A characterization of routing dynamics between neighbor ASes

Renata Teixeira†, Steve Uhlig§, Augustin Soule‡, Christophe Diot‡

† LIP6, UPMC, France
§ CSE Dept., UCL, Belgium
‡ Thomson, France
Agenda

- Interactions between neighbor ASes
- Case study: GEANT and Abilene
- Methodology
- Results
- Implications
- Conclusions
Interactions between neighbor ASes
Interactions between neighbor ASes

- **Egress router for** p: router that receives a best route
- **Egress-set for** p: set of egress routers for p
- $P_{X \rightarrow Y}$: set of prefixes advertised by X to Y
- $P_{X \rightarrow Y} = \{p1,p3,p4\}$
- $P_{Y \rightarrow X} = \{p2,p3\}$
Case study: GEANT and Abilene
GEANT and Abilene: interconnectivity

\[\# P_{\text{Abilene}\rightarrow\text{GEANT}} = 5770 \]
\[\# P_{\text{GEANT}\rightarrow\text{Abilene}} = 2200 \]
GEANT and Abilene: measurement infrastructure

Abilene (AS11537)

- **Routing:** 1 collector per POP (BGP + ISIS)
- **Netflow:** 1/100 sampling

GEANT (AS20695)

- **Routing:** 1 collector in the network (BGP, ISIS)
- **Netflow:** 1/1000 sampling
Methodology
Methodology: egress-set changes

- *Egress-set change* ≡ BGP event that changes the egress-set for *p*
- BGP path exploration => many transient states to egress-set
- Filtering of BGP changes: group transient egress-set changes close in time (75% filtered)
Methodology: taxonomy

- **Prefix down for X**: $\Delta \#P_{X \rightarrow Y} \downarrow$
- **Prefix up for X**: $\Delta \#P_{X \rightarrow Y} \uparrow$
- **Egress-set change for X**: $\Delta \#P_{X \rightarrow Y} = 0$
Methodology: correlating egress-set changes

- AS X is said *source* of egress-set change if routing change observed first at AS X and then at AS Y (*destination*)

- Correlating algorithm:
 1. Selection of relevant egress-set change
 2. Identification of the time window T
 3. Matching related egress-set changes
Methodology: selection of relevant egress-set changes

- Considered prefixes:
 - \(P_{G \rightarrow A} \cup P_{A \rightarrow G} \)
 - Select prefixes whose BGP messages contain the other network as next hop

- If \(P_{G \rightarrow A} \cap P_{A \rightarrow G} \neq \emptyset \) then causal relationship is unclear
Methodology: identification of time window T

- Propagation of BGP messages takes time:
 - route flap damping: avoid propagating messages for flapping prefix
 - out-delay (Juniper): delay messages before sending them
 - router’s load: largely depends on number of prefixes and peers

- $T_{A,G} > 90$ min (lots of prefixes, out-delay and damping)

- $T_{G,A} = 0$ (no out-delay, lightly loaded)
Methodology: matching related egress-changes

- Order egress-changes in *destination* with time
- Look for events at *source* that might have triggered change at *destination*
- **Compatible change:** for each change of type c at *destination* at time t, an event of type c' at source is *compatible* if $t \leq t' \leq t+T(p)$ and if c' is compatible with c
Results: mutual impact between GEANT and Abilene
Analysis of mutual impact

<table>
<thead>
<tr>
<th>Egress-set change</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
</tr>
<tr>
<td>prefix down</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>prefix down</td>
</tr>
<tr>
<td></td>
<td>egress worse</td>
</tr>
<tr>
<td></td>
<td>egress equiv.</td>
</tr>
<tr>
<td>prefix up</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>prefix up</td>
</tr>
<tr>
<td></td>
<td>egress better</td>
</tr>
<tr>
<td></td>
<td>egress equiv.</td>
</tr>
<tr>
<td>egress to worse</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>egress better</td>
</tr>
<tr>
<td></td>
<td>egress equiv.</td>
</tr>
<tr>
<td></td>
<td>egress worse</td>
</tr>
<tr>
<td>egress to better</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>egress to better</td>
</tr>
<tr>
<td>egress to equiv.</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>egress to equiv.</td>
</tr>
<tr>
<td>total</td>
<td></td>
</tr>
</tbody>
</table>
Propagation time

No delay from Abilene to GEANT

NL out-delay

DE2 out-delay
Implications
Implications on inter-AS diagnosis

- Diagnosing routing changes between neighbor ASes using egress-change sharing:
 - type of change
 - list of concerned prefixes
 - time of observation
 - traffic ? (rank in top hitters)

- **Interest:**
 - Based on this information, operators might decide what is a routing anomaly that propagated across their network
 - Bounds on events propagation: proposed methodology can be used recursively from observation AS to originating AS
Conclusions
Conclusions

- Most interactions between GEANT and Abilene are reachability events
- Key aspects: network engineering, configuration and peers
- Impossible to understand impact from one AS only
- Better understanding of AS interactions requires finer matching of routing data from multiple vantage points