Electronic Engineering and Computer Science > People > Dr Simon Dixon
 
Contact
Research
Publications
Teaching
 

Publications

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Link to my page on Google Scholar

A. Mehrabi, S. Dixon and M. Sandler (2017),
Vocal Imitation of Synthesised Sounds Varying in Pitch, Loudness and Spectral Centroid.
Journal of the Acoustical Society of America, 141 (2), 783-796. DOI

A. Mehrabi, C. Harte, C. Baume and S. Dixon (2017),
Music Thumbnailing for Radio Podcasts: A Listener Evaluation.
Journal of the Audio Engineering Society, to appear.

Z. Mohamad, S. Dixon and C. Harte (2017),
Pickup Position and Plucking Point Estimation on an Electric Guitar.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), to appear.

M. Panteli, R. Bittner, J.P. Bello and S. Dixon (2017),
Towards the Characterization of Singing Styles in World Music.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), to appear.

E. Quinton, K. O'Hanlon, S. Dixon and M. Sandler (2017),
Tracking Metrical Structure Changes with Sparse-NMF.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), to appear.

S. Wang, S. Ewert and S. Dixon (2016),
Robust and Efficient Joint Alignment of Multiple Musical Performances.
IEEE/ACM Transactions on Audio, Speech and Language Processing, 24 (11), 2132-2145. DOI

S. Sigtia, E. Benetos and S. Dixon (2016),
An End-to-End Neural Network for Polyphonic Piano Music Transcription.
IEEE/ACM Transactions on Audio, Speech and Language Processing, 24 (5), pp 927-939. DOI

Y. Song, S. Dixon, M.T. Pearce and A.R. Halpern (2016),
Perceived and Induced Emotion Responses to Popular Music: Categorical and Dimensional Models,
Music Perception, 33 (4), pp 472-492. DOI

T. Cheng, M. Mauch, E. Benetos and S. Dixon (2016),
An Attack/Decay Model for Piano Transcription.
17th International Society for Music Information Retrieval Conference (ISMIR 2016), pp 584-590.

J. Dai and S. Dixon (2016),
Analysis of Vocal Imitations of Pitch Trajectories.
17th International Society for Music Information Retrieval Conference (ISMIR 2016), pp 87-93.

M. Panteli, E. Benetos and S. Dixon (2016),
Learning a Feature Space for World Music Style Similarity.
17th International Society for Music Information Retrieval Conference (ISMIR 2016), pp 538-544 (Best Student Paper Award).

M. Panteli and S. Dixon (2016),
On the Evaluation of Rhythmic and Melodic Descriptors for Music Similarity.
17th International Society for Music Information Retrieval Conference (ISMIR 2016), pp 468-474.

D. Stoller and S. Dixon (2016),
Analysis and Classification of Phonation Modes in Singing.
17th International Society for Music Information Retrieval Conference (ISMIR 2016), pp 80-86.

E. Quinton, M. Sandler and S. Dixon (2016),
Estimation of the Reliability of Multiple Rhythm Features Extraction from a Single Descriptor.
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 256-260.

M. Panteli, E. Benetos and S. Dixon (2016),
Automatic detection of outliers in world music collections.
Fourth International Conference on Analytical Approaches to World Music (AAWM).

Adib Mehrabi, Simon Dixon and Mark Sandler (2016),
Towards a Comprehensive Dataset of Vocal Imitations of Drum Sounds.
2nd AES Workshop on Intelligent Music Production, London, UK.

S. Li, S. Dixon, D. Black and M. Plumbley (2016),
A Model Selection Test for Factors Affecting the Choice of Expressive Timing Clusters for a Phrase.
Proceedings of the 13th Sound and Music Computing Conference (SMC), pp. 247-252.

P. Foster, S. Dixon and A. Klapuri (2015),
Identifying Cover Songs Using Information-Theoretic Measures of Similarity,
IEEE/ACM Transactions on Audio, Speech and Language Processing, 23 (6), pp 993-1005. DOI

J. Dai, M. Mauch and S. Dixon (2015),
Analysis of Intonation Trajectories in Solo Singing.
16th International Society for Music Information Retrieval Conference (ISMIR 2015), pp 420-426.

S. Sigtia, N. Boulanger-Lewandowski and S. Dixon (2015),
Audio Chord Recognition with a Hybrid Recurrent Neural Network.
16th International Society for Music Information Retrieval Conference (ISMIR 2015), pp 127-133.

J. Osmalskyj, J.-J. Embrechts, P. Foster and S. Dixon (2015),
Combining Features for Cover Song Identification.
16th International Society for Music Information Retrieval Conference (ISMIR 2015), pp 462-468.

R. Tubb and S. Dixon (2015),
An Evaluation of Multidimensional Controllers for Sound Design Tasks,
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI'15), pp 47-56.

Z. Mohamad, S. Dixon and C. Harte (2015),
Digitally Moving an Electric Guitar Pickup,
18th International Conference on Digital Audio Effects (DAFx-15), pp 284-291.

T. Cheng, S. Dixon and M. Mauch (2015),
Improving Piano Note Tracking by HMM Smoothing,
European Signal Processing Conference (EUSIPCO 2015), pp 2009-2013.

Y. Song and S. Dixon (2015),
How Well Can a Music Emotion Recognition System Predict the Emotional Responses of Participants?
12th Sound and Music Computing Conference, pp 387-392.

S. Sigtia, E. Benetos, N. Boulanger-Lewandowski, T. Weyde, A.S. d'Avila Garcez and S. Dixon (2015),
A Hybrid Recurrent Neural Network for Music Transcription,
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 2061-2065.

T. Cheng, S. Dixon and M. Mauch (2015),
Modelling the Decay of Piano Sounds,
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 594-598.

S. Wang, S. Ewert and S. Dixon (2015),
Compensating for Asynchronies between Musical Voices in Score-Performance Alignment,
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 589-593 (Best Student Paper Award for the Audio and Acoustic Signal Processing track).

M. Mauch, C. Cannam, R. Bittner, G. Fazekas, J. Salamon, J. Dai, J. Bello and S. Dixon (2015),
Computer-aided Melody Note Transcription Using the Tony Software: Accuracy and Efficiency.
First International Conference on Technologies for Music Notation and Representation (TENOR 2015), pp 23-30.

T. Wilmering, S. Bechhofer, S. Dixon, G. Fazekas and K. Page (2015),
Automating Annotation of Media with Linked Data Workflows,
Third International Workshop on Linked Media (LiME 2015), pp 737-738.

T. Wilmering, G. Fazekas, S. Dixon, K. Page and S. Bechhofer (2015),
Towards High Level Feature Extraction from Large Live Music Recording Archives,
Machine Learning for Music Discovery Workshop, 32nd International Conference on Machine Learning.

D. Tidhar, S. Dixon, E. Benetos and T. Weyde (2014),
The Temperament Police,
Early Music, 42 (4), pp 579-590. DOI

P. Foster, M. Mauch and S. Dixon (2014),
Sequential Complexity as a Descriptor for Musical Similarity,
IEEE/ACM Transactions on Audio, Speech and Language Processing, 22 (12), pp 1965-1977. DOI

M. Mauch, K. Frieler and S. Dixon (2014),
Intonation in Unaccompanied Singing: Accuracy, Drift and a Model of Reference Pitch Memory,
Journal of the Acoustical Society of America, 136 (1), pp 401-411. DOI

R. Tubb and S. Dixon (2014),
A Zoomable Mapping of a Musical Parameter Space Using Hilbert Curves ,
Computer Music Journal, 38 (3), pp 23-33. DOI

W. Goebl, S. Dixon and E. Schubert (2014),
Quantitative Methods: Motion Analysis, Audio Analysis, and Continuous Response Techniques,
in Expressiveness in Music Performance: Empirical Approaches across Styles and Cultures, Ed. D. Fabian, R. Timmers and E. Schubert, Oxford University Press, pp. 221-239.

D. Stowell and S. Dixon (2014),
Integration of informal music technologies in secondary school music lessons.
British Journal of Music Education, 31 (1), pp 19-39. DOI

Copyright (2013) Cambridge University Press. The article appeared in the British Journal of Music Education.

T. Cheng, S. Dixon and M. Mauch (2014)
A Comparison of Extended Source-Filter Models for Musical Signal Reconstruction.
17th International Conference on Digital Audio Effects, pp 203-209.

H. Kirchhoff, R. Badeau and S. Dixon (2014),
Towards Complex Matrix Decomposition of Spectrograms based on the Relative Phase Offsets of Harmonic Sounds.
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 1572-1576.

M. Mauch and S. Dixon (2014),
PYIN: a Fundamental Frequency Estimator Using Probabilistic Threshold Distributions,
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 659-663. DOI

S. Sigtia and S. Dixon (2014),
Improved Music Feature Learning With Deep Neural Networks,
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 6959-6963. DOI

S. Sigtia, E. Benetos, S. Cherla, T. Weyde, A. Garcez and S. Dixon (2014),
An RNN-based Music Language Model for Improving Automatic Music Transcription,
15th International Society for Music Information Retrieval Conference, pp 53-58.

L. Thompson, S. Dixon and M. Mauch (2014),
Drum Transcription via Classification of Bar-level Rhythmic Patterns,
15th International Society for Music Information Retrieval Conference, pp 187-192.

S. Wang, S. Ewert and S. Dixon (2014),
Robust Joint Alignment of Multiple Versions of a Piece of Music,
15th International Society for Music Information Retrieval Conference, pp 83-88.

R. Tubb and S. Dixon (2014),
The Divergent Interface: Supporting Creative Exploration of Parameter Spaces,
14th International Conference on New Interfaces for Musical Expression.

R. Tubb and S. Dixon (2014),
A Four Strategy Model of Creative Parameter Space Interaction,
5th International Conference on Computational Creativity.

T. Weyde, S. Cottrell, E. Benetos, D. Wolff, D. Tidhar, J. Dykes, M. Plumbley, S. Dixon, M. Barthet, N. Gold, S. Abdallah, M. Mahey (2014),
Digital Music Lab - A Framework for Analysing Big Music Data,
European Conference on Data Analysis, Workshop on Statistical Musicology ( abstract only).

T. Weyde, S. Cottrell, J. Dykes, E. Benetos, D. Wolff, D. Tidhar, N. Gold, S. Abdallah, M. Plumbley, S. Dixon, M. Barthet, M. Mahey, A. Tovell, A. Alancar-Brayner (2014),
Big Data for Musicology,
1st International Digital Libraries for Musicology Workshop.

C. Weiß, M. Mauch and S. Dixon (2014),
Timbre-invariant Audio Features for Style Analysis of Classical Music,
Joint 40th International Computer Music Conference and 11th Sound and Music Computing Conference, pp 1461-1468.

E. Benetos and S. Dixon (2013),
Multiple-instrument Polyphonic Music Transcription using a Temporally-constrained Shift-invariant Model.
Journal of the Acoustical Society of America, 133 (3), pp 1727-1741.

Copyright (2013) Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America. The article appeared in the Journal of the Acoustical Society of America, 131 (3), pp 1727-1741 and may be found at http://link.aip.org/link/?JAS/133/1727">

E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff and A. Klapuri (2013),
Automatic Music Transcription: Challenges and Future Directions.
Journal of Intelligent Information Systems, 41 (3), pp 407-434.

X. Serra, M. Magas, E. Benetos, M. Chudy, S. Dixon, A. Flexer, E. Gómez, F. Gouyon, P. Herrera, S. Jorda, O. Paytuvi, G. Peeters, J. Schlüter, H. Vinet and G. Widmer (2013),
Roadmap for Music Information Research.
Final report of the EU FP7 MIReS Project.

T. Cheng, S. Dixon and M. Mauch (2013),
A Deterministic Annealing EM Algorithm for Automatic Music Transcription.
In 14th International Society for Music Information Retrieval Conference, pp 475-480.

Y. Song, S. Dixon, M. Pearce and A. Halpern (2013),
Do Online Social Tags Predict Perceived or Induced Emotional Responses to Music?
In 14th International Society for Music Information Retrieval Conference, pp 89-94.

H. Kirchhoff, S. Dixon and A. Klapuri (2013),
Multiple instrument tracking based on reconstruction error, pitch continuity and instrument activity.
In 10th International Symposium on Computer Music Multidisciplinary Research, pp 894-903 (Best Poster Paper Award).

Y. Song, S. Dixon, M. Pearce and G. Fazekas (2013),
Using Tags to Select Stimuli in the Study of Music and Emotion.
Proceedings of the 3rd International Conference on Music and Emotion.

P. Foster, S. Dixon and A. Klapuri (2013),
Identification of Cover Songs using Information Theoretic Measures of Similarity.
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 739-743.

H. Kirchhoff, S. Dixon and A. Klapuri (2013),
Missing Template Estimation for User-assisted Music Transcription.
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 26-30.

M. Chudy, A. Perez Carrillo and S. Dixon (2013),
On the Relation between Gesture, Tone Production and Perception in Classical Cello Performance.
Proceedings of Meetings on Acoustics 19 (1), 035017. Presented at the 21st International Congress on Acoustics.

M. Chudy and S. Dixon (2013),
Recognising Cello Performers Using Timbre Models.
In B. Lausen, D. van den Poel, and A. Ultsch, editors, Joint Annual Conference of the German Association for Pattern Recognition (DAGM) and the German Classification Society (GfKl), and Symposium of the International Federation of Classification Societies (IFCS): Algorithms from & for Nature and Life, Studies in Classification, Data Analysis, and Knowledge Organization, Heidelberg: Springer, pp 511-518.

A. Allik, G. Fazekas, S. Dixon, and M. Sandler (2013),
Facilitating Music Information Research with Shared Open Vocabularies.
Extended Semantic Web Conference (ESWC), pp 178-183.

A. Allik, G. Fazekas, S. Dixon, and M. Sandler (2013),
A Shared Vocabulary for Audio Features.
Extended Semantic Web Conference (ESWC), pp 285-286.

S. Dixon, M. Mauch and D. Tidhar (2012),
Estimation of Harpsichord Inharmonicity and Temperament from Musical Recordings.
Journal of the Acoustical Society of America, 131 (1), pp 878-887.

Copyright (2012) Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America. The article appeared in the Journal of the Acoustical Society of America, 131 (1), pp 878-887 and may be found at http://link.aip.org/link/?JAS/131/878

E. Benetos and S. Dixon (2012),
A shift-invariant latent variable model for automatic music transcription.
Computer Music Journal, 36 (4), pp 81-94. DOI

A. Arzt, G. Widmer, and S. Dixon (2012),
Adaptive distance normalization for real-time music tracking.
In 20th European Signal Processing Conference, pp 2689-2693.

E. Benetos and S. Dixon (2012),
Temporally-constrained Convolutive Probabilistic Latent Component Analysis for Multi-pitch Detection.
International Conference on Latent Variable Analysis and Signal Separation, pp 364-371.

E. Benetos, A. Klapuri and S. Dixon (2012),
Score-informed transcription for automatic piano tutoring.
In 20th European Signal Processing Conference, pp 2153-2157.

Emmanouil Benetos, Mathieu Lagrange, and Simon Dixon (2012),
Characterisation of acoustic scenes using a temporally-constrained shift-invariant model.
In 15th International Conference on Digital Audio Effects, pp 317-323.

Emmanouil Benetos, Simon Dixon, Dimitrios Giannoulis, Holger Kirchhoff, and Anssi Klapuri (2012),
Automatic music transcription: Breaking the glass ceiling.
In 13th International Society for Music Information Retrieval Conference, pp 379-384.

P. Foster, A. Klapuri, and S. Dixon (2012),
A method for identifying repetition structure in musical audio based on time series prediction.
In 20th European Signal Processing Conference, pp 1299-1303.

J. Gansemann, P. Scheunders, and S. Dixon (2012),
Improving PLCA-based score-informed source separation with invertible constant-Q transforms.
In 20th European Signal Processing Conference, pp 2634-2638.

H. Kirchhoff, S. Dixon and A. Klapuri (2012),
Shift-Variant Non-Negative Matrix Deconvolution for Music Transcription.
IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp 125-128.

Holger Kirchhoff, Simon Dixon, and Anssi Klapuri (2012),
Multi-template shift-variant non-negative matrix deconvolution for semi-automatic music transcription.
In 13th International Society for Music Information Retrieval Conference, pp 415-420.

R. Macrae and S. Dixon (2012),
Ranking lyrics for online search.
In 13th International Society for Music Information Retrieval Conference, pp 361-366.

M. Mauch and S. Dixon (2012),
A corpus-based study of rhythm patterns.
In 13th International Society for Music Information Retrieval Conference, pp 163-168.

M. Barthet, G. Fazekas, S. Dixon and M. Sandler (2012),
Social Media Retrieval for Music Education.
In Digital Futures 2012: The Third Annual Digital Economy All Hands Conference.

Y. Song, M. Pearce, and S. Dixon (2012),
A survey of music recommendation systems and future perspectives.
In 9th International Symposium on Computer Music Modelling and Retrieval, pages 395-410, 2012.

Y. Song, M. Pearce, and S. Dixon (2012),
Evaluation of musical features for emotion classification.
In 13th International Society for Music Information Retrieval Conference, pp 523-528.

M.J. Terrill, G. Fazekas, A.J.R. Simpson, J. Smith, and S. Dixon (2012),
Listening level changes music similarity.
In 13th International Society for Music Information Retrieval Conference, pp 487-492.

R. Tubb, A. Klapuri, and S. Dixon (2012),
The Wablet: Scanned synthesis on a multi-touch interface.
In 15th International Conference on Digital Audio Effects, pp 279-286.

S. Dixon, M. Mauch and A. Anglade (2011),
Probabilistic and Logic-Based Modelling of Harmony.
CMMR 2010 Post Symposium Proceedings, Ed. R. Kronland-Martinet, S. Ystad, K. Jensen and M. Aramaki, Springer LNCS 6684, Heidelberg, pp 1-19.

S. Dixon, D. Tidhar and E. Benetos (2011),
The Temperament Police: The Truth, the Ground Truth and Nothing but the Truth.
In 12th International Society for Music Information Retrieval Conference, pp 281-286.

R. Macrae and S. Dixon (2011),
Guitar Tab Mining, Analysis and Ranking.
In 12th International Society for Music Information Retrieval Conference, pp 453-458.

D. Stowell and S. Dixon (2011),
MIR in School? Lessons from Ethnographic Observation of Secondary School Music Classes.
In 12th International Society for Music Information Retrieval Conference, pp 347-352.

M. Barthet and S. Dixon,
Ethnographic Observations of Musicologists at the British Library: Implications for Music Information Retrieval.
In 12th International Society for Music Information Retrieval Conference, pp 353-358.

E. Benetos and S. Dixon (2011),
Joint Multi-Pitch Detection using Spectral Envelope Estimation for Polyphonic Music Transcription.
Journal of Selected Topics in Signal Processing, 5 (6), pp 1111-1123.

E. Benetos and S. Dixon (2011),
A Temporally-Constrained Convolutive Probabilistic Model for Pitch Detection.
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp 133-136.

E. Benetos and S. Dixon (2011),
Polyphonic Music Transcription using Note Onset and Offset Detection.
IEEE International Conference on Acoustics, Speech and Signal Processing, pp 37-40.

E. Benetos and S. Dixon (2011),
Multiple-Instrument Polyphonic Music Transcription using a Convolutive Probabilistic Model.
8th Sound and Music Computing Conference, pp 19-24.

L.Mearns, E. Benetos and S. Dixon (2011),
Automatically Detecting Key Modulations in J.S. Bach Chorale Recordings.
8th Sound and Music Computing Conference, pp 25-32.

R. Macrae, J. Neumann, X. Anguera, N. Oliver and S. Dixon (2011),
Real-Time Synchronisation of Multimedia Streams in a Mobile Device.
IEEE International Conference on Multimedia and Expo, Workshop on Advances in Music Information Research (AdMIRe).

C. Mesnage, A. Rafiq, S. Dixon and R. Brixtel (2011),
Music Discovery with Social Networks.
Workshop on Music Recommendation and Discovery, Chicago, USA, pp 1-6.

S. Dixon, M. Sandler, M. d’Inverno, and C. Rhodes (2010),
Towards a distributed research environment for music informatics and computational musicology.
Journal of New Music Research, 39 (4): 291-294.

A. Anglade, E. Benetos, M. Mauch, and S. Dixon (2010),
Improving music genre classification using automatically induced harmony rules .
Journal of New Music Research, 39 (4), 349-361.

E. Benetos and S. Dixon (2010),
Multiple-F0 estimation of piano sounds exploiting spectral structure and temporal evolution.
In 2010 Workshop on Statistical and Perceptual Audition (SAPA), 2010.

M. Chudy and S. Dixon (2010),
Towards music performer recognition using timbre features.
In Third International Conference of Students of Systematic Musicology.

S. Dixon (2010),
Computational modelling of harmony.
In 7th International Symposium on Computer Music Modeling and Retrieval, (CMMR 2010), Malaga, Spain.

K. Jacobson, S. Dixon, and M. Sandler (2010),
LinkedBrainz: Providing the MusicBrainz next generation schema as linked data.
Late-breaking session, 11th International Society for Music Information Retrieval Conference, Utrecht, Netherlands.

R. Macrae and S. Dixon (2010),
A guitar tablature score follower.
In IEEE International Conference on Multimedia and Expo.

R. Macrae and S. Dixon (2010),
Accurate real-time windowed time warping.
In 11th International Society for Music Information Retrieval Conference.

M. Mauch and S. Dixon (2010),
Simultaneous estimation of chords and musical context from audio.
IEEE Transactions on Audio, Speech and Language Processing, 18 (6), 1280-1289. DOI: 10.1109/TASL.2009.2032947

M. Mauch and S. Dixon (2010),
Approximate Note Transcription for the Improved Identification of Difficult Chords.
In 11th International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht, Netherlands.

L. Mearns and S. Dixon (2010),
Characterisation of composer style using high level musical features.
Late-breaking session, 11th International Society for Music Information Retrieval Conference, Utrecht, Netherlands.

L. Mearns, D. Tidhar, and S. Dixon (2010),
Characterisation of composer style using high-level musical features.
In 3rd ACM Workshop on Machine Learning and Music.

L. Mearns and S. Dixon (2010),
How do you characterise musical style?
In Third International Conference of Students of Systematic Musicology, 2010.

D. Tidhar, M. Mauch, and S. Dixon (2010),
High precision frequency estimation for harpsichord tuning classification.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 61-64.

D. Tidhar, G. Fazekas, M. Mauch, and S. Dixon (2010),
TempEst: Harpsichord temperament estimation in a semantic-web environment.
Journal of New Music Research, 39 (4), 327-336.

D. Tidhar, G. Fazekas, M. Mauch, and S. Dixon (2010),
Temperament estimation as an MIR task.
Late-breaking session, 11th International Society for Music Information Retrieval Conference, Utrecht, Netherlands.

A. Anglade and S. Dixon (2009),
First-order logic classification models of musical genres based on harmony.
In 6th Sound and Music Computing Conference, pages 309-314.

A. Anglade, R. Ramirez, and S. Dixon (2009),
Genre classification using harmony rules induced from automatic chord transcriptions.
In 10th International Society for Music Information Retrieval Conference, pages 669-674.

M. Mauch, K. Noland, and S. Dixon (2009),
Using musical structure to enhance automatic chord transcription.
In 10th International Society for Music Information Retrieval Conference, pages 231-236.

M. Mauch, C. Cannam, M. Davies, S. Dixon, C. Harte, S. Kolozali, and D. Tidhar (2009),
OMRAS-2 metadata project 2009.
Late-breaking session, 10th International Society for Music Information Retrieval Conference, Kobe, Japan.

A. Anglade, S. Dixon (2008),
Characterisation of Harmony with Inductive Logic Programming.
Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR 2008), Philadelphia, USA, pp 63-68.

A. Anglade, S. Dixon (2008),
Towards Logic-based Representations of Musical Harmony for Classification, Retrieval and Knowledge Discovery.
Proceedings of the International Workshop on Machine Learning and Music (MML2008 held in conjunction with ICML/COLT/UAI 2008), Helsinki, Finland, July, 2008.

M. Mauch, S. Dixon (2008),
A Discrete Mixture Model for Chord Labelling.
Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR 2008), Philadelphia, USA.

M. Mauch, D. Müllensiefen, S. Dixon, G. Wiggins (2008),
Can Statistical Language Models be Used for the Analysis of Harmonic Progressions?
Proceedings of the 10th International Conference on Music Perception and Cognition, Sapporo, Japan.

M. Mauch, D. Müllensiefen, S. Dixon, G. Wiggins (2008),
Applying Tools from Natural Language Processing Analysis to Harmony: A Bottom Up Approach.
Conference on Music, Language and the Mind.

R. Macrae, S. Dixon (2008),
From Toy to Tutor: Note-Scroller is a Game to Teach Music.
8th International Conference on New Interfaces for Musical Expression.

A. Arzt, G. Widmer, S. Dixon (2008),
Automatic Page Turning for Musicians via Real-Time Machine Listening.
Proceedings of the 18th European Conference on Artificial Intelligence, pp 241-245.

G. Widmer, S. Dixon, P. Knees, E. Pampalk, T. Pohle (2008),
From Sound to Sense via Feature Extraction and Machine Learning: Deriving High-Level Descriptors for Characterising Music.
Sound to Sense - Sense to Sound: A State of the Art in Sound and Music Computing, Ed. P. Polotti and D. Rocchesso, pp 161-194.

W. Goebl, S. Dixon, G. De Poli, A. Friberg, R. Bresin, G. Widmer (2008),
Sense in Expressive Music Performance: Data Acquisition, Computational Studies, and Models.
Sound to Sense - Sense to Sound: A State of the Art in Sound and Music Computing, Ed. P. Polotti and D. Rocchesso, pp 195-242.

S. Dixon (2007),
Evaluation of the Audio Beat Tracking System BeatRoot.
Journal of New Music Research, 36, 1, pp 39-50.

M. Mauch, S. Dixon, C. Harte, M. Casey, B. Fields
Discovering Chord Idioms Through Beatles and Real Book Songs.
Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), Vienna, Austria, September 2007, pp 111-114.

S. Dixon,
Tools for Analysis of Musical Expression.
Proceedings of the 19th International Congress on Acoustics, Madrid, September 2007.

F. Gouyon, S. Dixon and G. Widmer,
Evaluating low-level features for beat classification and tracking.
Proceedings of the 2007 International Conference on Acoustics, Speech and Signal Processing, Vol. IV, pp 1309-1312.

S. Dixon, W. Goebl and E. Cambouropoulos (2006),
Perceptual Smoothness of Tempo in Expressively Performed Music.
Music Perception, 23 (3), pp 195-214.

F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle and P. Cano (2006),
An Experimental Comparison of Audio Tempo Induction Algorithms.
IEEE Transactions on Audio, Speech and Language Processing, 14 (5), pp 1832-1844.

S. Dixon
Onset Detection Revisited
Proceedings of the 9th International Conference on Digital Audio Effects, Montreal, September 2006, pp 133-137.

A. Flexer, F. Gouyon, S. Dixon and G. Widmer,
Probabilistic Combination of Features for Music Classification,
Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR 2006), Victoria BC, October 2006, pp 111-114.

S. Dixon,
Computer Analysis of Performance Timing,
9th International Conference on Music Perception and Cognition, Bologna, August 2006.

F. Gouyon and S. Dixon,
A Review of Automatic Rhythm Description Systems.
Computer Music Journal, 29 (1), 2005, pp 34-54. DOI

S. Dixon,
An On-Line Time Warping Algorithm for Tracking Musical Performances,
Proceedings of the International Joint Conference on Artificial Intelligence, Edinburgh, August 2005, pp 1727-1728.

S. Dixon,
Live Tracking of Musical Performances using On-Line Time Warping,
Proceedings of the 8th International Conference on Digital Audio Effects (DAFx05), Madrid, Spain, September 2005, pp 92-97.

S. Dixon and G. Widmer,
MATCH: A Music Alignment Tool Chest,
6th International Conference on Music Information Retrieval (ISMIR 2005), London, England, September 2005, pp 492-497. (Best Poster Award)

S. Dixon, W. Goebl and G. Widmer,
The 'Air Worm': An Interface for Real-Time Manipulation of Expressive Music Performance,
Proceedings of the 2005 International Computer Music Conference (ICMC2005), Barcelona, Spain, September 2005, pp 614-617.

G. Widmer, S. Dixon, A. Flexer, W. Goebl, P. Knees, S.T. Madsen, E. Pampalk, T. Pohle, M. Schedl and A. Tobudic
The Maching Learning and Intelligent Music Processing Group at the Austrian Research Institute for Artificial Intelligence (OFAI),
Proceedings of the 2005 International Computer Music Conference (ICMC2005), Barcelona, Spain, September 2005, pp 169-172.

W. Goebl, S. Dixon, G. DePoli, A. Friberg, R. Bresin and G. Widmer
'Sense' in Expressive Music Performance: Data Acquisition, Computational Studies, and Models,
S2S2 Summer School, Genova, 2005.

S. Dixon
Audio Analysis Applications for Music.
Encyclopedia of Information Science and Technology, (ed. M.Khosrow-Pour), Idea Group, 2005, pp 188-196.

E. Pampalk and S. Dixon and G. Widmer,
Exploring Music Collections by Browsing Different Views.
Computer Music Journal, 28 (2), 2004, pp 49-62.

S. Dixon, F. Gouyon and G. Widmer,
Towards Characterisation of Music via Rhythmic Patterns,
5th International Conference on Music Information Retrieval (ISMIR 2004), pp 509-516.

F. Gouyon and S. Dixon,
Dance Music Classification: A Tempo-Based Approach,
5th International Conference on Music Information Retrieval (ISMIR 2004), pp 501-504.

F. Gouyon, N. Wack and S. Dixon,
An Open Source Tool for Semi-Automatic Rhythmic Annotation.
Proceedings of the 7th International Conference on Digital Audio Effects, 2004, pp 193-196.

F. Gouyon, S. Dixon, E. Pampalk and G. Widmer,
Evaluating Rhythmic Descriptors for Musical Genre Classification.
Proceedings of the AES 25th International Conference, London, June 2004, pp 196-204.

S. Dixon
Analysis of Musical Content in Digital Audio.
Computer Graphics and Multimedia: Applications, Problems, and Solutions (ed. J. DiMarco), Idea Group, 2004, pp 214-235.

G. Widmer, S. Dixon, W. Goebl, E. Pampalk and A. Tobudic
In Search of the Horowitz Factor.
AI Magazine, 24 (3), 2003, pp 111-130.

S. Dixon, E. Pampalk and G. Widmer,
Classification of Dance Music by Periodicity Patterns.
4th International Conference on Music Information Retrieval (ISMIR 2003), Baltimore MD, October 2003, pp 159 - 165.

E. Pampalk, S. Dixon and G. Widmer
Exploring Music Collections by Browsing Different Views.
4th International Conference on Music Information Retrieval (ISMIR 2003), Baltimore MD, October 2003, pp 201 - 208.

E. Pampalk, S. Dixon and G. Widmer
On the Evaluation of Perceptual Similarity Measures for Music.
6th International Conference on Digital Audio Effects (DAFx-03), London, UK, September 2003, pp 7-12.

S. Dixon
On the Analysis of Musical Expression in Audio Signals.
Storage and Retrieval for Media Databases 2003, SPIE-IS&T Electronic Imaging, SPIE Vol. 5021, pp 122-132.

S. Dixon
(PDF)
Towards Automatic Analysis of Expressive Performance.

5th Triennial Conference of the European Society for the Cognitive Sciences of Music (ESCOM5), 8 - 13 September 2003, Hanover, Germany, pp 107-110.

S. Dixon, W. Goebl and G. Widmer
The Performance Worm: Real Time Visualisation of Expression Based on Langner's Tempo-Loudness Animation.
International Computer Music Conference, 16 - 21 September 2002, Göteborg, Sweden, pp 361-364.

S. Dixon, W. Goebl and G. Widmer
Real Time Tracking and Visualisation of Musical Expression.
II International Conference on Music and Artificial Intelligence, 12 - 15 September 2002, Edinburgh, Scotland, pp 58-68.

S. Dixon and W. Goebl
Pinpointing the Beat: Tapping to Expressive Performances.
7th International Conference on Music Perception and Cognition (ICMPC7), 17 - 21 July 2002, Sydney, Australia, pp 617-620.

S. Dixon.
Automatic Extraction of Tempo and Beat from Expressive Performances.
Journal of New Music Research, 30 (1), 2001, pp 39-58.

  • Download BeatRoot software (requires Java 1.5 or higher)
  • Audio beat tracking examples
    • MP3 files (~100kB each):   123456
    • WAV files (~1-2MB each):   123456
  • MIDI beat tracking examples
    • MP3 files (~100kB each):   123
    • WAV files (~1-2MB each):   123

S. Dixon.
An Interactive Beat Tracking and Visualisation System.
Proceedings of the International Computer Music Conference, Havana, Cuba, 2001, pp 215-218.

E. Cambouropoulos, S. Dixon, W. Goebl and G. Widmer.
Human Preferences for Tempo Smoothness.
VII International Symposium on Systematic and Comparative Musicology, III International Conference on Cognitive Musicology, 16 - 19 August 2001, Jyväskylä, Finland, pp 18-26.

W. Goebl and S. Dixon.
Analysis of Tempo Classes in Performances of Mozart Sonatas.
VII International Symposium on Systematic and Comparative Musicology, III International Conference on Cognitive Musicology, 16 - 19 August 2001, Jyväskylä, Finland, pp 65-76.

S. Dixon.
An Empirical Comparison of Tempo Trackers.
8th Brazilian Symposium on Computer Music, 31 July - 3 August 2001, Fortaleza, Brazil, pp 832-840.

S. Dixon, W. Goebl and E. Cambouropoulos.
Beat Extraction from Expressive Musical Performances.
2001 meeting of the Society for Music Perception and Cognition (SMPC2001), 9 - 11 August 2001, Kingston, Ontario, Canada, pp 62-63.
Technical report OFAI-TR-2001-22

S. Dixon.
Learning to Detect Onsets of Acoustic Piano Tones.
MOSART Workshop on Current Research Directions in Computer Music, 15 - 17 November 2001, Barcelona, Spain.

G. Widmer, S. Dixon, W. Goebl, E. Stamatatos and A. Tobudic.
Empirical Music Performance Research: OeFAI's Position.
MOSART Workshop on Current Research Directions in Computer Music, 15 - 17 November 2001, Barcelona, Spain.

S. Dixon.
A Lightweight Multi-Agent Musical Beat Tracking System.
PRICAI 2000: Proceedings of the Pacific Rim International Conference on Artificial Intelligence,
Melbourne, Australia, 2000, pp 778-788.

S. Dixon and E. Cambouropoulos.
Beat Tracking with Musical Knowledge.
ECAI 2000: Proceedings of the 14th European Conference on Artificial Intelligence,
ed. W.Horn, IOS Press, Amsterdam, 2000, pp 626-630.

S. Dixon.
Extraction of Musical Performance Parameters from Audio Data.
IEEE Pacific-Rim Conference on Multimedia,
Sydney, Australia, December 2000, pp 42-45.

S. Dixon.
On the Computer Recognition of Solo Piano Music.
Mikropolyphonie, 6, 2000.
An earlier version appeared in:
Interfaces: Australasian Computer Music Conference,
Brisbane, Australia, 2000, pp 31-37.
Sound examples: MP3 files (~80kB) and WAV files (~1MB):

  • Mozart Piano Sonata K.332 (2nd movt):   Original   (MP3)   (WAV)   Transcribed   (MP3)   (WAV)
  • Mozart Piano Sonata K.279 (2nd movt):   Original   (MP3)   (WAV)   Transcribed   (MP3)   (WAV)
  • Mozart Piano Sonata K.281 (3rd movt):   Original   (MP3)   (WAV)   Transcribed   (MP3)   (WAV)

S. Dixon.
A Beat Tracking System for Audio Signals.
Proceedings of the Conference on Mathematical and Computational Methods in Music,
Vienna, Austria, December 1999, pp 101-110.
Sound examples: the beat tracking system inserts a cowbell sample at each calculated beat time.
MP3 files (80kB each):   1, 2, 3.
WAV files (880kB each):   1, 2, 3.

S. Dixon.
Beat Induction and Rhythm Recognition.
Proceedings of the Australian Joint Conference on Artificial Intelligence,
Perth, Australia, 1997, pp 311-320.

S. Dixon.
A Dynamic Modelling Approach to Music Recognition.
Proceedings of the International Computer Music Conference,
Hong Kong, 1996, pp 83-86.

S. Dixon.
Multiphonic Note Identification.
Australian Computer Science Communications, 18, 1,
Proceedings of the 19th Australasian Computer Science Conference,
Melbourne, Australia, 1996, pp 318-323.

S. Dixon, D. M. W. Powers.
The Characterisation, Separation and Transcription of Complex Acoustic Signals.
Proceedings of the Sixth Australian International Conference on Speech Science and Technology,
Adelaide, Australia, 1996, pp 73-78.

D. M. W. Powers, C. R. Clark, S. Dixon, D. L. Weber.
Cocktails and Brainwaves: Experiments with Complex and Subliminal Auditory Stimuli.
Proceedings of the Australian and New Zealand Conference on Intelligent Information Systems,
Adelaide, Australia, 1996, pp 68-71.

S. Dixon, W. R. Wobcke.
A Nonmonotonic Reasoning Belief Revision System.
Australian Computer Science Communications, 17, 1,
Proceedings of the 18th Australasian Computer Science Conference,
Adelaide, Australia, 1995, pp 151-160.

S. Dixon.
Belief Revision: A Computational Approach.   (PDF)   (PS)
Unpublished PhD thesis, Basser Department of Computer Science,
University of Sydney, Australia, 1994.

S. Dixon, W. R. Wobcke.
The implementation of a first-order logic AGM belief revision system.
  (PS)
Proceedings of 5th IEEE International Conference on Tools with AI,
Boston MA, pages 40--47.
IEEE Computer Society Press, 1993.

S. Dixon, N. Y. Foo.
Connections between the ATMS and AGM belief revision.
Proceedings of 13th International Joint Conference on Artificial Intelligence,
Chambery, France, pages 534-539.
Morgan Kaufmann, 1993.

S. Dixon.
A finite base belief revision system.
Australian Computer Science Communications, 15(1):445-451.
Proceedings of ACSC-16: 16th Australian Computer Science Conference,
Brisbane, Australia, January 1993.
Queensland University of Technology, Brisbane, Australia, 1993.

S. Dixon, N. Y. Foo.
Beyond foundational reasoning.
Proceedings of AI'92: 5th Australian Joint Conference on Artificial Intelligence,
Hobart, Australia, pages 247-252.
World Scientific, Singapore, 1992.

S. Dixon, N. Y. Foo.
Encoding the ATMS in AGM logic (revised).
Technical Report 441, Basser Department of Computer Science,
University of Sydney, Australia, 1992.

N. Y. Foo, S. Dixon, D. Kuo.
Systems Dynamics via Theory Revision.
Open Distributed Processing Workshop Proceedings,
University of Sydney, Australia, 1990.

R. Colomb, S. Dixon.
Database Implementation of an Artificial Intelligence Programming Paradigm.
Proceedings of AI'90: 4th Australian Joint Conference on Artificial Intelligence,
Perth, Australia, pp 462-473,
World Scientific Press, Singapore, 1990.

 
© Queen Mary University of London 2013
School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK Tel: +44 (0)20 7882 3400, Fax: +44 (0)20 7882 7997