
The Survival of the Fittest: An Evolutionary Approach to
Deploying Adaptive Functionality in Peer-to-Peer Systems

Gareth Tyson
a
, Paul Grace

a
, Andreas Mauthe

a
, Sebastian Kaune

b

a
InfoLab21, Lancaster University, Lancaster, UK.

b
Technishe Universitat Darmstadt, Darmstadt, Germany.

a
{g.tyson, p.grace, andreas}@comp.lancs.ac.uk,

b
kaune@kom.tu-darmstadt.de

ABSTRACT

The heterogeneous, large-scale and decentralised nature of peer-
to-peer systems creates significant issues when deploying new
functionality and adapting peer behaviour. The ability to
autonomously deploy new adaptive functionality is therefore
highly beneficial. This paper investigates middleware support for
evolving and adapting peers in divergent systems through
reflective component based design. This approach allows self-
contained functionality to exist in the network as a primary entity.
This functionality is autonomously propagated to suitable peers,
allowing nodes to be evolved and adapted to their individual
constraints and the specific requirements of their environment.
This results in effective functionality flourishing whilst sub-
optimal functionality dies out. By this, a self-managed
infrastructure is created that supports the deployment of
functionality following the evolutionary theory of natural

selection. This approach is evaluated through simulations to
highlight the potential of using natural selection for the
deployment and management of software evolution.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed Applications; D.2.11

[Software Architectures]: Patterns (Reflection)

General Terms

Design, Management

Keywords

Software evolution, natural selection, peer-to-peer, functional
scalability, self-optimisation, reflective middleware

1. INTRODUCTION
Recent years have seen a proliferation in the number of widely
deployed distributed systems with a particular focus on peer-to-
peer applications. Such systems offer a number of benefits derived
from their ability to self-organise and pool resources. Their
decentralised nature, however, creates significant issues when
managing, deploying and optimising new system functionality.

In a traditional client-server model, introducing new functionality
is not a significant issue as administrators can easily update server
software and insist that clients do so to gain compatibility. Such
an approach, however, is not feasible in a peer-to-peer
environment. This is because the lack of centralised management
means that functionality can be introduced through individual
peers at any time in an uncontrolled way. Further, due to the
nature of peer-to-peer networks, specific functionality is not
necessarily appropriate for different peers. This means that nodes
must be adapted in a very fine grained manner. However, to
achieve this it is necessary for peers to be able to evolve their
capabilities to address new constraints and requirements. Software
evolution is the process by which applications can be maintained
and extended to incorporate new functionality [11]. Research has
largely indicated that the use of well-defined software
architectures allows systems to effectively scale their functionality
through the manipulation of software building blocks.

This form of evolution, however, is limited in scope and does not
port well to the concept of fully decentralised systems. This is
because it is only concerned with the practical issues of
augmenting existing software. This does not take into account
such things as the deployment, location or selection of new
functionality. In contrast to this, a number of interesting
correlations can be drawn between the evolutionary requirements
of peer-to-peer systems and those of ecosystems [10]. In natural
evolution, organisms that are well suited to their environment
flourish and propagate whilst ill-suited organisms die out. This is
termed the survival of the fittest and has been identified in the
software market [7]. This paradigm can offer significant benefits
if ported to peer-to-peer systems. Such an approach would allow
functionality to autonomously exist in a network in a similar way
to life forms in an ecosystem. Through the concept of natural

selection [10], effective functionality would then survive and
propagate whilst poor functionality dies out.

This paper investigates the potential of distributed functional
adaptation and evolution in peer-to-peer systems. To this end, an
approach is outlined using the Juno middleware [15] as a
platform. Through self contained reflective components, users can
develop and deploy functionality in a self-optimising and scalable
manner. This functionality is then autonomously distributed in the
network through the automated evaluation of its performance.
Once deployed, functionality can either flourish or die. This
results in functionality in suitable environments virally
propagating whilst ill-suiting functionality becomes extinct. This
approach provides three attractive properties:

i) Autonomous Management – Peers can inject
functionality into the network. If the functionality is
effective it will be autonomously distributed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ARM 2008, December 1, 2008, Leuven, Belgium.

Copyright 2008 ACM 978-1-60558-367-9/08/12...$5.00.

ii) Self-Optimisation – Functionality will naturally be
disseminated towards its optimal environments.
Similarly, inefficient functionality will die out. This
allows peers to be autonomously configured.

iii) Functional Scalability – The ability to dynamically
exchange functionality ensures that peers supporting the
evolutionary platform will always be able to interact by
scaling their capabilities through functional exchange.

The paper is structured as follows: Section 2 outlines Juno, the
middleware platform used for the system. Section 3 outlines the
details of the evolutionary process. Subsequently, Section 4
evaluates this mechanism. Section 5 then provides a brief
background to the area. Finally, Section 6 concludes the work,
identifying a number of areas of future work.

2. JUNO MIDDLEWARE
To support distributed evolution it is necessary for middleware
support to be provided. The evolutionary process described in this
paper has been designed to operate with the Juno middleware
[15]. This section outlines Juno’s relevant operation.

2.1 Overview of Juno
Juno is a (re)configurable peer-to-peer middleware designed to
address the heterogeneity of modern content networks [12].
Content networking refers to the progression of traditional content
distribution technologies to more integrated, holistic content
environments. Unlike traditional content distribution, content
networks view the content itself as the focal point of the system.
This can be compared to systems such as BitTorrent [4] that view
content as just a set of bytes. To this end, content networks utilise
information to intelligently distribute content to end users, taking
into account such things as user preferences and Quality of
Service (QoS). Content networks are therefore often defined by a
diverse range of delivery mechanisms and multimedia services,
creating significant complexities when evolving applications.

Juno

A1

Application

Abstracted Interface Evolutionary Manager

Requirements

A2

Operations

Figure 1 Overview of Juno Middleware (per Host)

Juno’s approach to addressing these complexities is to encapsulate
functionality in fine grain software components, shown in Fig 1.
These are independent software entities that offer abstracted
services (interfaces) alongside well defined requirements
(receptacles). In Juno, multiple components are interconnected to
build multimedia delivery mechanisms and services (e.g. video
streaming, transcoding etc). For example, a distributed object
location overlay such as Pastry [14] has a number of identifiable
functional aspects e.g. joining, maintenance, routing etc. Juno
therefore separates these aspects through software modularisation
and dynamically interconnects them at runtime to construct a fully
operational peer. This allows adaptable systems to be constructed

by selectively connecting the optimal components for the
particular constraints and requirements the node is operating in.

2.2 Reconfiguration in Juno
The ability to dynamically reconfigure functionality creates a
natural platform for adaptation and evolution. Therefore, on
receipt of a superior component, Juno dynamically reconfigures
its internal architecture to replace the existing component with the
new one. For example, a node would evolve its maintenance
algorithms by obtaining a new maintenance component that offers
the correct interface. The old component would then be removed
from the software architecture and replaced by the new one. All
subsequent maintenance functionality would then be performed
by the new component. To support this, interchangeable
components must offer identical interfaces.

2.3 Reflection in Juno
One of the primary functions of Juno is to create a bespoke high
level platform for content network applications to operate over. It
does this by dynamically constructing itself from optimal
components based on environmental factors and application level
requirements. To achieve this, however, it is necessary for Juno to
ascertain the quality and behaviour of individual components.

To facilitate this decision process, Juno utilises reflection.
Through the OpenCOM [6] component model, Juno can inspect
the operational performance of each available component using
quantitative meta-data. Each component implements OpenCOM’s
IMetaInterface which allows tag based meta-data to be associated
with each of the component’s interfaces. This is shown in Figure 1
with components A1 and A2 offering the IMetaInterface to the
Evolutionary Manager. Each tag represents a particular evaluative
metric of the component’s performance (e.g. for a caching
component, average_hit_rate, storage_overhead etc). To allow
comparisons, all components offering a particular interface utilise
identical meta-tags. To support this, an application defines
standard meta-tags for its default components. All future
evolutionary components must then be described using identical
meta-tags to those defined by the default component they replace.
This reduces flexibility but is necessary for comparability.

To inspect a component’s performance, an application can call the
getAttributeValue(String tag) operation on any

component to gain a quantitative assessment of a particular facet
e.g. the bandwidth_overhead of an overlay maintenance
component. This operation returns a quantitative value for the
requested meta-tag; the representation and assignment of these
values will be looked at in Section 3.

3. EVOLUTIONARY PROCESS
For evolution to take place it is necessary to describe how
functionality is propagated in the network. The approach taken
follows the theory of the survival of the fittest. This section
describes how this concept is ported to peer-to-peer environments.

3.1 Evolutionary Dissemination
To allow a fully distributed application to evolve, it is necessary
to allow functionality to be disseminated to appropriate hosts. In a
peer-to-peer environment frequent interactions occur between
nodes in the system. These interactions consist of service requests
and provisions. For example, in a peer-to-peer content delivery
system, nodes will issue requests to each other for data. These
interactions are exploited to exchange reflective meta-data
between peers. This is because interacting nodes will often share

similar application level requirements and constraints. Juno
therefore monitors the application’s interaction with other nodes
and subsequently contacts them to offer them new functionality.
This approach therefore does not involve any additional overhead
for node location or topology maintenance. When two peers
interact they concurrently exchange reflective meta-data about any
extension components considered to be of interest. Each node
then analyses this data in order to select any functionality of
interest with evolutionary potential. This therefore allows nodes to
flexibly inspect individual attributes considered important for a
particular set of individual requirements. This provides support
for extremely fine grained evolutionary decisions.

If two interacting peers offer each other similar component
functionality and meta-data, these two nodes create a link. These
links create clusters, of a limited size, containing peers that have
similar requirements and environmental constraints. These are
termed environmental clusters. If a node locates a piece of
effective functionality, it shares it with its cluster. This allows
functionality to be quickly disseminated in suitable environments
without the overhead of actively locating suitable peers.

3.2 Evolutionary Adaptation
When a node receives reflective information about a new
component it is necessary to compare it with the equivalent
component it is currently using. To allow this, all meta-values are
defined relative to the default component. The default component
therefore sets a base-line that all evolutionary components are
compared against. Therefore if a default overlay maintenance
component, on average, generates 10KB overhead per minute and
a new overlay component only generates 8KB then its assigned
bandwidth_overhead meta-value will be 20%. This is because it
improves the overhead by 20%. If, alternatively, a new component
generates 12KB then the value will be -20%. This is because it
creates 20% more overhead. This approach removes the necessity
for other components and applications to possess semantic
knowledge of quantitative values. Instead, it is possible to simply
consider their capabilities as relative to each other. The
assignment of these values will be described in Section 3.3.

Using these meta-tag values, Juno can easily compare multiple
components to ascertain the superior choice. To assist in this, an
application built over Juno must weight the importance of each
meta-tag associated with its constituent components. Both Juno
and the application then dynamically modify these values to
reflect changes in requirements and constraints. For example, a
caching service will place considerable weight on the
average_hit_rate meta-tag associated with its replacement
algorithm component. However, if the host becomes overloaded it
will lower this in favour of decreasing resource consumption.

When an evolutionary component is offered, both the new and old
components calculate their scores based on the current
weightings. This is done by multiplying each meta-tag value by its
designated weighting. If a new component achieves a higher score
than the existing components then Juno will evolve to incorporate
the new functionality. Importantly, a peer can reconfigure itself at
any time to utilise any component it possesses. Therefore an old
component can be utilised again if it is considered optimal.

3.3 Reflective Meta-Data Assignment
An important aspect of the system is the assignment of values to
each meta-tag. It is unwise to allow developers to assign relative
values themselves as this is easily open to abuse. Further, this
non-adaptive approach will limit the accuracy of values in

divergent environments. Instead, as each node operates the
component it actively manipulates the relative values to reflect the
current experience. It then uses this information when later
advertising components to other nodes. Therefore, when a peer
receives a new component it takes the existing meta-tag values
and incrementally changes them to reflect its experience. The
resulting values therefore reflect the aggregated experience of all
peers that the particular instance of the component has passed
through. As a component penetrates a specific environment these
values then become more specialised for that particular
environment. If a component does not offer the performance that
its meta-data stated then this process automatically rectifies this.
Through the adaptive process outlined earlier, the new values
assigned to this component will result in it being automatically
removed from operation in favour of a superior alternative.

To achieve this measurement process it is necessary for the default
components to be bundled with the necessary functionality to
measure and allocate meta-values to new components. The
process is supported through Juno’s open architecture. This
allows components to easily monitor each other. The
measurement functionality associated with the default component
therefore passively monitors all components involved in the
application. This is done through open state monitoring (ability to
inspect component state) and open event/interface monitoring
(ability to inspect component interactions). For example, a default
component can measure the latency between nodes by listening to
the interactions of the networking components. This, therefore,
does not require evaluative information to be provided by the
components that are under inspection, mitigating the potential for
biased decisions or malicious interference. However, further
investigation of this is an important area of future work.

3.4 Survival of the Fittest
Once a peer has identified a new component as a good candidate
for evolution it will request it and reconfigure itself. However, it
is also important that ineffective components are removed from
the network. This improves performance and overhead by
ensuring poor functionality is not advertised and exchanged in the
evolutionary process. To achieve this, each node is restricted to
maintaining a limited set of instances for each component type
e.g. Pastry maintenance components. Once this set has reached
capacity, the worst performing component is removed to make
room for the new one. This results in a situation in which
components existing in ill-suited environments die whilst
components in well-suited environments virally propagate.

4. EVALUATION
To evaluate the system a simulator has been developed. The
simulator operates a peer-to-peer video streaming application
based on measurements taken from an existing Video on Demand
system [16]. Nodes interact with each other based on this
application. These interactions are utilised by the evolutionary
process to exchange reflective meta-data about new functionality.

Nodes are bootstrapped in one of a number of possible
environments. An environment consists of all peers in the system
operating with the same type of device and connectivity. Two
video streaming system variants are considered: a relatively
homogeneous system (5 environments) and a heterogeneous
system (15 environments). A homogenous system operates over a
limited set of network connections and devices (e.g. PCs, laptops,
DSL, wireless etc). Alternatively, the heterogeneous system has a
much greater range of environments (e.g. PCs, laptops over DSL,

T1/T3 etc; PDAs over wireless and Bluetooth; mobile phones
over GPRS, UMTS and Bluetooth; TVs over Cable and DSL).
Each of these devices and connections has different requirements.
For example, a mobile phone will require sources providing low
computation decoding; something that will not affect PCs. Due to
space constraints details are not provided of individual component
specifications or meta-data. The distribution of nodes in these
environments is modelled using a Zipf distribution [1] with PCs
(over DSL) constituting the greatest number of peers and PDAs
(over Bluetooth) constituting the least.

Parameters Values

Number of Nodes 20,000

Number of Environments 5 / 15

Number of Evolutionary Components 10 / 25 / 50

Node Distribution per Environment Zipf (α = 0.5)

Maximum Number of Stored Components 5 per node

Environmental Cluster Size 16

Number of Injection Points 8 (Random peers)

Request Distribution Poisson (λ =0.693/sec)

Number of Node Interactions per Request 8

Table 1 Default Parameter Configuration

At bootstrap each node possesses the default source selector.
Subsequently, a number of new source selector components are
developed and injected at random points in the network. The
source selector component decides which peers should be used to
download video data from. A number of variants therefore exist
including latency, bandwidth, monetary and encoding preference
mechanisms; active and passive probing mechanisms; gossip-
based knowledge sharing and social preference mechanisms. Peers
therefore try to gain their optimal source selector through Juno’s
evolutionary mechanism. Before execution, the simulator
allocates each node an ordered list of component rankings. These
rankings represent the suitability of each component for the
environment that the node operates in (position 0 is optimal).
Using this, the simulator measures the performance of the
mechanism by inspecting the effectiveness of the decisions taken
by each node. This section will inspect the results based on the
number of optimisations, the distribution of these optimisations
and, finally, the extinction of component in the system. The
default simulation parameters are in Table 1.

4.1 Optimisation Levels
An important evaluative metric is how many nodes in the network
gain their optimal source selector component. Simulations have
first been performed with five environments over 48 hours, shown
in Figure 2. Deployments of 10 and 50 new components are
shown. Optimisation is fast with a small number of components
(10), with 90% of nodes self-optimising after 17 hours. However,
even with high numbers of components (50), this is only extended
by 5 hours. The final 10% of optimisations, however, is
significantly greater in both systems; this is termed the tailing off

period.

The reason for this decrease in gradient is the existence of fringe
peers that reside in small environments with few communications.
Such peers therefore rarely come into contact with similar peers
and fail to construct adequate environmental clusters to gain rare
(yet optimal) functionality for their individual requirements. For

both 10 and 50 deployed components, the speed of optimisation
begins to noticeably slow once the majority (85%) of peers have
optimised. The final 15% of peers therefore constitute the fringe.

Figure 2 Percentage of Optimisations with 5 Environments

Figure 3 Percentage of Optimisations with 15 Environments

Figure 3 shows the percentage of optimisations when operating a
heterogeneous system with 15 environments over 96 hours. These
experiments highlight the scalability of the approach. When
compared to the homogenous system, it can be seen that the speed
of optimisation slows down. Further, the tailing off process can
also be observed in the same manner as highlighted in the
homogenous system. When deploying 10 components, this effect
is least noticeable with significant slowing only occurring after
~85% of optimisations. Conversely, when deploying 25 and 50
components, the tailing off procedure occurs in a far smoother
manner beginning after ~75%. Importantly, as the number of
components grows this tailing off procedure stays fairly constant.
Further, the speed of optimisation only marginally decreases. For
example, when the number of components increases from 10 to
25, the time taken to reach 90% optimisation increases by 17
hours. However, this can be compared to an increase of only 9
hours when increasing component numbers from 25 to 50.

When comparing the heterogeneous and homogenous systems it
can be observed that increasing the number of environments and
components only slows the optimisation process; it does not
prevent it. For example, after 8 hours, approximately half of all
nodes have self-optimised in the homogenous system when
deploying 25 components. This can be compared to only 32% in
the heterogeneous system. This highlights the complexities
encountered when deploying large numbers of components to

many different divergent environments. As both systems enter
their tailing off period, however, this difference considerably
decreases. After 48 hours, there is only a 7% difference in the
level of optimisation between the homogenous and heterogeneous
systems (98%, 91%).

This data shows that even when deploying large numbers of
components in different types of networks it is possible to
effectively evolve functionality in a fully distributed way. The
speed of this process is dependent on the number of environments
and components. However, the data shows that increasing the
number of components does not have a significant impact on the
overall optimisation time. Further, even when operating in diverse
sets of environments this process can effectively be carried out.

4.2 Environmental Penetration
It has been shown that a significant proportion of the peers are
able to self-optimise through Juno’s evolutionary process. It is
important, however, to investigate the distribution of optimised
nodes in environments. Environments with a large number of
members (e.g. PCs over DSL) find it easy to gain a high degree of
penetration. However, fringe environments with few constituent
members (e.g. PDAs over Bluetooth) are less susceptible to fast
functional penetration. This is because their limited number of
members makes it less likely for a node to interact with another
peer possessing the required functionality. To investigate this,
simulations are performed to monitor the number of nodes from
each environment that optimise. Figure 4 shows each
environment’s percentage deviation from the overall average
percentage of optimisations. These are performed in a
heterogeneous system (15 environments) deploying 25
evolutionary components.

It can be seen that early after the components’ deployment the
deviation between different environments is noticeable.
Environment 1 constitutes the largest environment whilst
Environment 15 is the smallest. After 48 hours, significant
deviations are still identifiable; this is because the larger
environments have gained high penetrations whilst the smaller
environments have gained lower penetrations. However, after 72
hours these deviations have decreased substantially. For example,
between 48 and 72 hours, Environment 7 improves its deviation
from -33% to -16%. These experiments corroborate the earlier
optimisation experiments, highlighting the difficulty in
penetrating small fringe environments. A downward trend can
therefore be identified with Environment 1 gaining high levels of
penetration whilst Environment 15 gains lower. Interestingly it is
also identifiable that some more populous environments (e.g. 7)
gain lower penetration than some less populous environments
(e.g. 15). This is due to the passive nature of node discovery i.e.
evolutionary interactions are based on the higher level
application. Therefore, some environments can gain better
penetration because their constituent nodes interact more
frequently. The environmental penetration is therefore based,
more specifically, on the number of interactions; something which
is clearly an artefact of the application that is operating. This is an
interesting observation that will form a body of future work.

As the time after deployment increases all the environments
become closely inline with the average optimisation level.
Therefore the deviation of populous environments reduces (e.g.
after 96 hours, Environment 1 has a 0% deviation) whilst the less
populous environments gain higher levels of penetration (e.g.
after 96 hours, Environment 8 only has a -6.5% deviation).

Figure 4 Deviation from Overall Average Percentage of

Optimal Nodes for each Environment

These experiments have highlighted the complexities in
penetrating small environments. However, the experiments have
proved the system to be capable of effectively evolving
functionality when operating in a large number of environments.

4.3 Functional Extinction
To accurately reflect the evolutionary process it is necessary for
suboptimal functionality to die. However, it is important to ensure
that functionality is not removed before being given the
opportunity to reach its optimal environments and flourish.

Figure 5 Percentage of each Component in Environment 0

To investigate the death of functionality, the most populous
environment is inspected in a heterogeneous system with 25
injected components. Figure 5 shows the percentage of nodes in
this environment possessing each of the 25 components after 48
hours. Component 0 represents the optimal source selector for the
environment whilst Component 24 represents the least effective.
99% of all nodes in this environment are optimised with
Component 0. Further, 63% of the nodes possess the component
ranked as the second most optimal. However, very few nodes
possess the lower ranked components. For instance, Component
24 is possessed by only 1% of peers. This represents the
extinction of functionality in particular environments. It should be
recognised, however, that this functionality flourishes in other
environments. For instance, there are no instances of Component
17 in Environment 0. However, 99% of PDAs connected through
wireless Ethernet possess the component. This shows the system’s
ability to remove poor functionality from an environment whilst
propagating it in other environments.

5. RELATED WORK
A range of work has been carried out into various types of
software evolution. Early work such as [11] looked at evolving
software for maintenance purposes. This promoted the use of
architectural patterns and component interceptors to dynamically
expand functionality through component models such as
OpenCOM [6]. This, however, only deals with internal software
concerns rather than deploying and adapting remote nodes. A
biological view of software evolution can also be found in [10].

Hales et al [9] utilise an autonomic approach to the evolution and
selection of peer-to-peer protocols by inspecting the ‘utility’ of
other peers using alternate protocols. This, however, does not
support fine-grained service composition as our approach does.
Nor does it allow the exchange of reflective information to permit
flexible decisions based on individual node preferences. Instead,
only a single universal utility value is exchanged.

To support evolution a number of other systems utilise reflection
which is the ability for a system to reflect on its own operations
and behaviour. This has been exploited in such systems as [13] to
allow software to effectively evolve. There are also middleware,
such as QuA [8], RAMES [5] and [2] that specifically attempt to
address system evolution. These middlewares, however, consider
the local extension of functionality rather than the distributed
aspects investigated in this paper. To address this, mobile agents
have been used [3]. However, agents must be constructed on
centralised servers and do not support fine grained evolution for
peers in different environments. To the best of our knowledge,
this work is the first to look at a natural selection approach to
disseminating evolutionary functionality in heterogeneous,
decentralised environments.

6. CONCLUSION AND FUTURE WORK
This paper has investigated the potential of large scale functional
evolution in peer-to-peer systems through the paradigms of
natural selection [10] and the survival of the fittest [7]. Based on
this, an approach using the Juno middleware [15] has been
designed and evaluated. In this approach, evolutionary
functionality is encapsulated in reflective components that are
exchanged by peers based on their performance and capabilities.
This results in effective functionality flourishing in desirable
environments whilst poor functionality dies out. Through
extensive simulations, the approach was shown to perform well in
a VoD scenario, allowing peers to be evolved and adapted in a
fine grained manner.

A number of areas of future work can be identified. A major area
of further investigation is the system’s performance when used
with a variety of applications. The evolution of multiple
cooperating components is also an important area. The evaluation
will be continued to involve these concerns alongside the
integration of dynamic environmental changes. Further, the effects
of progressive deployments of components will be looked at.
Lastly, it is also important to investigate the security of the system
by protecting is against the propagation of malicious functionality.

7. ACKNOWLEDGEMENTS
The authors would like to thank Yehia El-khatib and Danny
Hughes for their valuable contributions. This work is supported
by the European Network of Excellence CONTENT (FP6-IST-
038423).

8. REFERENCES
[1] Adamic, L.A. and Huberman, B.A. Zipf’s law and the

internet. Glottometrics 3 p143-150 (2002).

[2] Arcelli, F. and Raibulet, C. Evolution of an Adaptive
Middleware Exploiting Architectural Reflection. In Proc.
ECOOP Workshop on Reflection, AOP and Meta-Data for
Software Evolution, Nantes, France (2006).

[3] Bettini, L., De Nicola, R., and Loreti, M. Software update via
mobile agent based programming. In Proc. of ACM
Symposium on Applied Computing, Madrid, Spain (2002).

[4] BitTorrent Specification.
http://www.bittorrent.org/beps/bep_0003.html.

[5] Cazzola W., Ghoneim, A., and Saake, G. RAMSES: a
Reflective Middleware for Software Evolution. In Proc. of
ECOOP Workshop on Reflection, AOP and Meta-Data for
Software Evolution, Oslo, Norway (2004).

[6] Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K.,
Ueyama, J. and Sivaharan, T. A Generic Component Model
for Building Systems Software. In ACM Transactions on
Computer Systems, 27(1):1-42, February (2008).

[7] David, J.S., McCarthy, W.E., and Sommer, B.S. Agility: the
key to survival of the fittest in the software market.
Communications of ACM 46, 5 p65-69 May (2003).

[8] Eliassen, F., Gjørven, E., Eide, V.S., and Michaelsen, J.A.
Evolving self-adaptive services using planning-based
reflective middleware. In Proc. of Workshop on Adaptive
and Reflective Middleware (2006).

[9] Hales, D. and Babaoglu, O. Towards Automatic Social
Bootstrapping of Peer-to-Peer Protocols. In ACM SIGOPS
Operating Systems Review vol. 40, no. 3, July (2006).

[10] Hutchins, D. A Biologist's View of Software Evolution. In
Proc. ECOOP Workshop on Reflection, AOP and Meta-Data
for Software Evolution, Glasgow, UK (2005).

[11] Oreizy, P., Medvidovic, N., and Taylor, R.N. Architecture-
based runtime software evolution. In Proc. of Intl.
Conference on Software Engineering Kyoto, Japan (1998).

[12] Plagemann, T. Goebel, V., Mauthe, A., Mathy, L., Turletti,
T. and Urvoy-Keller, G., From Content Distribution to
Content Networks – Issues and Challenges. Computer
Communications, vol. 29, issue 5, pp. 551-562 (2006).

[13] Rank, S. Architectural reflection for software evolution. In
Proc. ECOOP Workshop on Reflection, AOP and Meta-Data
for Software Evolution, Glasgow, UK (2005).

[14] Rowstron, A. and Druschel, P. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-Peer
Systems. In Proc. of Middleware, Heidelberg (2001).

[15] Tyson, G., Mauthe, A., Plagemann, T. and El-khatib, Y.
Juno: Reconfigurable Middleware for Heterogeneous
Content Networking. In Proc. Intl. Workshop on Next
Generation Networking Middleware, Samos Islands (2008).

[16] Yu, H., Zheng, D., Zhao, B. Y., and Zheng, W.
Understanding user Behavior in Large-Scale Video-on-
Demand Systems. In Proc. of ACM Sigops/Eurosys
European Conference on Computer Systems (2006).

