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ABSTRACT
Decentralising the Web is a desirable but challenging goal. One
particular challenge is achieving decentralised content moderation
in the face of various adversaries (e.g. trolls). To overcome this
challenge, many Decentralised Web (DW) implementations rely
on federation policies. Administrators use these policies to create
rules that ban or modify content that matches certain rules. This,
however, can have unintended consequences for many users. This
paper presents a first study of federation policies on theDW, their in-
the-wild usage and the impact they have on users. We identify how
this policies may negatively impact “innocent” users and outline
strawman solutions to avoid this problem in the future.
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1 INTRODUCTION
The “Decentralised Web” (DW) is an evolving concept, which en-
compasses technologies aimed at providing greater transparency,
openness, and democracy on the web [5]. Today, well-known social
DW platforms include Pleroma, Mastodon (microblogging services),
Hubzilla (cyberlocker) and PeerTube (video sharing platform).

In the above examples, individuals or organisations are able to
install, own and manage their own servers, usually referred to as
instances [4, 31]. Instances are independent and participants in
the community must register with specific instances. For example,
in the case of Pleroma (a microblogging service), an instance could
be created within a company to provide a platform for employees
to interact. To enable users across such instances to interoperate,
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federation protocols allow information and interactions to flow
across DW instances to create a larger interconnected community
This creates a physically distinct set of servers, yet allows users to
follow each other regardless of which instance they register with.

A key selling point of the DW is the promotion of free speech,
outside of the remit of large tech companies. Although appealing,
this decentralised form of management creates new challenges [18].
For example, as popular centralised social platforms like Facebook
and Twitter continue to clampdown on hateful and violent com-
munities, some of these communities have migrated [28] to DW
instances where moderation and regulation is more difficult to
enforce (e.g. Gab [29]).

In contrast to centralised services (e.g. Twitter), DW moder-
ation is usually performed on a per-instance basis. Specifically,
instance administrators enforce policies within their own instance
to moderate the content coming from other federated instances.
For example, administrators of one instance can reject (i.e. block)
any material from other instances that match certain criteria. This
instance-based approach shifts the moderation responsibility to ad-
ministrators who need to answer questions such as: What policies
should be applied and to which instances? How much effort should
be put in moderation? What is the collateral damage of the policies
(i.e. while a minority of users might cause a policy, this will affect
the rest of the “innocent” users of that same instance)?

To explore these questions and propose solutions, we focus on
one prominent DW platform: Pleroma. In contrast to other DW
microblogging platforms, Pleroma instances make their modera-
tion policies public through an API. Exploiting this, we collect a
large-scale dataset covering a period of 5 months. This includes
1298 instances, 111k users, 24.5m posts, associated metadata and,
importantly, the 46 different policies imposed by the instances.

Using this data, we explore the types of policies imposed by ad-
ministrators.We find that thatmoderation affects the overwhelming
majority of the users: 97.7% users and 97.8% posts are impacted by
policies. The reject action is most popular, affecting 86.2% users
and 88.5% posts (Section 4). This brute-force policy blocks entire
instances, even though only a subset of users might be misbehaving.
To investigate the collateral damage of this, we study user’s toxicity
using Google’s Perspective API (Section 5). While toxic users are
the likely target of instance blocking, we find that 95.8% of the users

https://doi.org/TBA
https://doi.org/TBA


CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Anaobi et al.

blocked are not toxic. We conclude by proposing some strawman
solutions to reduce collateral damage.

2 PLEROMA OVERVIEW
Pleroma Primer. Pleroma is a lightweight decentralised mi-
croblogging server implementation, whose user-facing functional-
ity is similar to Twitter. In contrast to a centralised social network,
Pleroma is a federation of servers (aka instances), which interlink
to share content. Through these instances, users are able to register
accounts and publish posts, which will appear on follower time-
lines. These followers can either be on the same instance or another
(federated) instance.
Federation. We refer to users registered on the same instance as
local, and users registered on different instances as remote. A user
on one instance is able to follow another user on a different instance.
Note that a user registered on their local instance does not need to
register with the remote instance to follow the remote user. Instead,
a user creates a single account with their local instance. When the
user wants to follow a user on a remote instance, the local instance
subscribes to the remote user on behalf of the local user, thereby
federating with the remote instance. This process is implemented
using an underlying subscription protocol (ActivityPub [1]) that
allows instances to federate with each other.
Fediverse. The resulting network of federated instances is referred
to as the fediverse. The fediverse includes instances from Pleroma
as well as instances from other platforms that Pleroma can federate
with (e.g.Mastodon) because they support the same subscription
protocol (i.e. ActivityPub). Accordingly, Pleroma instances can fed-
erate and target its policies at non-Pleroma instances (e.g. Gab from
Mastodon).
Policies. Instances in the fediverse federate with each other and
federated instances can target each other with policies. Policies
affect how instances federate with each other through different
rule-action pairs. These allow certain actions to be executed when
a post, user or instance match pre-specified criteria. We refer to
each of these rule-action pairs within a policy as actions (e.g. the
SimplePolicy has multiple actions such as media removal and
reject).

Note, some policies are in-built to the Pleroma software pack-
age. Instance administrators can enable (“switch on”) one or more
policies. Some of these policies are enabled by default when a new
Pleroma instance bootstraps. Additionally, administrators can craft
new policies if they require specific functionalities that are not
covered by the in-built policies.

3 DATA COLLECTION
Instances. Our measurement campaign covers the period between
the 16 December 2020 and 24 April 2021. We first compile a list
of Pleroma instances by crawling the directory of instances from
distsn.org and the-federation.info. We then capture the list of in-
stances that each Pleroma instance has ever federated with using
the Peers API.1 This includes both Pleroma and non-Pleroma in-
stances (Pleroma can federate with any instance of the fediverse,

1<instance.uri>/api/v1/instance/peers

see Section 2). In total, we identify 9969 instances, out of which
1534 are Pleroma and 8435 are non-Pleroma (e.g. Mastodon).

We then collect metadata for each Pleroma instance every 4
hours via their public APIs.2 We obtain the number of users on
the instance, the number of their followers, the number of posts,
the version of Pleroma, whether the instance is accepting new
registrations, the enabled policies, the applied policies as well as
the instances targeted by these policies, and other meta information.
From the 1534 Pleroma instances, we are able to gather data from
1298 instances (84.6%). For the remaining 236 instances: 110 are
not found (404 status code), 84 instances require authorisation for
timeline viewing (403), 24 result in bad gateway (502), 11 result in
service unavailable (503) and 7 return gone (410).
User Timelines. Users have three timelines: (i) a home timeline,
with posts published by the accounts that the user follows (local and
remote); (ii) a public timeline, with all the posts generated within
the local instance; and (iii) the whole known network, with all posts
that have been retrieved from remote instances that the local users
follow. Note, thewhole known network is not limited to remote posts
that a particular user follows; instead, it is the union of remote posts
retrieved by all users on the instance. The whole known network
timeline is an innovation driven by the decentralised nature of
instances: it allows users to observe and discover posts by remote
users.

Out of the 1298 Pleroma instances, we gather all posts from
796 instances (119 instances had no posts and the public timeline
of the remaining 38.7% instances were not reachable). We gather
data using the public Timeline API.3 This timeline covers all posts
shared on each instance. This allows us to collect 14.5M (including
federated posts) public posts out of 24.5M posts, covering 91.7K
users. Note, from the 1,298 instances we are able to crawl, we
discover a total of 111K unique users. 48.7% of users published at
least one post.
Harmful Classifications. Generally, instance administrators tar-
get moderation policies/actions against other instances that have
been perceived to post harmful content or violate their "Terms of
Service". For any instance that has at least one reject action tar-
geted against it (see Section 4.1), we annotate all of its posts with
harmful/non harmful labels (15.8% of all instances). We annotate
the posts using Google’s Perspective API [7, 24]. The Perspective
API scores text based on the perceived impact it might have on
a conversation [20]. The scores represent the probability that a
human annotator would reach the same conclusion and is repre-
sented between 0 to 1 for a range of attributes [8, 21]. In this paper,
we classify posts across three attributes: toxicity, profanity and
sexually explicit content. Perspective results have been found to
be similar to human annotators [9, 17, 27, 28], it is widely used
in production environments (e.g. New York Times) [22] and it is
continually maintained and updated [13].

We label a post as harmful if it receives a score of 0.8 or above in
any of the three attributes (toxicity, profanity and sexually explicit).
This threshold is based on recommendations from the developers
of the Perspective API [23] and related literature [3]. Finally, we
classify a user as harmful when the average of all the user’s posts

2<instance.uri>/api/v1/instance/
3<instance.uri>/api/v1/timelines/public?local=true

distsn.org
the-federation.info
<instance.uri>/api/v1/instance/peers
<instance.uri>/api/v1/instance/
<instance.uri>/api/v1/timelines/public?local=true
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Figure 1: The top 15 policy types and the percentage of in-
stances that use each policy (sorted by the percentage of in-
stances). We also include the percentage of the global user
population on the instances that use each policy. We repre-
sent the percentage of instances and users for all the less
popular policies as “Others”

for any of the attributes (toxicity, profanity, sexually explicit) is
greater or equal to 0.8.

4 EXPLORING POLICIES
We begin by briefly characterising the types of polices used within
Pleroma as well as the instances targeted by these policies.

4.1 Characterising Policy Settings
Overview of Policies. We are able to retrieve policy information
from 91.9% of Pleroma instances. The remaining 8.1% of Pleroma
instances do not expose their policy information. These cover
46 unique policy types: 26 of these policies are included in the
Pleroma software package, instance administrators have created
the other 20. In general, administrators need to enable policies be-
fore they target them towards specific instances. However, we find
the ObjectAgePolicy and NoOpPolicy enabled by default in the
software package.

The policies we retrieve affect 97.7% of the total users and 97.8%
of all posts. Figure 1 shows the distribution of the top 15 policy
types we find enabled by the administrators across instances and
the percentage of users signed-up within those instances.
Popular Policies. Most common amongst the popular policies is
the ObjectAgePolicy (on 66.9% of instances). This policy allows
admins to apply an action based on the age of a post regardless of
the post’s harmful/non harmful nature. The default age threshold is
7 days but administrators are able to configure this as they choose.
Possible actions under this policy includes (i) delist: removes the
post from the public timelines; (ii) strip followers: removes followers
from the recipient list; and (iii) reject: rejects the message entirely.
As a default policy, this is enabled on any new installations of
Pleroma starting from version 2.1.0.

The TagPolicy, applies policies to individual users based on
tags but does not completely stop the flow of any material between
instances. For example it allows marking posts from individual
users as Not Safe For Work (NSFW). This policy is enabled on
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Figure 2: Number of instances targeted by SimplePolicy
actions (Y-1). Instances are split into Pleroma and non-
Pleroma instances. We also plot the number of users on the
associated Pleroma instances (Y-2).

33% of instances. Finally, the SimplePolicy is enabled on 25.4% of
instances. The SimplePolicy is the most flexible policy, allowing
admins to configure a range of actions on posts or instances that
match a certain criteria e.g. the reject action blocks all connections
from a given instance.

The remaining policies are less commonly encountered. For
completeness, we briefly discuss a few of them here. The
HellthreadPolicy is enabled on 6.7% of the instances. This
de-lists/rejects a post when the number of user mentions ex-
ceeds a set threshold. The StealEmojiPolicy whitelists in-
stances to automatically download emojis from; this is enabled
on 6.2% of the instances. Other less common policies we en-
counter include the HashtagPolicy, AntiFollowBotPolicy,
MediaProxyWarmingPolicy, KeywordPolicy (see Appendix A for
a list of Pleroma in-built policies).
SimplyPolicy Breakdown. Due to the diversity of features avail-
able within the SimplePolicy, its reach as well as its relevance
in content moderation, we next inspect the most popular actions
associated with the SimplyPolicy. Figure 2 presents a breakdown
of the various actions used by instances with the SimplePolicy
against Pleroma instances, as well as instances from other platforms
of the fediverse (e.g. Gab fromMastodon). The figure also shows the
number of users signed-up on these instances. In contrast, Figure 3
shows the number of Pleroma instances that have targeted other
instances with the SimplePolicy actions and the number of users
on these instances.

The figures reveal a rich variety of policy actions. For example,
the media removal action (which removes any media coming from
targeted instances) is applied by 5.4% of the instances, and this
impacts 23.3% of users. The most popular and stringent is, however,
the reject action. Figure 3 shows that the 73% of instances that
have the SimplePolicy enabled, apply the reject action.

We also notice 86.2% of users and 88.7% of posts are on instances
that have been rejected by at least one other instance, and these
rejected instances make up 80% of all moderated instances. On a
finer granularity, we see the reject action making up 62.8% of all
moderation events while the sum of all the other (9) SimplePolicy
actions make-up the remaining 37.2%. As the reject action is the
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Figure 3: Bar plot showing the number of instances that have
targeted other instances with the SimplePolicy actions. We
also plot the number of users associated with the targeted
instances.

most stringent, the most popular and impacting a larger number
of users, we focus our analysis on the reject action. Hence, we
spend the next section exploring the instances that these reject
actions are targeted against.

4.2 Characterising Rejected Instances
Distribution of Reject Policies. Figure 5 shows the number of
reject actions targeting each Pleroma rejected instances. These
instances represent only 15.5% of Pleroma instances, however, they
accumulate 86.2% and 88.7% of the total users and posts, respectively.
Instances with more posts tend to receive a larger number of rejects:
we find a weak correlation between the number of posts on an
instance and the number of rejects (Spearman of 0.38). Overall,
we find 1,200 unique instances have been rejected at least once
(202 Pleroma and 998 non-Pleroma). The majority of these are
targeted by only a small subset of instances though: 86.8% of these
are rejected by fewer than 10 instances. However, we do see an
“elite” set (5.4%) of controversial Pleroma instances that gain in
excess of 20 reject actions, led by Freespeechextremist.com (a
proponent of free speech with 97 rejects). A variety of other types
of instances also make up the top rejected list e.g. kiwifarms.cc
(well known for trolling, with 86 rejects), spinster.xyz (a feminist
instance rejected 65 times) and neckbeard.xyz (blocked by another
instance linking it to the LGBT community with 61 rejects). This
“elite” set of rejected instances accounts for 33.6% and 23.4% of the
total Pleroma users and posts, respectively.

For context, Table 1 lists the 5 most rejected Pleroma instances
along with their number of users, posts, as well as their average
scores in toxicity, profanity and sexually explicit content. Similarly,
Figure 4 shows a normalised plot with the Google Perspective API
attribute features in Table 1 for all the rejected Pleroma instances
in our dataset. The score of each Perspective API attribute is the
average score of all posts by users on an instance. Although the
instance with the most reject actions against it is gab.com (a
Mastodon instance), Pleroma instances make-up 3 of the top 5.
Amongst the top 10 overall, just 40% are from the Pleroma platform.
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Figure 4: A plot of rejected Pleroma instances with the num-
ber of times they are rejected, their average toxicity, profan-
ity and sexually explicit scores across all users on the in-
stances (sorted by the number of rejects).
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Figure 5: A bar plot showing all rejected Pleroma instances
(X-axis) with their number of users and the number of
Pleroma instances that have rejected them (sorted by the
number of rejects).

This suggests a larger percentage of illicit material is imported into
Pleroma from larger platforms such as Mastodon (probably due to
the size of their user base).
Do rejected Pleroma instances retaliate? We next assess
whether rejected Pleroma instances also tend to use the reject
action themselves. To answer this, we compute the Spearman’s
correlation coefficient for rejects applied by vs. rejects received
for all rejected Pleroma instances (-0.033). This means that the re-
verse is actually the case. In fact, we notice that the most rejected
Pleroma instances barely apply the reject action against other
instances (pleroma or non-Pleroma). For example, the most rejected
Pleroma instance, freespeechextremist.com, does not reject a
single other instance (Pleroma or non-Pleroma). We conjecture that
their openness to any kind of material may contribute to them being
rejected. Of the top 10, only 1 Pleroma instance (spinster.xyz, a
woman-centric instance) has rejected over 2 instances (Pleroma and
non-Pleroma)with 45 rejects. Amanual check reveals non-tolerance
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Instance #rejects #users #user posts Toxicity Sc Profanity Sc Sexually Explicit Sc
freespeech-extremist.com 97 1.8k 1.13M 0.26 0.22 0.16
kiwifarms.cc 86 6.8k 391k 0.24 0.19 0.16
spinster.xyz 65 17.9k 1.34M NA NA NA
neckbeard.xyz 61 15.1k 816k 0.13 0.11 0.11
poa.st 51 5.1k 344k 0.27 0.25 0.18

Table 1: Top 5 Pleroma rejected instances with the number of times they are rejected, users, posts, the averages of

their toxicity, profanity and sexually explicit scores.
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Figure 6: Number of toxic, profane, sexually explicit and
non-harmful users on each rejected Pleroma instance.

for pornography, hate, violence or harassment in its “Terms of Ser-
vice”.
Why are instances blocked?. To examine this, we manually an-
notate the 92 rejected Pleroma instances by going through their
post content and also visiting each site. Note, these are the rejected
Pleroma instances we have post data for, and we exclude single user
instances (see Section 5). We label the rejected Pleroma instances
as (i) Toxic (hate speech): for content with identity attacks, threats,
insults and other hateful material; (ii) Sexually explicit (pornogra-
phy): for adult content; (iii) Profane: for material with swear/curse
words; and (iv) General: for Pleroma instances we are unable to
categorise. We are able to annotate 88.4% of the rejected Pleroma
instances. For the Pleroma instances we are able to annotate, we
find that the sexually explicit, toxic and profane instances make up
90.6%. The remaining 9.4% are labeled as general.

5 IS THERE COLLATERAL DAMAGE?
We conjecture that the activities of individual users may result
in an entire instance being rejected. Thus, many “innocent” users
may also be rejected by association. We refer to this as collateral
damage. To shed preliminary light on this question, we explore
what fraction of users on rejected Pleroma instances share harm-
ful material. We flag that there may be multiple reasons why an
instance is rejected, and emphasise this limitation in our analysis.

In total, we have posts for 61.9% rejected Pleroma instances, with
26.4% of them being single user instances. As we are interested in
what percentage of “innocent” users are affected by these policies,
we filter out the single user Pleroma instances. We find 1.62k users
on these rejected Pleroma instances have publicly accessible content
(59.3k posts). Using the Perspective labels (see Section 3), we find

Threshold 0.5 0.6 0.7 0.8 0.9
Non Harmful (%) 86.4 91.8 94.1 95.8 97.3

Table 2: Percentages of harmful and non harmful Pleroma
users with varying Google Perspective API thresholds.

that 4.2% of these users on rejected Pleroma instances have a score of
>=0.8 in at least one of the three attributes [3].With our threshold of
0.8, we notice a harmful-to-non-harmful posts ratio of 1:11. We also
find that the Pleroma instances with posts averaging a Perspective
API score >=0.8 actually make up 7 of the top 10 most rejected
Pleroma instances.

Figure 6 shows a stacked bar plot, with the number of users that
have been classified as toxic, profane or sexually explicit on each
rejected Pleroma instance. We also plot the number of non-harmful
users on each Pleroma instance. For the users with an average
Perspective API scores >=0.8, we see a distribution of 69.7% toxicity,
57.6% profanity and 43.9% as sexually explicit. Note here that a user
can be classified as all 3. Based on this method, 95.8% of the users
on rejected Pleroma instances are affected, even though none of
their own posts are flagged as harmful. This further strengthens
our earlier hypothesis: it is likely that just a few posts from a few
users users trigger the rejections.

For completeness, we finally show the percentage of harmful and
non-harmful users when we use other Perspective thresholds in
Table 2. We find that regardless of the threshold, a high percentage
of non harmful users are rejected alongside the small percentage
of harmful users.

6 IMPLICATIONS
Collateral Damage. DW instance-based moderation provides use-
ful tools for admins. However, our findings indicate that they are
not granular enough. Reject actions are applied to entire instances
and all associated users are blocked. Despite this, we find that only
4.2% of the users on rejected instances share harmful posts. Al-
though such users may be undesirable for other reasons, this does
suggest that a large majority of users may be “collateral damage”.
This raises questions as to whether rejecting entire instances is the
most appropriate approach.
Dissatisfied Users. Generally, users tend to join social platforms
where their friends already are, i.e. the network effect [2, 16]. This
could possibly be one of the major reasons why some decentralised
networks struggle to accumulate a strong user base. Being rejected
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could result in growing user dissatisfaction, especially if they have
friends on another instance which they are banned from following.
We argue that such experiences could lead to an exodus of users.
Thus, addressing collateral damage is important.
Federation Graph. In a centralised network, a social graph shows
the connections between users. In the DW, this can go further to
show the connections between instances. The reject action tends
to have far reaching effects on the social graph. For example, if
an instance relies on another instance to reach a segment of the
social graph, and due to the actions of a few users it gets rejected,
that instance could be cut off from the wider network. This will
adversely affect the federation. Exploring the wider impact of this
is an interesting line of future work.

7 SOLUTION SPACE
We now briefly explore some solutions to the above challenges.
One obvious solution would be for administrators to adopt other
less stringent in-built Pleroma policies, e.g. tagging posts as NSFW.
With this policy, messages from targeted instances are tagged with
warnings rather than blocked.

Some of the most rejected Pleroma instances happen to be those
with sexually explicit content and these materials are mostly in
media form. With the media removal facility, multimedia content
is removed, leaving only the text. That way, the harmful material
loses its meaning while the non harmful users are still able to have
their posts delivered across the federation. For DW platforms that
carry outmoderation in a similar fashion to Pleroma (e.g.Mastodon),
we concretely propose three steps that could be taken to improve
moderation in the DW:

(1) New generic policies could be designed that rely on a re-
liable and curated list of well-known instances in the fedi-
verse that may need to be blocked. For example, policies
called "NoHate" or "NoPorn" could have instances like Gab,
freespeechextremist.com and social.myfreecams.com,
and baraag.net listed as part of a community effort. Thus,
an administrator could simply select the relevant lists. We
expect that these listings are periodically updated by profes-
sionals who ensure that the instances have limited collateral
damage.

(2) New user-driven policies could be designed that enable ad-
ministrators to moderate on a per-user basis. Notable among
these policies is the TagPolicy, which is able to apply a
policy to a user based on a tag applied. Hence, streamline
moderation interfaces could be devised to make the pro-
cess of tagging individual users straightforward (potentially
assisted by automated classifiers).

(3) New policies could enable administrators to automatically
implement policies/actions for users who repeatedly violate
the “Terms of Service”. For example, policies/actions could be
automatically applied (e.g. NSFW, media removal) to a user
when they have been reported 𝑛 times, or when the user post
goes above a certain threshold (e.g. in Google Perspective
API). Again, such actions could be assisted by automatic
classification of behaviour.

8 RELATEDWORK
There has been a range of work on content moderation in social
media. Halevy et al. [6] looked into striking a balance between
free speech and safety, considering diverse cultural and political
climates. Fortuna et al. [12] used 6 publicly available datasets and
compared the labeling of each dataset for attributes such as sex-
ism, toxicity and racism. They find that definitions, datasets and
conflicting annotations can all affect the performance of classifiers.
Ribeiro et al [26] looked at differences between hateful Twitter
users and normal users with respect to their activities, vocabulary
and network centrality. Other studies have profiled social media
users based on their dissemination of hate material [14, 15]. Our
work differs in that we have focused on the implementation of
policies by administrators on Pleroma, rather than the behaviour
of hateful users.

There have also been a set of studies looking specifically at DW
services. Raman et al. [25] measured the challenges in deploying
DW applications, particularly related to network issues [10]. Zig-
nani et al. [31] studied the growth of Mastodon while comparing
its structure with Twitter. Similarly, La Cava et al. [11] explored
the evolution of Mastodon at an instance level, as well as the con-
nectivity between instances. Zignani et al. [19] further investigated
the interrelationship between the Mastodon system design and
the social network. Another closely related work [18] looked at
how Mastodon users tag their own posts as NSFW. Doan et al. [30]
investigated the performance of a decentralized video streaming
platform (DTube) by developing an app that streams from both
centralized and decentralized services. We differ from these works
in that we focus on content moderation activities.

9 CONCLUSION
In this paper we have presented the first study of Pleroma and its
associated policies. We find that policies are widely used, impacting
97.7% of users and 97.8% of posts. Using the Perspective API, we
have found that 95.8% of the users on rejected Pleroma instances
do not share posts classified as harmful. This leaves just 4.2% of
harmful users that are likely responsible for the rejects. This implies
significant “collateral damage”. This has led us to sketch a set of
strawman policies that may reduce this damage. Our proposed
solutions would generally be applicable to platforms that carry out
moderation at a per instance granularity (e.g. DW) rather than at
a per user granularity (e.g. Twitter). In our future work, we plan
to implement and evaluate these policies, as well as continue to
explore how other DW platforms perform moderation.

There are a number of lines of future work. We wish to further
explore the reasons why administrators apply particular policies.
This, for instance, could be achieved via user surveys. Using this
knowledge, we intend to develop novel policies that can assist
administrators. We are particularly interested in designing more
techniques that can automatically identify users or instances to
apply certain policies too.
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A APPENDIX
We summarise the basic functionalities of Pleorma in-built policies
in Table 3.

For completeness, we show in Figure 7 the entire policy spectrum,
the percentage of Pleroma instances that enable these policies, as
well as the number of users on these instance.
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policy #description #instances #users
ObjectAge Rejects or delists posts based on their age when received 869 57,854
TagPolicy Applies policies to individual users based on tags 429 38,067
SimplePolicy Restrict the visibility of activities from certains instances with a suite of actions 330 46,691
NoOpPolicy Doesn’t modify activities (default) 176 6,443
HellthreadPolicy De-list or reject messages when the set number of mentioned users threshold is exceeded 87 14,401
StealEmojiPolicy List of hosts to steal emojis from 81 7,003
HashtagPolicy List of hashtags to mark activities as sensitive (default: nsfw) 62 10,933
AntiFollowbotPolicy Stop the automatic following of newly discovered users 51 6,918
MediaProxyWarmingPolicy Crawls attachments using their MediaProxy URLs so that the MediaProxy cache is primed 46 9,851
KeywordPolicy A list of patterns which result in message being reject/unlisted/replaced 42 22,428
AntiLinkSpamPolicy Rejects posts from likely spambots by rejecting posts from new users that contain links 32 7,347
ForceBotUnlistedPolicy Makes all bot posts to disappear from public timelines 23 6,746
EnsureRePrepended Rewrites posts to ensure that replies to posts with subjects do not have an identical subject and instead begin with re: 18 247
ActivityExpirationPolicy Sets a default expiration on all posts made by users of the local instance 11 1,420
SubchainPolicy Selectively runs other MRF policies when messages match 8 81
MentionPolicy Drops posts mentioning configurable users 6 1,149
VocabularyPolicy Restricts activities to a configured set of vocabulary 5 121
AntiHellthreadPolicy Stops the use of the HellthreadPolicy 4 2,106
RejectNonPublic Whether to allow followers-only/direct posts 3 1,101
FollowBotPolicy Automatically follows newly discovered users from the specified bot account 2 281
DropPolicy Drops all activities 1 1,098

Table 3: Description of policies provided by Pleroma and the number of instances that enable them, as well as the number of
users on the instances
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Figure 7: Entire policy spectrum showing policy types and the percentage of instances that use each policy (sorted by the
percentage of instances). We also include the percentage of the global user population on the instances that use each policy.
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