https://rfc-editor.org/rfc/rfc6844.txt
https://rfc-editor.org/rfc/rfc6844.txt
https://doi.org/10.17487/RFC8484
https://rfc-editor.org/rfc/rfc7858.txt
https://labs.apnic.net/?p=1127
https://blog.apnic.net/2018/10/12/doh-dns-over-https-explained
https://blog.apnic.net/2018/10/12/doh-dns-over-https-explained
https://blog.nightly.mozilla.org/2018/08/28/firefox-nightly-secure-dns-experimental-results
https://blog.nightly.mozilla.org/2018/08/28/firefox-nightly-secure-dns-experimental-results
https://bugzilla.mozilla.org/show_bug.cgi?id=264354
https://bugzilla.mozilla.org/show_bug.cgi?id=264354
https://developer.mozilla.org/en-US/docs/Web/API/Window/load_event
https://developer.mozilla.org/en-US/docs/Web/API/Window/load_event
https://rfc-editor.org/rfc/rfc2616.txt
https://rfc-editor.org/rfc/rfc7541.txt
https://www.chromium.org/developers/design-documents/network-stack/http-pipelining
https://www.chromium.org/developers/design-documents/network-stack/http-pipelining
https://doi.org/10.17487/RFC6960
https://doi.org/10.17487/RFC6960
https://blog.cloudflare.com/fixing-reachability-to-1-1-1-1-globally
https://blog.cloudflare.com/fixing-reachability-to-1-1-1-1-globally

	Abstract
	1 Introduction
	2 The DoH landscape
	3 Transports for secure DNS
	4 Overhead
	5 DoH Performance
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

