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Abstract—We study the algebraic connectivity in rela-
tion to the graph’s robustness to node and link failures.
Graph’s robustness is quantified with the node and the
link connectivity, two topological metrics that give the
number of nodes and links that have to be removed in
order to disconnect a graph. The algebraic connectivity,
i.e. the second smallest eigenvalue of the Laplacian matrix,
is a spectral property of a graph, which is an important
parameter in the analysis of various robustness-related
problems. In this paper we study the relationship between
the proposed metrics in three well-known complex network
models: the random graph of Erdős-Rényi, the small-
world graph of Watts-Strogatz and the scale-free graph of
Barabási-Albert. From [11] it is known that the algebraic
connectivity is a lower bound on both the node and the
link connectivity. Through extensive simulations with the
three complex network models, we show that the algebraic
connectivity is not trivially connected to graph’s robustness
to node and link failures. Furthermore, we show that the
tightness of this lower bound is very dependent on the
considered complex network model.

I. INTRODUCTION

Complex networks describe a wide range of systems
in nature and society. Traditionally, the topology of
complex networks has been modeled as the Erdős-Rényi
random graph. However, the growing observation that
real-world networks do not follow the prediction of ran-
dom graphs (e.g. [10]) has prompted many researchers
to propose other models, such as small-world [17] and
scale-free graphs [1]. Besides the modeling, the analysis
of the complex networks’ topology in terms of various
topological metrics, has attracted considerable attention
(see e.g. [2], [16]). The most important include metrics
related to degree, clustering, distance, betweenness, con-
nectivity, robustness and graph spectrum.

In this paper we study the relationship between

graphs’ robustness to node and link failures and the
algebraic connectivity, a graph property related to the
spectrum of the corresponding Laplacian matrix. The set
of eigenvalues of the Laplacian matrix (degree matrix
substracted from adjacency matrix equals Laplacian ma-
trix) of a graph is called the Laplacian spectrum [14].
The second smallest eigenvalue of the Laplacian matrix,
as proposed by Fiedler in [11], is called the algebraic
connectivity. There are many problems in graph theory in
which the algebraic connectivity plays a special role (for
surveys see e.g. [6], [7], [15]). The most important is its
application to the robustness of a graph: 1) the larger the
algebraic connectivity is, the more difficult it is to cut a
graph into independent components, 2) its classical upper
bound in terms of the node and the link connectivity
provides worst case robustness to node and link failures
[11]. As mentioned in [5], the second means that for
every node or link connectivity, there are infinitely many
graphs for which the algebraic connectivity is not a
sharp lower bound. The node and the link connectivity
are important for the robustness because they quantify
the extent to which a graph can accommodate to node
and link failures. Hence, it is worth investigating the
relationship between those three connectivity metrics.

The paper is organized as follows. Section II gives an
overview of the Fiedler’s algebraic connectivity essen-
tials and the two metrics commonly used to quantify the
robustness of a graph, the node and the link connectivity.
Section III provides a comprehensive set of simulation
results on the relation between the algebraic connectivity
and graphs’ node and link connectivity in the three well-
known complex network models: the random graph of
Erdős-Rényi in Section III.A., the small-world graph of
Watts-Strogats in Section III.B., the scale-free graph of
Barabási-Albert in Section III.C. and the comparison



between the three models in Section III.D. Section IV
summarizes our main results.

II. BACKGROUND

Let G be a graph and let N denote the set of nodes
and L the set of links, with N = |N | nodes and L = |L|
links, respectively. The Laplacian matrix of G with N
nodes is an N × N matrix Q = ∆ − A where ∆ =
diag(Di), Di is the nodal degree of node i ∈ N and A
is the adjacency matrix of G.

The eigenvalues of Q are called the Laplacian eigen-
values. The Laplacian eigenvalues are all real and
nonnegative [15]: they are contained in the interval
[0,min {N, 2Dmax}], where Dmax is the maximum
nodal degree of G. The set of all N Laplacian eigenval-
ues µN = 0 ≤ µN−1 ≤ ... ≤ µ1 is called the Laplacian
spectrum of G. The second smallest Laplacian eigen-
value µN−1 of Q is known as the algebraic connectivity
[11]. As mentioned earlier the algebraic connectivity
is very important for the classical connectivity, a basic
measure of the robustness of a graph G: 1) the algebraic
connectivity is only equal to zero if G is disconnected,
2) the multiplicity of zero as an eigenvalue of Q is equal
to the number of disconnected components of G.

Let us also introduce two connectivity metrics of G:
1) the link (edge) connectivity κL is the minimal number
of links whose removal would disconnect G, 2) the node
(vertex) connectivity κN is defined analogously (nodes
together with adjacent links are removed). For k ≥ 1, a
graph G is (node) k-connected if either G is a complete
graph Kk+1 or it has at least k + 2 nodes and no set
of k − 1 nodes that separates it. Similarly, for k ≥ 1
a graph G is k-link connected if it has at least two
nodes and no set of at most k − 1 links that separates
it. The maximum value of k for which a connected
graph is k-connected equals the node connectivity κN .
The link-connectivity κL is defined analogously [4]. The
minimum nodal degree Dmin of an incomplete graph
G is an upper bound on both the node and the link
connectivity κN ≤ κL ≤ Dmin. If G is a complete
graph KN then κN = κL = Dmin. Furthermore, the
node connectivity of an incomplete graph G is at least
as large as the algebraic connectivity µN−1 ≤ κN [11].
If G = KN then µN−1(KN) = N > κN(KN) = N−1.
As shown in Figure 1, the relation between the three
connectivity metrics is not trivial: µN−1 = 0.6277 ≤
κN = 1 ≤ κL = 2 ≤ Dmin = 3. Accordingly, the
minimal number of nodes κN and the minimal number
of links κL to be removed such that no path between any
two pairs of nodes remains, in this graph is respectively

1 and 2. Hence, the graph has 1 node-disjoint and 2 link-
disjoint paths. This also means that the depicted graph
is 1-node and 2-link connected.

We have used the polynomial time algorithm, ex-
plained in [12], to find the node and the link connectivity
by solving the maximum-flow problem. The maximum-
flow problem can be solved with several algorithms,
e.g. Edmonds & Karp [9], Dinic [8], Goldberg [13],
etc. If Goldberg’s push-relabel algorithm is utilized,
as performed in our simulations, the link connectivity
algorithm has O(N3

√
L)-complexity, while the node

connectivity algorithm has O(N2L
√
L)-complexity. We

have used the LAPACK implementation of the QR-
algorithm for computing all the eigenvalues of the Lapla-
cian matrix. For linear algebra problems involving com-
putation of few extreme eigenvalues of large symmetric
matrices, algorithms (e.g. Lanczos) whose run-time and
storage cost is lower compared to the algorithms for cal-
culation of all eigenvalues (QR algorithm has O

¡
N3
¢
-

complexity) are known [3].

Fig. 1. A graph with N = 8 nodes and L = 13 links. The graph’s
connectivity characteristics are: the node connectivity is 1 (removal
of node H), the link connectivity is 2 (removal of links connecting
node H to nodes B and D), the algebraic connectivity is 0.6277 and
the minimum nodal degree is 3 (minimum number of links a node
has).

III. SIMULATION RESULTS

In this section, we present a comprehensive set of
simulation results on the relation between three connec-
tivity metrics in generic complex network models: the
random graph of Erdős-Rényi, the small-world of Watts-
Strogatz and scale-free graph of Barabási-Albert. Prior
to analyzing the metrics, we define and briefly discuss
the models.

A. Random Graph of Erdős-Rényi
The random graph as proposed by Erdős-Rényi [5]

is the simplest model to describe a complex network.
In this set of simulations we used the class of random



graphs denoted by Gp(N), in which N is the number of
nodes and p the probability of having a link between any
two nodes. Gp(N) is the set of all such graphs in which
the links are chosen independently and the total number
of links is on average equal to pLmax (Lmax = N(N−1)

2
is the maximum number of links).

We simulate for each combination of N and p, 103
independent Gp(N) graphs. N is 50, 500 and 1000 nodes
and the link probability p = αpc, where1 pc =

logN
N and

α varies from 1 to 10. From each combination of N
and p, we compute the node connectivity κN , the link
connectivity κL and the algebraic connectivity µN−1.
Then, we classify the simulated graphs according to their
value of the node and the link connectivity, which for
most graphs have the same value κN = κL. Thus, in
Figure 2, the mean value (and standard deviation) of the
algebraic connectivity is given as a function of both the
node and the link connectivity.
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Fig. 2. The mean as well as the standard deviation (error bars) of the
algebraic connectivity µN−1 as a function of the node connectivity
κN and the link connectivity κN in the random graph of Erdős-Rényi
with N = 50, 500 and 1000 nodes.

The first observation from Figure 2 is that there seems
to be a linear relationship between the mean of the
algebraic connectivity and the node and the link con-
nectivity. However, from this linear behavior alone, it is
not clear whether and how fast the algebraic connectivity
converges towards the node and the link connectivity.

In [5], Bollobás proved that irrespective of the link
probability p, the probability that κN = κL = Dmin

1The value of the link probability p above which a random graph
almost surely becomes connected tends, for large N , to p ∼ pc =
logN
N [5].

approaches 1 as N →∞. Recall that Dmin is an upper
bound on both κN and κL. From Figure 3 we observe
that the convergence of Gp(N) to a graph where κN =
κL = Dmin is fast. For example, from the simulation
results plotted in Figure 3 with p = pc and a size of the
random graph ranging from N = 50 to N = 1000, we
observe that with probability approaching 1, Gp(N) has
κN = κL = Dmin for rather small graph sizes. For all
other link probabilities, i.e. p > pc, the convergence to
κN = κL = Dmin occurs for even smaller values of N
(see Figure 3 for p = 2pc). This makes Dmin a valuable
estimate of the minimum number of nodes or links whose
deletion results into a disconnected Erdős-Rényi random
graph.
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Fig. 3. Percentage of the Erdős-Rényi random graphs with p = pc
and p = pc for which the node connectivity κN , the link connectivity
κL and the minimum nodal degree Dmin converge to κN = κN =
Dmin.

Contrary to the convergence of Dmin, Figure 4 shows
that as N tends to large values, the value of µN−1
does not converge towards κN or κL, and obviously
not to Dmin. Furthermore, for a given link density2, the
difference between µN−1 and κN or κL is considerable
and becomes even more evident if we consider higher
values3 of the link density q (see Figure 4 for q = pc
and q = 2pc). This behavior is at odds with the one of
Dmin.

2The link density q in a graph is the fraction between the total and
the maximum number of links q = L

Lmax
.

3In the Erdős-Rényi random graph, the link density q equals the
link probability p.
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Fig. 4. The mean of the node connectivity κN , the link connectivity
κL and the algebraic connectivity µN−1 as a function of the number
of nodes N in the Erdős-Rényi random graph with a given link
density q = L

Lmax
= p, i.e. p = pc and p = 2pc. Also, the minimum

nodal degree Dmin is depicted as a function of N .

B. Small-World Graph of Watts-Strogatz

The small-world model describes the fact that, despite
the large size of the underlying network topology, in
most complex networks there is a relatively short path
between any two nodes. There are different realizations
of the small-world model, but the original model as
proposed by Watts and Strogatz [17] is by far the most
widely studied. It starts by building the ring RN with
N nodes, and then joining each node to 2s neighbors
(s on either side of the ring). This results in the ring
lattice C(N, s) with sN links. The small-world graph is
then created by moving, with probability pr, one end of
each link (connected to a clockwise neighbor) to a new
node chosen uniformly in the ring lattice, except that no
double links or loops are allowed. The rewiring process
allows the small-world model to interpolate between a
regular lattice (pr = 0) and something which is similar,
though not identical, to a random graph (pr = 1). For
pr = 1, it is known that each node has a minimum of
Dmin = s links [17].

We have simulated, for each combination of N and
s, 103 independent Watts-Strogatz small-world graphs.
N is 50, 100 and 500 nodes and s varies from 1 to
10. The rewiring probability is set to be pr = 1. From
each combination of N and s, we compute the node
connectivity κN , the link connectivity κL and the alge-
braic connectivity µN−1. Then, we classify the simulated

graphs according to their value of κN and κL. Similarly
to Figure 2, we plot in Figure 5 the mean (and standard
deviation) of the algebraic connectivity as a function of
the node and the link connectivity. In most simulated
small-world graphs, we observe that κN = κL. Hence,
the curve depicting the mean (and standard deviation)
as a function of the node connectivity turns out to be
indistinguishable from the curve for the link connectivity.
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Fig. 5. The mean as well as the standard deviation (error bars)
of the algebraic connectivity as a function of the node and the link
connectivity in the small-world graph of Watts-Strogatz with N = 50,
100 and 500 nodes.

From Figure 5 we observe that the algebraic connec-
tivity is a very loose lower bound on the node or the link
connectivity. Moreover, the larger the graph size N , the
looser the bound becomes. This means that for a given
value of the node or the link connectivity, the mean value
of the algebraic connectivity is a decreasing function of
the graph size N , opposite to Erdős-Rényi random graph
(see Figure 2). Furthermore, the larger the graph size
N , the smaller the standard deviation (see error bars in
Figure 5).

In Figure 5, for a given value of the node or the link
connectivity, the algebraic connectivity µN−1 seemed to
be a decreasing function of N . However, Figure 6 shows
that for small-world graphs with a given link density4

q, µN−1 is an increasing function of N . Figure 6 also
shows that κN and κL approach Dmin for already small
N . Thus, similarly to Erdős-Rényi random graph, the
minimum number of nodes is a valuable estimate of

4In the Watts-Strogatz small-world graph the link density q is q =
L

Lmax
= sN

Lmax
= 2s

(N−1) .



the minimum number of nodes or links whose deletion
results into a disconnected Watts-Strogatz small-world
graph. Moreover, the larger the number of neighbors s in
the ring lattice (on which the small-world graph is built),
the larger the difference seems to be between µN−1 and
κN or κL. Recall that in the Watts-Strogatz small-world,
each node has a minimum of Dmin = s links. Hence, the
algebraic connectivity is indicating that as the graph size
N increases, the underlying topology of this small–world
graph converges to a more robust structure: by expanding
N and reducing the link density q, it might be possible
to increase the number of nodes or link failures and still
get the same value of the algebraic connectivity.
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Fig. 6. The mean of the node connectivity κN , the link connectivity
κL and the algebraic connectivity µN−1 as function of the number of
nodes N in the Watts-Strogatz small-world graph with a given value
of the link density q = L

Lmax
= sN

Lmax
= 0.04. The minimum nodal

degree Dmin equals the number of neighbors s in the ring lattice.

C. Scale-Free Graph of Barabási-Albert
Scale-free models have a power-law degree distribu-

tion which contrasts with that of random and small-world
graphs. Barabási [1] showed that growth and preferential
attachment of nodes, which implies that the nodes with
larger degree are more likely candidates for attachment
of new nodes, give rise to a class of graphs with a power-
law degree distribution. The Barabási-Albert model starts
with a small number m0 of fully-meshed nodes, followed
at every time step by a new node attached to m ≤ m0 =
2m+1 nodes already present in the system. After t time
steps this procedure results in a graph with N = t+m0

nodes and L = m0(m0−1)
2 +mt links.

We have simulated, for each combination of N and m,
103 independent Barabási-Albert scale-free graphs. N is

50, 100 and 500 nodes and m varying from 1 to 10. In
the same way as in the simulations for the Erdős-Rényi
random graph and the Watts-Strogatz small-world, we
compute for each combination of N and m, the three
connectivity metrics. Figure 7 shows the mean of the
algebraic connectivity µN−1, obtained by classifying the
generated graphs according to their value of the node
connectivity κN and the link connectivity κL. The scale-
free graph is constructed in such a way that deleting
m links or m nodes to which a new node (in the last
time step) is attached, leads to m = κN = κL. The
convergence to a graph where κN = Dmin is observed
for all combinations of N and m. Hence, the mean (and
standard deviation) of the algebraic connectivity as a
function of the node connectivity is identical to the mean
obtained for the link connectivity.

Similarly to the Watts-Strogatz small-world graph,
Figure 7 shows that the mean value of the algebraic
connectivity is a decreasing function of the graph size N .
However, the algebraic connectivity of scale-free graphs
with a given link density q, is an increasing function
of N . Recall that for all combinations of N and m,
m = κN = Dmin. Hence, the link density q, for each
N and m, equals q = L

Lmax
≈ m2

0+2mt
N2 . For example, in

Figure 7, the following combinations of N and m have
approximately the same value of q while the algebraic
connectivity is an increasing function of N : for N = 50
and m = 9, q = 0.37 and for N = 500 and m = 10, q =
0.4. Thus, the algebraic connectivity indicates that as the
link density q increases, the underlying topology of this
scale-free graph converges to a more robust structure. It
also indicates that by expanding N and reducing the link
density q, it might be possible to increase the number of
nodes or link failures and still get the same value of the
algebraic connectivity.

D. Comparison of Complex Network Models
Figure 8 shows the mean as well as the standard

deviation (error bars) of the algebraic connectivity as
a function of the node and the link connectivity in the
considered complex network models. Although the scale-
free graph of Barabási-Albert has different topological
properties, at least in terms of the degree distribution,
Figure 8 shows that the relation between the algebraic
connectivity and graph’s robustness to node and link
failures is similar to that in the Erdős-Rényi random
graph. This similarity most probably comes from the fact
that for both complex network models, the minimum
nodal degree is a tight upper bound on the algebraic
connectivity, explaining the almost linear relationship
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Fig. 7. The mean as well as the standard deviation (error bars)
of the algebraic connectivity as a function of the node and the link
connectivity in the scale-free graph of Barabási-Albert with N = 50,
100 and 500 nodes.

between the two connectivity metrics. Recall that we
chose the network model parameters so as to perform the
simulations within a link density range, which on average
results in graphs with a comparable number of links. As
shown in Figure 9, the small-world and the scale-free
graph, both with a given node or link connectivity, on
average have the same number of links. Hence, having
the same number of nodes and links, the Barabási-Albert
scale-free graph seems to be more robust than the Watts-
Strogatz small-world graph. For the Erdős-Rényi random
graph, the simulations (within a higher link density range
than what is used for the other two models) give rise to
the larger number of links and therefore possibly the
larger value of the algebraic connectivity. Consequently,
from the viewpoint of the node and the link connectivity,
the robustness of the Erdős-Rényi random graph is worse
than the one of the other two complex network models.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have studied Fiedler’s algebraic con-
nectivity in relation to the graph’s robustness to node and
link failures in the following complex network models:
random graph of Erdős-Rényi, the small-world of Watts-
Strogatz and scale-free graph of Barabási-Albert. Based
on a comprehensive set of simulations, the following
conclusion can be made:
• The algebraic connectivity of a graph increases with

the increasing node and the link connectivity (see
Figure 8). This means that the larger the algebraic
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Fig. 8. The mean as well as the standard deviation (error bars)
of the algebraic connectivity as a function of the node and the link
connectivity in the random graph of Erdős-Rényi, the small-world of
Watts-Strogatz and scale-free graph of Barabási-Albert. All graphs
have N = 500 nodes.

connectivity, the larger the number of node- or link-
disjoint paths. Hence, the algebraic connectivity can
be considered as a measure of the robustness in
complex network models.

• In the three complex network models, the minimum
nodal degree is a tight upper bound on both the
node and the link connectivity. Hence, the minimum
nodal degree is a valuable estimate of the minimum
number of nodes or links whose deletion results into
a disconnected graph.

• We observe that the relationship between the alge-
braic connectivity and graph’s robustness to node
and link failures is not trivial. Even with graph
models that have the same number of nodes and
links and where the same number of nodes (links)
have to be removed to disconnect them, the ana-
lyzed connectivity metrics are not trivially related.

Further work comprises studying the algebraic con-
nectivity in other complex network models. This would
improve our global understanding of whether and to
what extent the algebraic connectivity can be used as
a measure of the robustness. The most relevant further
work concerns the understanding of how the algebraic
connectivity is affected by various structural changes of
the network graphs.
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