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ABSTRACT

Previous research has shown that established techniques
for spoken voice conversion do not perform as well when
applied to singing voice conversion (SVC). We propose an
alternative loss component in a loss function that is oth-
erwise well-established among VC tasks, which has been
shown to improve our model’s SVC performance. We first
trained a singer identity embedding (SIE) network on mel-
spectrograms of singer recordings to produce singer-specific
variance encodings using contrastive learning. We subse-
quently trained a well-known autoencoder framework (Au-
toVC) conditioned on these SIEs, and measured differences
in SVC performance when using different latent regressor
loss components. We found that using this loss w.r.t. SIEs
leads to better performance than w.r.t. bottleneck embed-
dings, where converted audio is more natural and specific
towards target singers. The inclusion of this loss compo-
nent has the advantage of explicitly forcing the network to
reconstruct with timbral similarity, and also negates the ef-
fect of poor disentanglement in AutoVC’s bottleneck em-
beddings. We demonstrate peculiar diversity between com-
putational and human evaluations on singer-converted au-
dio clips, which highlights the necessity of both. We also
propose a pitch-matching mechanism between source and
target singers to ensure these evaluations are not influenced
by differences in pitch register.

1. INTRODUCTION AND BACKGROUND

As domains like speech and computer vision produce more
convincing and novel probabilistic machine learning-based
transformations, the inevitable interest of the entertainment
industry has propelled further research in more artistic-
relevant domains such as singing. The ability to switch
between multiple singers without the target singer needing
to re-record songs will be revolutionary to the music indus-
try in the amount of time and money it saves, not to men-
tion the artistic avenues this opens for up for composers
and music producers. This is made possible by neural net-
works that can achieve singing voice conversion (SVC),
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which is the task of changing the perceived identity of a
singer in an audio recording. The majority of voice conver-
sion research has focused on the speech domain, while the
singing domain has only gained attention in recent years.

To achieve voice conversion, a typical system comprises
an encoder that produces vocalist-independent embeddings,
usually representing linguistic content from input data. A
decoder then combines these embeddings with the speaker-
specific timbre representations on which it was conditioned
to resynthesise the data in its voice-converted state.

The conditioning factor of speaker timbre can be rep-
resented in a one-hot encoding format. However, this is
inherently only able to train a network for conversions to
the finite number of vocalists seen in the training data [1–
3]. More recent research is focused on zero-shot conver-
sions, where systems are able to take unseen examples as
both the source and target signal. AutoVC [4] is a well
known voice conversion network consisting of the condi-
tioned decoder system described above, and can achieve
zero-shot conversions by replacing one-hot conditioning
vectors with ‘voice identity embeddings’ which contain
vocalist-specific variances. Other conditioning factors used
to disentangle timbre include loudness [1,5], phonetic (usu-
ally from pretrained linguistic networks) [1,5–9], and pitch-
related features either as one-hot encodings or continuous
data [5, 8–12].

Voice identity embeddings are often averaged across mul-
tiple speaker utterances in order to get a generalised repre-
sentation of how a given speaker sounds in different con-
ditions. [11] demonstrated better voice conversion perfor-
mance when using an additional network that takes F0 in-
formation, live-generated and speaker-averaged embeddings
to produce a new adjusted embedding. [9] proposed a U-
net to model with instance normalisation modules [13] af-
ter each downsampling block to produce a hierarchical speaker
embedding at multiple granularities.

Conditioning with these embeddings does not however,
imply perfect disentanglement from the linguistic infor-
mation. Methods towards improving disentanglement in
these systems include fine-tuning the size of the bottle-
neck to have a capacity capable of retaining only linguis-
tic content [4, 11], or applying a vocalist-classifier to the
bottleneck and using its negative loss as a regularisation
component in the autoencoder loss function (which have
also been used on converted data for training and evalua-
tion) [3].

mailto:b.d.oconnor@qmul.ac.uk
mailto:s.e.dixon@qmul.ac.uk
http://creativecommons.org/licenses/by/3.0/


Variational autoencoders (VAEs) alone have been used
for voice conversion [2], while VAEs combined with GAN
frameworks during the training phase have been shown to
perform timbre conversion between voice and other instru-
ments [14]. GANs have also been applied for voice conver-
sion where the generator is either a fully convolutional net-
work [15], VAE [16, 17] encoder-decoder framework with
cycle-consistency [18], or U-net [19] framework.

When feature-matching [20–22] is implemented between
original and reconstructed data in the latent space, this can
be referred to as the latent regressor loss or cycle-consistency
[4, 5, 23–25]. In most of the literature, cycle-consistency
more often refers to the use of back-translation [26] in gen-
erative networks to complete a two-step conversion cycle
of source to target to source [18, 25, 27, 28]. As the im-
plementation in [4] describes something more similar to
a latent regressor loss [29], we will herein use this termi-
nology. Latent loss provides the additional intuition that
generative networks must rely on the relevant latent space
embeddings in addition to other inputs. Loss functions
that penalise silences and attribute heavier weightings to-
wards spectral peaks have also been used, as well as multi-
resolution losses [8]. Latent losses w.r.t. autoencoder bot-
tleneck [4, 11, 23] and speaker embeddings [30, 31] have
been used in speaker conversion models of varying frame-
works. Recent work [32] demonstrated that training with-
out a bottleneck latent loss accelerated model convergence
for the task of singing technique conversion, producing au-
dio with more detail and less audible artefacts.

In this paper, we train the well known voice conversion
model AutoVC [4] and its voice identity encoder on singing
data to perform SVC. We use different loss functions to
reflect pixel-wise and higher level characteristic compar-
isons. Using objective metrics and subjective evaluations,
we compare how these loss functions affect information
disentanglement at AutoVC’s bottleneck, the quality of its
output audio clips, and the amount of perceived voice con-
version these audio clips present.

2. EXPERIMENTS

2.1 Singing Voice Conversion System

Due to its influence on subsequent voice conversion re-
search [5, 10, 10, 11, 33, 34], we have adopted the AutoVC
architecture and explored adaptations to its loss functions.
A flowchart of this system and these adaptations is pro-
vided for reference in Fig. 1. It consists of an autoencoder,
where the encoder and decoder are conditioned on embed-
dings that represent variances specific to a given singer.
These singer identity embeddings (SIEs) come from a pre-
trained network and can be conceptually summarised as
representing singer-specific timbral qualities. For conve-
nience, we will refer to this autoencoder section and the
pretrained encoder as the SVC and SIE networks respec-
tively (for greater detail on this architecture, readers can
refer to the original AutoVC paper [4]).

The input and output data of the network is in a mel-
spectrogram format. It is trained using the same input data
for both SIE and SVC networks. The input features used

are 128 frames of 80 dimensional log mel-spectrograms
of singer recordings, generated from 16kHz audio with
an FFT size of 1024 and a hop size of 256 (frame dura-
tion of 16ms). After training, conversions can be achieved
by feeding the SVC encoder with mel-spectrograms of a
source singer, while the SIE network is fed those of a tar-
get singer. As the SVC decoder has been conditioned with
SIEs, it is trained to utilise the target singer SIEs to re-
construct the input data at the conversion phase, provided
that the bottleneck dimensions are not large enough to en-
code them. For this reason, a calibration process of the bot-
tleneck capacity is required in order to disentangle timbre
from the input data adequately. However, this empirical
process can be time-consuming, qualitatively ambiguous
and inherently causes a trade-off between good SVC and
audio quality.

Our implementation of AutoVC incorporates the L1 loss
to quantify reconstruction, and a secondary weighted loss
which represents the difference between the SVC encoder
embeddings for original data and reconstructed data, act-
ing as a bottleneck latent regressor loss (BN-LR). To fol-
low up with inconsistencies regarding the effect of BN-
LR loss [32], we investigate whether the exclusion of this
loss would be beneficial in the context of SVC. As an al-
ternative solution, we also investigate how an SIE latent
regressor (SIE-LR) loss would affect SVC, as we believe
this may improve performance without the need for bot-
tleneck capacity calibration. To summarise, the objective
functions we will be comparing in our experiments include
the L1 loss for: just reconstruction; reconstruction and bot-
tleneck latent loss; and reconstruction and SIE latent loss,
as defined in Equations 1, 2 and 3 respectively.

LRECON = L1(X̂,X) (1)

LBN−LR = L1(ESVC (X̂), ESVC (X)) (2)

LSIE−LR = L1(ESIE (X̂), ESIE (X)) (3)

As we are attempting to disentangle timbre from the in-
put signal, we will refer to the bottleneck embeddings as
the non-timbral information, which includes attributes in-
dependent to singer identity such as pitch contours, singing
techniques, phonetics and other unaccounted variances. In
the speech domain, there is a consideration of whether ac-
cent is included in timbral perception. However this is usu-
ally outside the scope of SVC research, likely due to very
little accent diversity within datasets.

2.2 Datasets

We choose to use the Digital Archive of Musical Perfor-
mances (DAMP) Intonation dataset [35] for this experi-
ment. It is a subset of the singing data supplied by a pub-
licly available karaoke app designed by Smule 1 . It con-
sists of 4702 unprocessed recordings of 3556 singers, cre-
ated in acoustically untreated environments primarily with
mobile phone devices. This means there is inherently a

1 https://ccrma.stanford.edu/damp/



Figure 1. Diagram of the encoder/decoder components in the AutoVC network, with a secondary cycle partition illustrating
how encodings for the reconstructed data are obtained. Vector comparisons used for reconstruction loss (RECON), bottle-
neck regressor loss (BN-LR) and singer identity embedding regressor loss (SIE-LR) are shown with dotted connectors. X
represents a mel-spectrogram containing timbre and non-timbral content, while S (blue) and R (red) represent vectors of
these attributes respectively in their disentangled states.

considerable amount of background noise such as faintly
heard backing tracks, ambience and other miscellaneous
sound events. It also consists of many non-singing seg-
ments due to singers waiting for their backing tracks’ in-
strumental sections to conclude. We remove these seg-
ments to the best of our abilities using an empirically se-
lected volume threshold to detect vocal activity and remov-
ing chunks that remain below this threshold.

2.3 Training and Synthesis

To train the SIE network, we use a 3-layer LSTM network,
trained using the GE2E loss objective [36]. This works as
a self-supervised model, using a contrastive learning loss
to encourage randomly selected recording clips of same
singers to cluster in the output embedding’s latent space,
while repelling clusters of different singers. This was trained
on the DAMP dataset with a batch size of 80 (8 singers
* 10 utterance instances), with early stopping set to 40
iterations. The network was trained for a total of 314k
iterations. The combination of the autoencoder and SIE
network as described in Section 2.1 allows us to perform
SVC. We preserved 80% of it as training data, while the
remainder was split between validation and test subsets.
We train an AutoVC model with a reconstruction loss only
(RECON); reconstruction with bottleneck latent regressor
loss (RECON+BN-LR); and reconstruction with SIE la-
tent regressor loss (RECON+SIE-LR). These models are
trained for a total of 500k iterations, using a batch size of
2 and the ADAM optimizer with a learning rate of 10−4.

As this experiment investigates the effects of loss com-
ponents on SVC, we are not making claims about SOTA
results. We can therefore afford to reduce our dataset to
75% of its original size (keeping subset ratios the same)
as used for SIE training, in the interest of saving on com-
putation time. We reduced this further by using precal-

culated SIEs for each singer by running the SIE network
sequentially across windowed chunks of all data for each
singer. We then took the mean of these embeddings, re-
sulting in an average SIE representation for each singer
(as done to determine the GE2E loss used for SIE train-
ing [36]). The embeddings were encapsulated as a lookup
table to be used during SVC training and synthesis to save
on computational time.

In previous work on singing voice conversion [5], a sim-
ilar architecture was trained with pitch-conditioning em-
beddings. During the conversion, pitch contours from the
source data were transposed by an octave to match the oc-
tave closest to the average range of the target singer. We
consider this to be a forceful application of pitch shifting
that does not take the source singer’s pitch range into con-
sideration or how singer timbre can change with pitch -
but in the context of some SVC methods or contexts we
appreciate the necessity to do so. However, for complete
authenticity in SVC, we chose not to apply octave shifts.
Instead we applied a custom pitch-matching algorithm that
chooses a target singer provided that there is an example of
them singing roughly in the same range as the given source
singer clip. This also ensures that evaluations of the net-
work’s performance can compare the speaker identities of
two audio clips without being affected by changes in pitch
register.

2.4 Performance Evaluation

To evaluate our model, we use a combination of objec-
tive metrics and subjective human evaluations. Relying on
computational metrics alone can otherwise be misleading,
as some methods of optimising a network may neglect im-
portant aspects of data structures. This can ultimately lead
to poor reconstruction or conversions when evaluated by
human listeners.



For subjective evaluations, we recruited 23 participants
from MIR communities, ranging from age 24 to 53, to lis-
ten to a number of audio clips generated by the three afore-
mentioned models under the following different source-
target gender conditions: M −M,M −F, F −M,F −F ,
where M and F stand for male and female respectively.
They were asked to rate how similar voices in these au-
dio clips were to given target voices using a 5-point scale,
as well as how natural the voices sounded.

To synthesise the audio from mel-spectrograms, we used
a Wavenet vocoder provided by the authors of [4] 2 , which
was pretrained on the VCTK dataset [37] and conditioned
on mel-spectrograms for spectrogram-to-audio conversion
tasks. We expect that this will induce some degree of au-
dio degredation, which should be accounted for. To do
this, we converted the audio of four additional singer clips
to mel-spectrograms which were resynthesized back (with-
out passing through our SVC network) to audio using the
Wavenet vocoder. These examples, along with 16 other
voice-converted audio clips where evaluated by participants
for audio quality and conversion performance. Each lis-
tener was given a unique set of audio clips, generated to
satisfy each of the experimental conditions. A mean opin-
ion score (MOS) across participants was then calculated
for each condition.

As we considered the possibility that perception of natu-
ralness and similarity could be correlated, cosine similari-
ties between SIEs of converted audio and SIEs of the target
singer were included in our analysis, which allowed us to
investigate the models’ conversion performance in a man-
ner that is disentangled from naturalness.

To analyse the amount of disentanglement between tim-
bral and non-timbral information, we applied a classifica-
tion layer to pretrained AutoVC encoders, and trained this
layer on 20 singers from our DAMP test subset. Resulting
classification accuracies allow us to compare the amount of
singer-specific timbre information remaining in AutoVC’s
bottleneck vectors between different models.

3. RESULTS

3.1 Voice Conversion and Naturalness

The top two graphs in Fig. 2 show the MOS results for per-
ceptual naturalness, perceptual similarity and cosine simi-
larity under different conditions, grouped by condition types
with colour.

Note that the MOS naturalness rating for original audio
clips was 3.72 (displayed in red at the top of Fig. 2 for ref-
erence), which can be considered as the approximate up-
perbound ceiling of perceptual evaluation due to the resyn-
thesis process.

In previous work on singing technique conversion using
similar methods [38], no significant correlation was found
between similarity and naturalness. However, in this ex-
periment a correlation between the two rating types is no-
ticeably visible, and a Pearson test between the two ratings
resulted in r=0.83, p < 0.002. Due to the strength of this
positive correlation, we must be careful not to assume that

2 https://github.com/auspicious3000/autovc

participant’s perception of successful voice conversion are
disentangled from their perception of naturalness. We hy-
pothesise that while participants were asked to rate how
confident they were that the reference recording and the
voice-converted recordings were made by the same singer,
lower similarity ratings may be caused by one or both of
these two circumstances: artefacts caused by the SVC pro-
cess in the audio file led to a lack of clarity in the timbre;
or the timbre of the converted voice itself was indeed dis-
similar to the target voice.

Cosine similarities are shown in the bottom chart of Fig. 2.
These scores reinforce the perceptual similarity scores for
the different model conditions. We can see that compared
to perceptual similarities, cosine similarities are inverted
for source-target gender conditions and present male-to-
male conversions with the highest similarities (while hu-
man perception rates female-to-female as most similar).
This inversion between measurements suggests that human
listeners may be assigning more importance to higher fre-
quencies over lower frequencies when assessing timbral
similarities between voices, giving them a bias towards fe-
males due to the increased amount of high-frequency en-
ergy. Without analysing the two similarity metrics compar-
atively, we would have concluded that female related con-
versions were perceived to be more similar because males
have a wider pitch and timbral range due to their ability to
move between chest and falsetto voice, and therefore their
voices are harder to model. This is a clear example of why
having both subjective and objective evaluation methods
are vital to assessing models’ performances.

From these graphs, we can deduce that the RECON+BN-
LR condition severely hindered the model’s capabilities of
producing natural voices in comparison to the RECON and
RECON+SIE-LR conditions. This can be reasoned by the
fact that adding a loss component of equal weighting can
slow down a network’s rate of convergence if it has more
objectives to consider optimising for. However it is inter-
esting to note that even though the RECON+SIE-LR con-
dition is similar to RECON+BN-LR in nature, we see no
similar statistically significant drop in performance when
compared to RECON. This demonstrates that ensuring the
decoder prioritises the use of the conditioning SIEs by re-
taining this information in the output leads towards signifi-
cantly better voice conversion and naturalness than the use
of the bottleneck’s non-timbral information.

3.2 Disentanglement

Accuracy results for bottleneck classification layers on the
three models are summarised in Table 1 for convenience.
The model using only LRECON produced 45% classifica-
tion accuracy, which shows that while a bottleneck of di-
mension 256 (16 timesteps by 16 frequency bins) might
produce adequate disentanglement for the VCTK speech
dataset as reported in [4], this is not the case for the DAMP
singing dataset. This means that there is a considerable
amount of SIE information still entangled in the bottle-
neck.

The model using LRECON and LBN−LR achieved the
lowest classification accuracy of 23%, which implies that



Figure 2. Results for naturalness, similarity and cosine
similarity. Blue, green/pink and yellow colours represents
condition groups of the model type, source/target genders
and source-target gender pairs respectively.

the network’s encoder encoded minimal singer identity in-
formation and therefore achieves maximal disentanglement
between singer identity and non-timbral information. This
is likely due to the fact that non-timbral content is pri-
oritised as the information that needs to be stored in the
bottleneck due to the conditioning SIEs already providing
singer identity information. SIEs may also vary between
original and reconstructed representations due to the use
of averaged SIEs, which is ignored in the RECON+BN-LR
condition.

The model using LRECON and LSIE−LR loss produced
an accuracy of 35%, which is 10% less than the model
trained with only LRECON . This reduction reflects better
disentanglement, and is likely because the network is rely-
ing more heavily on the decoder utilising the conditioning
SIE. It does not however ensure that the encoder avoids
encoding singer-identity information, which is why accu-
racy is still higher than the model using RECON+BN-LR.
The RECON+SIE-LR condition had however been shown
to achieve the best singer identity conversion, as seen in
Fig. 2, which demonstrates that this loss component offers
the added advantage of being robust against poor disen-
tanglement in the bottleneck. This shows that utilising the
SIE-LR loss avoids the necessity of manually calibrating
the bottleneck’s capacity.

Loss components used Classification accuracy
RECON 45%
RECON and SIE-LR 35%
RECON and BN-LR 23%

Table 1. Classification accuracy results for models using
different loss functions.

4. CONCLUSION

We challenged the use of a latent regressor loss on bottle-
neck embeddings, and confirmed that in an SIE-conditioned
autoencoder system, using a latent regressor loss w.r.t. singer
identity embeddings rather than bottleneck embeddings led
towards voice-converted audio that was more natural and
successfully converted, according to both human percep-
tion and computational metrics. The advantage of includ-
ing this loss ensures a more explicit requirement for good
conversion, and also requires no calibration of the bottle-
neck dimensions. While including an SIE latent regres-
sor loss has not been shown to perform better than ex-
cluding it, we propose that this precautionary loss may
be more advantageous when training an SVC network for
longer on larger or more complex datasets which will be
addressed in future work. We also proposed the use of
a pitch-matching algorithm to ensure evaluations are not
misled by diversity in pitch registers between source and
target singer recordings (a consideration that is surpris-
ingly absent from previous SVC literature). Objective and
subjective ratings for similarity were inverted across gen-
der conditions, which demonstrates the importance of us-
ing both methods for evaluations as it is important to under-
stand how a network models data, while considering that
the ultimate evaluation relies on human perception. Au-
dio examples and code for this research can be found on-
line 3 , where we also present audio clips generated from
our RECON+SIE-LR model when trained on the entirety
of the DAMP dataset for 1 million iterations.
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“WGANSing: A Multi-Voice Singing Voice Synthe-
sizer Based on the Wasserstein-GAN,” in 2019 27th
European Signal Processing Conference (EUSIPCO),
Sep. 2019, pp. 1–5.

[20] Y. Mroueh, T. Sercu, and V. Goel, “McGan: Mean and
Covariance Feature Matching GAN,” in Proceedings of
the 34th International Conference on Machine Learn-
ing. PMLR, Jul. 2017, pp. 2527–2535.

[21] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen, “Improved techniques for
training GANs,” Advances in Neural Infrmation Pro-
cessing Systems, vol. 29, pp. 2234–2242, 2016.

[22] A. B. L. Larsen, S. K. Sønderby, H. Larochelle,
and O. Winther, “Autoencoding beyond pixels using
a learned similarity metric,” in Proceedings of the
33rd International Conference on Machine Learning.
PMLR, Jun. 2016, pp. 1558–1566.

[23] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren,
z. Chen, P. Nguyen, R. Pang, I. Lopez Moreno, and
Y. Wu, “Transfer Learning from Speaker Verifica-
tion to Multispeaker Text-To-Speech Synthesis,” in
Advances in Neural Information Processing Systems,
vol. 31. Curran Associates, Inc., 2018.

[24] J. H. Lee, H.-S. Choi, and K. Lee, “Audio
query-based music source separation,” arXiv preprint
arXiv:1908.06593, p. 8, 2019.

[25] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks,” in 2017 IEEE International
Conference on Computer Vision (ICCV). Venice:
IEEE, Oct. 2017, pp. 2242–2251.



[26] R. Sennrich, B. Haddow, and A. Birch, “Improving
Neural Machine Translation Models with Monolingual
Data,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, Aug. 2016, pp. 86–96.

[27] M. Amodio and S. Krishnaswamy, “TraVeLGAN:
Image-To-Image Translation by Transformation Vec-
tor Learning,” in 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), Jun.
2019, pp. 8975–8984.

[28] T. Zhou, P. Krahenbuhl, M. Aubry, Q. Huang, and
A. A. Efros, “Learning Dense Correspondence via 3D-
Guided Cycle Consistency,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 117–126.
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