
The Survival of the Fittest: An Evolutionary Approach to 
Deploying Adaptive Functionality in Peer-to-Peer Systems 

Gareth Tyson
a
, Paul Grace

a
, Andreas Mauthe

a
, Sebastian Kaune

b
 

a
InfoLab21, Lancaster University, Lancaster, UK. 

b
Technishe Universitat Darmstadt, Darmstadt, Germany. 

a
{g.tyson, p.grace, andreas}@comp.lancs.ac.uk, 

b
kaune@kom.tu-darmstadt.de 

 

ABSTRACT 

The heterogeneous, large-scale and decentralised nature of peer-
to-peer systems creates significant issues when deploying new 
functionality and adapting peer behaviour. The ability to 
autonomously deploy new adaptive functionality is therefore 
highly beneficial. This paper investigates middleware support for 
evolving and adapting peers in divergent systems through 
reflective component based design. This approach allows self-
contained functionality to exist in the network as a primary entity. 
This functionality is autonomously propagated to suitable peers, 
allowing nodes to be evolved and adapted to their individual 
constraints and the specific requirements of their environment. 
This results in effective functionality flourishing whilst sub-
optimal functionality dies out. By this, a self-managed 
infrastructure is created that supports the deployment of 
functionality following the evolutionary theory of natural 

selection. This approach is evaluated through simulations to 
highlight the potential of using natural selection for the 
deployment and management of software evolution. 

Categories and Subject Descriptors 

C.2.4 [Distributed Systems]: Distributed Applications; D.2.11 

[Software Architectures]: Patterns (Reflection) 

General Terms 

Design, Management 

Keywords 

Software evolution, natural selection, peer-to-peer, functional 
scalability, self-optimisation, reflective middleware 

1. INTRODUCTION 
Recent years have seen a proliferation in the number of widely 
deployed distributed systems with a particular focus on peer-to-
peer applications. Such systems offer a number of benefits derived 
from their ability to self-organise and pool resources. Their 
decentralised nature, however, creates significant issues when 
managing, deploying and optimising new system functionality. 

In a traditional client-server model, introducing new functionality 
is not a significant issue as administrators can easily update server 
software and insist that clients do so to gain compatibility. Such 
an approach, however, is not feasible in a peer-to-peer 
environment. This is because the lack of centralised management 
means that functionality can be introduced through individual 
peers at any time in an uncontrolled way. Further, due to the 
nature of peer-to-peer networks, specific functionality is not 
necessarily appropriate for different peers. This means that nodes 
must be adapted in a very fine grained manner. However, to 
achieve this it is necessary for peers to be able to evolve their 
capabilities to address new constraints and requirements. Software 
evolution is the process by which applications can be maintained 
and extended to incorporate new functionality [11]. Research has 
largely indicated that the use of well-defined software 
architectures allows systems to effectively scale their functionality 
through the manipulation of software building blocks.  

This form of evolution, however, is limited in scope and does not 
port well to the concept of fully decentralised systems. This is 
because it is only concerned with the practical issues of 
augmenting existing software. This does not take into account 
such things as the deployment, location or selection of new 
functionality. In contrast to this, a number of interesting 
correlations can be drawn between the evolutionary requirements 
of peer-to-peer systems and those of ecosystems [10]. In natural 
evolution, organisms that are well suited to their environment 
flourish and propagate whilst ill-suited organisms die out. This is 
termed the survival of the fittest and has been identified in the 
software market [7]. This paradigm can offer significant benefits 
if ported to peer-to-peer systems. Such an approach would allow 
functionality to autonomously exist in a network in a similar way 
to life forms in an ecosystem. Through the concept of natural 

selection [10], effective functionality would then survive and 
propagate whilst poor functionality dies out.  

This paper investigates the potential of distributed functional 
adaptation and evolution in peer-to-peer systems. To this end, an 
approach is outlined using the Juno middleware [15] as a 
platform. Through self contained reflective components, users can 
develop and deploy functionality in a self-optimising and scalable 
manner. This functionality is then autonomously distributed in the 
network through the automated evaluation of its performance. 
Once deployed, functionality can either flourish or die. This 
results in functionality in suitable environments virally 
propagating whilst ill-suiting functionality becomes extinct. This 
approach provides three attractive properties: 

i) Autonomous Management – Peers can inject 
functionality into the network. If the functionality is 
effective it will be autonomously distributed. 
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ii) Self-Optimisation – Functionality will naturally be 
disseminated towards its optimal environments. 
Similarly, inefficient functionality will die out. This 
allows peers to be autonomously configured. 

iii) Functional Scalability – The ability to dynamically 
exchange functionality ensures that peers supporting the 
evolutionary platform will always be able to interact by 
scaling their capabilities through functional exchange. 

The paper is structured as follows: Section 2 outlines Juno, the 
middleware platform used for the system. Section 3 outlines the 
details of the evolutionary process. Subsequently, Section 4 
evaluates this mechanism. Section 5 then provides a brief 
background to the area. Finally, Section 6 concludes the work, 
identifying a number of areas of future work. 

2. JUNO MIDDLEWARE 
To support distributed evolution it is necessary for middleware 
support to be provided. The evolutionary process described in this 
paper has been designed to operate with the Juno middleware 
[15]. This section outlines Juno’s relevant operation. 

2.1 Overview of Juno 
Juno is a (re)configurable peer-to-peer middleware designed to 
address the heterogeneity of modern content networks [12]. 
Content networking refers to the progression of traditional content 
distribution technologies to more integrated, holistic content 
environments. Unlike traditional content distribution, content 
networks view the content itself as the focal point of the system. 
This can be compared to systems such as BitTorrent [4] that view 
content as just a set of bytes. To this end, content networks utilise 
information to intelligently distribute content to end users, taking 
into account such things as user preferences and Quality of 
Service (QoS). Content networks are therefore often defined by a 
diverse range of delivery mechanisms and multimedia services, 
creating significant complexities when evolving applications. 

Juno

A1

Application

Abstracted Interface Evolutionary Manager

Requirements

A2

Operations

 

Figure 1 Overview of Juno Middleware (per Host) 

Juno’s approach to addressing these complexities is to encapsulate 
functionality in fine grain software components, shown in Fig 1. 
These are independent software entities that offer abstracted 
services (interfaces) alongside well defined requirements 
(receptacles). In Juno, multiple components are interconnected to 
build multimedia delivery mechanisms and services (e.g. video 
streaming, transcoding etc). For example, a distributed object 
location overlay such as Pastry [14] has a number of identifiable 
functional aspects e.g. joining, maintenance, routing etc. Juno 
therefore separates these aspects through software modularisation 
and dynamically interconnects them at runtime to construct a fully 
operational peer. This allows adaptable systems to be constructed 

by selectively connecting the optimal components for the 
particular constraints and requirements the node is operating in. 

2.2 Reconfiguration in Juno 
The ability to dynamically reconfigure functionality creates a 
natural platform for adaptation and evolution. Therefore, on 
receipt of a superior component, Juno dynamically reconfigures 
its internal architecture to replace the existing component with the 
new one. For example, a node would evolve its maintenance 
algorithms by obtaining a new maintenance component that offers 
the correct interface. The old component would then be removed 
from the software architecture and replaced by the new one. All 
subsequent maintenance functionality would then be performed 
by the new component. To support this, interchangeable 
components must offer identical interfaces. 

2.3 Reflection in Juno 
One of the primary functions of Juno is to create a bespoke high 
level platform for content network applications to operate over. It 
does this by dynamically constructing itself from optimal 
components based on environmental factors and application level 
requirements. To achieve this, however, it is necessary for Juno to 
ascertain the quality and behaviour of individual components. 

To facilitate this decision process, Juno utilises reflection. 
Through the OpenCOM [6] component model, Juno can inspect 
the operational performance of each available component using 
quantitative meta-data. Each component implements OpenCOM’s 
IMetaInterface which allows tag based meta-data to be associated 
with each of the component’s interfaces. This is shown in Figure 1 
with components A1 and A2 offering the IMetaInterface to the 
Evolutionary Manager. Each tag represents a particular evaluative 
metric of the component’s performance (e.g. for a caching 
component, average_hit_rate, storage_overhead etc). To allow 
comparisons, all components offering a particular interface utilise 
identical meta-tags. To support this, an application defines 
standard meta-tags for its default components. All future 
evolutionary components must then be described using identical 
meta-tags to those defined by the default component they replace. 
This reduces flexibility but is necessary for comparability. 

To inspect a component’s performance, an application can call the 
getAttributeValue(String tag) operation on any 

component to gain a quantitative assessment of a particular facet 
e.g. the bandwidth_overhead of an overlay maintenance 
component. This operation returns a quantitative value for the 
requested meta-tag; the representation and assignment of these 
values will be looked at in Section 3. 

3. EVOLUTIONARY PROCESS 
For evolution to take place it is necessary to describe how 
functionality is propagated in the network. The approach taken 
follows the theory of the survival of the fittest. This section 
describes how this concept is ported to peer-to-peer environments. 

3.1 Evolutionary Dissemination 
To allow a fully distributed application to evolve, it is necessary 
to allow functionality to be disseminated to appropriate hosts. In a 
peer-to-peer environment frequent interactions occur between 
nodes in the system. These interactions consist of service requests 
and provisions. For example, in a peer-to-peer content delivery 
system, nodes will issue requests to each other for data.  These 
interactions are exploited to exchange reflective meta-data 
between peers. This is because interacting nodes will often share 



similar application level requirements and constraints. Juno 
therefore monitors the application’s interaction with other nodes 
and subsequently contacts them to offer them new functionality. 
This approach therefore does not involve any additional overhead 
for node location or topology maintenance. When two peers 
interact they concurrently exchange reflective meta-data about any 
extension components considered to be of interest. Each node 
then analyses this data in order to select any functionality of 
interest with evolutionary potential. This therefore allows nodes to 
flexibly inspect individual attributes considered important for a 
particular set of individual requirements. This provides support 
for extremely fine grained evolutionary decisions. 

If two interacting peers offer each other similar component 
functionality and meta-data, these two nodes create a link. These 
links create clusters, of a limited size, containing peers that have 
similar requirements and environmental constraints. These are 
termed environmental clusters. If a node locates a piece of 
effective functionality, it shares it with its cluster. This allows 
functionality to be quickly disseminated in suitable environments 
without the overhead of actively locating suitable peers. 

3.2 Evolutionary Adaptation 
When a node receives reflective information about a new 
component it is necessary to compare it with the equivalent 
component it is currently using. To allow this, all meta-values are 
defined relative to the default component. The default component 
therefore sets a base-line that all evolutionary components are 
compared against. Therefore if a default overlay maintenance 
component, on average, generates 10KB overhead per minute and 
a new overlay component only generates 8KB then its assigned 
bandwidth_overhead meta-value will be 20%. This is because it 
improves the overhead by 20%. If, alternatively, a new component 
generates 12KB then the value will be -20%. This is because it 
creates 20% more overhead. This approach removes the necessity 
for other components and applications to possess semantic 
knowledge of quantitative values. Instead, it is possible to simply 
consider their capabilities as relative to each other. The 
assignment of these values will be described in Section 3.3. 

Using these meta-tag values, Juno can easily compare multiple 
components to ascertain the superior choice. To assist in this, an 
application built over Juno must weight the importance of each 
meta-tag associated with its constituent components. Both Juno 
and the application then dynamically modify these values to 
reflect changes in requirements and constraints. For example, a 
caching service will place considerable weight on the 
average_hit_rate meta-tag associated with its replacement 
algorithm component. However, if the host becomes overloaded it 
will lower this in favour of decreasing resource consumption. 

When an evolutionary component is offered, both the new and old 
components calculate their scores based on the current 
weightings. This is done by multiplying each meta-tag value by its 
designated weighting. If a new component achieves a higher score 
than the existing components then Juno will evolve to incorporate 
the new functionality. Importantly, a peer can reconfigure itself at 
any time to utilise any component it possesses. Therefore an old 
component can be utilised again if it is considered optimal. 

3.3 Reflective Meta-Data Assignment 
An important aspect of the system is the assignment of values to 
each meta-tag. It is unwise to allow developers to assign relative 
values themselves as this is easily open to abuse. Further, this 
non-adaptive approach will limit the accuracy of values in 

divergent environments. Instead, as each node operates the 
component it actively manipulates the relative values to reflect the 
current experience. It then uses this information when later 
advertising components to other nodes. Therefore, when a peer 
receives a new component it takes the existing meta-tag values 
and incrementally changes them to reflect its experience. The 
resulting values therefore reflect the aggregated experience of all 
peers that the particular instance of the component has passed 
through. As a component penetrates a specific environment these 
values then become more specialised for that particular 
environment. If a component does not offer the performance that 
its meta-data stated then this process automatically rectifies this. 
Through the adaptive process outlined earlier, the new values 
assigned to this component will result in it being automatically 
removed from operation in favour of a superior alternative. 

To achieve this measurement process it is necessary for the default 
components to be bundled with the necessary functionality to 
measure and allocate meta-values to new components. The 
process is supported through Juno’s open architecture. This 
allows components to easily monitor each other. The 
measurement functionality associated with the default component 
therefore passively monitors all components involved in the 
application. This is done through open state monitoring (ability to 
inspect component state) and open event/interface monitoring 
(ability to inspect component interactions). For example, a default 
component can measure the latency between nodes by listening to 
the interactions of the networking components. This, therefore, 
does not require evaluative information to be provided by the 
components that are under inspection, mitigating the potential for 
biased decisions or malicious interference. However, further 
investigation of this is an important area of future work. 

3.4  Survival of the Fittest 
Once a peer has identified a new component as a good candidate 
for evolution it will request it and reconfigure itself. However, it 
is also important that ineffective components are removed from 
the network. This improves performance and overhead by 
ensuring poor functionality is not advertised and exchanged in the 
evolutionary process. To achieve this, each node is restricted to 
maintaining a limited set of instances for each component type 
e.g. Pastry maintenance components. Once this set has reached 
capacity, the worst performing component is removed to make 
room for the new one. This results in a situation in which 
components existing in ill-suited environments die whilst 
components in well-suited environments virally propagate.  

4. EVALUATION 
To evaluate the system a simulator has been developed. The 
simulator operates a peer-to-peer video streaming application 
based on measurements taken from an existing Video on Demand 
system [16]. Nodes interact with each other based on this 
application. These interactions are utilised by the evolutionary 
process to exchange reflective meta-data about new functionality.  

Nodes are bootstrapped in one of a number of possible 
environments. An environment consists of all peers in the system 
operating with the same type of device and connectivity. Two 
video streaming system variants are considered: a relatively 
homogeneous system (5 environments) and a heterogeneous 
system (15 environments). A homogenous system operates over a 
limited set of network connections and devices (e.g. PCs, laptops, 
DSL, wireless etc). Alternatively, the heterogeneous system has a 
much greater range of environments (e.g. PCs, laptops over DSL, 



T1/T3 etc; PDAs over wireless and Bluetooth; mobile phones 
over GPRS, UMTS and Bluetooth; TVs over Cable and DSL). 
Each of these devices and connections has different requirements. 
For example, a mobile phone will require sources providing low 
computation decoding; something that will not affect PCs. Due to 
space constraints details are not provided of individual component 
specifications or meta-data. The distribution of nodes in these 
environments is modelled using a Zipf distribution [1] with PCs 
(over DSL) constituting the greatest number of peers and PDAs 
(over Bluetooth) constituting the least. 

 

Parameters Values 

Number of Nodes 20,000 

Number of Environments 5 / 15 

Number of Evolutionary Components 10 / 25 / 50 

Node Distribution per Environment Zipf (α = 0.5) 

Maximum Number of Stored Components 5 per node 

Environmental Cluster Size 16 

Number of Injection Points 8 (Random peers) 

Request Distribution  Poisson (λ =0.693/sec) 

Number of Node Interactions per Request 8 

Table 1 Default Parameter Configuration 

 

At bootstrap each node possesses the default source selector. 
Subsequently, a number of new source selector components are 
developed and injected at random points in the network. The 
source selector component decides which peers should be used to 
download video data from. A number of variants therefore exist 
including latency, bandwidth, monetary and encoding preference 
mechanisms; active and passive probing mechanisms; gossip-
based knowledge sharing and social preference mechanisms. Peers 
therefore try to gain their optimal source selector through Juno’s 
evolutionary mechanism.  Before execution, the simulator 
allocates each node an ordered list of component rankings. These 
rankings represent the suitability of each component for the 
environment that the node operates in (position 0 is optimal). 
Using this, the simulator measures the performance of the 
mechanism by inspecting the effectiveness of the decisions taken 
by each node. This section will inspect the results based on the 
number of optimisations, the distribution of these optimisations 
and, finally, the extinction of component in the system. The 
default simulation parameters are in Table 1. 

4.1 Optimisation Levels 
An important evaluative metric is how many nodes in the network 
gain their optimal source selector component. Simulations have 
first been performed with five environments over 48 hours, shown 
in Figure 2. Deployments of 10 and 50 new components are 
shown. Optimisation is fast with a small number of components 
(10), with 90% of nodes self-optimising after 17 hours. However, 
even with high numbers of components (50), this is only extended 
by 5 hours. The final 10% of optimisations, however, is 
significantly greater in both systems; this is termed the tailing off 

period. 

The reason for this decrease in gradient is the existence of fringe 
peers that reside in small environments with few communications. 
Such peers therefore rarely come into contact with similar peers 
and fail to construct adequate environmental clusters to gain rare 
(yet optimal) functionality for their individual requirements. For 

both 10 and 50 deployed components, the speed of optimisation 
begins to noticeably slow once the majority (85%) of peers have 
optimised. The final 15% of peers therefore constitute the fringe. 

 

Figure 2 Percentage of Optimisations with 5 Environments 

 

Figure 3 Percentage of Optimisations with 15 Environments 

Figure 3 shows the percentage of optimisations when operating a 
heterogeneous system with 15 environments over 96 hours. These 
experiments highlight the scalability of the approach. When 
compared to the homogenous system, it can be seen that the speed 
of optimisation slows down. Further, the tailing off process can 
also be observed in the same manner as highlighted in the 
homogenous system. When deploying 10 components, this effect 
is least noticeable with significant slowing only occurring after 
~85% of optimisations. Conversely, when deploying 25 and 50 
components, the tailing off procedure occurs in a far smoother 
manner beginning after ~75%. Importantly, as the number of 
components grows this tailing off procedure stays fairly constant. 
Further, the speed of optimisation only marginally decreases. For 
example, when the number of components increases from 10 to 
25, the time taken to reach 90% optimisation increases by 17 
hours. However, this can be compared to an increase of only 9 
hours when increasing component numbers from 25 to 50.  

When comparing the heterogeneous and homogenous systems it 
can be observed that increasing the number of environments and 
components only slows the optimisation process; it does not 
prevent it. For example, after 8 hours, approximately half of all 
nodes have self-optimised in the homogenous system when 
deploying 25 components. This can be compared to only 32% in 
the heterogeneous system. This highlights the complexities 
encountered when deploying large numbers of components to 



many different divergent environments. As both systems enter 
their tailing off period, however, this difference considerably 
decreases. After 48 hours, there is only a 7% difference in the 
level of optimisation between the homogenous and heterogeneous 
systems (98%, 91%).  

This data shows that even when deploying large numbers of 
components in different types of networks it is possible to 
effectively evolve functionality in a fully distributed way. The 
speed of this process is dependent on the number of environments 
and components. However, the data shows that increasing the 
number of components does not have a significant impact on the 
overall optimisation time. Further, even when operating in diverse 
sets of environments this process can effectively be carried out. 

4.2 Environmental Penetration 
It has been shown that a significant proportion of the peers are 
able to self-optimise through Juno’s evolutionary process. It is 
important, however, to investigate the distribution of optimised 
nodes in environments. Environments with a large number of 
members (e.g. PCs over DSL) find it easy to gain a high degree of 
penetration. However, fringe environments with few constituent 
members (e.g. PDAs over Bluetooth) are less susceptible to fast 
functional penetration. This is because their limited number of 
members makes it less likely for a node to interact with another 
peer possessing the required functionality. To investigate this, 
simulations are performed to monitor the number of nodes from 
each environment that optimise. Figure 4 shows each 
environment’s percentage deviation from the overall average 
percentage of optimisations. These are performed in a 
heterogeneous system (15 environments) deploying 25 
evolutionary components. 

It can be seen that early after the components’ deployment the 
deviation between different environments is noticeable. 
Environment 1 constitutes the largest environment whilst 
Environment 15 is the smallest. After 48 hours, significant 
deviations are still identifiable; this is because the larger 
environments have gained high penetrations whilst the smaller 
environments have gained lower penetrations.  However, after 72 
hours these deviations have decreased substantially. For example, 
between 48 and 72 hours, Environment 7 improves its deviation 
from -33% to -16%. These experiments corroborate the earlier 
optimisation experiments, highlighting the difficulty in 
penetrating small fringe environments. A downward trend can 
therefore be identified with Environment 1 gaining high levels of 
penetration whilst Environment 15 gains lower. Interestingly it is 
also identifiable that some more populous environments (e.g. 7) 
gain lower penetration than some less populous environments 
(e.g. 15). This is due to the passive nature of node discovery i.e. 
evolutionary interactions are based on the higher level 
application. Therefore, some environments can gain better 
penetration because their constituent nodes interact more 
frequently. The environmental penetration is therefore based, 
more specifically, on the number of interactions; something which 
is clearly an artefact of the application that is operating. This is an 
interesting observation that will form a body of future work. 

As the time after deployment increases all the environments 
become closely inline with the average optimisation level. 
Therefore the deviation of populous environments reduces (e.g. 
after 96 hours, Environment 1 has a 0% deviation) whilst the less 
populous environments gain higher levels of penetration (e.g. 
after 96 hours, Environment 8 only has a -6.5% deviation).  

 

Figure 4 Deviation from Overall Average Percentage of 

Optimal Nodes for each Environment 

These experiments have highlighted the complexities in 
penetrating small environments. However, the experiments have 
proved the system to be capable of effectively evolving 
functionality when operating in a large number of environments.  

4.3 Functional Extinction 
To accurately reflect the evolutionary process it is necessary for 
suboptimal functionality to die. However, it is important to ensure 
that functionality is not removed before being given the 
opportunity to reach its optimal environments and flourish.  

 

Figure 5 Percentage of each Component in Environment 0 

To investigate the death of functionality, the most populous 
environment is inspected in a heterogeneous system with 25 
injected components. Figure 5 shows the percentage of nodes in 
this environment possessing each of the 25 components after 48 
hours. Component 0 represents the optimal source selector for the 
environment whilst Component 24 represents the least effective. 
99% of all nodes in this environment are optimised with 
Component 0. Further, 63% of the nodes possess the component 
ranked as the second most optimal. However, very few nodes 
possess the lower ranked components. For instance, Component 
24 is possessed by only 1% of peers. This represents the 
extinction of functionality in particular environments. It should be 
recognised, however, that this functionality flourishes in other 
environments. For instance, there are no instances of Component 
17 in Environment 0. However, 99% of PDAs connected through 
wireless Ethernet possess the component. This shows the system’s 
ability to remove poor functionality from an environment whilst 
propagating it in other environments. 



5. RELATED WORK 
A range of work has been carried out into various types of 
software evolution. Early work such as [11] looked at evolving 
software for maintenance purposes. This promoted the use of 
architectural patterns and component interceptors to dynamically 
expand functionality through component models such as 
OpenCOM [6]. This, however, only deals with internal software 
concerns rather than deploying and adapting remote nodes. A 
biological view of software evolution can also be found in [10]. 

Hales et al [9] utilise an autonomic approach to the evolution and 
selection of peer-to-peer protocols by inspecting the ‘utility’ of 
other peers using alternate protocols. This, however, does not 
support fine-grained service composition as our approach does. 
Nor does it allow the exchange of reflective information to permit 
flexible decisions based on individual node preferences. Instead, 
only a single universal utility value is exchanged. 

To support evolution a number of other systems utilise reflection 
which is the ability for a system to reflect on its own operations 
and behaviour. This has been exploited in such systems as [13] to 
allow software to effectively evolve. There are also middleware, 
such as QuA [8], RAMES [5] and [2] that specifically attempt to 
address system evolution. These middlewares, however, consider 
the local extension of functionality rather than the distributed 
aspects investigated in this paper. To address this, mobile agents 
have been used [3]. However, agents must be constructed on 
centralised servers and do not support fine grained evolution for 
peers in different environments. To the best of our knowledge, 
this work is the first to look at a natural selection approach to 
disseminating evolutionary functionality in heterogeneous, 
decentralised environments. 

6. CONCLUSION AND FUTURE WORK 
This paper has investigated the potential of large scale functional 
evolution in peer-to-peer systems through the paradigms of 
natural selection [10] and the survival of the fittest [7]. Based on 
this, an approach using the Juno middleware [15] has been 
designed and evaluated. In this approach, evolutionary 
functionality is encapsulated in reflective components that are 
exchanged by peers based on their performance and capabilities. 
This results in effective functionality flourishing in desirable 
environments whilst poor functionality dies out. Through 
extensive simulations, the approach was shown to perform well in 
a VoD scenario, allowing peers to be evolved and adapted in a 
fine grained manner. 

A number of areas of future work can be identified. A major area 
of further investigation is the system’s performance when used 
with a variety of applications. The evolution of multiple 
cooperating components is also an important area. The evaluation 
will be continued to involve these concerns alongside the 
integration of dynamic environmental changes. Further, the effects 
of progressive deployments of components will be looked at. 
Lastly, it is also important to investigate the security of the system 
by protecting is against the propagation of malicious functionality. 
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