
A Reflective Middleware to Support Peer-to-Peer

Overlay Adaptation

1
Gareth Tyson,

1
Paul Grace,

1
Andreas Mauthe,

1
Gordon Blair and

2
Sebastian Kaune

1ComputingDepartment, InfoLab21, Lancaster University, Lancaster, UK

2KOM Multimedia Communications, Technishe Universität Darmstadt, Germany
1{g.tyson, p.grace, andreas, gordon}@comp.lancs.ac.uk, 2kaune@kom.tu-darmstadt.de

Abstract. As peer-to-peer systems are evolving from simplistic application

specific overlays to middleware platforms hosting a range of potential

applications it has become evident that increasingly configurable approaches

are required to ensure appropriate overlay support is provided for divergent

applications. This is exacerbated by the increasing heterogeneity of networked

devices expected to host the overlay. Traditional adaptation approaches rely on

simplistic design-time isolated fine-tuning of overlay operations. This,

however, cannot fully support the level of configurability required by next

generation peer-to-peer systems. To remedy this, a middleware overlay

framework is designed that promotes the use of architectural reconfiguration for

adaptive purposes. Underpinning this is a generic reusable component pattern

that utilises software reflection to enable rich and extensible adaptation of

overlays beneath divergent applications operating in heterogeneous

environments. This is evaluated through a number of case-study experiments

showing how overlays developed using the framework have been adapted to

address a range of application and environmental variations.

Keywords: Adaptation, peer-to-peer, reflective middleware

1 Introduction

As distributed computing has moved towards increasingly decentralised models it

has become evident that responsive and extensible adaptation mechanisms are integral

for real-world deployment. Peer-to-peer networking is a prominent example of such a

technology. By pushing functionality to the edge of the network it is possible to utilise

the extensive resources available at end-hosts. However, by doing so it means that it

is necessary to execute system functionality in increasingly uncontrolled and diverse

environments, ranging from stable and well-connected desktop computers to low-

power embedded devices.

This increasing diversity raises the question of how a system can be expected to

effectively adapt in continually evolving operating environments. Early peer-to-peer

systems were strongly bound to their application, however, recently there has been a

move towards utilising peer-to-peer overlays as a middleware platform for a variety

of applications to operate over e.g. [12][13]. This means that overlays now must not

only adapt to their environment but also to the requirements of any applications built

over them. Whereas traditional mechanisms (e.g. parametric adaptation) have proved

adequate in earlier peer-to-peer overlays that are restricted to a single application, it is

clear that they are severely limited in their scope (e.g. file sharing). This becomes

evident when deploying such overlays in diverse operating environments below

various applications e.g. performing video streaming in MANETs.

This paper designs and evaluates a middleware overlay framework that promotes

and utilises extensible architectural adaptation. Central to this design is the use of

abstraction, reconfigurable component-based engineering and reflection to facilitate

the convenient and extensible adaptation of node behaviour in both local and

distributed settings. The rest of the paper is structured as follows. Section 2 offers a

background to the work. Section 3 then describes the overlay middleware framework

alongside the key principles of its operation. Subsequently in Section 4, a component

pattern is described to show how overlays can be developed in the framework.

Section 5 evaluates the overlay framework primarily using case-study experiments to

highlight the capabilities of architectural adaptation. Lastly, Section 6 concludes the

paper outlining areas of future work.

2 Background and Motivation

There has been a large body of work carried out into peer-to-peer networking. This

has focussed on the construction of increasingly sophisticated and novel designs

addressing application areas such as video streaming [25], distributed searching [6]

and distributed object location [22]. These systems have generally been developed

using ‘ad-hoc’ overlay-specific approaches to adaptation, focussing on adaptation for

maintenance purposes [17][21][22] as well as optimisation purposes [1][2][4].

These adaptation approaches can be separated into two primary groups (although

other categorisations also exist e.g. [14]). The first category we term parametric

adaptation. This is discrete parameter adaptation based on variable inputs to a fixed

algorithm. For instance, GIA [6] utilises parametric adaptation when constructing its

topology. This is done by selecting different neighbourhood sizes based on node

capabilities. The second category we term policy adaptation. This is performed using

variable sets of algorithms that are exchanged during runtime. For instance,

BitTorrent [2] uses policy adaptation by utilising different chunk selection algorithms

based on the current download status.

Whereas these mechanisms have proved adequate in traditional peer-to-peer

systems (e.g. file sharing) it is evident that their potential is limited in next generation

applications and networks. This is because both mechanisms require the design-time

isolation and implementation of adaptive functionality. This limits flexibility when

deployed in diverse environments possessing unpredictable characteristics. For

instance, an unstructured search overlay might adapt its resilience algorithms by

parametrically altering the number of neighbours it utilises. This, whilst adequate in a

traditional deployment, does not sufficiently support adaptation if ported to a mobile

ad-hoc network (MANET). This is because it would also be necessary to adapt a

number of alternate concerns. A new localised neighbour selection policy would be

required to limit egress communications. Similarly the forwarding algorithms would

require adaptation to exploit the broadcast nature of the MANET environment.

Further, the maintenance procedures would require modification to respond to the

high latency, transient nature of peers.

These criticisms were first provided by Oreizy et al [19]. This seminal paper

promoted the use of well-defined software architectures for supporting system

evolution. Later work such as [3][12] further identified the advantages of software

architectures in adaptive system design. This work dictates that entire systems are

built from well-defined independent software entities called components [8] that

possess fixed capabilities (interfaces) alongside well-defined dependencies

(receptacles). Through this, specialised and adaptive systems can be built by

dynamically interconnecting optimal component interfaces and receptacles during

runtime. The complete construction of systems from abstracted components further

opens up adaptation to any aspect of the system rather than limited sets of

functionality identified at design time.

In the last decade a number of adaptive systems have been developed using these

principles. To support these, a number of lightweight component models have

emerged e.g. Fractal [5] and OpenCOM [8]. These component models support

adaptation by managing such things as component dependencies and runtime

reconfiguration. Notably these two examples further support the concept of reflection

[16]. This is the ability for a system to gain introspection to the capabilities and

behaviour of its constituent components. This allows a system to match its

requirements to its available components to build new and extensible configurations.

A range of reflective middleware has been developed for such things as QoS [7],

remote method invocation [3] and sensor networking [12]. However, only limited

work has been carried out into the architectural adaptation of overlays. The Open

Overlays project [12] carried out initial work in the area, however, this takes a coarse

grained approach. RaDP2P [15] and AdaPtP [14] look at standardised adaptation for

peer-to-peer systems. These, however, focus on adaptation strategies rather than the

underlying platform for adaptation i.e. parametric, architectural etc. PROST [20]

utilises abstraction for overlay adaptation (specifically for structured overlays). It does

this by using a standardised API (e.g. Dabek et al [9]) and using different overlay

networks behind it. This, however, only offers very simplistic adaptation strategies

that do not offer sufficiently fine-grained, rich adaptation for real-world usage.

3 Principles behind Reflective Overlay Adaptation

This section introduces the principles behind architectural reconfiguration and how

they can be exploited by peer-to-peer system to achieve flexible adaptation.

3.1 Abstraction and (Re)Configurable Software Design

Abstraction is an important concept in software engineering. It forms a platform

for both software evolution and system adaptation. It involves the modularization of

system functionality into well-defined abstractions, shown as small boxes in Fig 3.1;

these each represent one abstracted aspects of the overlay’s functionality. This can be

done in a very coarse sense (e.g. the overlay as one unit) or alternatively in a very fine

grained sense (e.g. placing every method behind an independent abstraction). By

taking a finer-grained approach the entire system is opened up to adaptation by

supporting the modification of any system aspect behind its interface. This therefore

allows multiple implementations of the same interface to be dynamically exchanged

on a node to react to context variations in the operating environment; these individual

implementations are termed pluggable components.

ISeach

Context

Engine
Gnutella Chord

IDHT

Application

Network
Fig 3.1 Overview of Framework Configured with ISearch and IDHT

An important design concern is the way that system functionality is separated into

these independent components. A standardised approach to functional separation is

termed a component pattern. The framework’s default component pattern for

implementing overlays is described in Section 4. As well as these internal

abstractions, however, the framework also exploits an external abstraction. This is the

provision of standardised access to the overlay allowing the application to seamlessly

operate with the overlay, even during adaptation. This can be seen in Fig 3.1 with the

ISearch and IDHT abstractions being offered to the application. These abstractions, in

turn, are mapped to the underlying functionality of supporting overlays (in this

example, Gnutella [6] and Chord [22]). This allows alternative overlays (or adapted

configurations of the same overlay) to be interchanged behind the abstractions e.g.

exchanging Chord for KAD [18] in unreliable environments. A number of other

abstractions are also currently available in the framework, including: multicast, group

messaging and stored distribution. Lower level native abstractions are also provided

to support access to the base overlay operations i.e. routing messages.

3.2 Reflection and Context-Aware Configuration

To perform architectural adaptation it is necessary for a node to be aware of its

own software structure. Reflection is the enabling technology behind this; it allows a

piece of software to inspect and manipulate its own implementation. This allows the

node to explicitly state which components are operating and how they interact.

Importantly, it further allows the node to dynamically replace such components to

best serve the host. To enable this selection process, components are associated with

meta-tags describing particular attributes of their behaviour in name-value pairs.

Composites of components are further constructed to build more sophisticated

bodies of functionality (for example, in Section 4 it is described how a control

component is composed of finer-grained components). These composites are

represented by configuration scripts. Simple scripts can dictate the interconnection of

two components whilst more sophisticated scripts can describe the construction of a

fully functioning node. Importantly, each script is required to offer meta-information

that describes its characteristics in the same way that components are.

When an application is initiated it must provide the middleware with two sets of

information. This first set is its functional requirements; these are all the application’s

overlay interface requirements (e.g. IDHT, ISearch etc). At runtime, this information

is passed to the middleware’s context engine. This is a decision engine that selects the

optimal configuration for a particular set of requirements. It iterates through all

available components and scripts to locate ones that offer the desired interfaces.

Once a set of compatible configurations have been selected, the context engine

inspects the next set of requirements provided by the application: the behavioural

requirements. These are rules that define the preferred meta-values of the overlay’s

constituent components. For instance, a behavioural requirement could be that a

forwarding algorithm must be able to route in log(N) time. This would indicate that

the IRouting component attached to the interface must achieve log(N) efficiency. This

would be represented through the rule:

 [Time_complexity==’log(N)’]

Due to the distributed nature of peer-to-peer systems it is often necessary to

provide coordinated reconfiguration between multiple peers. To support this, the

middleware utilises a just-in-time approach that exploits reflection to allow nodes to

dynamically adapt as and when other peers require them to. One reflective attribute

provided by components and configuration scripts is the protocol messages that they

can process. If a message is received at the transport layer of the framework that the

current configuration cannot handle then it is reconfigured to process the message.

This is done by constructing a new behavioural requirement that includes the ability

to handle the unknown protocol message identifier e.g.

[Protocol_support==’LB_Routing:LoadUpdate’]

 This rule is then passed to the context engine which reconfigures the node based

on the new requirements. This results in communities of dynamically adapting peers

cooperating within the same configuration. By utilising the middleware’s fine-grain

component pattern (described in Section 4) this can be performed in a low-overhead

fashion through the adaptation of small aspects of functionality.

3.3 Adaptation Policies

The ability to define behavioural requirements allows convenient specialisation of

node behaviour. However, it is also beneficial to define explicit situations in which a

particular adaptation should take place. The reflective nature of the design means that

adaption policies can be externally defined rather than within the overlay code.

Developers (or third parties) therefore provide adaptation rule-sets which dictate that

a particular configuration should be executed if a node enters a certain state. To do

this during runtime, the context engine correlates environmental measurements from

various context sources e.g. bandwidth monitors, processor monitors, user behaviour

profilers. This information is then compared against the adaptation rules; if a rule is

triggered it can then dictate a certain configuration script is executed. This will be

explored in more detail in Section 5.

4 Overlay Component Pattern

The previous section has introduced the middleware and its general mechanisms.

However, as well as this, suitable software patterns are also required to optimally

build overlays. This section present a generic, reusable component pattern in which

overlays can be effectively developed for the purposes of adaptation. Fig 4.1 provides

an overview using Pastry [21] as an example. It is also important to state that the

framework can operate with any component pattern. Details of alternate patterns can

be found in our past work [12][[23][24].

Join Leave Maintenance Repair Leaf Set Routing Table
Neighbourhood

Set

Leaf Set

Maintenance

Routing Table

Maintenance

Neighbourhood

Set

Maintenance

Maintenance

Leaf Set

Repair

Routing Table

Repair

Neighbourhood

Set Repair

Control Forward State

Repair

Pastry Overlay

Fig 4.1 A Pastry Implementation in the Framework’s Default Component Pattern

4.1 Control

The Control aspects of the pattern deal with managing the overlay. There are four

composite components in this branch of the tree: Join, Leave, Maintenance and

Repair. These are generic concepts present in all overlays; alongside DHTs these

Control aspects have been implemented in a number of other overlays including

unstructured search [6], gossip communications [11] and overlay multicast [17].

The Join component deals with the joining procedure for a node. In terms of Pastry

this refers to locating its position in the topology, collecting the necessary leaf set and

routing table members then informing all interested nodes of its arrival. It is important

to modularise this concern as the joining procedure largely dictates the structure of the

network. Therefore by allowing independent access to the joining process, a

developer can conveniently modify the topology of the overlay. For example, the ring

topology of the Pastry network can be easily configured to also create links between

logically distant peers in order to improve reliability, load balancing or routing.

The Leave component handles the removal of a node from the network. This is an

effective modularisation as it allows peers in different environments, with different

higher level applications to easily perform separate leaving procedures e.g. silent,

elegant and daemon leaves.

The Maintenance component manages the monitoring of the overlay for changes.

This can be for optimisation or alternatively just to ensure the overlay’s integrity.

There must be an individual maintenance component for each State component in the

system. This maintenance component therefore monitors the necessary factors that are

essential for its particular state’s integrity. A wide range of possible reconfigurations

can occur involving the maintenance procedures. For example, one node might use

low overhead keep-alive messages whilst another would employ secure and resilient

procedures involving frequent state broadcasts, certificate exchange and encryption.

The Repair component deals with repairing (or optimising) any problems located

by related Maintenance components. Therefore, if the Leaf Set Maintenance

component discovers the loss of a leaf set member then the Leaf Set Repair

component is required to correct the issue. Similarly, if the Routing Table

Maintenance component locates a superior routing entry then the Routing Table

Repair component is responsible for implementing the state changes. In a similar vein

to the Maintenance component, it is necessary for individual Repair components to be

developed for each State component. This allows triplets of components

(Maintenance, Repair and State) to be reused together. Further, it allows much finer-

grained adaptation to take place without having to involve the adaptation of multiple

state sets at the same time.

4.2 Forward

The Forward component deals with routing in the overlay. This can be simplistic as

in the case of Gnutella [6] and CoolStreaming [25] or alternatively quite complex as

in the case of Pastry [21]. Unlike the Control aspects, Forward is not separated into

sub-components but is left as a single component. This is due to the well-defined and

simple nature of forwarding algorithms. This can be contrasted with Control aspects

which contain a wide range of diverse functionality. The Forward component is a

very important modularization; this is because its reconfiguration allows rich

variations in behaviour. For example, our Gnutella implementation can conveniently

adapt to utilise gossip-based, random walk or semantic searching.

4.3 State

The State components embody the data structures required by each node in the

overlay. Each data structure is embodied in its own component to improve the

reusability and portability of such entities. It thus becomes possible to permanently

associate the State components with their respective Control components. This

therefore allows reconfiguration to occur without the need to move state data between

new and old components.

5 Evaluative Case Studies

The framework has been implemented in Java using the OpenCOM (v1.4)

component model [8]. It is part of a larger architecture called Juno [24]; this is a

configurable middleware designed to address the heterogeneity of next-generation

content distribution. It does this by underpinning services and delivery mechanisms

with the overlay framework. A number of overlays have been implemented using this

component-based approach. These include Chord [22], SCAMP [11], BitTorrent [2],

TBCP [17] and Pastry [21]. Using these implementations a number of case-studies are

described to highlight the capabilities and limitations of the framework. An overhead

study is also provided for completeness. This evaluation, however, does not provide a

quantitative study of individual overlay implementations. This is because such a study

would evaluate the performance of an individual overlay or algorithm. Instead, we

show how a number of systems can perform adaptation through the reflective,

architectural reconfiguration of the framework. Performance details of the individual

adaptation algorithm are provided in the references.

5.1 Case-Study Experiments

5.1.1 Experiment A: Local and Community Adaptation

This experiment investigates the community based adaptation of peers; first in a

local sense then in a distributed one. Specifically, it looks at adapting a Pastry node to

distribute load balancing information amongst routing neighbours. This adaptive

mechanism (outlined in [1]) has been designed to alleviate the load on certain areas of

the network. It further enables peers with low resources to contribute less, therefore

improving routing performance. When a node reaches a certain load it begins to

attach load tags to any sent messages. These are then read by downstream routing

neighbours that, in turn, show preference to less-loaded routing choices. Further, the

maintenance algorithms adapt to propagate live load information about the node. This

allows nearby routing peers to maintain an accurate, real-time view of the vicinity’s

routing loads. This rich adaptation cannot be natively supported by a conventional

Pastry implementation without redevelopment.

The framework implements adaptation through externalised adaptation rule-sets.

The following rule is added to the rule-set to define the load balancing adaptation:

if [load > max_load] do config load_balance

else do config standard_pastry

This indicates that a node should execute the load_balance script if its current load

exceeds the maximum load. Similarly, if this load decreases it should initiate the

standard_pastry script. To do this, the rule-set configuration file is therefore required

to define the max_load threshold alongside the calculation of the load variable.

Due to the nature of the adaptation it is identifiable that two aspects are involved:

maintenance and forwarding. The load_balancing script therefore dictates the

replacement of the existing maintenance and forwarding components with their load

balancing equivalents. By separating these aspects as independent pluggable

components it is therefore possible to dynamically alter their behaviour by replacing

them in the architecture. This simplifies the adaptation process by building well-

defined algorithms embodied in components that are open to third-party coordination

through reflection, configuration and later development.

During the reconfiguration process the peer is placed in a quiescent state. The

framework achieves this by completing all component interactions before buffering

all future interactions. Similarly, remote interactions are queued. Once the

reconfiguration is complete, the peer is reactivated. At this point, the software

architecture has the new LB_Maintenance and LB_Forward components attached.

Due to abstracted component interaction, it is possible to continue the node’s

operation without changes to other existing components in the architecture.

Once the new components begin execution it is necessary to utilise protocol

messages that are not natively understood by other load balancing unaware peers. To

overcome this, the framework exploits just-in-time distributed adaptation. When an

unknown protocol message is received by the remote host, the node’s context engine

inspects the protocol handling capabilities of all its available components and

configuration scripts to locate configurations capable of understanding the message.

In this scenario this obviously results in the execution of the load_balance script

which dictates the installation of the LB_Forward and LB_Maintenance components.

Once the two components have been installed, the Transport layer resumes execution

from the initial receipt of the load balancing message. This results in the message

being passed to the LB_Forward component and being correctly processed.

This lightweight process (c.f. Section 5.2) is carried out for every neighbour that

receives the load balancing information. This allows the peers to perform coordinated

adaptation in small communities; further, by dynamically acquiring new components

it becomes possible to extend adaptation mechanisms at run-time.

This experiment highlights the framework’s ability to dynamically install rich new

adaptive functionality on a node. Particularly, this shows how the (re)configurable

approach can extend the adaptive model beyond that of ‘fine-tuning’ by allowing

entire bodies of functionality to be dynamically modified behind abstracted interfaces.

Importantly this process has shown to be possible in a distributed sense. Conventional

adaptive approaches are limited to well-defined strategies that are ubiquitous to all

member nodes at design-time. The experiment shows, however, that it is possible to

deploy adaptive strategies dynamically between subsets of peers at run-time.

5.1.2 Experiment B: System-Wide Adaptation

The previous experiment has shown how individual nodes can adapt in

communities to improve performance. This experiment shows how system-wide

adaptation strategies can further improve performance. This indicates that all peers

operate the same adaptation to create system-wide behaviour. Specifically, in this

experiment the Pastry overlay is separated into two groups of peers based on their

capabilities. Reliable peers perform the traditional role of Pastry peers and form the

routing set, whilst unreliable peers that do not contribute to the routing procedure

form the client set. This separation significantly improves resilience and performance

by removing transient peers from the system [4].

A new peer joining the system is initially configured as a client node by executing

the pastry_client script. Once a burn-in time has been reached, the peer then adapts

itself by installing the necessary routing components. A node is reconfigured to

operate as a client again if its environment becomes unreliable. This is represented in

the adaptation rule-set using the rules:

if [online_time > burn_in && isReliable()==true]

do config pastry_router

else do config pastry_client

The rule set contains the method isReliable(). This allows the rule-set to ascertain

whether the peer is currently considered reliable. This script can either utilise default

framework implementations or alternatively a specialised overlay implementation.

The pastry_client script contains instructions to install two components:

Client_Join and Client_Forward. It is evident that the pastry_client script does not

need to instantiate all the components dictated in the software pattern outlined in

Section 4. This is because the simplicity of the client peers reduces the actual number

of required components. Through the provision of a fine-grained architecture it

therefore becomes easy to use subsets of functionality required for particular

configurations. The Client_Join component simply creates a point-to-point connection

with a node from the routing set whilst the Client_Forward component, in turn,

forwards all messages through this proxy.

Once a peer is considered eligible for membership of the routing set, it is

reconfigured by executing the pastry_router script. This involves detaching the

Client_Join and Client_Forward components and attaching a full set of Pastry

components. Once this reconfiguration process has completed the Join component

executes the standard joining algorithm.

This case-study has shown the framework’s ability to support system-wide

adaptive strategies beyond the local and neighbourhood scope of the previous

experiment. To facilitate this it exploits independent access to the joining and routing

mechanisms. This represents an adaptive process that exceeds the capabilities of

existing Pastry implementations (e.g. FreePastry [10]). This is because traditional

adaptive mechanisms are restricted to adapting aspects that are isolated at design-

time. The join mechanism is not utilised in conventional Pastry adaptation and is in

general rarely isolated for adaptation. Therefore, by constructing nodes from open

component patterns that provide access to all functionality, it becomes possible to

implement adaptive strategies during run-time that exceed original design plans.

5.1.3 Experiment C: Application-Driven Adaptation

The previous experiments have shown how environmental factors can drive the

adaptive configuration of overlay behaviour. This experiment investigates the

adaptation of the middleware when operating beneath divergent applications. We

define a divergent application as one that has a range of distributed interaction

requirements. Specifically, this experiment looks at an application that offers stored

and streamed video delivery alongside a search facility. Such a system requires at

least three types of overlay, creating significant complexities for developers.

When the application is initialised over the middleware it provides a list of its

required abstractions (i.e. ISearch, IStreaming and IStoredDelivery); these are termed

functional requirements. The middleware’s context engine then locates all the overlay

configuration scripts that offer at least one of these interfaces. Once this has been

done it is important to differentiate between overlays offering the same interface but

possessing different characteristics. This is achieved through the construction of

behavioural requirements. To investigate this, three different uses of the video

application are investigated; firstly, the use of the application for distributing lectures

on a campus; the second is distributing movies in an Internet-scale situation; and the

third is distributing corporate videos amongst a number of offices.

This case-study obviously requires that different search mechanisms are utilised

when the application is operating in different environments. When the application is

bootstrapped, it defines its behavioural requirements by describing the required

characteristics of any overlay operating behind the ISearch abstraction e.g.

Abstraction::overlays.interfaces.ISearch

 1: [Size > 1000]

 2: [Multi_Keyword==true]

 3: [Fuzzy==false]

This example indicates that the ISearch overlay configuration selected must be able

to support a user group greater than 1000 and support multiple keyword searching

whilst not requiring fuzzy matching. Any attributes can be attached to

components/scripts allowing highly extensible application driven configuration to

take place. This process therefore encourages the use of a domain specific ontology.

Table 5.1 shows the behavioural requirements of the three scenarios. The lecture

scenario instantiates a Gnutella [6] overlay network due to its small size; the movie

scenario instantiates a server based search mechanism as it supports large-scale fuzzy

searching; lastly, the corporate scenario utilises Pastry [21] as it requires up to 50,000

users but without fuzzy search support.

 Size Keyword Fuzzy Overlay

Lectures <2000 TRUE TRUE Gnutella

Movies >100,000 TRUE TRUE Server

Corporate 100 – 50000 TRUE FALSE Pastry

Table 5.1 Behavioural Requirements of ISearch and Selected Overlay

This process can also be performed dynamically; for instance, if the user decides to

cease watching the lecture service and switch to the movie service, the application

will submit new behavioural requirements to the context engine. The context engine

then locates a more appropriate search mechanism using the meta-values provided by

the different overlay configuration scripts available. This process yields the Server

script which results in the Gnutella functionality being shutdown and detached from

the application and replaced with the Server search mechanism. In future, whenever

the application utilises the ISearch abstraction it will therefore be actually utilising a

client-server search rather than Gnutella. This is performed transparently, however, to

ensure consistency the application can stop any undesired reconfigurations e.g. if

certain search information is not replicated on the multiple networks.

This experiment has highlighted how architectural adaptation can support

applications with non-fixed behavioural requirements. Specifically, it has been shown

that an application can be conveniently deployed for use in a number of different

application scenarios without intensive application coding. Instead, through abstracted

reconfiguration the context engine can adapt the overlay (and therefore the

application) without modifications to application code.

5.2 Resource Overhead

Due to the necessity to manipulate software components during the adaptation

process, an added overhead is introduced. This section briefly discusses the resource

overheads involved. All tests are performed on a 2.1GHz Intel Core 2 Duo processor;

4 GB RAM; Sun JVM 1.6.0.5.

5.2.1 Processing Overhead

We first measure the processing costs of utilising the framework; Table 5.2 shows

the maximum processing throughput of overlays built in the framework. This has

been measured by benchmarking the maximum number of component invocations

possible. For comparability, the same process is carried out with Java interfaces.

It can be seen that the framework has a noticeable decrease in throughput. This

creates a trade-off between flexibility and overhead with the framework sacrificing

processing capacity to support runtime abstraction and reconfiguration. It should be

noted, however, that the ability to utilise lightweight configurations (e.g. Experiment

B) can improve the overlay processing overhead for low-capacity peers.

Type (Invocations/Second)

Native Java 15.863570 x 10
6
 (16 million)

Framework 3.222367 x 10
6
 (3 million)

Table 5.2 Throughput of Component Interactions

5.2.2 Memory Overhead

To validate that the framework does not create unacceptable memory consumption,

Table 5.3 shows the dynamic footprints of a subset of the framework’s overlay

implementations; these include the JVM. These implementations have been

developed using a range of component patterns and offer different levels of

complexity. They all, however, show acceptable memory footprints when compared

to existing Java implementations (e.g. FreePastry’s [10] footprint is 12,232KB).

 Pastry [21] Chord [22] SCAMP [11] TBCP [17]

Footprint (KB) 9,656 11,932 13,708 15,144

Table 5.3 Memory Footprint of Overlays

5.2.3 Reconfiguration Time

To show the cost of architectural reconfiguration, Table 5.4 shows the time taken

to execute reconfiguration in the middleware. Experiments A is shown as it offers

very fine-grained adaptation whilst Experiment B involves a much heavier

reconfiguration. Importantly, the application logic has been removed to ensure that

the measurements aren’t affected by overlay specific concerns.

 Bootstrap (µSecs) Adaptation (µSecs)

Experiment A 12831 592

Experiment B 284 1617

Table 5.4 Reconfiguration Time

Experiment A has a high configuration time during bootstrapping. This is because

it has to install the full overlay. This can be contrasted with its adaptation process that

requires only 5% of the time. This is because the framework’s fine-grain component

pattern allows the adaptation to take place by replacing only two small components.

In contrast, Experiment B has a low configuration time during bootstrapping. This is

because it exploits the lightweight pastry_client configuration. Its adaptation process,

however, it significantly more complex as it requires the installation of the routing

aspects of the Pastry overlay. Importantly, the adaptation process is shown not to

require extended periods of reconfiguration.

6 Conclusion and Future Work

This paper has investigated the potential of exploiting architectural reconfiguration

for the adaptation of peer-to-peer systems. To this end, an overlay middleware has

been designed that exploits the reflective component-based implementation of

overlays. Through generic, reusable patterns it becomes possible to host applications

over specially configured overlays dynamically selected at runtime. This enables

broad functional requirements to be satisfied by the framework through the

instantiation of multiple concurrent overlays behind various standardised abstractions.

An important feature of this procedure is the framework’s ability to consider

behavioural requirements during the selection of effective overlay configurations.

This allows the application to transparently operate over the most effective overlay

for its (dynamically changing) requirements. To supplement this, the framework also

supports the explicit scripting of adaptive algorithms for any componentised aspect of

the system, allowing externalised policies to be dynamically added during runtime.

A number of interesting areas of future work exist. We consider it important to

establish such an engineering approach to overlay development. Therefore further

investigation into generic patterns that can match the requirements of diverse overlays

is necessary. This should not be restricted to adaptive considerations but also provide

support for non-functional concerns such as QoS, fault-tolerance, resilience and error

management. Also, large-scale investigations must be performed to observe the

effects that local and community adaptation has on the system as a whole. Alongside

this, important areas also include security and runtime configuration checking.

Acknowledgements

This work is supported by the European Network of Excellence CONTENT (FP6-IST-038423)

References

1. Bianchi, S., Serbu, S., Felber, P., and Kropf, P. Adaptive Load Balancing for DHT

Lookups. In Proc. Intl Conference on Computer Communications and Networks,

Arlington, Virginia (2006).

2. BitTorrent Specification. http://www.bittorrent.org/beps/bep_0003.html.

3. Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon,

H., Fitzpatrick, T., Johnston, L., Moreira, R., Parlavantzas, N. and Saikoski, K., The

Design and Implementation of Open ORB V2. In IEEE Distributed Systems Online

(2001).

4. Brampton, A., MacQuire, A., Rai, I. A., Race, N. J., and Mathy, L. Stealth

Distributed Hash Table: A Robust and Flexible Super-Peered DHT. In Proc. ACM

CoNext, Lisbon, Portugal (2006).

5. Bruneton, E., Coupaye, T., Leclerc, M., Quema, V. and Stefani, J-B. An Open

Component Model and its Support in Java. In Proc. Intl. Symposium on Component-

Based Software Engineering Edinburgh, Scotland (2004).

6. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., and Shenker, S. Making

Gnutella-like P2P Systems Scalable. In Proc. SIGCOMM, Germany (2003).

7. Coulson, G. A Configurable Multimedia Middleware Platform, IEEE Multimedia

Magazine, vol 6, issue 1, pp 62-76, IEEE Press, January-March (1999).

8. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, Jo and Sivaharan, T. A

Generic Component Model for Building Systems Software. In ACM Transactions on

Computer Systems, 27(1):1-42, February (2008).

9. Dabek, F., Zhao, B., Druschel, P., Stoica, I. Towards a common API for structured

peer-to-peer overlays. In Proc. IPTPS Berkeley, CA, (2003).

10. FreePastry. Available at http://freepastry.org/
11. Ganesh, A., Kermarrec, A. and Massoulie, L. SCAMP: Peer-to-peer lightweight

membership service for large-scale group communication. In Proc 3rd Intl. Workshop

on Networked Group Communication, London, UK. (2001).

12. Grace, P, Coulson, G., Blair, G., Mathy, L., Yeung, W., Cai, W., Duce, D., and
Cooper, C. GridKit: Pluggable Overlay Networks for Grid Computing. In Proc. Intl.

Symposium on Distributed Objects and Applications, Larnaca, Cyprus (2004).

13. Gu, X., Nahrstedt, K., and Yu, B. SpiderNet: An Integrated Peer-to-Peer Service
Composition Framework. In Proc. 13th IEEE International Symposium on High

Performance Distributed Computing, Honolulu, HA (2004).

14. Hughes, D. AdaPtP - a Framework for Building Adaptable Peer-to-Peer Systems.
PhD Thesis, Lancaster University (2007).

15. Hughes D., Coulson, G., and Warren, I. A Framework for Developing Reflective and
Dynamic Peer-to-Peer Networks (RaDP2P). In Proc. 4th IEEE International

Conference on Peer-to-Peer Computing, Zurich, Switzerland (2004).

16. Kon, F., Costa, F., Blair, G., and Campbell, R. H. The Case for Reflective
Middleware. Commun. ACM 45, 6 (Jun. 2002), 33-38.

17. Mathy, L., Canonico, R. and Hutchinson, D. An Overlay Tree Building Control
Protocol. In Proc. Intl. Workshop on Group Communications, London, UK (2001).

18. Maymounkov, P. and Mazières, D. Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In Proc. IPTPS, Sweden (2002).

19. Oreizy, P., Medvidovic, N., and Taylor, R. N. Architecture-based runtime software
evolution. In Proc. Intl. Conference on Software Engineering Kyoto, Japan, (1998).

20. Portmann, M., Ardon, S., Senac, P., and Seneviratne, PROST: A Programmable
Structured Peer-to-Peer Overlay Network. In Proc. Intl. Conference on Peer-To-Peer

Computing, Zurich, Switzerland (2004).

21. Rowstron, A., Druschel, P., Pastry: Scalable, Distributed Object Location and
Routing for Large-scale Peer-to-Peer Systems. In Proc. Middleware, Heidelberg,

Germany (2001).

22. Stoica, I., Morris, R., Karger, R.D., Kaashoek, M., Balakarishnan, H. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proc. of ACM

SIGCOMM, San Diego, (2001).

23. Tyson, G. Component Based Overlay Development in Gridkit. Available at
http://www.comp.lancs.ac.uk/~tysong/. MSc Thesis, Lancaster University.

24. Tyson, G., Mauthe, A., Plagemann, T. and El-khatib, Y. Juno: Reconfigurable
Middleware for Heterogeneous Content Networking. In Proc. 5th Intl. Workshop on

Next Generation Networking Middleware (NGNM), Samos Islands, Greece (2008).

25. Zhang,.X, Liu, J., Li, B., and Yum, T.S.P. CoolStreaming: A Data-driven Overlay
Network for Live Media Streaming. In Proc. IEEE Infocom, Miami, FL (2005).

