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ABSTRACT
Clinical trials are a key method of evaluating the efficacy
of healthcare interventions prior to public release. To allow
clinical trials to take place, however, it is necessary to recruit
sufficient patients for participation. Unfortunately, such re-
cruitment poses a significant challenge though. In this pa-
per, we discuss a novel agent-based system designed to en-
able patient recruitment; our system, ePCRN-IDEA, has
been implemented and is currently under deployment in the
UK healthcare system. Through this deployment, however,
we have found a number of challenges relating to scalabil-
ity; consequently, this paper focusses on an extension called
ePCRN-IDEA2 that addresses these problems. Specifically,
we place agents on General Practitioners’ (GP) machines to
dynamically compute patient eligibility in real-time during
consultations, thereby enabling GUI notifications and imme-
diate recruitment. In ePCRN-IDEA, all agents attempted to
compute patient eligibility over all trials, resulting in a huge
burden for a large-scale deployment (e.g. 100,000 trials).
Therefore, in eCPRN-IDEA2, we have embedded the neces-
sary intelligence in agents to dynamically compute eligibility
over the trials that are most likely to match the clinic’s and
patient’s characteristics. Through simulations, we evaluate
the approach to show that our decentralised trial selection
algorithm can achieve comparable performance to a global
knowledge benchmark with far greater scalability.
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1. INTRODUCTION
Clinical trials are the gold standard by which medical re-

search is evaluated. They are used to study various aspects
of medical science, as well as being a vital stage in the de-
ployment of new drug treatments. In essence, they involve
the testing of new medical theories (e.g. treatments) on real
patients to study the effects. For instance, before release, a
new drug intended to mitigate the effects of arthritis must
first be tested on patients suffering from arthritis to ensure
both efficacy and safety. Clearly, however, to enable this,
it is necessary to recruit sufficient patients to allow mean-
ingful statical results to be derived. A patient sample size
of 10, for example, is unlikely to offer sufficient evidence to
persuade regulation boards that a new drug is appropriate
for release.

When performing patient recruitment, it is necessary to
locate patients who fulfil well defined eligibility criteria, e.g.
age, gender, illness etc. This is because, generally, only a
small proportion of the population will exhibit the neces-
sary characteristics to make them eligible for participation.
For example, testing an arthritis treatment on a healthy in-
dividual will clearly not be able to validate its effectiveness.
Consequently, it is evident that the recruitment stage of a
clinical trial is vital for ensuring that (i) sufficient patients
are recruited to enable meaningful statistical results to be
gained, and (ii) all patients fulfil the required eligibility cri-
teria to generate accurate results. Unfortunately, however,
achieving these two requirements is often highly challenging
with recruitment taking up to 30% of the clinical time line,
and only 15% of clinical trials finishing on schedule [12]. In
fact, a review of the UK Medical Research Council found
that only 31% of trials actually recruited to their planned



targets. Clearly, this creates significant overheads, which re-
sults in patient recruitment costing 30 - 40% of the entire
clinical trial costs. Consequently, improving this process is
of paramount importance for the future success of medical
research.

The main challenge for patient recruitment is locating and
establishing contact with eligible patients within sufficient
time to allow them to participate. Therefore, recruitment
often involves human recruiters actively visiting clinics in
an attempt to locate eligible patients (e.g. by searching
local records). Unfortunately, however, this is often com-
plicated due to the geographically distributed nature of pri-
mary care clinics (i.e. eligible patients can be thinly spread
across many clinics). As such, recruitment can be extremely
slow and expensive, particularly for large-scale trials dealing
with rare conditions.

To address the above problem, we propose replacing hu-
man recruiters with software agents that reside at local clin-
ics. Each agent would maintain a local repository of in-
formation about active clinical trials. Whenever a patient
enters a clinic for a consultation, the agent would inspect
information entered about them in real-time to ascertain if
they are eligible for any trials. Through this, instant notifi-
cations could be presented to the General Practitioner (GP)
during a consultation to inform him/her of the patient’s eli-
gibility in real-time. Consequently, this would allow patients
to be immediately recruited, negating the need for laborious
effort on the part of the patient, clinical researcher or human
recruiter.

We have realised the above concepts in an agent-based re-
cruitment system called ePCRN-IDEA [21, 22], which has
been implemented in two versions. The first version is under
deployment in the UK healthcare system, whilst the second
(ePCRN-IDEA2) is a prototype extension currently under
evaluation. The second prototype, which is focussed on in
this paper, has been developed to address a specific scala-
bility challenge that we found from the first version. In this
first implementation, every agent in every clinic downloaded
every trial description from a central repository. This, how-
ever, resulted in significant processing and storage overheads
because each agent was then required to compute the eligi-
bility of a patient against every trial in the system; this
could be a huge number, for instance, well over 100k trial
are listed on clinicaltrials.gov [2]. Unfortunately, the lim-
ited resource capabilities of typical GP machines, as well as
the complex nature of certain eligibility criteria, mean that
such an approach is unscalable. Therefore, to address this,
we have developed a second version, which allows agents
to inspect and learn the characteristics of their host clinics
to intelligently select the trials that they are most likely to
find recruits for. This allows such agents to focus on process-
ing the most suitable trials in a targeted manner. Further,
through this intelligence, it becomes possible for agents to
cluster into similar groups of trial interest, thereby allowing
them to securely share their local repositories rather than
using the central store. Through these extensions, we hope
to move towards a far larger (pan-European) deployment of
ePCRN-IDEA2.

This paper details and evaluates the components and al-
gorithms used in ePCRN-IDEA2, with a focus on ensuring
that the system can scale up with increasing numbers of clin-
ics and trials. Specifically, our contributions are as follows:

• An assessment of traditional recruitment approaches

and current Clinical Trial Alert systems highlighting
their non-scalable nature.

• An extension and evaluation of the ePCRN-IDEA sys-
tem to ensure scalability in the face of increasing num-
bers of trials.

• An extension and evaluation of the ePCRN-IDEA sys-
tem to reduce the loading on a central server by allow-
ing agents to cooperatively share trial information.

The rest of the paper is structured as follows: Section 2
gives the background to the research, leading to the design
of ePCRN-IDEA2 in Section 3. Afterwards, an evaluation is
then presented in Section 4, ending with the conclusion and
future work in Section 5.

2. BACKGROUND
This section presents the background to the research. It

first discusses clinical trial recruitment, before talking about
scalability and, more generally, about agents in healthcare.

2.1 Clinical Trial Recruitment
Clinical trials are a challenging stage in the research of

clinicians due to the complexity of recruiting patients for
participation. Many types of trials can suffer from such dif-
ficulties; for instance, trials that have potential recruits who
are widely distributed over many clinics (e.g. primary care)
are extremely difficult to recruit for due to the intensive re-
source requirements. Studies show that 30% of participating
clinics fail to even recruit a single patient [15]. Further, this
can be exacerbated by many concerns, especially when deal-
ing with complex eligibility requirements or trials that re-
quire immediate actions (e.g. a change of drug treatments).

Clinical trial recruitment is performed by first defining
eligibility criteria that stipulates the exact characteristics
that make a patient eligible for participation (e.g. gender,
age, ailments etc.). Once this has taken place, it is then
necessary to discover patients who match the criteria, be-
fore contacting and recruiting them. Traditionally, locating
such patients is achieved using one or more of the following
approaches:

• Advertising and public relations: This involves using
posters, adverts and brochures to advertise eligibility
criteria directly to practitioners and patients.

• Recruiters: This involves sending human recruiters to
clinics, usually after feasibility modelling, analysis and
site selections, in an attempt to discover patients who
match the eligibility criteria.

• Practitioners: This involves doctors meeting periodi-
cally to discuss patient treatments and potential trials
in an attempt to spot eligible patients during consul-
tation.

These methods, however, are highly time consuming and
expensive, particularly for trials that have high patient tar-
gets, complex eligibility criteria, rare diseases or involve
emergency cases. This has led to the development of Clinical
Trial Alert (CTA) systems, which alert practitioners to the
eligibility of a patient when they are in consultation. Such
systems then allow the practitioner to immediately discuss
the trial with the patient, to enable instant recruitment in a



trusted environment (usually through a web interface). This
process is achieved by automatically comparing patient in-
formation against computable eligibility criteria in real-time
during consultations. However most of these systems [8, 4,
6] cater for recruiting patients to a single trial within a single
clinic. Other similar techniques have also seen only limited
large-scale testing [18]. The challenge of designing generic
systems which can handle multiple trials, however, is ham-
pered by the need to perform complex eligibility matching
in real-time. Clearly, doing so for large numbers of diverse
trials can make the process highly challenging in terms of
performance. As of yet, this has led to simplistic CTA sys-
tems, which generally deal with small individual trials. We
therefore believe that it is vital to address such challenges to
enable the deployment of a generic scalable CTA system that
can have a real impact on (global) clinical trial recruitment.

2.2 Scalability
Scalability can be defined as the ability of a system to

operate within an acceptable performance range in the face
of scaling up alternate system parameters (e.g. number of
nodes). Currently, most systems adhere to some variation
of the client-server model in which a single (logical) server
handles requests issued by a number of subordinate clients
(as opposed to hybrid and peer-to-peer models [20]). This,
for instance, is how the above CTA systems operate, as well
as the original ePCRN-IDEA implementation. Clearly, how-
ever, this does not scale as a centralised point can only pos-
sess a finite amount of resources, whilst the number of sub-
ordinate clients can continually increase with ease.

In the context of ePCRN-IDEA, there are two system pa-
rameters of importance for ensuring scalability: the number
of agents and the number of trials.

As the number of agents (clients) increase, the loading
on the server similarly increases; consequently, after a cer-
tain population is reached, the centralised resources must be
upgraded to continue an acceptable quality of service.

Similarly, as the number of trials increase, the load on
the agents also increases as it becomes necessary to compute
a patient’s eligibility over a larger set of eligibility criteria
within a very strict time frame, i.e. before the patient has
left the clinic.1 This latter point is particularly difficult to
manage because it is not possible to conveniently upgrade
the resources of each agent as they are distributed through-
out the entire country (there are approximately 10k clinics
in the UK alone). Unsurprisingly, most GP clinics tend to
utilise relatively low resource computers with limited stor-
age capabilities, making it impossible to handle large num-
bers of trials (e.g. a single trial could be approx ≈1 MB).
For instance, our measurements show that a typical desktop
machine can take up to 100 ms to compute patient eligibility
for a single trial; this means a trial repository size of 100k [2]
could take over two hours to process per patient. Thus, it
becomes necessary to conceive new ways to improve scalabil-
ity without over-utilising or extending computing resources.

2.3 Agent Based Healthcare Systems
Agents have emerged as a prominent technology for han-

dling a range of real-world problems [11]. Agents in health-
care have seen widespread investigation; Nealon et.al [14]
discussed 11 areas in which agent technology is being ap-
plied to support and improve healthcare in Europe. Some

1On average, a consultation will last ≈10 minutes.

of the areas discussed include using agents to integrate [13]
heterogeneous patient records, using agents to control car-
diac pacing and monitoring the elderly using agent-based
teleassistance.

For example, MAID [7] is an agent-based system for in-
tegrating heterogeneous data sources within a hospital en-
vironment. The hospital studied had 24 departments, each
using their own information systems. To address this, agents
were constructed to interoperate with each system to mon-
itor changes and retrieve data for insertion into a central
repository. In a subsequent work, HealthAgents [9] went be-
yond MAID to also enable decision support, specifically for
diagnosing brain tumours.

A range of agent-based systems have also been proposed
for handling distributed expertise. These includes using
agents to enable better communication between healthcare
workers based on ambient information, e.g. their role, loca-
tion etc. [17], as well as using agents to remotely monitor
patients [10][16]. These systems also often involved data
analysis; S(MA)2D, for instance, uses statistical analysis to
cluster patients into similar groups [16]. This ability to scal-
ably perform data analysis in real-time, clearly, also shows
potential for enabling the type of eligible patient identifica-
tion discussed previously. Despite this, so far little work has
been performed into using agents to improve clinical trial
recruitment. Consequently, the rest of this paper explores
exploiting the properties of agents to enable scalable patient
recruitment.

3. EPCRN-IDEA2 SYSTEM DESIGN
This section presents the ePCRN-IDEA2 recruitment sys-

tem, which is used to notify GPs of patients’ eligibility dur-
ing consultations.

3.1 Overview
The central aim of our research is to build a scalable sys-

tem for clinical trial recruitment. At a high level, the system
consists of two agents, as shown in Figure 1:

• Trial Agent: This resides at a central point. It holds a
record of all available trials, which can then be accessed
by GP Agents.

• GP Agent: This resides at a local clinic on a GP’s
machine. It retrieves trials from the Trial Agent and
stores them locally. Whenever a patient enters a clinic,
it compares his/her data with all known trials to com-
pute if he/she is eligible for a clinical trial. If so, a
pop-up is generated to notify the GP and to allow the
patient’s immediate recruitment through a web inter-
face.

3.2 Trial Agent
The Trial Agent controls access to the central trial repos-

itory, holding an active record of all the trials in the system.
It also manages request handling and trial transfers to the
GP Agents. On startup, the Trial Agent loads all trials
into its local repository. It then registers itself with a Yel-
low Pages service, which allows other agents to discover its
services. In essence, the Trial Agent consists of two main
components: the Trial Repository and the Trial Updater.
We now briefly cover each of the Trial Agent’s functions.



Figure 1: Agent System High Level Design

The Trial Repository component holds a description of
each trial, represented using a standardised model e.g. the
Biomedical Research Integrated Domain Group (BRIDG)
[1] or the Primary Care Research Object Model (PCROM)
[19]. These are standard information models that have been
developed by clinicians to represent all relevant aspects of
primary care research. Currently, PCROM is used, thereby
requiring any clinical recruiters to define their trial informa-
tion in this format. Put simply, PCROM is an XML schema
that defines a number of attributes that must be used to
describe each trial. To assist in its usage, a user interface
has also been developed to automatically generate the for-
mat. In terms of ePCRN-IDEA2, the XML includes a trial
description (e.g. name, brief overview etc.), a recruitment
description (e.g. how many recruits are required) and the
eligibility criteria (e.g. what characteristics must a patient
fulfil to be considered eligible). Clearly, all clinical concepts
in the system must be described using standard ontologies
(e.g. Read Codes) to ensure semantic and syntactic inter-
operability. Collectively, these bodies of data offer the nec-
essary information to decide if a patient is eligible and if
the trial still requires recruits, before being able to present
a description to the GP. Clearly, of most importance is the
eligibility criteria, which can define rules for eligibility using
a range of factors, including:

• Read Code(s): The patient must be associated with
one or more Read Codes. Read Codes are standard
codes that are used to describe clinical concepts, e.g.
diagnoses, symptoms, social circumstances.

• Drug Code(s): The patient must currently be pre-
scribed one or more drug treatments. Standard Mul-
tilex codes are used to represent drugs.

• Valid Patient List: The patient must be on a list of
unique patient identifiers. These are usually generated
at a central patient database (e.g. GPRD [23]), which
contains collected patient records. This allows more
sophisticated eligibility criteria to be pre-computed us-
ing full data sets and high performance resources. To
ensure privacy, lists of patient identifiers are anonymised
before being distributed using a one-way hash func-
tion. Mappings are then maintained by the organisa-
tion that generated the list of identifiers.

The Trial Agent also supports a variety of other types of
criteria, as defined by PCROM. Importantly, combinations
of these can be built to create more complex criteria. For
instance, a typical form of eligibility criteria might include
a list of potentially eligible patients plus a Read Code stipu-
lating joint pain, i.e. to be eligible, one of the predetermined
patients must enter the clinic and complain of having joint
pain.

When a GP Agent wishes to retrieve trials from the Trial
Agent, the request is processed by the Trial Updater com-
ponent. This component is responsible for matching a GP
Agent’s characteristics (represented through certain param-
eters) to the available trials in the Trial Repository. The
aim of this is to ensure each clinic retrieves the trials that
they are most likely to be able to recruit on. The parameters
currently consist of:

• A list of the registered patient identifiers in the clinic.
This allows the Trial Agent to ensure that a trial using
Valid Patient List eligibility criteria will only be sent
to a clinic when the clinic contains one more eligible
patients in the list.

• An ordered list of the top r most frequently observed
Read Codes. This allows the Trial Agent to discern
any specialisation in the clinic (e.g. cancer), to enable
matching with eligibility criteria based on Read Codes.

• An ordered list of the top d most popular Drug Codes.
This allows the Trial Agent to discern any tenden-
cies to prescribe certain drugs in the clinic, to enable
matching with eligibility criteria looking at particular
drug usage.

These parameters therefore allow the Trial Updater to
best match the clinic’s characteristics to a bespoke subset
of the globally stored trials. For example, a clinic that has
a high number of cancer patients should receive trials that
are mostly dealing with cancer. These parameters there-
fore determine what type of trials are forwarded to each GP
Agent on an individual basis. Importantly, the parameters
also determine how many trials should be sent based on the
local repository size of the GP Agent. This then allows for
variations in clinic resources, i.e. it allows clinics with higher
capacity computers to locally process more trials. More for-
mally, each request contains the following tuple 〈V,R,D, n〉,

where V : Set of clinic patients
R: Set of clinic top Read Codes
D: Set of clinic top Drug Codes
n: Clinic local repository size



We also define a function, t = f(x) that retrieves a match-
ing trial t based on an input search criteria x. A counter, i,
also maintains the number of currently selected trials. A set,
T , is then generated on each request containing all the tri-
als to return to an agent, based on the previously discussed
parameters; more formally,

T = Set of trials to be sent to the GP Agent

∀v ∈ V : if(i < n) −→ t = f(v)
T = {(t /∈ T )}i++
∀r ∈ R : if(i < n) −→ t = f(r)
T = {(t /∈ T )}i++
∀d ∈ D : if(i < n) −→ t = f(d)
T = {(t /∈ T )}i++
if(i < n) −→ t = f(rand(x))
T = {(t /∈ T )}i++

In essence, the Trial Updater attempts to retrieve n trials
by matching available trials with elements from the set V .
Each successful match increments the counter i. This is
repeated for the other parameters R and D until the size of
set T is equal to n. Any extra slots are then filled up with
randomly selected trials.

3.3 GP Agent
The GP Agent resides within the local clinic. It is respon-

sible for sending request parameters to the Trial Agent to
request relevant trials for its host clinic. It is also respon-
sible for computing the eligibility of a patient in real-time
during a consultation (and generating pop-ups). We now
briefly cover each of the GP Agent’s main functions.

3.3.1 Accessing Central Trial Information
First, to fill up its trial repository, the GP Agent runs an

analysis of patients in its host clinic found within the patient
records. These are stored in a local Electronic Healthcare
Record (EHR) system; essentially, this is a database that is
used to store information about each patient. Importantly,
it is also actively used by GPs during consultations, thereby
offering real-time information to the GP Agent. This al-
lows the GP Agent to inspect information about a patient
instantly, whilst the patient is still in consultation. The
analysis on the EHR data results in a model detailing the
most frequent diseases, most popular drugs and the list of
patient identifiers in the clinic. These parameters are then
used whenever the GP Agent requests new trials from the
Trial Agent, as detailed above. Any retrieved trials are then
stored in a persistent local repository to allow for fast access.
Importantly, however, this local repository is of a finite size
to ensure that the GP Agent is capable of both processing
and storing the necessary trials. The default is 100, although
this can be dynamically varied based on the memory, stor-
age and processing capacity of the host. The above process
is repeated every 12 hours to allow GP Agents to learn of
any changes in the central repository.

3.3.2 Accessing Distributed Trial Information
The above section has detailed the default situation in

which a GP Agent accesses trial information from the central
Trial Agent. This, however, as previously mentioned, is not
a scalable option as the number of GP Agents increase. This
is because the central Trial Agent has only a finite amount
of resources to service the GP Agents’ requests. Thus, an

increase in the number of GP Agents similarly requires an in-
crease in the resources of the Trial Agent. Something which
can be difficult in this domain due to the limited resources
of academic research projects. Consequently, to address this
concern, GP Agents are also allowed to access trial informa-
tion from each other in an attempt to alleviate the burden
on a central point (i.e. the Trial Agent). To achieve this,
GP Agents cluster into groups of clinics that have similar
characteristics, thereby allowing them to share trial infor-
mation. This is because clinics with similar characteristics
are likely to require similar trials, therefore allowing the de-
centralisation of trial distribution. Currently, the charac-
teristics considered in this clustering are the most popular
Read Codes and Drug Codes in the clinic. These clusters
can be of any size based on the nature of the clinics being
interconnected. Thus, to ensure security, all clinics must
possess digital certificates, as well as only utilise encrypted
communications.

Whenever a GP Agent starts up, it registers itself with the
system’s Yellow Pages service as a potential trial distribu-
tor (using the same service interface as the Trial Agent).
Alongside this, it also registers its top illness and drug pre-
scriptions in the clinic (accessed from the EHR software).
Once it has done this, it then queries the Yellow Pages ser-
vice to discover other GP Agents that have the same top
diseases and/or drug prescriptions. If none are found, it sim-
ply utilises the central Trial Agent. However, if another GP
Agent with the same top disease/drug prescription is discov-
ered, it will simply clone its repository. When multiple are
found the closest agent with the lowest loading is selected.
The above process is then repeated periodically every 12
hours to ensure up-to-date trial information is maintained
at each GP Agent.

Importantly, only trials based on Read and Drug codes are
exchanged between the different GP Agents; this is for two
reasons. First, any trials using Valid Patient List eligibility
criteria will likely only be applicable to a small number of
clinics (i.e. the clinics in which those patients are enrolled
at). Consequently, there is (probabilistically) less benefit
in sharing such trials. Second, sharing Valid Patient List
eligibility criteria would likely raise certain concerns regard-
ing patient privacy, as the inclusion of a patient on a Valid
Patient List could potentially reveal a lot about that partic-
ular patient. Therefore, trials containing these lists are not
shared.

3.3.3 Computing Eligibility and Recruitment
Once a GP Agent has a number of trials in its local repos-

itory, it can begin to compute eligibility for patients. This is
performed in real-time whenever a patient enters the clinic.
Specifically, the GP Agent is notified by the EHR system
whenever a new consultation is opened. The EHR is used
by the GP to enter and store information about patients,
thereby offering a database of information to compute eli-
gibility over. Importantly, any clinical information encoded
in the trials (e.g. disease codes) must use the same syn-
tax and semantics of the EHR data representation. Using
this information, the GP Agent compares the patient data
against the trials it is aware of to decide if the patient is
eligible (e.g. are they the right age range, do they suffer
from the correct illnesses etc.). If multiple eligible trials are
found, a random one is simply selected; generally, patients
will also only be recruited to one trial at a given time. Once



a match is found, the GP Agent generates a GUI pop-up to
notify the practitioner, as shown in Figure 2. This pop-up
allows the GP to register a response from the patient and
to acquire extra information. Importantly, it also allows the
patient to be immediately recruited through a web interface.
In alternate situations, this web interface can also be used
to recruit patients directly without using the GP Agent (e.g.
if the GP independently decides a patient is eligible).

Figure 2: GP Agent Pop-up for Notifying Clinician
of Patient Eligibility

4. EVALUATION
This section begins by taking a look at the methodology

used to evaluate the system. We then seek to evaluate how
effectively the system can scale up in terms of increasing
numbers of trials and clinics. Specifically, we look at how
effectively we can maintain performance and overheads in
the face of these increasing variables.

4.1 Methodology
To evaluate ePCRN-IDEA2’s scalability we have performed

a number of system simulations. To achieve this, however,
it is first important to create a realistic simulation environ-
ment and workload.

First, it is necessary to model how diseases are distributed
throughout clinics (and patients). Second, it is necessary to
understand what types of trials might typically be injected
into ePCRN-IDEA2. Then, third, the characteristics and
behaviour of the patients need to be modelled. Beyond this,
it is also important to define the evaluative metrics that will
be inspected. This section presents the evaluation method-
ology, looking at these four concerns. To achieve this, a pro-
totype of the system has been built using the Java Agent
Development (JADE) framework. This has then been used
to perform a number of simulations with various parameter
setups. An overview of the default setup is provided in Ta-
ble 1; unless otherwise stipulated, these parameters are used
in all experiments.

4.1.1 Modelling Disease Distribution
To present a realistic evaluation, it is important to have

realistic data regarding disease frequency. This is so that
the simulation can model the types of diseases that patients

Table 1: Default Parameter Setup
Parameter Value

# Patients Per-Clinic 200
Total # Patients 5,080
# Consultations Per-Simulation 100
# Trials in Local Repository 100
Max # Trials in Global Repository 10,000
Distribution of Read/Drug Codes Zipf
Skew of Read/Drug Codes (for Trials) 0.9
Skew of Read/Drug Codes (for Patients) 0.4
Total # Read/Drug Codes 10,000

are likely to report as suffering from. To achieve this, we
use a Zipf Distribution [5]. According to Zipf’s Law, the
frequency of any disease is inversely proportional to its rank
in the frequency table. This results in a small number of
diseases being frequently encountered (e.g. flu) and a ‘long
tail’ of diseases that are far rarer (e.g. papillitis). This can
therefore be used to model the ailments reported by patients
during consultations. To validate this choice, the generated
distribution of diseases was compared against data provided
by the World Health Organization (WHO) [3], which con-
firmed its accuracy. Diseases were generated using an alpha
parameter (skew) of 1 and a set size of 10,000 to mirror the
WHO distribution.

4.1.2 Trial Workload
Clearly, it is important to model realistic trial workloads

in the system. To do this, we select a variety of possible
types of eligibility criteria to test ePCRN-IDEA2 with. The
trials generated were of four variants with eligibility criteria
consisting of (i) Read Codes only, (ii) Valid Patient Lists
only, (iii) Valid Patients and Read Codes, and (iv) Valid
Patients, Read Codes and Drug Codes. These represent
typical trial types that are usually encountered in clinical
research. The rest of this section details how each trial type
was generated. Each trial’s eligibility criteria was generated
with at least one of the following parameters:{V, R, D}, as
described below:

Eligibility Criteria with Read Codes only (R): A
random value r within a pre-set range (1 – 2) is selected as
the size of the set R. Read Codes are then assigned to fill
up set R using the Zipf distribution (with a default skew of
0.9) from a global set of 10,000 Read Codes.

Eligibility Criteria with Valid Patient Lists only
(V): A random value v within a pre-set range (5 – 15) is
selected as the size of the set V . Patient IDs are then ran-
domly assigned to fill up set V from a set of 5,080 patient
IDs. Clearly, a real clinical trial would use a far larger list
size, however, scaling down both the pre-set range and global
population size allows us to tractably emulate large-scale
simulations.

Eligibility Criteria with Valid Patient Lists and
Read Codes (V, R): This involved the two processes listed
above to assign Read Codes and valid patients. Once the
Read Codes and the valid patient list have been set, they



are combined and written into the trial.

Eligibility Criteria with Valid Patients, Read &
Drug Codes (V, R, D): This involved the three processes
listed above. A Drug Code is selected the same way the
Read Code was selected. Once the coded information and
the valid patient list have been created, they are combined
and written into the trial.

4.1.3 Patient Workload
Last, it is necessary to simulate patients and their char-

acteristics when arriving at clinics. The set of patients in a
clinic is generated by random selecting patient IDs from the
central patient database of 5,080 patients within the range
assigned to the clinic. A patient history is then built for each
patient by selecting a random number of visits between one
and six, then assigning treatment Read Codes for each visit
(using the Zipf distribution). This is then stored in the local
EHR database of the clinic.

After creating the patient history, it is also necessary to
simulate patient arrivals in the clinic (as eligibility is only
ever checked when a patient is in consultation). To do this,
on each simulation round, a random patient is selected for a
visit. Read Codes and Drug Codes are then assigned for the
current visit using a Zipf distribution (with a default skew
of 0.4). The skew for each clinic is assigned based on clinic
type, e.g. specialist clinics have a more skewed distribution.

4.1.4 Evaluation Metrics
Alongside the above parameters, it is also necessary to

define the metrics by which we measure the scalability of
the system. We do this through two values: performance
and overhead.

We measure the performance of the system by the num-
ber of pop-ups2 generated. Clearly, the ideal result is that
every patient who enters a clinic and is eligible for a trial
should be notified. However, practically speaking, this is not
possible as it requires every GP Agent to know about every
trial in the system (this is the original design of ePCRN-
IDEA). Therefore, we use this global knowledge scenario
as the benchmark by which we evaluate the effectiveness
of ePCRN-IDEA2’s approach of intelligently selecting tri-
als on a per-clinic basis. Consequently, we represent the
system performance as the percentage of pop-ups created
in ePCRN-IDEA2 when compared against those that could
have been generated if all agents knew of all trials.

We next measure the overhead of the GP Agent; in the
above global knowledge benchmark, it is necessary to have
very large local trial repository sizes, as well as massive pro-
cessing capacities to compute eligibility in real-time. As pre-
viously mentioned, a global trial repository could take hours
to process patient eligibility for, making the intelligent selec-
tion of trials vital. Consequently, to measure the overhead
required to achieve a given performance level, we use the
local repository size, as this is representative of not only
the per-agent storage capacity required but also the pro-
cessing costs for eligibility computation. Thus, we contrast
the number of pop-ups a GP Agent can generate against the
quantity of resources required to achieve them.

Last, we also measure the overhead of the Trial Agent,

2A pop-up represents a patient who has been found eligible
for an available trial.

which is important when considering the feasibility of in-
creasing the number of participating clinics in the recruit-
ment system. To measure this, we simply use the number
of active connections from GP Agents to the Trial Agent.
This allows us to infer the loading that the Trial Agent has
at any given time.

4.2 Scaling the Number of Trials
As the number of trials increase in the system, it is im-

portant that ePCRN-IDEA2 can maintain a high number
of pop-ups, whilst still ensuring each GP Agent does not
get allocated too many trials to process. Ideally, GP agents
will be able to keep a high number of pop-ups with only a
limited size of local repository (i.e. high performance, low
overhead).

To evaluate this, a number of different trial types (as de-
scribed above) are tested in the system to measure their
performance and overhead. Each trial type was evaluated
using three different approaches to distributing trials from
the central Trial Agent to the GP Agents. These are as fol-
lows: (i) distributing all trials to every GP Agent (global
knowledge benchmark), (ii) retrieving a random set of n
trial for each GP Agent, and (iii) intelligently selecting n
trials based on the results of profiling the host clinic (i.e.
using the algorithm presented in Section 3). The rest of the
section presents results from simulating each trial type in
ePCRN-IDEA2.

4.2.1 Trials with 1 Read Code (R)
The first type of trial tested simply contained eligibility

criteria using a single Read Code (e.g. all patients who have
diabetes). The single Read Code to be included within each
trial was selected from a pool of 10,000 Read Codes using
a Zipf distribution with a skew of 1. To evaluate the sys-
tem, we compare the number of pop-ups with the theoretical
maximum that would be possible by having all agents know
about all trials.

Table 2: Trial Eligibility Criteria with 1 Read Code
All Trials Random Trials Selected Trials

Trials Pop-ups Trials Pop-ups Trials Pop-ups

1000 54 1000 4 1000 52
2000 65 2000 2 2000 52
3000 67 3000 1 3000 50
4000 70 4000 0 4000 51
5000 71 5000 0 5000 50
6000 72 6000 0 6000 51
7000 72 7000 0 7000 53
8000 73 8000 1 8000 53
9000 75 9000 0 9000 51
10000 77 10000 0 10000 50

Avg 70 Avg 1 Avg 50
Ovh 100% Ovh 1% Ovh 1%
Perf 100% Perf 1.4% Perf 71.4%

Table 2 details the results from the simulations. It can
be seen that randomly selecting trials to fill up the local
repository leads to a significantly lower number of pop-ups
compared to the benchmark of global knowledge. This is
due to the obvious difficulty of randomly selecting the most



appropriate Read Codes for a given clinic. In contrast, intel-
ligently selecting trials with a particular Read Code based
on the profile of the clinic led to a much higher number of
pop-ups (an average of 50). In fact, for 10,000 trials, 65%
of pop-ups could still be generated using only a local trial
store of only 100. This is because the GP Agent was able to
run a profile of its clinic and download trials that its patients
were more likely to be eligible for. Importantly, performance
remained relatively constant up to a size of 10,000 trials,
without needing to extend the size of the local repository
beyond 100.

4.2.2 Trials with Valid Patient Lists (V)
The second set of trials generated consisted of patients

whose eligibility has been pre-computed at a centralised
database. This form of eligibility criteria therefore simply
consists of a list of all the patient identifiers who are eligible.

Table 3: Trials with Valid Patient Lists
All Trials Random Trials Selected Trials

Trials Pop-ups Trials Pop-ups Trials Pop-ups

1000 43 1000 4 1000 50
2000 72 2000 6 2000 52
3000 84 3000 6 3000 50
4000 89 4000 5 4000 54
5000 94 5000 7 5000 52
6000 98 6000 1 6000 53
7000 99 7000 4 7000 52
8000 96 8000 6 8000 51
9000 100 9000 2 9000 52
10000 100 10000 5 10000 50

Avg 87 Avg 5 Avg 52
Ovh 100% Ovh 1% Ovh 1%
Perf 100% Perf 6% Perf 60%

From Table 3, it can be seen that randomly filling the
local repository led to only an average of only 5 pop-ups.
This is because such trials can only recruit from a small
number of clinics that the required patients are enrolled at.
Consequently, random selections are highly suboptimal. In
contrast, intelligently selecting trials based on the registered
list of patients in the clinic resulted, on average, in 60% of
the pop-ups of the global knowledge benchmark. This is
because each GP Agent was able to fill its repository with
most of the trials that its patients had been pre-computed
as eligible for. This remained constant even when the lo-
cal repository size was only 1% of the trial repository size.
Consequently, even when the local repository size was in-
creased to 200, intelligently selecting trials resulted in the
same number of pop-ups as retrieving all the trials.

4.2.3 Trials with Valid Patients and 1 Read Code (V,R)
The third set of trial eligibility criteria generated consisted

of a list of eligible patients who must also be diagnosed with
a specific illness (e.g. Mr. Smith is eligible if he is also
diagnosed with diabetes).

Intelligently selecting trials to fill up the local repository
based on the patients in the clinic resulted, on average, in
75% of the pop-ups obtained from downloading all the tri-
als. This was because the GP Agent was able to request
trials based on its registered patient list and an analysis of

Table 4: Trials with Valid Patients and 1 Read Code
All Trials Random Trials Selected Trials

Trials Pop-ups Trials Pop-ups Trials Pop-ups

1000 4 1000 2 1000 7
2000 14 2000 2 2000 13
3000 17 3000 2 3000 18
4000 22 4000 4 4000 19
5000 23 5000 5 5000 22
6000 31 6000 2 6000 23
7000 30 7000 2 7000 24
8000 34 8000 2 8000 25
9000 34 9000 4 9000 24
10000 35 10000 2 10000 26

Avg 24 Avg 3 Avg 18
Ovh 100% Ovh 1% Ovh 1%
Perf 100% Perf 12% Perf 75%

its top Read Codes. This result remained constant even
when the local repository size was only 1% of the central
trial repository size. Even when the local repository size
was increased to 200, intelligently selecting trials resulted
in the same number of pop-ups as retrieving all the trials,
indicating the scalability of the algorithm.

4.3 Scaling the Number of Clinics
As the number of clinics (and GP Agents) increase, the

loading on the central Trial Agent similarly increases. Con-
sequently, to ensure scalability, we consider it necessary to
better utilise the global system resources to alleviate this
burden. In the context of ePCRN-IDEA2, the goal is to
decentralise the distribution of trials as much as possible,
thereby reducing the burden on the central Trial Agent.
This involves GP Agents connecting to other GP Agents to
request trials, rather than always utilising the Trial Agent.
To measure this, we use the number of dependent connec-
tions to the central Trial Agent as an overhead metric. Clearly,
this indicates the level of loading on the central repository
and should therefore be kept low.

Figure 3 presents an exemplary graph of the GP Agent
interconnections during a 10 node simulation. It can be seen
that the agents are clustering together based on their clinic’s
characteristics. Importantly, only 2 nodes were required to
directly connect to the Trial Agent. To extend these results,
simulations were performed with agent populations of up to
100. In each case, only 2 connections were maintained to the
Trial Agent, with each GP Agent being able to effectively
utilise its peers’ resources.

These overhead results can also be contrasted with the
performance achieved (measured using the number of pop-
ups). To achieve this, the central Trial Repository was set-
up with 10,000 trials, each with eligibility criteria consisting
of 1 Read Code. Each GP Agent then retrieved a set of trials
by either connecting to the Trial Agent or a peer GP Agent.
The average number of pop-ups for each cluster size are
presented in Table 5. The results here were very similar to
those in Table 2 for 10,000 trials (around 50 pop-ups). This
evidences the fact that the system can maintain a similar
level of performance whilst also alleviating the loading on
the central Trial Agent.



Figure 3: GP Agent Connections: Cluster of 10 GP
Agents

Table 5: Trial Repository Size: 10,000 Local Repos-
itory Size: 100

All Trials Selected Trials
Cluster Size Av. Pop-ups Cluster Size Av. Pop-ups

10 74 10 51
20 75 20 51
30 76 30 52
40 73 40 50
50 75 50 51
60 77 60 52
70 74 70 53
80 73 80 51
90 75 90 52
100 75 100 50

4.4 Summary and Discussion
Table 6 presents a summary of the scalability results; the

percentages refer to the average performance and overhead
levels of each selection method compared to the benchmark
of global knowledge. As stated above, it can be seen that
utilising random trial selections to address the global knowl-
edge challenge resulted in consistently low performance, even
though it does manage to maintain a low overhead (requiring
only 1% of the global repository size). In contrast, it can be
seen that ePCRN-IDEA2’s approach of intelligently select-
ing trials results in significantly higher performance, whilst
still maintaining very small local repositories. In fact, at its
lowest performance, ePCRN-IDEA2 still manages to main-
tain 60% of the pop-ups that the global knowledge bench-
mark achieves.

Clearly, these results have therefore shown the unscal-
able nature of attempting to maintain global knowledge in a
large-scale agent-based system. Our simulations have been
based on repositories of 10,000 trials, however, this can eas-
ily extend well beyond this to in excess of 100,000 trials [2].
Consequently, ePCRN-IDEA2’s approach is vital for ensur-
ing scalable clinical trial recruitment. We have shown that
it is possible to effectively target the distribution of trials

on a per-clinic granularity. Specifically, in some settings,
up to 75% of recruitment opportunities (pop-ups) can be
maintained, even when reducing the local trial knowledge
to just 1% of the global set. This suggests that large-scale
recruitment can, indeed, be achieved without any need to
upgrade local clinic computing resources. Beyond this, we
have also evaluated the potential of reducing server loading
at the Trial Agent by allowing GP Agents to share trial in-
formation. It has been shown that using peer GP Agents
can easily reduce this load whilst, importantly, maintaining
similar levels of performance.

Table 6: Summary of Performance and Overhead
under Different Trial Types

Random Trials Selected Trials
Trial Type Perf Ovh Perf Ovh

1 Read Code 1.4% 1% 71.4% 1%
Pat Lists 6% 1% 60% 1%

Pat List + Code 12% 1% 75% 1%

5. CONCLUSIONS AND FUTURE WORK
This paper has discussed the importance of clinical trials

and the challenge of recruiting sufficient patients into them.
It has looked at the current ways recruitment is carried out
and the potential of using software agents to carry it out
in a more scalable manner. This has led to the design and
implementation of an agent-based system, ePCRN-IDEA2,
which attempts to enable real-time patient recruitment on
a large-scale. This system places agents in clinics with the
responsibility of notifying practitioners whenever a patient,
who is eligible for a clinical trial, is in consultation. This
allows recruitment to be immediately performed before the
patient has left the clinic. Further, to ensure long-term scal-
ability, we have presented a way in which agents can intel-
ligently select the trials that they consider themselves best
able to recruit for (based on their host clinic). Through this,
we have addressed the need for each agent to maintain global
knowledge of all trials, thereby dramatically improving the
ability of the system to scale up.

From this phase-2 prototype, we have identified a number
of further lines of work. We believe it is important to extend
the intelligence of the agents further, allowing them to gain
a better understanding of their clinic. This, for instance,
should involve improving the method by which agents can
model a clinic’s characteristics. This could also incorporate
inferences regarding a given patient’s likelihood to accept.
Beyond this, it is clearly important to extend the evalua-
tion to look at such things as larger trial bases, more diver-
gent/convergent clinics and varying patient characteristics.
Also, in this paper, the system has been evaluated under a
synthetic workload; future evaluations should therefore en-
deavour to utilise more realistic setups. This will soon be-
come possible using logging traces taken from the currently
deployed ePCRN-IDEA system. Consequently, an impor-
tant future step is using these traces to re-execute our sim-
ulations. Finally, it is our longer-term goal to also intro-
duce this functionality into a working deployment, so that
real results can be acquired regarding both performance and
overheads.
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B. Celda, S. Van Huffel, and M. Lluch-Ariet.
Healthagents: distributed multi-agent brain tumor
diagnosis and prognosis. Applied Intelligence, 30, 2009.

[10] V. Koutkias, I. Chouvarda, and N. Maglaveras. A
multiagent system enhancing home-care health
services for chronic disease management. Information
Technology in Biomedicine, IEEE Transactions on,
9(4):528–537, dec. 2005.

[11] M. Luck, P. McBurney, and C. Preist. A manifesto for
agent technology: Towards next generation
computing. Autonomous Agents and MultiAgent
Systems, 9(3):203–252, 2004.

[12] A. McDonald, R. Knight, M. Campbell, V. Entwistle,
A. Grant, J. Cook, D. Elbourne, D. Francis, J. Garcia,
I. Roberts, and C. Snowdon. What influences
recruitment to randomised controlled trials? a review
of trials funded by two uk funding agencies. Trials,
7(1):9, 2006.

[13] M. Nagy and M. Vargas-Vera. Towards an Automatic
Semantic Data Integration: Multi-agent Framework
Approach. Chapter in Sematic Web. In-Tech
Education and Publishing KG, 2010.

[14] J. Nealon. Agents applied in health care. AI
Communications, page 22, 2005.

[15] R. Nitkin. Patient recruitment strategies. Training
workshop conducted by National Institutes of Health,
Bethesda, Md, 2003.

[16] A. Rammal, S. Trouilhet, N. Singer, and J.-M.
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