Improving Internet–wide routing convergence with MRPC timers: bringing order to routing dynamics

Steve Uhlig
TU Berlin/Deutsche Telekom Labs
steve@net.t-labs.tu-berlin.de

Anthony Lambert
Orange Labs

Marc–Olivier Buob
Orange Labs
Outline

• Motivation
• Routing algebras
• MRPC timers
• Evaluation
• Arbitrary dynamics
• Conclusions
Motivation
Path exploration

• Path exploration = paths selected as best before final best

• Path exploration is common in the Internet [Bürkle’03, Oliveira’06]

• Leads to poor convergence [Labovitz’99, Mao’02]
Motivation
Path exploration

- Path exploration = paths selected as best before final best
- Path exploration is common in the Internet [Bürkle’03, Oliveira’06]
- Leads to poor convergence [Labovitz’99, Mao’02]
Motivation
Path exploration

- Path exploration = paths selected as best before final best
- Path exploration is common in the Internet [Bürkle’03, Oliveira’06]
- Leads to poor convergence [Labovitz’99,Mao’02]
Motivation

Path exploration

• Path exploration = paths selected as best before final best
• Path exploration is common in the Internet [Bürkle’03, Oliveira’06]
• Leads to poor convergence [Labovitz’99, Mao’02]
Motivation
Path exploration

- Path exploration = paths selected as best before final best
- Path exploration is common in the Internet [Bürkle’03, Oliveira’06]
- Leads to poor convergence [Labovitz’99,Mao’02]

Paths explored by R₅ towards R₁:
1. R₅ – R₁
2. R₅ – R₂ – R₁
Motivation
Path exploration

• Path exploration = paths selected as best before final best
• Path exploration is common in the Internet [Bürkle’03, Oliveira’06]
• Leads to poor convergence [Labovitz’99, Mao’02]

Path exploration is the consequence of the real problem: lack of proper routing updates ordering!

• Paths explored by R₅ towards R₁:
 1. R₅ – R₁
 2. R₅ – R₂ – R₁
Motivation

Today’s solution

- MRAI timers delay BGP updates announcements on BGP sessions
 - Implementation-dependent behavior
 - Typical values: [0,5] seconds on iBGP sessions, [0,30] seconds on eBGP sessions [RFC4271]
 - All messages are delayed indiscriminately
 - No value fits all situations [Griffin’01]

- Impact of uniform MRAI on propagation
 - $R_5 - R_1$
 - $R_5 - R_2 - R_1$
 - $R_5 - R_4 - R_3 - R_1$
Motivation

Today’s solution

- MRAI timers delay BGP updates announcements on BGP sessions
 - Implementation-dependent behavior
 - Typical values: [0,5] seconds on iBGP sessions, [0,30] seconds on eBGP sessions [RFC4271]
 - All messages are delayed indiscriminately
 - No value fits all situations [Griffin’01]

- Impact of uniform MRAI on propagation

 ? $R_5 - R_1$
 ? $R_5 - R_2 - R_1$
 ? $R_5 - R_4 - R_3 - R_1$
Motivation

Today’s solution

• MRAI timers delay BGP updates announcements on BGP sessions
 - Implementation–dependent behavior
 - Typical values: [0,5] seconds on iBGP sessions, [0,30] seconds on eBGP sessions [RFC4271]
 - All messages are delayed indiscriminately
 - No value fits all situations [Griffin’01]

Impact of uniform MRAI on propagation

? R₅ – R₁
? R₅ – R₂ – R₁
? R₅ – R₄ – R₃ – R₁

MRAI = delaying blindly
Outline

• Motivation
• Routing algebras
• MRPC timers
• Evaluation
• Arbitrary dynamics
• Conclusions
Routing algebras

What is a routing protocol?

Routing protocol

- comparison (S, \leq_s)
- concatenation (H, \odot)
- diffusion G, V^+, V^+
- scheduling T, τ^-, τ^+

Path algebras:

(S, H, \leq_s, \odot)

RAML

Convergence and final state
(stable final state, local or global optimum...)

Time algebra

$(S, T, \leq_t, +)$

Efficient timers

τ^*, τ^-

Dynamics (convergence time, amount of exchanged routing messages...)

CoNEXT'09, 04/12/09, Rome
Routing algebras
What is a routing protocol?

Routing protocol

- comparison \((S, \leq_s)\)
- concatenation \((H, \odot)\)
- diffusion \((G, V, V^+)\)
- scheduling \((T, \tau^-, \tau^+)\)

Path algebras:
\((S, H, \leq_s, \odot)\)

RAML

Decision process

Time algebra
\((S, T, \leq_T, +)\)

Efficient timers
\((\tau^-, \tau^+)\)

Convergence and final state
(stable final state, local or global optimum...)

Dynamics (convergence time, amount of exchanged routing messages...)
Routing algebras

What is a routing protocol?

- Comparison (S, \leq_S)
- Concatenation (H, \cdot)
- Diffusion G, V^+, V^-
- Scheduling T, τ^+, τ^-

Path algebras:
(S, H, \leq_S, \cdot)

- Decision process
- Routing policies

Time algebra $(S, T, \leq_T, +)$

- Convergence and final state (stable final state, local or global optimum...)

RAML

- Efficient timers τ^+, τ^-
- Dynamics (convergence time, amount of exchanged routing messages...)

CoNEXT’09, 04/12/09, Rome
Routing algebras

What is a routing protocol?

Decision process

Routing policies

Routing message forwarding

Routing protocol

Comparison (S, \preceq_s)

Concatenation (H, \odot)

Diffusion G, V^+, V^+

Scheduling T, τ^-, τ^+

Path algebras: (S, H, \preceq_s, \odot)

RAML

Convergence and final state
(stable final state, local or global optimum...)

Time algebra $(S, T, \preceq_t, +)$

Efficient timers τ^+, τ^-

Dynamics (convergence time, amount of exchanged routing messages...)
Routing algebras

What is a routing protocol?

Routing protocol

- comparison \((S, \leq_s)\)
- concatenation \((H, \odot)\)
- diffusion \(G, V^+, V^-\)
- scheduling \(T, \tau^-, \tau^+\)

Decision process

Routing policies

Routing message forwarding

Path algebras:
\((S, H, \leq_s, \odot)\)

RAML

Convergence

Convergence and final state
(stable final state, local or global optimum...)

time algebra
\((S, T, \leq_t, +)\)

efficient timers
\(\tau^+, \tau^-\)

Dynamics (convergence time, amount of exchanged routing messages...)
Routing algebras
What is a routing protocol?

Routing policies

Routing message forwarding

Decision process

Routing protocol

Comparison (S, \leq_S)

Concatenation (H, \odot)

Diffusion G, V^+, V^+

Scheduling T, τ^-, τ^+

Path algebras: (S, H, \leq_S, \odot)

RAML

Convergence and final state (stable final state, local or global optimum...)

Time algebra $(S, T, \leq_T, +)$

Efficient timers τ^-, τ^+

Dynamics (convergence time, amount of exchanged routing messages...)

Metarouting
Routing algebras
What is a routing protocol?

- **Decision process**
- **Routing policies**
- **Routing message forwarding**
- **Convergence**
- **Our contribution**

Metarouting

convergence and final state (stable final state, local or global optimum...)

dynamics (convergence time, amount of exchanged routing messages...)

time algebra \((S,T,\leq_{T},+)\)

efficient timers \(\tau^{+},\tau^{-}\)

routing protocol

\[\text{comparison } (S,\leq_{S})\]
\[\text{concatenation } (H,\odot)\]
\[\text{diffusion } G,V^{+},V^{+}\]
\[\text{scheduling } T,\tau,\tau^{+}\]

path algebras : \((S,H,\leq_{S},\odot)\)

RAML
Outline

- Motivation
- Routing algebras
- MRPC timers
- Evaluation
- Arbitrary dynamics
- Conclusions
MRPC timers
Shortest path routing

- How to ensure that each router will learn its preferred path first?
- Delay announcements to enforce a given updates propagation

For instance for R₅ toward R₁

\[R₅-R₄-R₃-R₁ \] is learned after 3k time units
\[R₅-R₂-R₁ \] is learned after 4k time units
\[R₅-R₁ \] is learned after 5k time units
MRPC timers
Shortest path routing

- How to ensure that each router will learn its preferred path first?
- Delay announcements to enforce a given updates propagation

For instance for R_5 toward R_1

\[
\begin{align*}
R_5 - R_4 - R_3 - R_1 & \text{ is learned after 3k time units} \\
R_5 - R_2 - R_1 & \text{ is learned after 4k time units} \\
R_5 - R_1 & \text{ is learned after 5k time units}
\end{align*}
\]
MRPC timers
Shortest path routing

• How to ensure that each router will learn its preferred path first?
• Delay announcements to enforce a given updates propagation

For instance for R_5 toward R_1

\[
\begin{align*}
&R_5-R_4-R_3-R_1 \text{ is learned after } 3k \text{ time units} \\
&R_5-R_2-R_1 \text{ is learned after } 4k \text{ time units} \\
&R_5-R_1 \text{ is learned after } 5k \text{ time units}
\end{align*}
\]
MRPC timers
Shortest path routing

- How to ensure that each router will learn its preferred path first?
- Delay announcements to enforce a given updates propagation

For instance for R_5 toward R_1

\[
\begin{align*}
R_5 &- R_4 - R_3 - R_1 \text{ is learned after 3k time units} \\
R_5 &- R_2 - R_1 \text{ is learned after 4k time units} \\
R_5 &- R_1 \text{ is learned after 5k time units}
\end{align*}
\]
MRPC timers
Shortest path routing

- How to ensure that each router will learn its preferred path first?
- Delay announcements to enforce a given updates propagation

For instance for R_5 toward R_1

\begin{align*}
R_5 - R_4 - R_3 - R_1 & \text{ is learned after } 3k \text{ time units} \\
R_5 - R_2 - R_1 & \text{ is learned after } 4k \text{ time units} \\
R_5 - R_1 & \text{ is learned after } 5k \text{ time units}
\end{align*}

Guiding principle: A path should be learned earlier if it is preferred to another
MRPC timers
From metrics to functions

- Metrics are actually functions applied by routers on paths received.
- Functions are defined on arcs and can be asymmetric.
- Functions consider Metrics and Routing Policies \Rightarrow MRPC.
MRPC timers
From metrics to functions

• Metrics are actually functions applied by routers on paths received
• Functions are defined on arcs and can be asymmetric
• Functions consider Metrics and Routing Policies ⇒ MRPC
MRPC timers

From metrics to functions

- Metrics are actually functions applied by routers on paths received.
- Functions are defined on arcs and can be asymmetric.
- Functions consider Metrics and Routing Policies \Rightarrow MRPC.
MRPC timers
From metrics to functions

- Metrics are actually functions applied by routers on paths received.
- Functions are defined on arcs and can be asymmetric.
- Functions consider Metrics and Routing Policies \Rightarrow MRPC.
MRPC timers
From metrics to functions

- Metrics are actually functions applied by routers on paths received
- Functions are defined on arcs and can be asymmetric
- Functions consider Metrics and Routing Policies ⇒ MRPC

• Contribution of the paper:
 - Study how to transform timer functions into real timers
 - Functional system to compute timers
 - Proof of correctness

• Simple metrics: section 4.1
• BGP: section 4.2
MRPC timers
Timers for BGP: local preference

- Example of local preference model: C2P > PEER > P2C
- An AS delays routing updates according to the type of its incoming/outgoing neighbors:
 - C2P/C2P or P2C/P2C: 0
 - C2P/PEER or PEER/P2C: k
 - C2P/P2C: 2k
- Note: This is just one example. MRPC timers work with generic local-pref classes
MRPC timers
Timers for BGP: AS path

- In case of local preference tie-break, AS path length decides
 ➞ Delay a route by k' time units if you increase its length by k'

To avoid path exploration we need:

$$k' + k' < k + k'$$

$$\Rightarrow k' < k$$
Outline

• Motivation
• Routing algebras
• MRPC timers
• Evaluation
• Arbitrary dynamics
• Conclusions
Evaluation
Setting

• AS–level topology from RouteViews (29,146 ASs and 78,934 edges)
• eBGP delay:
 - MRAI: [0,30] seconds
 - MRPC:
 • local–pref: 10 seconds for (c2p,peer) or (peer,p2c) and 20 seconds for (c2p,p2c)
 • AS path: 0.1 second per AS hop
• iBGP delay: [0,1] second
• Advertise a prefix from different ASs (tier–1, tier–2, stub) and measure propagation properties
Evaluation

Simulation results

[Graphs showing simulation results for MRAI and MRPC]
Outline

- Motivation
- Routing algebras
- MRPC timers
- Evaluation
- Arbitrary dynamics
- Conclusions
Arbitrary dynamics

1. Ghost flushing
 - Do not delay withdraws of obsolete paths
 - Make sure timers give enough time to flush obsolete paths

2. Originator synchronization
 - If path to be installed is worse the previous best
 - Apply MRPC delay on new path metric
 - Wait for this delay before installing the route in the RIB (or FIB for the IGP)

• $1 + 2 \Rightarrow$ path exploration and loops are avoided in all situations
Outline

• Motivation
• Routing algebras
• MRPC timers
• Evaluation
• Arbitrary dynamics
• Conclusions
Conclusions

- BGP propagation is arbitrary today
- Bringing order to BGP is possible: enforce a proper ordering of routing messages during propagation
- We proposed new timers, called MRPC:
 - No need to reveal routing policies
 - Down-scaling possible to reduce convergence time
 - Drastically reduce path exploration
 - Backward compatible: wider deployment means more gain in terms of convergence properties
 - Guarantees of proper forwarding behavior