SCANDEX: Service Centric Networking for Challenged
Decentralised Networks

Arjuna Sathiaseelan,',Liang Wang,*Andrius Aucinas,!, Gareth Tyson,?
Jon Crowcroft!

L Computer Laboratory
University of Cambridge
Cambridge, UK
first.last@cl.cam.ac.uk

ABSTRACT

Do-It-Yourself (DIY) networks are decentralised networks
built by an (often) amateur community. As DIY networks
do not rely on the need for backhaul Internet connectivity,
these networks are mostly a mix of both offline and online
networks. Although DIY networks have their own home-
grown services, the current Internet-based cloud services are
often useful, and access to some services could be benefi-
cial to the community (e.g. Google Maps). Considering
that most DIY networks have challenged Internet connectiv-
ity, migrating current service virtualisation instances could
face great challenges. Service Centric Networking (SCN)
has been recently proposed as a potential solution to manag-
ing services more efficiently using Information Centric Net-
working (ICN) principles. In this position paper, we present
our arguments for the need for a resilient SCN architecture,
propose a strawman SCN architecture that combines mul-
tiple transmission technologies for providing resilient SCN
in challenged DIY networks and, finally, identify key chal-
lenges that needs to be explored further to realise the full
potential of our architecture.

1. INTRODUCTION

Recent years have seen an increase in localised com-
munication paradigms, e.g. community networks, do-it-
yourself (DIY) networks and mobile ad hoc networks.
Such networks do not rely on the need for managed
backhaul Internet connectivity and, hence, they are a
mix of both online and offline (i.e. they can be both
connected and disconnected from the wider Internet).
Although such decentralised networks can have their
own homegrown services, it is fair to say that current
Internet-based cloud services (e.g. Google Docs) could
be beneficial to many communities. Clearly, discon-
nected offline networks would find it impossible to ac-
cess such remote cloud services though.

The above suggests that building technologies that
support easy hosting and migration of local services
could be highly beneficial in DIY networks. If remote

2School of EECS
Queen Mary University of London
London, UK
first.last@gmul.ac.uk

cloud services could be migrated within individual DIY
setups, then users could seamlessly use them without
requiring consistent egress connectivity. This, however,
is not trivial. Key questions include: (1) Which ser-
vices should be migrated? (2) When should they be
migrated? (3) Can these services continue to operate
without remote connectivity? The difficulty of address-
ing these questions is exacerbated by the unpredictable
nature of DIY networks, which may frequently move
between online and offline statuses.

The advent of virtualization technologies, especially
low cost unikernels, offers an interesting avenue of ex-
ploration in this space. Unikernel architectures [1] al-
low very small (e.g. 2MB) virtual machine services to
be migrated across the network with very little cost.
Such capabilities are ideal for DIY networks, which may
struggle to host and transport larger virtual machines.
This paper argues that the integration of services with
DIY networks, underpinned by a unikernel architecture,
could open up a whole new communications paradigm,
enabling low cost DIY networks to become far more
powerful in their capabilities.

Although attractive, the above principles bring many
challenges. Whereas transporting unikernel-based ser-
vices within a datacentre is trivial, transporting them
across unpredictable and unstable networked environ-
ments is far more difficult. Even if the service is mi-
grated successfully, many existing services are online-
only (e.g. Google Map) and therefore would struggle to
operate once subsequent egress connectivity fails.

Service Centric Networking (SCN) [4] has recently
been proposed as a potential solution for deploying and
managing networked services. It has largely emerged
from the Information Centric Networking (ICN) com-
munity [7]. SCN decouples the service from their origin
location, removing the need for the current end-to-end
client server model. This means that the service and/or
content can be served directly by any host that currently
has the service/content. Current SCN architectures do
not yet offer the necessary underlying support to oper-



ate in challenged scenarios (e.g. where a DIY network
loses egress connectivity). Instead, SCN solutions fo-
cus mainly on well-connected environments. Although
mobility has been partially addressed by certain ICN so-
lutions, they still do not offer resilience during periods
of total disconnectivity [11]. As such, we argue that
SCN principles should be extended to better support
the unique properties of DIY networks.

This position paper proposes SCANDEX (SCNx)! —
a strawman architecture (c.f. Fig. 1) specifically de-
signed to support services in challenged DIY commu-
nity networks. Unlike previous SCN designs, we focus
on supporting situations where networks may have un-
predictable and intermittent connectivity. This extends
to both intra- and inter- network connectivity. We un-
derpin SCNx with unikernel-based services that can be
seamlessly migrated, cached and executed across (theo-
retically) all devices within the network. To enable this,
we borrow principles from the ICN, SCN and Delay Tol-
erant Networking (DTN) [6] communities. Rather than
hosting services in fixed predetermined locations, SCNx
allows them to be hosted anywhere. A name-based rout-
ing scheme allows clients to access any nearby copy of
the service, which may be cached and replicated at will.
Importantly, we integrate delay tolerant techniques to
allow services to be passed through the network in a
store-and-forward fashion, thereby mitigating the prob-
lems brought about by communication failures. We be-
lieve that this offers a positive first step towards bring-
ing popular services to DIY community networks.

2. BACKGROUND

An SCN is a network that is explicitly built around
the concept of services [4]. Any node can offer services
to the network, and any (authorised) node can consume
them. Unlike more traditional service oriented architec-
tures (SOAs), the network is inherently involved in the
process by allowing services to ‘’migrate” to any network
location and exist as a self-contained unit (e.g. within
a router or middlebox).

The principles of SCN have emerged largely from
the Information Centric Networking (ICN) community.
ICN fundamentally changes the communications API
by allowing nodes to request unique content objects,
identified using unique names. The network is then
solely responsible for returning the requested object.
By decoupling content from specific locations, it be-
comes possible to easily cache these atoms within the
network. Several ICN projects ([7, 8, 9]) have advocated
redesigning the Internet based on these principles. In
essence, such projects, propose name-based routing/res-
olution schemes that allow clients to discover (cached)
copies of content, thereby returning the object in the

!Akin to Spandex - our architecture allows flexibility for
operating across diverse challenged environments.

“optimal” manner. SCN follows similar principles, but,
instead, allows services to be discovered and accessed
independent of their location. It has been noted that
that these properties are very promising in challenged
environments [10, 11]. For example, by caching a service
near to the user, it may become possible for the user to
access it locally when backhaul Internet connectivity is
not available (e.g. after an earthquake).

As of yet, however, mainstream SCN implementa-
tions struggle in more challenged environments (where
connectivity at both the front and backhaul are inter-
mittent or disrupted for a period of time), as global
synchronous connectivity needs to be available. For ex-
ample, if a service were hosted in a location where no
end-to-end path exists between it and the consumer, a
request would simply fail. SCN is therefore only ben-
eficial in challenged environments when an accessible
cached copy of the service exists. In contrast, DTN ad-
dresses this concern by supporting disruption and dis-
continuity in end-to-end paths [6]. Rather than relying
on contemporaneous connectivity on all segments of an
end-to-end path (as IP networks do), DTN operates in a
store-and-forward fashion. Intermediate nodes assume
temporary responsibility for messages and keep them
until an opportunity arises to forward them to the next
hop. This inherently deals with temporary disconnec-
tions or disruptions, allowing service instances to be
progressively passed through the network hop-by-hop
until reaching their consumers.

We have previously proposed an architecture that
combines IP, ICN and DTN into a single unified archi-
tecture, allowing content to be accessed via any avail-
able technology [3]. Here, we build on this work to also
support the migration of services (as well as content).
Such services are modelled as unikernels: small VMs
dedicated to executing a single role. Much like ICN
supports the caching of content as a independent unit,
we propose to make service instances (unikernels) en-
tirely mobile and cacheable. This is underpinned by a
name-based routing strategy (similar to ICN), that al-
lows local services to be easily discovered and accessed.
Through this, we intend to allow DIY networks, that
may suffer periods of offline disconnection, to utilise lo-
cal services that otherwise would become unavailable.
Importantly, we integrate DTN capabilities, allowing
services to be opportunistically distributed through the
network in a hop-by-hop fashion. This is particularly
critical in DIY networks, where the assumption of con-
stant egress connectivity is often false.

3. SCANDEX (SCNX)

We propose SCANDEX (SCNx), a strawman SCN
architecture specifically designed for challenged decen-
tralised networks. It allows services to exist in the net-
work as self contained objects (similar to information



Control path

Architectural o O
st PRuo @ @low Ghseo 2o

Island A P

R - -
: .ymy

Service path

Intermittent path

Island B

Figure 1: Example SCNx network.

objects in ICN). Each service is uniquely identified and
can be, thus, cached (and accessed) from any location.
Clients contact services by issuing a service request con-
taining the service’s unique identifier, alongside any in-
put parameters (c.f. Section 4). Services, themselves,
can be in one of two states: stored and instantiated.
A stored state is not running and is, instead, within
memory as a static object; an instantiated service is
one that is running and able to accept service execu-
tion requests. In SCNx, individual services are actually
unikernel VMs [1], which are produced by Publishers
and requested by Subscribers. Subscriptions are per-
formed by consumers sending Interest messages that
request a given service.

An SCNx network consists of four key components:

1. Service Ezecution Gateways (SEG): These are the
points of attachment for clients and servers, and
could exist as wireless access points or base sta-
tions. A SEG also hosts and executes services on
behalf of its attached clients.

2. Forwarding Nodes (FN): These are are responsi-
ble for routing requests for services towards avail-
able copies. These nodes also cache services lo-
cally, thereby allowing local copies to be returned
to the client (they do not execute services though).

3. FEdge Gateways (GW): These are responsible for
connecting different domains (e.g. two separate
networks). Gateways can also temporarily func-
tion as Publishers and Subscribers of services.

4. Brokers: These perform the service resolution and
are also respomnsible for performing intradomain
forwarding. Every device (SEG, FN, GW) that
wants to be part of the SCNx network within a
domain should register with a broker and should
be reachable by the broker. Reachability can be
either through a direct path between the broker
and the device or could be hop-by-hop store-and-
forward if path is intermittent (i.e. DTN). The bro-
kers could use distributed routing protocols such as
OSPF to discover the network topology. Brokers
between different domains specifically exchange
Interest messages using scoped flooding. Brokers
could also exchange service resolution information.
Brokers can reside in a standalone device or within
a SEG, FN and/or Edge Gateways.

A unique feature of SCNx is that it integrates many

different technologies together as transmission strate-
gies. We define a transmission strategy as being a
mechanism by which any objects containing control or
data information can be transported from one location
to another. For example, based on the environment
of a DIY network, SCNx could transport an instance
of a requested service or an Interest via IP, DTN or
other source routing methods (e.g. Bloomfilters), if sup-
ported. Through this, SCNx adapts the DIY network to
use the most appropriate communications technologies
for its specific needs (c.f. Section 4).

The operation of SCNx is best explained via an exam-
ple (Figure 1). Imagine a disaster area, where an earth-
quake has damaged local communications infrastruc-
ture. Several local DIY networks have quickly emerged,
operating using ad hoc wireless links. The regional au-
thorities have invested in a Unmanned Aerial Vehicle
(UAV) that flies along predetermined paths over the dis-
aster zone. When the UAV comes into wireless contact
with a DIY network, it temporarily can communicate.
The UAV may, or may not, have backhaul Internet con-
nectivity. The UAV and the DIY networks all operate
SCNx. For simplicity, all nodes on an intradomain level
utilise the same communications technologies; we as-
sume a (relatively) well connected setup that might, for
example, be connected by classic ad hoc protocols such
as AODV.

We highlight the key components of SCNx using an
example request. A client node in Island A wishes to
access a service that is located in Island B. Each client is
attached to its local DIY network via a SEG. A service
request is therefore initially passed from the client to the
SEG (i.e. stipulating the name of the desired service).
If the SEG possesses a copy of the service locally in its
cache, the request is simply passed to the local service
instance and it is executed immediately (note that ex-
ecution occurs on the SEG). If, however, the SEG does
not have a local copy, the request must be forwarded
on. The SEG translates the request to a service Inter-
est (request) using the SCNx naming format discussed
in Section 4.

Interests are then passed through the network via
FNs to a Broker. Each DIY network must contain at
least one Broker. These are responsible for indexing all
services that are locally available in the DIY network
(intradomain). This means all SEGs that host services
must register them with the Broker. If the Broker is
aware of an instance of the service, the broker contacts
the device that has the instance of the service to mi-
grate the service instance to the SEG using a specific
transmission module that is suitable for the underlying
network topology. If the underlying network has stable
connectivity, this transmission strategy could be carried
out using standard IP or using a source routing method
using Bloomfiliters. If the underlying network is chal-



lenged, then the transmission strategy would be a DTN
transmission strategy (using the Bundle Protocol [6] or
other DTN options). Once the service instance is mi-
grated, the SEG then instantiates the migrated instance
and serves it to its clients.

If the Broker does not know of any copies of the
service within its own network, it is necessary to for-
ward the Interest on an interdomain level via the GW.
Before forwarding the Interest, all brokers record the
Interest as pending (denoting this is yet unresolved).
Clearly, interdomain communications are far more chal-
lenging than intradomain communications because dif-
ferent network islands may utilise different technologies
that may even vary over time based on conditions. Most
problematic is the intermittent connectivity that may
make the distribution of state information difficult. To
address this, the Broker floods its neighbouring net-
works with the Interest. The exact mechanism by which
the neighbours are contacted will vary based on their
capabilities. We envisage two key possibilities:

e Synchronous: If the Broker has full synchronous
connectivity (e.g. IP) to other network islands
and/or the UAV, it will directly contact them. It
will forward the Interest and wait for the response.

e DTN: If the Broker only has intermittent connec-
tivity to other network islands and/or the UAV,
it will temporarily store the Interest until another
network/UAV comes into communications range.
Based on the TTL, these networks/UAVs may for-
ward the Interest further to other parties. Most
notably, the UAV would carry the Interest and for-
ward it when it comes into contact with Island B.

The above transmission strategies will both result in
the Interest being passed into Island B. It will enter
via Island’s GW; this node will then take responsibil-
ity for trying to obtain the service from its local area.
To achieve this, the GW will pass the Interest to its
network’s Broker, requesting the service. As the ser-
vice is located in Island B, the Broker discovers the
service and instructs the host to pass it to the GW.
The GW in B now has the migrated instance locally in
its caches. The broker in Island B instructs the GW
to forward the service instance using a DTN transmis-
sion strategy to the UAV. The GW now forwards the
service instance using a DTN transmission strategy via
the UAV reaching the GW in island A. When the GW
in Island A receives the service instance, it caches it
and then publishes this to its own broker. The broker
upon receiving the Publish message, recognises there is
a pending Interest, and instructs the GW to forward
the service instance to the actual subscriber using the
intradomain forwarding. The SEG on receipt of the
service instance, instantiates the service and serves the
clients locally over standard IP.

4. KEY CHALLENGES

In this section, we briefly summarise a list of key chal-
lenges that needs to be explored further to realise the
full potential of our architecture.

4.1 Service Caching and Synchronization

SCNx caches services within the network. By deploy-
ing the services to SEGs as close to clients as possible,
the services are made available during periods of discon-
nection from the wide area network. Although service
popularity follows a highly skewed distribution, it is un-
likely that we can run all the services simultaneously at
the SEG given the limits of physical resources. The
forwarding nodes (FN) therefore become storage nodes
that cache the small unikernels.

Various caching algorithms can be implemented to
achieve different goals. E.g. the most popular services
could be moved to the edge to reduce service latency and
network use. If the SEG does not have sufficient capac-
ity for the service, we can use LRU/LFU to evict the less
popular ones. If there are other copies in the network,
the SEG can simply drop the evicted service. If the
evicted service is the only copy registered in the broker
(i.e. the only copy in the network), instead of dropping
the service completely, we can push the evicted services
to an upstream FN. The SEG then informs the bro-
ker about the eviction and the location of the evicted
service.

Multiple instances of a service can exist within the
network, which introduces complexity but improves ser-
vice availability. If multiple instances exist within a
SCNx network, the broker maintains a list of all avail-
able copies. If a service is evicted out from the cache,
the broker unregisters the service and updates the in-
formation by flooding. The broker should pick which
service instance it should forward the request to avoid
duplicate responses. By allowing stateful services and
mutable content, however, we are confronted with the
state synchronisation problem of the services, i.e. it is
necessary to provide services with the means of merging
their state. The merge semantics are service-dependent
and should not be implemented within SCNx architec-
ture. Instead the services themselves need to be de-
signed to incorporate state updates from each other.
One option of doing so is to provide a version control
mechanism for state synchronisation [12], where each
application decides how to resolve state conflicts.

For stateless services, multiple copies usually only in-
troduce negligible storage overheads. Comparing the
significant improvement on the system robustness, ser-
vice availability and latency reduction, the overall cost
is marginal. However, for stateful services, proper syn-
chronization mechanisms must be implemented to guar-
antee the different service copies have a consistent view
of the service state. Obviously, we need to balance the



GET /api/0.6/map?bbox=11.54,48.14,
11.543,48.145 HITP/1.1
Host: api.openstreetmap.org

Figure 2: RESTful API request for a map within a
bounding box.

trade-off between synchronization overhead and latency
reduction.

4.2 Service Representation and Registration

One of the key strengths of SCNx is the interoperabil-
ity with legacy clients and services through the use of
SEG. In particular, there is a direct mapping between
the hierarchical RESTful API style addresses (Fig. 2)
and SCNx service names. As RESTful API calls can
contain parameters both within the URL and the body
of the request, we only map the URL onto the SCNx ser-
vice name and put the request content into the body of
the Interest message. The representation does not dis-
tinguish static content from services since everything is
considered as a service. For example, raw static content
is wrapped into a service publishing files in response to
subscriptions. In the above example, a user requests
a map within a certain bounding box from the Open
Street Map. The coordinates of the location (bbox pa-
rameter) are embedded into a request which is used by
a SEG to construct a service Interest.

Service registration is managed by the SEG. As it
controls when to instantiate or evict a service, it an-
nounces to the brokers every service it has instantiated
by flooding an Interest message to all brokers within
its own domain. The registration information is a tuple
< mame, loc > which contains both the identifier and lo-
cator(s) of a service. The name of a service is simply its
scnx name, whereas the loc is a list of locators for every
potential underlying transmission strategy. The reason
is each transmission strategy has a well-defined locator
scheme. In order to incorporate the flexibility in rout-
ing and guarantee the reachability of the service, the
broker needs to know how to describe the service loca-
tion in every transmission strategy. E.g., the locator in
IP transmission strategy can be defined as IP : PORT
combination; the one in LIPSIN or Bundle Protocol can
be defined as node’s id; the one in DHT can be the hash
value of id; etc.

Service discovery itself is an important topic that
needs further investigation: users could potentially uti-
lize conventional methods such as search engines to dis-
cover various services. However, such services them-
selves may become inaccessible when the network is iso-
lated. In such cases, in-network service discovery can
be implemented by querying the available brokers, the
broker can return a list of available services in a well-
defined format, e.g., Web Service Definition Language

Figure 3: Service dependency and migration strategies

(WSDL). This approach would violate the need to inter-
operate with legacy clients. On the other hand, some
lightweight service directories can be implemented as
default services constantly residing within the network
to provide context-based content provision and recom-
mendation.

4.3 Distributed Authentication

The authentication requirements of SCNx are re-
duced by using self-contained service VMs (unikernels)
as the basic representation. Implementation details to-
gether with any security credentials stored within the
VM are not directly accessible to any other nodes or
services due to strong isolation offered by the VM hy-
pervisor running on a SEG. Authentication between the
user and the service is therefore specific to each service
and can use a variety of current methods, such as pass-
word or cookies.

Authentication of individual requests and responses
becomes challenging when they traverse the boundaries
between the legacy and the SCNx networks. Subscribe
messages must not be encrypted for correct routing to
publishers and messages traverse multiple hops in the
network which may not be trusted, especially in DIY
networks. End-to-end encryption commonly used today
(e.g. TLS) is therefore not viable.

One approach possible due to the small service foot-
print and strong isolation is to require each SEG to run
a corresponding authentication sub-service for each ser-
vice it serves or forwards requests for. This sub-service
can then be used for RESTful to SCNx request transla-
tion: it would terminate the encrypted connection using
service keys, sign and potentially encrypt the contents
of the newly generated subscription message, but pro-
vide the hierarchical service name for the SEG to use
for resolving the service.

4.4 Managing Service Dependencies

Authentication is just one example where a service is
a combination of multiple, smaller sub-services. Such
a dependency can be described using a directed acyclic
graph (DAG), used commonly in Service-Oriented Ar-
chitectures (SOA). In existing proposals [4], the service
dependency is described as an aggregation of multiple
independent chains, which are required to be explicitly
embedded in the header of an Interest. In SCNx, a



user only needs to interact with the root of a service
DAG. The services themselves initiate communication
with other sub-services they depend on.

Figure 3 presents a simple example — service A is the
requested root service, which depends on the outputs
from B and C. Meanwhile, both B and C rely on service
D to finish their jobs. Four dashed squares represent
four SEG nodes. The weight of a node represents the
cost of running it and the weight of an arrow — traffic
cost between communicating services. In this example,
the amount of traffic between A and B (also C and D)
is small, but the cost of running both of these services
may be too high for the same SEG. At the same time,
there is a considerable amount of traffic from both B
and C to D. By duplicating service D at both nodes
where B and C reside, we can significantly reduce traf-
fic footprint. However, if there is negligible traffic be-
tween B and D (also C and D), namely the weight of the
corresponding edges are small, then the service will be
executed remotely. In this case, duplicating the service
D only introduces more traffic overhead comparing to
transmitting the service results.

The choice of the cost metric is network-specific, how-
ever, the optimisation can be solved in a centralized
way using standard optimization techniques, e.g., at the
broker. However, this requires the broker to not only
have the knowledge of all service dependencies encoded
within the services, but also their costs. Though such
information can be obtained by sampling and sharing
their footprint, it adds further overheads and additional
state synchronisation.

On the other hand, it is not difficult for a node to
estimate its own cost. As described above, the SEG
makes the decision to run a service locally or to forward
each service request to a corresponding node elsewhere
in the network. The explicitly recorded cost together
with the DAG of dependent sub-services forms the basis
for a SEG to decide whether to migrate the service and
if yes — which parts of it.

4.5 Transmission Strategy Selection

SCNx incorporates multiple transmission strategies
in the architecture, hence the broker needs to select the
best strategy for both delivering the control and data
information objects. From the users’ perspective, such
decisions should be completely transparent. Although
the underlying topology (whether its fixed or mobile)
does not change often, intelligent in-network decision
making requires the SCNx network to be context-aware
and event-driven so that it can respond quickly to the
changes in network conditions and adjust the strat-
egy adaptively. Such a goal is achieved by exchang-
ing the information among the brokers in the control
plane. Whenever a network event happens, e.g., node
failure, link failure or network partition, the event will

be detected by the nearby nodes and the update will be
propagated to every broker within the network domain.
Therefore, the brokers can have a consistent view of
the network condition to help them in deciding proper
transmission strategies.

S. CONCLUSION

Migrating current service virtualisation instances
over decentralised networks is a challenge. In this pa-
per, we discuss this problem, and consider SCN as a so-
lution. Current SCN solutions proposed using existing
ICN principles still face challenges in disconnected envi-
ronments. We propose SCANDEX (SCNx), a strawman
SCN architecture that combines multiple transmission
technologies such as IP and DTN for providing resilient
SCN in challenged DIY networks. We also discuss a list
of key design challenges that needs further exploration.

Acknowledgements

Work funded by EU H2020 UMobile Project (Grant
agreement no: 645124).

6. REFERENCES

[1] A. Madhavapeddy and D. Scott, Unikernels: The
Rise of the Virtual Library Operating System,
CACM, January 2014

[2] G. Xylomenos et al,, A Survey of
Information-Centric Networking Research, IEEE
Communications Surveys and Tutorials, 2014.

[3] A. Sathiaseelan et al, An Internet Architecture for
the Challenged, IAB ITAT Workshop, December
2013.

[4] T. Braun et al, Service-Centric Networking, IEEE
ICC 2011.

[5] B.H. Bloom, Space/time trade-offs in hash coding
with allowable errors, CACM, July 1970.

[6] K. Fall, A Delay-Tolerant Network Architecture
for Challenged Internets, IRB-TR-03-003,
February 2003

[7] V. Jacobson et al, Networking Named Content,
CoNEXT, December 2009.

[8] D. Trossen, G. Parisis, Designing and Realizing
an Information-Centric Internet, IEEE
Communications Magazine, July 2012.

[9] T. Koponen et al, A Data-Oriented (and Beyond)
Network Architecture, SIGCOMM 2007.

[10] G Tyson et al, “Towards an information-centric
delay-tolerant network”, IEEE INFOCOM
NOMEN, 2013.

[11] G. Tyson et al, Beyond Content Delivery: Can
ICNs Help Emergency Scenarios?, IEEE Network,
2014.

[12] B. Farinie et al, Mergeable Persistent Data
Structures, JFLA 2015.



