Outline

1. Structure of IR4IP Tutorial
2. Topics, Issues, and "Problems" in IR
3. Foundations
4. Historical Notes
5. Web or Enterprise Search?
6. Summary

Structure

1200 - 1330: 90 mins, “six” 15 mins slots.

1. Introduction (TR): 15 mins
2. Indexing (EG): 15 mins
3. Retrieval Models (TR): 15 mins
4. Interaction (EG): 15 mins
5. Evaluation (TR): 15 mins

Introduction

IPI Confex, March 2009

Thomas Roelleke
Queen Mary University of London
10 Issues in IR

1. Retrieval models (ranking functions)
2. Text processing ("Indexing": NLP / understanding)
3. Interactivity
4. Efficiency: Compression, parallel IR
5. Distributed IR (data fusion, meta retrieval)
6. Multimedia: image, video, sound
7. Evaluation
8. Web retrieval (link analysis)
9. Cross-lingual IR
10. Digital libraries: IR application

10 Issues in IR

1. Retrieval models (ranking functions)
2. Text processing ("Indexing": NLP / understanding)
3. Interactivity
4. Efficiency: Compression, parallel IR
5. Distributed IR (data fusion, meta retrieval)
6. Multimedia: image, video, sound
7. Evaluation
8. Web retrieval (link analysis)
9. Cross-lingual IR
10. Digital libraries: IR application

Empty Answer and Many Answer “Problem”

“Empty Answer Problem”:
- Free-text: Find a web page that offers boats that are fast AND comfortable AND NOT EXPENSIVE
- SQL DB: SELECT * FROM properties WHERE price < 200k AND bedrooms > 3 AND location LIKE 'London';

Query is too narrow, too specific.

“Many Answer Problem”:
- SELECT * FROM properties WHERE price < 200k OR bedrooms > 3 OR location LIKE 'London';

Query is too general, too exhaustive.
Structure of IR4IP Tutorial

Topics, Issues, and “Problems” in IR

Foundations
- Historical Notes
- Web or Enterprise Search?
- Summary

Zipf’s law

- Words by rank order
- Frequency of words

<table>
<thead>
<tr>
<th>f</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

Luhn’s analysis

- Frequency of words
- Upper cut-off
- Lower cut-off
- Resolving power
- Words by rank order
- Significant words
- Rare words

Conceptual Model for IR

- Documents
- Indexing
- Document representation
- Information need
- Formulation
- Query
- Retrieval function
- Retrieved documents
- Relevance feedback

The 60s/70s: VSM and “The” probabilistic retrieval model

- Boolean retrieval “semiconductors AND inventor=ibm” still popular.
- VSM: Vector-space model: Replace Boolean retrieval by retrieval based on the distance of document and query vectors
- Probabilistic justification of what ranking is? \(P(r|d,q) \), the probability of relevance.
 Illustration: Present a document-query pair to several users, and each user assesses the relevance.
 After ... steps: A term/keyword is GOOD, if it occurs more often in relevant documents than in non-relevant documents.
The 80s

- SQL databases become widely available ... text processing?
- VSM, probability of relevance, all interesting, but not good enough?
- Therefore, view IR as “logical implication” ... Rijsbergen’s $P(d \rightarrow q)$

Mid 90s: The web

- The web. Keyword-based (content-based) retrieval alone not good enough.
- Pagerank ... Google ... A page is good if it is “popular”.
- A popular page is an authority?
- Combine content-based (keyword-based) ranking with pagerank.
- The page rank (popularity, authority) is independent of the query!

Late 90s: Language modelling

- VSM, probabilistic model, logical model, all interesting, but how about language modelling?
- Given a document and a collection, there is a probability that the query is generated from those TWO “models”!

Web/page search OR Enterprise search OR Semantic web?

- Web search: surface/horizontal search
- Enterprise search: “deep” search, semantic search, vertical search
- Semantic web, webDB: explore/exploit the web similar to what is known for enterprise search
Information retrieval: not just “document” retrieval
An information need is translated into a query: “loss of information”
Hypertext/Web: Content (words/terms) + Links (links, popularity, authority)

Thank you!
Introduction

Full term indices

Advanced Index structures

Conclusion

Storage of information in a way that supports efficient retrieval. Two main points of considerations:

- Accuracy of semantic representation.
- Space and time efficiency.
Overview of Indexing Process

Basic concept

- **Document Collection**
- **Index**

Index of books

- **Document Collection**
- **Index**

Fulltext indices

- **Document**
- **Representation**

Representation

- Represent documents via the complete set of terms.
Term Processing

- **Tokenization**: Extract the terms from a document. Removal of tags, punctuation.
- **Stop-wording**: Remove terms with very high document frequencies (e.g. ‘of’, ‘the’).
 In the English language these are responsible for approx. 30% of term volume.
 Stop word lists are getting shorter; or often no stop-wording is applied.
- **Stemming**: Collapsing morphological variants of words (i.e. ‘Patent’, ‘Patents’, ‘patenting’ is stemmed to ‘patent’).
 Eases querying and reduces index size.

Direct Index

- Optimized file system for retrieval. Mimics a Unix ‘grep’ or Windows98 search.
- Scales badly with respect to number of documents.

Inverted Index

- Default index structure in Information Retrieval.
- Computationally very efficient. Scales well.
Positional Index
- Stores the position of term in addition to the posting and frequency
- Allows for word-order-, phrasal-, offset-querying.
- Increases the size of the index by 2-10 times (depending on the average document length)

Field Index
- Enables part specific searching
- Allows assigning weight to different parts or aspects of documents (Robertson BM25F)
- A form of partitioning documents.

Virtual fields
- Enrich document with document-external data
- Document priors (Web: Number of inlinks, URL length, URL text)
- Another example anchor text:
 - Link: ‘http://www.acm.org/sigir/’
 - Text: ‘ACM SIGIR: Information Retrieval Special Interest Group’
‘Trends’ in document representations

- Representations resemble documents more closely
 - Full text
 - Positional
- Exploitation of semantic ‘hints’
 - Structure
 - Style
- Enrichment of document with meta-data
 - Anchor text
 - Document priors (inlinks, URL, etc ...)

Thank you!
Task of an IR model

- Process a query such that the result is specific (few hits only, and hits on topic) while being exhaustive (enough hits, good coverage).
- Retrieve relevant documents while not retrieving non-relevant documents.
- Rank documents.
Time frame

60s/70s: Vector-space model (VSM); TF-IDF (term frequency — inverse document frequency) probabilistic (binary independence) retrieval model (BIR)

Early/mid 90s: Poisson, BM25 (best-match version 25)

Mid 90s: Page-rank (Authority-based retrieval a-la Google)

Late 90s: Language Modelling

TF-IDF

- **TF:** Term Frequency of TERM in DOCUMENT

 \[\text{tf}(t, d) := \text{count term occurrence within DOCUMENT} \]

- **IDF:** Inverse Document Frequency of TERM in COLLECTION

 \[\text{idf}(t) := \text{count documents in COLLECTION} \]

IDF of frequent term is small, IDF of rare term is large. Reflects the searcher trying to find terms that are rare/discriminative overall, but frequent in the requested document.

Example Calculation:

<table>
<thead>
<tr>
<th>Term</th>
<th>DocId</th>
</tr>
</thead>
<tbody>
<tr>
<td>sailing</td>
<td>doc1</td>
</tr>
<tr>
<td>boats</td>
<td>doc1</td>
</tr>
<tr>
<td>sailing</td>
<td>doc2</td>
</tr>
<tr>
<td>boats</td>
<td>doc2</td>
</tr>
<tr>
<td>sailing</td>
<td>doc2</td>
</tr>
<tr>
<td>sailing</td>
<td>doc2</td>
</tr>
<tr>
<td>east</td>
<td>doc3</td>
</tr>
<tr>
<td>coast</td>
<td>doc3</td>
</tr>
<tr>
<td>sailing</td>
<td>doc4</td>
</tr>
<tr>
<td>boats</td>
<td>doc5</td>
</tr>
</tbody>
</table>

- \[\text{tf}(sailing, doc2) = 2 \]
- \[\text{df}(sailing) = 4 \]
- \[ND = 5 \]
- \[\text{idf}(sailing) = -\log \frac{4}{5} = ... \]
Binary Independence Retrieval (BIR) Model

- Established mid/end 70s

 ([Robertson and Sparck Jones, 1976, Croft and Harper, 1979])

- Terms are “good”: if they are frequent in relevant documents and rare in non-relevant documents

- Terms are “poor”: if they are frequent in non-relevant documents and rare in relevant documents

- Famous formula (BIR term weight):

 \[
 \text{bir}(t, r, \bar{r}) := \frac{P(t|r)}{P(t|\bar{r})}
 \]

Poisson Model

- Probability that an event occurs \(k\) times given that in average it occurs \(\lambda\) times

- Example: Probability that 4 of 7 days are sunny, knowing that in average every second day was sunny in the past (one month: 15/30, 10 years: 1800/3600).

BM25/Okapi Formula

- Established since early/mid 90s

- Combines a special TF component with the BIR term weight

- Considers document length

- Is mathematically

 \[
 \sum_{t \in d \cap q} \text{bir}(t, r, \bar{r}) \cdot \frac{tf_d}{tf_d + k_1} \cdot \frac{tf_q}{tf_q + k_3} + k_2 \cdot q_l \cdot \frac{\text{avgdl} - dl}{\text{avgdl} + dl}
 \]

 \(k_1\): pivoted document length ...

Language Modelling (LM)

- THE alternative to BM25/TF-IDF?

- Established late 90s

- Derived from \(P(q|d)\), i.e. the probability that document \(d\) and the background model (the collection) generate the query.

Example: ...
Classification-oriented Models

- Bayesian classifier
- Support-vector machine (SVM)
- Duality to ad-hoc retrieval: Retrieve classes for an incoming (new) document

Web/Link-based Retrieval Models

- Idea: A page that is referenced by many “good” pages is a “good” page. Note the recursive usage of “good” ([Brin and Page, 1998]).
- Authority principle.
- Apparently the break-through for Google late 90s.
- TF boosting: Propagate the anchor text terms to the referenced object; multimedia/image retrieval.

Relationships between Retrieval Models

- The content-oriented models (TF-IDF, BM25, LM) are combined with link-based models (e.g. term propagation).
- All retrieval models try to optimise the ranking.
- Can one know in advance which model is best for which query?
- Is a combination of models useful?
- Can a system learn a model? Learn when to use which model?

Summary

- Retrieval models define the ranking (scores) of retrieved objects
- Several strands of models with many ways of estimating parameters stimulate IR research
Questions?

Thank you!

User Interaction
IPI Confex, March 2009

Erik Graf
University of Glasgow

Outline
1 Introduction
2 The Information Access Process
3 Query Specification
4 User Interfaces
5 User Behavior Mining

Aim
Improving the retrieval process by exploring a user’s interaction with a system
Standard Model of the Process

1. **Information Need.**
2. System and collection selection
3. Query formulation
4. Query submission
5. Reception of results in the form of information items.
6. Scanning, evaluation, and interpretation of results.
7. Stop or recursion.

Models of Information Access

Retrieval Model

- **Retrieval System**
- **Search Interface**
- **Query transformation**
- **Search Results**

Query Specification

The Problem

- **Synonymity, Vocabulary mismatch** (car, automobile, sedan, van)
- **Polysemy** (Chip, Java, etc ...)
- **Vague and short user queries** (2-3 terms average length for web queries)

Keyword Suggestion

- **next president**
- **next president election**
- **next president Republican**
- **next president Democrat**
- **hillary clinton next president**
- **most president Election**
- **most president Democrat**
- **most president Republican**
- **most president "Hillary Clinton"**
Keyword Suggestion Techniques
- Thesauri
- Co-Occurrence analysis of terms
- Pseudo-Relevance Feedback
- Query Clustering

Automatic query expansion
Users are generally reluctant to use suggested keywords. Therefore search engines often apply automated query expansion based on the following techniques:
- Thesauri, Co-occurrence analysis
- Pseudo-Relevance Feedback
- Query Clustering

Summarization: Which snippet will allow for the best relevance judgment from the users side.
Result page design: Tabbed result pages, amount of shown results.
Information item presentation

Automatically derived visualizations

Clustering

Grouping of ‘similar’ items based on document to document similarity models.

- Hierarchical clustering (agglomerative, divisive)
- Partitional clustering

Automatically derived visualizations

User data

Forms

- Implicit feedback: Automatically collected records of a users interaction with a system (e.g. ‘click-through’ data).
- Explicit feedback.
Applications

- Meta-data for the collection documents (a query-log field index)
- Collaborative filtering (a la Amazon: people who entered this query also clicked on ...)
- Query Clustering (Keyword suggestion)
- Personalization (Personal search history, topical preferences)

Questions?

Thank you!
IR4IP: Evaluation

Slides by Thomas Mandl, IR Herbstschule 2008

Updates by Thomas Roelleke

- Which System is better?

“There must be some fundamental understanding of what it means to be good and what it means to be better” (Bollmann/Cherniavsky 1983,3)
Many Components

- Many components, models and optimisation techniques involved in a search system
- Effectiveness for a given (new) set of data difficult to forecast
- A general superiority of a single model or a single component is difficult to establish
- Therefore, evaluate effectiveness
- A holistic evaluation is difficult
- Measure success/satisfaction of users?

Recall und Precision

- "The ability of the retrieval system to uncover relevant documents is known as the recall power of the system" (Lancaster 1968,55)

Recall = \[
\text{Number of retrieved relevant documents} \over \text{Number of relevant documents}
\]

Precision = \[
\text{Number of retrieved relevant documents} \over \text{Number of retrieved documents}
\]

Example

- Assume that for a given query, the following documents are relevant (10 relevant documents)
 \{{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89}, d_{123}}\}
- Suppose that the following documents are retrieved for that query:

<table>
<thead>
<tr>
<th>rank</th>
<th>doc</th>
<th>precision</th>
<th>recall</th>
<th>rank</th>
<th>doc</th>
<th>precision</th>
<th>recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d_{123}</td>
<td>1/1</td>
<td>1/10</td>
<td>8</td>
<td>d_{129}</td>
<td>4/10</td>
<td>4/10</td>
</tr>
<tr>
<td>2</td>
<td>d_{84}</td>
<td>2/2</td>
<td>2/10</td>
<td>9</td>
<td>d_{187}</td>
<td>4/10</td>
<td>4/10</td>
</tr>
<tr>
<td>3</td>
<td>d_{56}</td>
<td>2/3</td>
<td>3/10</td>
<td>10</td>
<td>d_{25}</td>
<td>4/10</td>
<td>4/10</td>
</tr>
<tr>
<td>4</td>
<td>d_{6}</td>
<td>2/4</td>
<td>4/10</td>
<td>11</td>
<td>d_{44}</td>
<td>4/10</td>
<td>4/10</td>
</tr>
<tr>
<td>5</td>
<td>d_{8}</td>
<td>3/6</td>
<td>3/10</td>
<td>12</td>
<td>d_{250}</td>
<td>4/10</td>
<td>4/10</td>
</tr>
<tr>
<td>6</td>
<td>d_{9}</td>
<td>3/6</td>
<td>3/10</td>
<td>13</td>
<td>d_{113}</td>
<td>4/10</td>
<td>4/10</td>
</tr>
<tr>
<td>7</td>
<td>d_{511}</td>
<td>5/14</td>
<td>5/10</td>
<td>14</td>
<td>d_{3}</td>
<td>5/10</td>
<td>5/10</td>
</tr>
</tbody>
</table>
Recall?

- Users „feel“ the precision
- Recall? Not „visible“.
- Even with considerable effort difficult to determine precisely!
 - Number of relevant docs not know.
 - In particular problematic for queries where recall is important (e.g. crime investigations, legal applications, patent search)

Prec at N

- Precision at N (10) documents
 - Clear interpretation
 - Reasonable for web retrieval
 - Little information about the system
 - Position of relevant documents not considered

Which System is better?

2 Systems (A and B), 3 Topics
"IR Psychology"

"The unhappy customer, on average, will tell 27 other people …"

→ **Bad news travels fast.**

Site search needs to be robust
Avoid bad outliers!
 for as many queries as possible
 for as many measures as possible

NTCIR

• Cross-lingual IR asian languages
• Tokio
 – National Institute for Informatics
• Tasks
 – Cross-lingual
 • Chinesisch, Japanisch, Koreanisch -> Englisch
 – Patent-Retrieval
 – Web-Retrieval
 – Question Answering