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Abstract
A novel framework is developed for automatic behaviour

profiling and abnormality sampling/detection without any
manual labelling of the training dataset. Natural group-
ing of behaviour patterns is discovered through unsuper-
vised model selection and feature selection on the eigen-
vectors of a normalised affinity matrix. Our experiments
demonstrate that a behaviour model trained using an unla-
belled dataset is superior to those trained using the same
but labelled dataset in detecting abnormality from an un-
seen video.

1. Introduction
Given 24/7 continuously recorded video or online CCTV

input, the goal of automatic behaviour profiling is to learn
a model that is capable of detecting unseen abnormal be-
haviour patterns whilst recognising novel instances of ex-
pected normal behaviour patterns. In this context, we de-
fine abnormality as atypical behaviour patterns that are not
represented by sufficient samples in a training dataset but
critically they satisfy the specificity constraint to abnormal
patterns. This is because one of the main challenges for the
model is to differentiate abnormality from outliers caused
by noisy visual features used for behaviour representation.
The effectiveness of a behaviour profiling algorithm shall
be measured by (1) how well abnormality can be detected
(i.e. measuring specificity to expected patterns of behav-
iour) and (2) how accurately and robustly different classes
of normal behaviour patterns can be recognised (i.e. max-
imising between-class discrimination).

We develop a novel framework for automatic behaviour
profiling and abnormality sampling/detection without any
manual labelling of the training dataset. On behaviour pro-
filing and learning, our approach is significantly different
from most existing approaches which rely upon labelled
datasets for model training [8, 7, 5]. On abnormality sam-
pling and detection, there has been very little reported work
in the literature. Recently, an intentional, goal-based be-
haviour modelling approach was proposed in [1] for detect-
ing unusual behaviours. This approach relies on hard-wired

rules established with human invention. It is thus difficult to
implement for an unconstrained, complex scenario. Zhong
et. al [17] proposed an unsupervised method based on co-
embedding the prototype image features for classifying a
group of behaviour patterns as normal or abnormal. Abnor-
mal behaviour must be included in the training datasets for
model learning. This is not required by our approach where
a behaviour model automatically detects unseen normal and
abnormal behaviours.

There are three key motivations for behaviour profiling
using unlabelled data: (1) Manual labelling of behaviour
patterns is laborious and often rendered impractical. (2)
More critically though, manual labelling of behaviour pat-
terns could be inconsistent and error prone. This is because
a human tends to interpret behaviours based on a priori
cognitive knowledge of what should be present in a scene
rather than solely based on what is visually detectable in
the scene. This introduces bias due to differences in ex-
perience and mental states. (3) A model trained based on
manual labelling may have an advantage in explaining data
that are well-defined. However, training using labelled data
does not necessarily help a model with identifying novel in-
stances of atypical behaviour patterns as the model tends to
be brittle and less robust in dealing with instances of behav-
iour that are not clear-cut in an open-world scenario (i.e. the
number of expected normal and abnormal behaviours can-
not be pre-defined exhaustively).

Due to the space-time nature of behaviour patterns and
their variable duration, we need to develop a compact and
effective feature representation scheme and to deal with
time-warping. We adopt a discrete scene event based im-
age feature extraction approach [5]. This is different from
most previous approaches such as [12, 8, 7, 1] where image
features are extracted based on object tracking. A discrete
event based behaviour representation aims to avoid the dif-
ficulties associated with tracking under occlusion in noisy
scenes [5]. Each behaviour pattern is modelled using a
Dynamic Bayesian Network [4] which provides a suitable
means for time-warping and measuring the affinity among
behaviour patterns.



The natural grouping of training behaviour patterns can
be automatically discovered using the eigenvectors of the
normalised affinity matrix [11]. A number of affinity matrix
based clustering techniques have been proposed recently
[13, 11, 16]. However, these approaches require known
number of clusters. Given an unlabelled dataset, the num-
ber of behaviour classes are unknown in our case. To au-
tomatically determine the number of clusters, we propose
to first perform unsupervised feature selection to eliminate
those eigenvectors that are irrelevant/redundant in behav-
iour pattern grouping. A novel feature selection algorithm
is derived which makes use of the a priori knowledge on the
relevance of each eigenvector. Our algorithm differs from
the existing techniques such as [6, 3] in that it is very sim-
ple and robust and thus able to work more effectively even
with very sparse and noisy datasets.

2. Behaviour Pattern Representation
2.1. Video Segmentation

The goal is to automatically segment a continu-
ous video sequence V into N video segments V =
{v1, . . . ,vn, . . . ,vN} such that ideally each segment con-
tains a single behaviour pattern. The nth video seg-
ment vn consists of Tn image frames represented as
vn = {In1, . . . , Int, . . . , InTn

} where Int is the tth im-
age frame. Depending on the nature of the video sequence
to be processed, various segmentation approaches can be
adopted. Since we are focusing on surveillance video, the
most commonly used shot change detection based segmen-
tation approach is not appropriate. In a not-too-busy sce-
nario, there are often non-activity gaps between two con-
secutive behaviour patterns which can be utilised for activ-
ity segmentation. In the case where obvious non-activity
gaps are not available, an on-line segmentation algorithm
proposed in [14] can be adopted. Alternatively, the video
can be simply sliced into overlapping segments with a fixed
time duration [17].

2.2. Event-based Behaviour Representation
Firstly, an adaptive Gaussian mixture background model

[12] is adopted to detect foreground pixels which are
modelled using Pixel Change History (PCH) [15]. Sec-
ondly, the foreground pixels in a vicinity are grouped into
a blob using the connected component method. Each
blob with its average PCH value greater than a thresh-
old is then defined as a scene-event. A detected scene-
event is represented as a 7-dimensional feature vector f =
{x̄, ȳ, w, h,Rf ,Mpx,Mpy} where (x̄, ȳ) is the centroid of
the blob, (w, h) is the blob dimension, Rf is the filling ra-
tio of foreground pixels within the bounding box associated
with the blob, and (Mpx,Mpy) are a pair of first order mo-
ments of the blob represented by PCH. Among these fea-
tures, (x̄, ȳ) are location features, (w, h) and Rf are princi-
pally shape features but also contain some indirect motion

information, and (Mpx,Mpy) are motion features captur-
ing the direction of object motion.

Thirdly, classification is performed in the 7D scene-event
feature space using a Gaussian Mixture Model (GMM). The
number of scene-event classes Ke captured in the videos is
determined by automatic model order selection based on
Bayesian Information Criterion (BIC) [10]. The learned
GMM is used to classify each detected event into one of the
Ke event classes. Finally, the behaviour pattern captured by
the nth video segment vn is represented as a feature vector
Pn, given as

Pn = {pn1, . . . ,pnt, . . . ,pnTn
}, (1)

where the t-th element pnt is a Ke dimensional variable:
pnt = {p1

nt, ..., p
k
nt, ..., p

Ke
nt }. pnt corresponds to the tth

image frame of vn where pk
nt is the posterior probability

that an event of the kth event class has occurred in the frame
given the learned GMM.

3. Behaviour Profiling
3.1. Affinity Matrix

The behaviour profiling problem can now be defined for-
mally. Consider a training dataset D consisting of N feature
vectors D = {P1, . . . ,Pn, . . . ,PN} where Pn is defined
in Eqn. (1) representing the behaviour pattern captured by
the nth video segment vn. The problem to be addressed
is to discover the natural grouping of the training behav-
iour patterns upon which a model for normal behaviours
can be built. This is essentially a data clustering problem
with the number of clusters unknown. There are two as-
pects that make this problem challenging: (1) Each feature
vector can be of different length. Conventional clustering
approaches such as K-means and mixture models require
that each data sample is represented as a fixed length fea-
ture vector. These approaches thus cannot be applied di-
rectly. (2) A definition of a distance/affinity metric among
these variable length feature vectors is nontrivial.

Dynamic Bayesian Networks (DBNs) provide a solu-
tion for overcoming the above-mentioned difficulties. More
specifically, each behaviour pattern in the training set is
modelled using a DBN. To measure the affinity between two
behaviour patterns represented as Pi and Pj , two DBNs de-
noted as Bi and Bj are trained on Pi and Pj respectively
using the EM algorithm [2, 4]. The affinity between Pi and
Pj is then computed as:

Sij =
1
2

{
1
Tj

log P (Pj |Bi) +
1
Ti

log P (Pi|Bj)
}

, (2)

where P (Pj |Bi) is the likelihood of observing Pj given
Bi, and Ti and Tj are the lengths of Pi and Pj respec-
tively. DBNs of different topologies can be used for mod-
elling each behaviour pattern. In this paper, we employ a



Multi-Observation Hidden Markov Model (MOHMM) [5]
shown in Fig. 1. The number of hidden states for each hid-
den variables in the MOHMM is set as Ke, i.e., the number
of event classes.

p k
ntp 1 p k

nt−1 p Ke
nt−1 p 1

nt p Ke
ntnt−1

... ...... ...

Figure 1: A MOHMM used for modelling the nth behaviour
pattern. Observation nodes are shown as shaded circles and
hidden nodes as clear circles.

An N ×N affinity matrix S = [Sij ] where 1 ≤ i, j ≤
N provides a new representation for the training dataset,
denoted as Ds. Specifically, the nth behaviour pattern is
now represented as the nth row of S, denoted as sn. We
thus have

Ds = {s1, . . . , sn, . . . , sN} (3)

Consequently each behaviour pattern is represented as a
feature vector of a fixed length N (dynamically warped by
a DBN). Taking a conventional data clustering approach,
model selection is performed firstly to determine the num-
ber of clusters, which is then followed by data grouping us-
ing either a parametric approach such as Mixture Models
or a nonparametric K-Nearest Neighbor model. However,
since the number of data samples is equal to the dimension-
ality of the feature space, dimension reduction is necessary
to avoid the ‘curse of dimensionality’ problem.

3.2. Eigendecomposition
Dimension reduction on the N dimensional feature

space defined in Eqn. (3) can be achieved through eigen-
decomposition of the affinity matrix S. The eigenvectors of
the affinity matrix are then used for data clustering. How-
ever, it has been shown in [13, 11] that it is more desirable
to perform clustering based on the eigenvectors of the nor-
malised affinity matrix S̄, defined as:

S̄ = L− 1
2 SL− 1

2 (4)

where L = [Lij ] is an N×N diagonal matrix with Lii =∑
j Sij . It has been proven in [16, 13] that the largest K

eigenvectors of S̄ (i.e. eigenvectors corresponding to the
largest eigenvalues) are sufficient to partition the dataset
into K clusters. Representing the dataset using the K
largest eigenvectors reduces the data dimensionality from
N (i.e. the number of behaviour patterns) to K (i.e. the
number of behaviour pattern classes). For a given K, stan-
dard clustering approaches such as K-means or Mixture

Models can be adopted. The remaining problem is to de-
termine the K, which is unknown. This is solved through
automatic model selection.

3.3. Model Selection
We assume that the number of clusters K is between 1

and Km. Km is a number sufficiently larger than the true
value of K. Suppose that we set Km = 1

5N where N is
the number of samples in the training dataset. This is a rea-
sonable assumption since as a rule of thumb a more sparse
dataset would make any data clustering algorithm unwork-
able. The training data set is now represented using the Km

largest eigenvectors, denoted De, as follows:

De = {y1, . . . ,yn, . . . ,yN} (5)

with the nth behaviour pattern being represented as a Km

dimensional feature vector

yn = [e1n, . . . , ekn, . . . , eKmn] (6)

where ekn is the nth element of the kth largest eigenvector
ek. Since K � Km, it is guaranteed that all the informa-
tion needed for grouping K clusters is preserved in this Km

dimensional feature space.
We model the distribution of De using a Gaussian Mix-

ture Model (GMM). The log-likelihood of observing the
training dataset De given a K-component GMM is com-
puted as

log P (De|θ) =
N∑

n=1

(
log

K∑
k=1

wkP (yn|θk)

)
, (7)

where P (yn|θk) defines the Gaussian distribution of the k-
th mixture component. The model parameters θ are esti-
mated using the EM algorithm. The Bayesian Information
Criterion (BIC) is then employed to select the optimal num-
ber of components K determining the number of behaviour
classes. For any given K, BIC is formulated as:

BIC = − log P (Y|θ) +
CK

2
log N (8)

where CK is the number of parameters needed to describe
a K-component Gaussian Mixture.

However, it is found in our experiments that in the Km

dimensional feature space, BIC tends to underestimate the
number of clusters (see Fig. 2(c) for an example and more
in Section 4). This is not surprising because BIC has been
known for having the tendency of underfitting the model
given sparse data [9]. A dataset of N samples represented in
a Km = 1

5N dimensional feature space can always be con-
sidered as sparse. Our solution to this problem is to reduce
the dimensionality through unsupervised feature selection.



3.4. Feature Selection
Now we need to derive a suitable criterion for measur-

ing the relevance of each eigenvector. Since only the first
K largest eigenvectors are needed for grouping K clusters,
there are certainly redundant/irrelevant features in the Km

dimensional feature space defined in Eqn. (6). It is safe
to say that a smaller eigenvector is less likely to be rele-
vant in data clustering. It has also been shown in [13] that
each of the K largest (i.e., relevant) eigenvectors of the nor-
malised affinity matrix is able to separate one cluster from
others while other eigenvectors are not. This suggests that
a feature selection strategy should be employed based on
measuring the relevance of each eigenvector according to
how well it can separate the dataset into two clusters.

We denote the likelihood of the kth eigenvector ek be-
ing relevant as Rek

with 0 ≤ Rek
≤ 1. We assume that

the elements of ek, ekn follow two different distributions
depending on whether ek is relevant. It is thus natural to
formulate the distribution of ekn using a mixture model of
two components. The likelihood of observing ekn given the
distribution parameters θekn

can then be written as:

P (ekn|θekn
) = (1 − Rek

)P (ekn|θ1
ekn

) + Rek
P (ekn|θ2

ekn
)

(9)
where P (ekn|θ1

ekn
) is the distribution of ekn when ek is

irrelevant/redundant and P (ekn|θ2
ekn

) when it is relevant.
Rek

acts as the weight or mixing probability of the second
components. We assume the distribution of ekn to be a sin-
gle Gaussian when it is irrelevant:

P (ekn|θ1
ekn

) =
N∏

n=1

1√
2πσk1

exp

[
−1

2

(
ekn − µk1

σk1

)2
]

(10)
and a mixture of two Gaussians when it is relevant:

P (ekn|θ2
ekn

) =
N∏

n=1




wk√
2πσk2

exp
[
− 1

2

(
ekn−µk2

σk2

)2
]

+ 1−wk√
2πσk3

exp
[
− 1

2

(
ekn−µk3

σk3

)2
]



(11)
where µk1, µk2, µk3, σk1, σk2 and σk3 are the means and
variances of the three Gaussians in (10) and (11), wk is the
weight of the first component of the two Gaussians when ek

is relevant. There are 8 parameters required for describing
the distribution of ekn:

θekn
= {Rek

, µk1, µk2, µk3, σk1, σk2, σk3, wk}
The maximum likelihood (ML) estimate of θekn

can be es-
timated using the following algorithm. First, the parame-
ters of the first mixture component θ1

ekn
are estimated as

µk1 = 1
N

∑N
n=1 ekn and σk1 = 1

N

∑N
n=1(ekn − µk1)2.

The rest 6 parameters are then estimated iteratively using
EM. The ML estimate R̂ek

thus provides a real-value mea-
surement of the relevance of ek. Since a ‘hard-decision’ is

needed for dimension reduction, we eliminate the kth eigen-
vector ek among the Km candidate eigenvectors if

R̂ek
< 0.5 (12)

Since the EM algorithm is essentially a local (greedy)
searching method and a mixture model is not unimodal, the
EM algorithm could be sensitive to parameter initialisation
especially in the presence of noise [6]. To overcome this
problem, a priori knowledge on the relevance of each eigen-
vector can be utilised to set the initial value of Rek

. Specif-
ically, we tie the initial value of Rek

, denoted as R̃ek
with

the corresponding eigenvalue:

R̃ek
= λ̄k, (13)

where λ̄k is the normalised eigenvalue for ek. The value of
λ̄k ranges from 0 to 1 with λ̄1 = 1 and λ̄Km

= 0. The other
parameters of θekn

are initialised using K-means.
After eliminating those irrelevant eigenvectors, the se-

lected relevant eigenvectors are used to determine the num-
ber of clusters K and perform clustering based on GMM
and BIC as described in Section 3.3. Each behaviour pat-
tern in the training dataset is then labelled as one of the K
behaviour classes. A synthetic dataset experiment is pre-
sented in Fig. 2 to illustrate the importance of feature selec-
tion on clustering using eigenvectors of a normalised affin-
ity matrix. It is worth pointing out that for a noise-free syn-
thetic dataset, the number of relevant eigenvectors is equal
to the number of clusters and the BIC based model selec-
tion process becomes redundant. However, given a noisy
dataset arising from a real problem, BIC based model selec-
tion after feature selection becomes crucial for determining
the correct number of expected normal behaviour classes.

3.5. Abnormality Detection
Now each of N behaviour patterns in the training set are

labelled as one of the K classes. Firstly, a MOHMM Bk

(see Fig. 1) is employed for modelling the kth behaviour
class. The parameters of Bk, θBk

are estimated using all
the patterns in the training set that belong to the kth class. A
normal behaviour model M is then formulated as a mixture
of the K MOHMMs for the K behaviour classes. Given an
unseen behaviour pattern, represented as P (Eqn. (1)), the
likelihood of observing P given M is:

P (P|M) =
K∑

k=1

Nk

N
P (P|Bk) (14)

where N is the total number of training behaviour patterns
and Nk is the number of patterns belonging to the kth class.
An unseen behaviour pattern is detected as abnormal if

P (P|M) < ThA (15)

where ThA is a threshold.
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Figure 2: Clustering a synthetic dataset. 80 data samples were randomly generated using four MOHMMs with different
random parameters. There are thus 4 data classes each of which has 20 samples. (a): the normalised affinity matrix ordered
according to the data classes for illustration. (b): the learned relevance for the Km largest eigenvectors. The first 4 largest
eigenvectors were determined as relevant. (c) and (d) show the BIC model selection results before and after feature selection
respectively. The number of clusters was determined as 4 after feature selection. (e): the 80 data sample plotted using the
three most relevant eigenvectors, i.e. e2,e3, and e4. The 4 clusters can be easily separated. (f)-(k): the distributions of some
eigenvectors. Elements corresponding to different classes are color coded in (e)-(k).

When an unseen behaviour pattern is detected as normal,
the normal behaviour model M can also be used for recog-
nising it as one of the K behaviour pattern classes learned
from the training set. More specifically, an unseen behav-
iour pattern is assigned to the k̂th behaviour class when

k̂ = arg max
k

{P (P|Bk)} . (16)

4. Experiments
Dataset and feature extraction — A CCTV camera

was mounted on the ceiling of an office entry corridor,
monitoring people entering and leaving the office area (see
Figure 3). The office area is secured by an entrance-door
which can only be opened by scanning an entry card on
the wall next to the door (see middle frame in row (b) of
Figure 3). Two side-doors were also located at the right
hand side of the corridor. People from both inside and
outside the office area have access to those two side-doors.
Typical behaviours occurring in the scene would be people
entering or leaving either the office area or the side-doors,
and walking towards the camera. Each behaviour pattern
would normally last a few seconds. For this experiment,
a dataset was collected over 5 different days consisting
of 6 hours of video totalling 432000 frames captured at
20Hz with 320× 240 pixels per frame. This dataset was
then segmented into sections separated by any motionless
intervals lasting for more than 30 frames. This resulted in
142 video segments of actual behaviour pattern instances.
Each segment has on average 121 frames with the shortest

42 and longest 394. Given these video segments, discrete
events were detected and classified using automatic model
order selection in clustering, resulting in four classes of
events corresponding to the common constituents of all
behaviours in this scene: ‘entering/leaving the near end
of the corridor’, ‘entering/leaving the entrance-door’,
‘entering/leaving the side-doors’, and ‘in corridor with the
entrance-door closed’. Examples of detected events are
shown in Figure 3 using colour-coded bounding boxes. It
is noted that due to the narrow view nature of the scene,
differences between the four common events are rather
subtle and can be mis-identified based on local information
(space and time) alone, resulting in large error margin in
event detection. The fact that these events are also common
constituents to different behaviour patterns reinforces the
assumption that local events treated in isolation hold little
discriminative information for behaviour profiling.

Model training — A training set consisting of discrete
events extracted from 80 video segments was randomly se-
lected from the overall 142 segments without any behav-
iour class labelling of the video segments. The remaining
62 segments were used for testing later. This model train-
ing exercise was repeated 20 times and in each trial a dif-
ferent model was trained using a different random training
set. This is in order to avoid any bias in the abnormality de-
tection and normal behaviour recognition results to be dis-
cussed later. For comparative evaluation, alternative mod-
els were also trained using labelled datasets as follows. For



(a) (b)

(c) (d)

(e) (f)

Figure 3: Behaviour patterns in a corridor scene: (a)–(f) show three representative frames of different typical behaviour
patterns C1–C6 as listed in Table 1. Events detected during each behaviour pattern are shown by colour-coded bounding
boxes in each frame.

each of the 20 training sessions above, a model was trained
using identical training sets as above. However, each data
sample in the training sets was also manually labelled as
one of the manually identified behaviour classes. On aver-
age 12 behaviour classes were manually identified for the
labelled training sets in each trial. Six classes were always
identified in each training set (see Table 1). On average they
accounted for 83% of the labelled training data.

C1 From the office area to the near end of the corridor
C2 From the near end of the corridor to the office area
C3 From the office area to the side-doors
C4 From the side-doors to the office area
C5 From the near end of the corridor to the side-doors
C6 From the side-doors to the near end of the corridor

Table 1: The 6 classes of behaviour patterns that most com-
monly occurred in a corridor scenario.

Model training using unlabelled data: Over the 20 tri-
als, on average 6 eigenvectors were automatically deter-
mined as being relevant for clustering with smallest 4 and
largest 9. All the selected eigenvectors are among the 10
largest eigenvectors of the normalised affinity matrices. The
number of clusters for each training set was determined au-
tomatically as 6 over in every trial. By observation, each
discovered data cluster mainly contained samples corre-
sponding to one of the 6 behaviour classes listed in Table 1.
Fig. 4 shows an example of the model training process us-
ing an unlabelled training set. For each unlabelled training
set, a normal behaviour model was constructed as a mix-
ture of 6 MOHMMs as described in Section 3.5. Model

training using unlabelled data: For each labelled training
set, a normal behaviour model was built as a mixture of
MOHMMs with the number of mixture components deter-
mined by the number of behaviour classes manually identi-
fied. Each MOHMM component was trained using the data
samples corresponding to one class of manually identified
behaviours in each training set.

Ab. det. rate (%) Fal. Ala. rate(%)
unlabelled 85.4 ± 2.9 6.1 ± 3.1

labelled 73.1 ± 12.9 8.4 ± 5.3

Table 2: Comparing the performance of models trained us-
ing unlabelled and labelled data on abnormality detection.
The results were obtained over 20 trials with ThA = −0.2.

Abnormality detection — To measure the performance of
the learned models on abnormality detection, each behav-
iour pattern in the testing sets was manually labelled as nor-
mal if there were similar patterns in the corresponding train-
ing sets and abnormal otherwise. The detection rate and
false alarm rate of abnormality detection are shown in the
form of a ROC curve. Fig. 5 shows that the models trained
using unlabelled data clearly outperformed those trained us-
ing labelled data. It can also been seen from Fig. 5(a) & (b)
that the performance of the models trained using unlabelled
data was more consistent over different trials. In particular,
it is found that given the same ThA (see Eqn. (15)) the mod-
els trained using unlabelled datasets achieved higher abnor-
mality detection rate, lower false alarm rate, and smaller
variation over different trials compared to those trained us-
ing labelled datasets (see Table 2 and the last columns of
the confusion matrices shown in Fig. 7). Fig. 6 shows ex-
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Figure 4: Model training using an unlabelled dataset. (b): the learned relevance for the Km largest eigenvectors. The first
7 largest eigenvectors were determined as relevant features for clustering. (c) and (d) show the BIC model selection results
before and after feature selection respectively. The number of clusters was determined as 6 after feature selection. (e): the
80 data samples plotted using the three most relevant eigenvectors, i.e. e1,e2, and e6. (f)-(k): the distributions of some
eigenvectors.
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Figure 5: The performance of abnormality detection measured by detection rate and false alarm rate. (a) and (b) show
the mean and ±1 standard deviation of the ROC curves obtained over 20 trials using unlabelled data and labelled data
respectively. (c) compares the mean ROC curves using unlabelled and labelled data.

amples of false alarm and mis-detection by models trained
using labelled data. It is noted that the lower tolerance to-
wards event detection errors was the main reason for the
higher false alarm rate of models trained using labelled data
(see Fig. 6(b)&(d) for an example).

Nor. Beh. Rec. Rate(%)
unlabelled 77.9 ± 4.8
labelled 84.7 ± 6.0

Table 3: Comparing the performance of models trained us-
ing unlabelled and labelled data on normal behaviour recog-
nition. The results were obtained with ThA = −0.2.

Recognition of normal behaviours — To measure the
recognition rate, the normal behaviour patterns in the testing
sets were manually labelled into different behaviour classes.

A normal behaviour pattern was recognised correctly if it
was detected as normal and classified into a behaviour class
containing similar behaviour patterns in the corresponding
training set by the learned behaviour model. Table 3 shows
that the models trained using labelled data achieved slightly
higher recognition rates compared to those trained using
unlabelled data. Fig. 7(a) shows that when a normal be-
haviour pattern was not recognised correctly by a model
trained using unlabelled data, it was most likely to be recog-
nised as another class of normal behaviour pattern. On the
other hand, Fig. 7(b) shows that for a model trained by la-
belled data, a normal behaviour pattern was most likely to
be wrongly detected as an abnormality if it was not recog-
nised correctly. This contributed to the higher false alarm
rate for the model trained by labelled data.
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Figure 6: (a) An abnormal behaviour pattern which was de-
tected as being abnormal by the model trained using an un-
labelled dataset, but detected as being normal by the model
trained using the same but labelled dataset. It shows a per-
son sneaking into the office area without using an entry
card. (b) A normal behaviour pattern which was detected
correctly by the model trained using an unlabelled dataset,
but detected as being abnormal by the model trained us-
ing the same but labelled dataset. (c)&(d) show the log-
likelihood of observing the behaviour patterns shown in
(a)&(b) given the learned models respectively.
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Figure 7: Confusion matrices for abnormality detection and
normal behaviour recognition of the behaviour classes listed
in Table 1. Each row represents the probabilities of that
class being confused with all the other classes averaged over
20 trials. The results were obtained with ThA = −0.2.

5. Conclusions
Our experiments show that a behaviour model trained us-

ing an unlabelled dataset is superior to a model trained using
the same but labelled dataset in detecting abnormality from
an unseen video. In particular, our behaviour profiling algo-
rithm is capable of discovering natural grouping of behav-
iour patterns in the training data. The optimal number of be-
haviour pattern classes is automatically determined which

enables the trained behaviour model to identify novel ab-
normality instances accurately and consistently. The model
is also able to distinguish abnormal behaviour patterns from
normal ones contaminated by errors in behaviour represen-
tation. On the contrary, the more deliberate model trained
using labelled data tends to be brittle and less robust in deal-
ing with unseen instances of behaviours that are not clear-
cut in an open-world scenario. Such a model is more likely
to perform poorly in interpreting unseen behaviour patterns,
either normal or abnormal.
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