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Abstract—Smart devices such as Apple’s iPod nano (5th gen-
eration), Nike+, and existing smartphone applications can provide
the functions of a pedometer using the accelerometer. To achieve
a high accuracy the devices must be worn on specific on-body
locations such as on an armband or in footwear. Generally people
carry smart devices such as smartphones in different positions,
thus making it impractical to use these devices due to the reduced
accuracy. Using the embedded smartphone accelerometer in a
low-power mode we present an algorithm named Energy-efficient
Real-time Smartphone Pedometer (ERSP), which accurately and
energy-efficiently infers the real-time human step count within
2 seconds using the smartphone accelerometer. Our method
involves extracting 5 features (4 novel and 1 derived) from the
smartphone 3D accelerometer without the need for noise filtering
or specific smartphone on-body placement and orientation; ERSP
classification accuracy is approximately 94% when validated
using data collected from 17 volunteers.

Index Terms—Pedometer, Accelerometer, Smartphone, Activity
classification

I. INTRODUCTION

Smartphones provide sophisticated real-time sensor data
for processing. Researchers have studied a large number of
sensors such as accelerometer, gyroscope, rotation vector,
and orientation sensors in human step count projects. Of
these the accelerometer is the most valuable non-transceiver
sensor used to provide the data for activity monitoring as it
gives more information about movement forces [3]. Hence the
core focus of this paper is on using solely the smartphone
accelerometer for human step count. The accelerometer has
three key advantages over transceiver based location signal
sensors such as GPS. First, low energy consumption of 60 mW
[2]. Second, there is no delay when starting the accelerometer,
however receiving location updates in GPS depends on the start
mode. In a hot start mode the Termed-Time-to-Subsequent-Fix
(TTSF) is about 10 seconds and in a cold start mode the Time-
To-First-Fix (TTFF) could take up to 15 minutes. Third, sensor
readings are continuously available with the accelerometer as
compared to GPS and Wi-Fi which could be obstructed from
signals transmitted by GPS satellites and being out of range
of Wi-Fi signals respectively.

Human activity classification using smartphones requires
a mobility state recognition technique that can function re-
gardless of the alignment of the smartphone because placing
accelerometers on specific parts of the body makes it im-
practical for use in the real-world. Acceleration data differs

for similar activities, thus making it more difficult to finely
secernate between certain types of activity. Restrictions have
been found in the range of mobility activities identified by
use of a single sensor and; due to the complexity of human
mobility and noise of sensor signals, mobility classification
algorithms tend to be probabilistic [1]. They have instead de-
signed a multimodal sensor board that simultaneously captures
data from multiple sensors. A major challenge in the design
of ubiquitous, context-aware smartphone applications is the
development of algorithms that can detect the human activity
using noisy and equivocal sensor data [10].

We present a method named Energy-efficient Real-time
Smartphone Pedometer (ERSP), an Android based smartphone
application to accurately count human steps. The novelties
of this research as compared to existing systems are: 1)
ERSP extracts five features (4 novel and 1 derived) from the
accelerometer data. 2) This system employs an energy-efficient
light-weight mathematical model to process in real-time the
activity accelerometer data without need for noise filtering and
works regardless of the smartphone on-body placement and
orientation.

II. RELATED WORK

Smartphone based context-aware sensing is a hot research
topic. Several smartphone sensing based architectures exists to
classify pedestrian step count. Architectures by [1]-[11] all use
the smartphone as a major system component.

Shyi-Shiou et al. [5] present an Android based Pedometer
system which uses the accelerometer and orientation sensors
to detect the user’s walking motion. The system provides three
main action modes: time-based, distance-based, and count-
based. The time-based mode notifies the user once a config-
urable walking time is reached, distance-based mode notifies
the user once a configured walking distance is reached, and
count-based mode notifies the user once a configured number
of walking steps are achieved. This architecture requires the
smartphone to be worn on the waist.

Hongman et al. [6] present an Android based Pedometer
system which uses the accelerometer and orientation sensors.
The architecture studies the top (peak) and bottom (trough)
of the acceleration wave. The paper compares a single ac-
celeration sensor vs. a multi-sensor pedometer. For the single
acceleration sensor, a configured threshold is used to filter the
accelerometer noise. Two methods to determine the threshold
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are: fixed (using test data) and dynamic (real-time user data).
There results show that a multi sensor (accelerometer and
orientation) is more accurate and presents more differences
in terms of acceleration in the gravity direction. The human
steps are calculated using the wave crest (trough). The sensor
sampling frequency used is 20Hz. The architecture isn’t real-
time as it expects consecutive step count time intervals to be
0.2 ∼ 2 seconds.

Sugimori et al. [7] presents an automatic human walk-
ing authentication system using the embedded smartphone
accelerometer. They study forward steps using the left and
right leg with the smartphone worn on the waist. Smartphone
on-body placements also considered are front and rear pockets
using 5 male subjects. The features extracted for walking
recognition are the highest and lowest value of the 3-axis
compound acceleration and the spectrum processed by FFT.
The experiment uses three classifiers. The classifiers are C4.5
decision tree, naive bayes and, support vector machine. Results
show naive bayes was the best performing classifier with
classification accuracy of approximately 90%.

Inoue et al. [8] propose a two-tier approach involving multi-
level segmentation and activity recognition using microphone
sound and accelerometers. The data features extracted in-
clude mean, frequency-domain energy, and frequency-domain
entropy of each axis. Also the correlation of the combined
axis was extracted. The architecture was validated using data
gathered from nurses working at a hospital with the smart
device placed in their breast pockets with a fixed direction.
The accelerometer sensor sampling frequency used was 20Hz.
Using 216 IPod Touches as smartphones by several users,
sensor data was gathered 35310 times for several human
activities during a 14 month period. The paper authors state
the activity recognition results were poor due to the following
four reasons. First, the algorithm required the smartphone to
be fixed to the body, but this wasnt the case. Second, similar
activities classes, e.g., ”eat.sit”-”sit” and ”sit”-”train.sit” are
often misclassified. Third, disparity in data gathered for similar
activities by different participants. Fourth, misinterpretation
and low data quality from users.

Henpraserttae et al. [9] investigates two major issues in
using the embedded smartphone accelerometer for continuous
activity monitoring. The issues identified are the smartphone
orientation and on-body placement. They propose a two-
step signal transformation method to generate uniform signals
from different placements and orientations. The first step
involves pre-processing input signals by normalization with
the mean and standard deviation. The second step applies
eigen-decomposition to the covariance matrix of the projected
data. The data gathering was done by 10 participants for 6
daily activities using 16 different smartphone orientations and
3 smartphone on-body placements (front shirt pocket, front
trouser pocket, and front waist). The accelerometer sampling
rate used is 50Hz. The features extracted are mean, standard
deviation, and variance magnitude. The results using a single
device orientation show that classification accuracy with the
proposed signal transformation method was approximately
42% to 51% better than without signal transformation. The
on-body placement results show that attaching the smartphone
to the waist had highest recognition accuracy followed by front
shirt pocket then front trouser pocket.

Fig. 1: ||v|| plot for selected urban activities.

The surveyed systems can classify human activities such
as calculate the pedestrian step count over a given time
period. None of these architectures can in real-time energy-
efficiently calculate the human step without need for sensor
noise filtering and specify smartphone on-body placement and
orientation. For e.g., most of the surveyed systems sample the
accelerometer at a rate ≥ 20Hz which is energy-inefficient.

III. METHODOLOGY

In the time-domain, activities generate accelerometer data
readings that are patterns of varying peaks and troughs (waves).
Several state of the art existing methods study these patterns.
Our method also studies the accelerometer magnitude waves
because our experiments found that some time-domain feature
characteristics are unique across activities. Fig. 1 shows the
||v|| plot for selected urban human activities. As shown the
activities all present different accelerator oscillations.

Using the Sun SPOT1 accelerometer we were able to
detect patterns based on the vertical (y) axis. The vertical axis
presented the largest deviation because of the fixed orientation
of the device during the experiments. The case is the contrary
for accelerometer data gathered for similar activities with
different smartphone on-body placements. In such cases, more
than one axis had to be taken into consideration for a pattern
match to be demodulated. To amalgamate (x, y, z) readings
regardless of the smartphone orientation we make use of the
magnitude of the accelerometer signal vector (||v||). Given the
accelerometer readings (x, y, z), the ||v|| is calculated using
the formula ||v|| =

√
x2 + y2 + z2. It should be noted that

once 8 accelerometer samples (2 seconds) are gathered, the
processing time to calculate human step count complete in ≤
15 milliseconds allowing ERSP to perform a real-time human
step count classification. In the rest of this sub-section, we
detail the steps undertaken to detect the total human step
count within 2 seconds using the smartphone 3D accelerometer
readings. The following light-weight computational features
are extracted as classifiers from the accelerometer readings:

1) Peak (P ): - this is the count of peaks every 2 seconds
(8 accelerometer samples). The Peak is the local maxima if
the first and last elements are local minima’s. This is detailed
in Figures 2a and b. The acceleration peak is calculated as

1Sun SPOT http://www.sunspotworld.com/



(a) Peak and local maxima count differ because the first and
last elements are not local minima’s.

(b) Peak and local maxima count are the same because the first
and last elements are local minima’s.

(c) Trough and local minima count differ because the first
element isn’t a local maxima.

(d) Trough and local minima count differ because the first and
last elements are local minima’s.

Fig. 2: Peak and trough vs. local maxima and minima.

follows:

Qi =

{
1, if (xi+1 > xi) and (xi+2 < xi+1)

0, otherwise

P =

n−2∑
i=0

(Qi)

(1)

2) Trough (T ): - this is the count of troughs every 2
seconds (8 accelerometer samples). The trough is the local
minima if the first and last elements are local maxima’s. This
is detailed in Figures 2c and d. The acceleration trough is
calculated as follows:

Qi =

{
1, if (xi+1 < xi) and (xi+2 > xi+1)

0, otherwise

T =

n−2∑
i=0

(Qi)

(2)

xi is the ||v|| of each accelerometer data point.
n is the total number of data points.
P is the total numbers of peaks.
T is the total numbers of troughs.

3) TPT : - the sum of the total peak (P ) and trough (T )
acceleration values.

TPT = P + T (3)

4) mm: - the difference between the maximum peak and
minimum trough every 2 seconds (8 accelerometer samples).
The following is the mm equation:

mm = max∀i(0<i≤m)(max∀j(0<j≤n)(G
P
i −GT

j )) (4)

where i and j are integers.

GP is the group of peak values, which has m elements.
GT is the group of trough values, which has n elements.

5) Pmm: The difference between the maximum and min-
imum peak values given the TPT range for the activity.
Algorithm 2 details the pseudocode to generate the static range
threshold per user activity.

Pmm = max∀i(0<i≤m)(max∀j(0<j≤m)(G
P
i −GP

j )) (5)

where i and j are integers.

GP is the group of peak values, which has m elements.

A. Features threshold

The TPT ,mm, and Pmm range thresholds are required to
accurately align the algorithm to the user’s step pattern. The
algorithm must be able to adapt to the various variations while
a user is performing a step activity. Human steps could occur
based on walking, jogging, marching etc.

To personalize the application based on a specific activity,
the user performs the activity for a one-off time of 14 seconds
(56 accelerometer samples). 14 seconds was chosen because a
minimum of 56 accelerometer samples are required to cover
the TPT range from 0 to 6. We selected the optimal value
of 8 accelerometer samples which occurs every 2 seconds
after iterations involving 1 second (4 samples) to 62.5 seconds
(250 samples), because it presented the largest differences of
TPT ,mm, and Pmm within the shortest computation time. It
should be noted that given 8 accelerometer samples the TPT

range is between 0 and 6.

1) TPT range estimation:

Estimate the Gaussian distribution for TPT . Calculate the
||v|| for each (x, y, z) sample. At intervals of 8 samples extract
the peaks and troughs for 7 iterations. Sum the count of peaks
and troughs for each iteration and aggregate the TPT value
based on the percentage of occurrences within 0 to 6.



Given the Gaussian distribution, if the sum of the distribu-
tion for 2 or 3 consecutive TPT values is ≥ 90% then the TPT

range is between the corresponding minimum and maximum
TPT values. The 90% threshold was chosen based on the
analysis of accelerometer data gathered from 17 volunteers.
Our analysis show for walking, the distribution percentage sum
for TPT values 5 and 6 is ≥ 98% and for jogging with TPT

values 4 and 5 is ≥ 96%. The TPT range for both activities
is (5, 6) and (4, 5) respectively. The pseudocode to calculate
the TPT range is shown in algorithm 1.

Algorithm 1 TPT range estimation pseudocode

Require: A = {xi ... xn} // Array with TPT Gaussian
// distribution.

Require: SA = size(A) // array size of A.
Ensure: E = ∅;
Ensure: i = 0; k = 0

for all v in {A0, A1, ... A(SA−1)} do
Ek =

∑k+1
i=k vi // Insert the sum of 2 consecutive v

// elements in E
k = i

end for
ME = max(E) // Maximum element in E
if ME ≥ 90 then

return index(ME ,ME+1) // return index of the max
// E and the next element.

else
reset(E) // reset to an empty set.
for all v in {A0, A1, ... A(SA−2)} do

Ek =
∑k+2

i=k vi // Insert the sum of 3 consecutive v
// elements in E

k = i
end for
ME = max(E)
if ME ≥ 90 then

return index(ME ,ME+1,ME+2)
end if

end if

2) mm range estimation:

The range between the minimum peak and trough values
min (P, T ) and the corresponding maximum values max
(P, T ) over the 14 seconds (56 accelerometer samples) per-
sonalization phase.

3) Pmm range calculation:

This is the range between the minimum and maximum peak
values given the TPT range for the activity. Algorithm 3 details
the pseudocode to generate Pmm range given the ||v|| data for
the user activity.

Algorithm 3 shows the pseudocode to calculate the human
step count given the values of P (peak), mmod

min (min (P, T )),
mmod

max (max (P, T )), kmod
min (min TPT ), kmod

max (max TPT ), and
pmod
min (min pmm), pmod

max (max pmm).
kmod
min and kmod

max are derived from algorithm 1 and; pmod
min and

pmod
max are derived from algorithm 2.

IV. RESULTS

Several mobility classification systems require sensors such
as accelerometers to be placed on specific parts of the body [4].

Algorithm 2 Pmm range pseudocode

Require: A = {xi ... xn} // Peak values. i = 0, n = 6.
Require: SA = size(A) // array size of A.
Ensure: E = ∅; i = 0; k = 0

for all v in {A0, A1, ... A(SA−1)} do
Ek =

∑k+1
i=k vi // Sum of 2 consecutive elements in E.

k = i
end for
ME = max(E)
if ME ≥ 90 then

minp = min(ME ,ME+1)
maxp = max(ME ,ME+1)
return (minp,maxp) // pmm

else
reset(E) // reset to an empty set.
for all v in {A0, A1, ... A(SA−2)} do

Ek =
∑k+2

i=k vi // Sum of 3 consecutive elements in E.
k = i

end for
ME = max(E)
if ME ≥ 90 then

minp = min(ME ,ME+1,ME+2)
maxp = max(ME ,ME+1,ME+2)
return (minp,maxp) // pmm

end if
end if

Algorithm 3 Pseudocode to calculate the human step count.

while (mod 6= null) do
if ((mm ≥ mmod

min ∧ mm < mmod
max) ∧ (Tpt ≥ kmod

min ∧
Tpt ≤ kmod

max) ∧ (pmm ≥ pmod
min ∧ pmm < pmod

max)) then
steps = p; // human step count = number of peaks

end if
∀ mod ∈ {human activies e.g., walking, etc.}

end while

Our method is relatively insensitive to the smartphone on-body
placement and orientation. ERSP was validated against the
smartphone accelerometer data gathered from 17 able-bodied
volunteers for a minimum of 20 steps in 4 different smartphone
on-body positions. The on-body smartphone positions are:
palm, front trouser pocket, backpack, and top jacket pocket.
Users 1 to 13 were permitted to carry the smartphone regard-
less of the on-body placement and smartphone orientation.
Users 14 and 17 had to place the smartphone in the 4
previously identified on-body positions. This allowed us to
study the differences in accelerometer readings based upon
different on-body placements. Fig. 3 shows a graph of the ||v||
for 10 real-world human steps. The experiments involved real
world data gathered using Android based smartphones. Fig. 4
shows a screenshot of the ERSP Android application.

There was no accelerometer data noise filtering or data
simulation. Noise filtering isn’t practical because the algorithm
only considers the extractable features TPT and mm over a
2 seconds window. We found noise reduction using kalman
filtering stymied the computational features.

The validation process involved using 10 different models
of Android based smart devices. The smart devices include



Fig. 3: Real-world smartphone accelerometer data showing 10
human steps.

Fig. 4: Screenshot of ERSP Android application.

HTC Desire HD running Android version 2.3.5, Samsung
Galaxy S smartphone running Android version 2.1-update1,
Samsung S II running Android version 4.0.3, Samsung Galaxy
Note I running Android version 4.0.4, Hauwe 300C running
Android version 2.3, Lynk 3D II running Android version
2.3.3, Samsung Galaxy II running Android version 4.0.4,
Samsung Galaxy Tab GT-P5110 running Android version
4.0.4, Sony Xperia U ST25i running Android version 4.0.4,
and Samsung Galaxy Tab GT-N8010 running Android version
4.1.1. The devices have a dynamically user-selectable full
scale acceleration range of ±2g/±4g /±8g/±16g. We found
no discrepancies in the classification accuracy of the results
which implies ERSP can be applied generally across Android
based smartphones since the (x, y, z) accelerometer readings
are similar and the Micro-electro-mechanical systems (MEMS)
specifications are similar across the devices.

A. Smartphone orientation and on-body placement

We studied the impact of different smartphone orientations
and on-body placements on ERSP with two commercial hu-
man step count Android applications. The applications are

Application Palm Front
trouser
pocket

Backpack Top jacket
pocket

Runtastic (3,5) (13,12) (15,14) (9,11)
Accupedo (11,12) (18,21) (26,22) (14,15)
ERSP (10,10) (12,10) (11,11) (10,11)

TABLE I: Results from 10 human steps over 2 iterations using
the step count applications.

Runtastic2 and Accupedo3. We calculated the accuracy for
10 human steps while walking with the smartphone placed
in the four previously identified on-body positions. Table I
shows details of the comparison. The results show the human
step count accuracy of ERSP was slightly inflated when the
smartphone was placed in the backpack. The additional steps
were mainly recorded during the transfer of the smartphone to
and from the backpack. This was a similar case for the front
trouser pocket. The human step count accuracy for carrying
the smartphone in the palm and top-jacket pocket positions
was unaffected regardless of the smartphone orientation and
on-body placement. This overcomes a lack of flexibility in
requiring the smartphone position to be fixed.

B. Energy-efficiency

An Android application named AppResource was devel-
oped to study the energy-efficiency. AppResource calculates
the average consumed resources in terms of CPU and RAM
(Mb) usage of active and idle applications over a configurable
time period. Over a 60 second window our results show ERSP
consumed on average less than 1% of the CPU and 3Mb
RAM in active execution as compared to Accupedo (13%
CPU, 17.6Mb RAM) and Runtastic (12.7% CPU and 29.3Mb
RAM). The energy consumption was also relatively low as
compared to standard applications such as playing music (2%
CPU, 19.1Mb RAM) and internet browsing (45.4% CPU,
60.5Mb RAM). In the Android OS, sampling the accelerometer
in normal mode doesn’t consume any additional energy as
long as the screen is lit or the CPU is running. ERSP is
based on the embedded smartphone accelerometer running
in normal sensing mode. The accelerometer sampling rate is
approximately 4 HZ by invoking the Android SensorManager
module.

V. ANALYSIS

Meta-level classifiers such as bagging have a higher clas-
sification accuracy for activity recognition from a single
accelerometer as compared to base-level classifiers such as
decision tables [11]. We evaluated ERSP with known existing
classifiers. The classifiers are J48, Bagging, Decision Table
(DT), and Naive Bayes (NB). Fig’s. 5 and 6 show the precision
and recall comparison of ERSP vs. the classifiers. We trained
the classifiers using a data set comprising of pre-classified
accelerometer data on the following urban activities: sitting in
a moving light rail train, sitting in a moving car, stationary with
no movements, walking, and stationary with slight movements
e.g., lying down. These 5 user activities were selected because

2Runtastic Pedometer http://www.runtastic.com/
3Accupedo Pedometer http://www.accupedo.com/



Fig. 5: Chart showing the precision comparison of ERSP vs.
existing classifiers.

Fig. 6: A comparison of recall for ERSP vs. existing classifiers.

step counts are expected only from walking. Also the user
activities were amongst the most popular types of modality and
offered a wide range in normal urban commuting. To obtain
a model, the classifiers were trained using 175 accelerometer
magnitude samples for each selected activity and with a 10 fold
cross-validation. Once a model was obtained for each classifier
we used 100 instances for predictions of unknown samples.

With respect to the confusion matrices, for motorized
movement by car, ERSP falsely classified 1 car data sample
as walking. None of the light rail, lying down, stationary, and
walking user data activities were misclassified by ERSP.

Naive Bayes had the highest precision and recall for
walking in comparison to the existing classifiers. ERSP had the
highest average classification accuracy which was calculated
from the predictions of unknown samples. We define accuracy
as the sum of correct classifications over the total number
of input instances. Fig. 7 shows the classification accuracy
of ERSP vs. existing classifiers. ERSP outperformed existing
classifiers with a weighted average accuracy of 93.8%.

Based on the accelerometer patterns, one of the outstand-
ing differences between walking, motorized movement, and
stationary activities is the unique acceleration peak and trough
frequency caused by walking within a given time period. As
we focused more on improving the detection and extraction of
TPT ,mm, and Pmm features in our method, ERSP can classify
walking activity more accurately than known classifiers.

VI. CONCLUSION

Numerous step count techniques exist, but they tend to
require a fixed device orientation. In this paper, we have
detailed a probabilistic and feature extraction method on the
accelerometer data to accurately determine the count of human
steps. Our method can be applied to a wide-range of applica-
tion areas and is ideally suited for pervasive health, mobility
profiling, energy-efficient location sensing applications. The

Fig. 7: Chart showing the weighted average accuracy of ERSP
vs. existing classifiers.

benefits of ERSP over related architectures are: 1) ERSP
functions regardless of the smartphone orientation and on-
body placement. 2) Real-time human step count calculation.
3) No requirement for accelerometer sensor noise filtering.
4) Energy-efficient due to the light-weight accelerometer data
feature extraction and smartphone accelerometer sensing mode
at 4 samples per second.
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