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ABSTRACT

In jazz, measuring harmonic similarity is complicated by
the common practice of reharmonization – the altering or
substitution of chords without fundamentally changing the
piece’s harmonic identity. This is analogous to natural
language processing tasks where synonymous terms can
be used interchangeably without significantly modifying
the meaning of a text. Our approach to modeling har-
monic similarity borrows from NLP techniques, such as
distributional semantics, by embedding chords into a vec-
tor space using a co-occurrence matrix. We show that the
method can robustly detect harmonic similarity between
songs, even when reharmonized. The co-occurrence ma-
trix is computed from a corpus of symbolic jazz-chord pro-
gressions, and the result is a map from chords into vectors.
A song’s harmony can then be represented as a piecewise-
linear path constructed from the cumulative sum of its
chord vectors. For any two songs, their harmonic simi-
larity can be measured as the minimal surface membrane
area between their vector paths. Using a dataset of jazz
contrafacts, we show that our approach reduces the median
rank of matches from 318 to 18 compared to a baseline ap-
proach using pitch class vectors.

1. INTRODUCTION

Measuring similarity between songs is important for many
music information retrieval tasks, for example, recom-
mendation systems, copyright infringement detection, and
genre classification systems. Many different types of fea-
tures can be used to compare songs, but the specific focus
of this paper is on jazz harmony as represented by the sym-
bolic chord progressions found on leadsheets.

The analysis of harmonic similarity has been studied us-
ing N-grams [1], parse trees [2, 3], and NLP methods such
as TF-IDF, Latent Semantic Analysis (LSA), and Doc2Vec
[4]. The approach taken in this paper is based on embed-
ding chord symbols into a vector space through the compu-
tation of a co-occurrence matrix [5]. As will be seen when
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we describe the data in Section 2, many chord symbols oc-
cur only rarely. To reduce computational problems due to
sparsity, the dimensionality of chord space should be re-
duced [6]. A typical machine learning approach for this
might use an algorithm such as truncated singular value
decomposition after vectorization [7]. In this work, how-
ever, we use music theory to reduce the number of effective
chord symbols prior to vectorization, which in turn reduces
the chord space dimensionality. In the ensuing sections
we describe the data, explain our approach to dimension-
ality reduction, and give computational details of how we
compute the co-occurrence matrix. We then explain how
the chord vectors generated from the co-occurrence matrix
are used to represent chord progressions, and we present a
novel harmonic-similarity metric, the membrane area.

The experimental part of our paper is based on analyz-
ing contrafacts. In jazz, a contrafact is a song whose har-
mony is similar to that of another song, but which has a
different melody [8]. The tune I Got Rhythm, by George
Gershwin (1930), is a well-known source of many con-
trafacts, 1 and there are numerous other examples [9–11].
In addition to the difference in melody, contrafact chord
progressions often feature reharmonization, a common
practice in jazz that makes chord substitutions in a song
while maintaining its harmonic identity [12]. Reharmo-
nization is a core characteristic of jazz – so much so that
there are typically reharmonizations from chorus to chorus
even in a single performance of a jazz song.

2. THE DATA

The data used in this paper is a corpus of symbolic chord
progressions similar to those found in jazz fake books,
such as the Real Book [13]. The progressions are mainly
from jazz standards, but also include some blues, jazz-
blues, modal jazz, and jazz versions of pop tunes. The
corpus is derived from a collection distributed with Impro-
Visor, an open-source music notation program. 2 Our
modifications remove control information used by the
Impro-Visor application, retaining the musical content and
song-specific metadata. We have performed numerous
quality checks on the data, have made corrections where
required, and have enriched some of the metadata. The re-

1 https://en.wikipedia.org/wiki/Rhythm_changes
2 https://www.cs.hmc.edu/~keller/jazz/

improvisor/
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sulting corpus and the code we used to generate our ex-
amples is available on GitHub. 3 The Impro-Visor cor-
pus provides chord progressions for 2,612 songs, and is
the largest digital collection of jazz chord progressions we
know of. For comparison, the applications iRealPro 4 and
Band-in-a-Box 5 contain chord progressions for roughly
1400 and 226 jazz standards, respectively. The Weimar
Jazz Database contains chords for 456 jazz songs. 6

Of the 134,182 chord symbol instances in the corpus,
there are 1,542 unique symbols, of which many are rare,
with 20% occurring just once, and 50% fewer than six
times. As the corpus consists mainly of jazz standards,
there is a preponderance of 7th chords, comprising at least
the root, 3rd, 5th, and 7th notes. These types of chords of-
ten have additional extensions (9th, 11th, 13th) and chro-
matic alterations (♭9, ♯9, ♭5, ♯5). A common variation of
jazz chords replaces the 7th with a 6th for major7 and mi-
nor7 chords. As 7th chords are the basic harmonic unit
in jazz [14], and make up 77% of our corpus, they are
the focus of our approach to dimensionality reduction de-
scribed in the next section. Of the remaining chords, 16%
are three-note chords (triads), and 7% are drawn from a va-
riety of special types, as shown in Table 1, which provides
a list of all the types and their frequencies.

Type Percentage
7th chords (and extensions) 76.939%
major triads 11.484%
slash chords 4.781%
minor triads 4.320%
sus chords 1.364%
no chord 0.458%
augmented triads 0.392%
major triads add9 0.127%
diminished triads 0.095%
power chords 0.031%
polychords 0.009%

Table 1. Corpus chord types and their frequencies

3. DIMENSIONALITY REDUCTION

Our approach to reducing dimensionality is based on map-
ping chords to a reduced vocabulary of functionally equiv-
alent symbols (similar to [15]). This is important because
20% of the chords in the corpus occur only a single time
(known as hapax legomena), and without additional pro-
cessing, these types of terms would provide no predic-
tive value [16]. Many techniques are used in NLP to bet-
ter leverage hapax legomena. For example, stemming,
lemmatization, and thesauri are all useful. This paper

3 https://github.com/carey-bunks/
Jazz-Chord-Progressions-Corpus

4 https://www.irealb.com/forums/showthread.php?
12753-Jazz-1350-Standards

5 https://members.learnjazzstandards.com/sp/
biab-jazzstandards/

6 https://jazzomat.hfm-weimar.de/dbformat/
dbcontent.html

takes a similar approach for harmony, making use of mu-
sic theory to reduce the dimensionality of chord space. Our
method is akin to lemmatization, applying concepts from
functional harmony to group similar chords into classes
(for example, see [17]). Based on standard practices in
jazz [12,18,19], we reduce the set of 1,542 chord symbols
to 61 chord classes, as detailed in the following sections.

3.1 7th Chord Types

Our choice of base chord types is built on the four-note
7th chords diatonically generated from the major scale, and
making up 77% of our corpus. These are the major7 (M),
minor7 (m), dominant7 (7), and minor7♭5 (h), where the
symbols shown in parentheses are abbreviations we use in
this paper. To these we add a fifth base chord type, the
diminished7 (o). Combining the five types with the root
notes from the 12 pitch classes yields 60 chord classes.
Instances of these classes can occur with extensions or al-
terations, and we map these to the base class without ex-
tension/alteration. For example, we map the symbols Cm9
and Cm11 to the Cm7 class; C7♭9, C7♯5, and C13 to the
C7 class; and CM7♯11 to the CM7 class. In addition, in ac-
cordance with reharmonization practices, we assign chords
such as CmM7 to the Cm7 class and C6 to the CM7 class.
We also include the symbol NC (no chord) to account for
the absence of harmony (0.5% of the corpus).

3.2 Other Chord Type Mappings

In the following discussion, we describe a rationale for
mapping the remaining 22.5% of the symbols into classes
of the five base types defined above. The mapping choices
described in the following discussion are imperfect, but
they are simple to implement, and we show they are ad-
equate for our application.

3.2.1 Triads

Triads represent 16% of the corpus. As they do not con-
tain a 7th note, mapping them to the base chord types can
be ambiguous. For example, a C major triad shares all of
its notes with both the CM7 and C7 chords. We attempt to
resolve triad ambiguities using principles from tonal har-
mony and the local harmonic context. Based on the chord
following a triad, we decide whether it has a subdominant,
dominant, or tonic function [19]. For example, for a ma-
jor triad, if the root of the following chord is a fifth down
and a member of the major7 or minor7 classes we assign
the triad to the dominant7 class with the same root. Other-
wise, we assign it to its corresponding major7 class. Major
triads with an added 9th are handled in the same way. Aug-
mented triads share their notes with dominant7♯5 chords,
an alteration of the dominant, and so we map these to the
dominant7 class with the same root. Finally, we map all the
minor and diminished triads to their corresponding minor7
and diminished7 classes, respectively.

3.2.2 Sus Chords and Slash Chords

Sus chords also have a harmonic function that depends on
context [18]. When followed by a dominant7 chord with
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the same root, they act like a subdominant and we opt to
map them to a minor7 class with a root a fifth above. For
example, a G7sus4 would map to a Dm7. Otherwise, they
act like a dominant and we map them to the dominant7
class with the same root. Slash chords are chords played
over a specific bass note, for example C/G or Dm7/G,
where the symbol above (to the left of) the slash is the
chord and below is the bass note. If the bass note belongs
to the chord above the slash (for example, C/G), it is an in-
version. For such cases, we map it to the class of the chord
above the slash. Slash chords are also commonly used to
represent sus chords. For example, Dm7/G is harmonically
equivalent to G9sus4. We map these according to the pro-
cess for sus chords. For all other slash chords, we map the
chord as if the bass note were an extension or alteration of
the chord above the slash.

3.2.3 Power Chords and Polychords

Power chords consist of just two notes, a root and a fifth.
As they have no 3rd or 7th, they are harmonically ambigu-
ous. With only 42 instances in our corpus, we have opted
to map these chords to the no-chord class. With only 12
instances, polychords are also rare. These chords, used
mainly by pianists, consist of a lower triad and an upper
triad or 7th chord. We map polychords according to their
lower structure, interpreting the upper structure as a col-
lection of extensions or alterations.

4. KEY SIGNATURE BASED REPRESENTATION

To make distributional semantics more effective, we trans-
pose all songs to a common key, and represent them in
Roman numeral notation. However, transposition requires
knowing the correct key of each song, and from extensive
manual checking, we know that our database contains a
fair number of songs for which the stated key signature is
in error. For this reason, we introduce a key signature esti-
mation algorithm, as described in the following section.

4.1 Key Signature Estimation Algorithm

Several authors have proposed key estimation algorithms
for music information retrieval tasks [20–24]. However,
our objective is not to estimate the key that is cognitively
perceived by a listener, but rather a simpler problem, the
key signature that minimizes the number of accidentals
needed when writing out the song’s chords. Some prior
work exists for this [25], however, it is based on machine
learning models applied to MIDI data for classical music.
Our algorithm selects the key signature most consistent
with the chord progression. For each chord in a progres-
sion, we map it to one of the described 61 classes, and
identify all the major scales it could belong to (excluding
diminished7 and no chord classes). The major scale that
accumulates the most beats is the resulting estimate of the
key signature for that song.

Figure 1 provides a concrete illustration of how the key
estimation algorithm works for the case of a short chord
progression: A7-Dm7-G7-CM7-CM7. Each column of the

table represents one measure, and in this example, there is
one chord per measure. The column labels correspond to
the chords, and each row label is a key signature whose
major scale diatonically contains one or more of the chords
in the progression. As shown, the A7 chord belongs to D
major; the Dm7 chord belongs to B♭, C, and F major; G7
belongs to C major; and CM7 belongs to both C and G ma-
jor. Presuming four beats per measure, C accumulates the
most beats (16), and is the resulting key signature estimate.

Figure 1. Illustration of key signature estimation

4.2 Algorithm Evaluation

As already mentioned, there are quite a few songs in our
corpus where the key signature is incorrect or in doubt.
Nevertheless, it is worthwhile comparing the outputs of
our key estimation algorithm with the keys recorded in the
corpus. Of the 2,612 songs, the algorithm concurs with
the database for 1,763 (67.5%) of them. For the 849 songs
with database key signatures that do not agree with our
estimates, we use the Circle of Fifths as a distance met-
ric to evaluate the magnitude of differences between the
two. Adjacent key signatures on the circle of fifths cor-
respond to major scales that differ in a single pitch class.
Table 2 shows the distribution of circle-of-fifths distances
between estimated and database key signatures for all of
the songs in the corpus. The first row is the distance in
number of sharps or flats from the estimated to the database
key, where 0 corresponds to agreement. The last column
of Table 2 is labelled “Amb.” for ambiguous. There are
123 songs in the database for which the key estimation al-
gorithm returns a non-unique result, finding two or more
equally good major scales. This occurs for 4.7% of the
songs in the corpus, and when it does our estimation algo-
rithm defaults to the database key.

Dx 6♭ 5♭ 4♭ 3♭ 2♭ 1♭ 0 1♯ 2♯ 3♯ 4♯ 5♯ Amb.
Frq 10 22 33 55 99 304 1763 183 22 25 12 1 123

Table 2. Key signature estimation statistics with the circle
of fifths distance Dx by the frequency of occurrence Frq

4.3 Mapping to Roman Numeral Notation

Once a song’s key has been estimated, all the chords in
its progression can be mapped to Roman numeral notation.
Table 3 shows the Roman numerals corresponding to chord
roots for C major. As an example, the sequence of chords
A7-Dm-G7-CM maps to vi7-iim-v7-iM. In our system, we



represent minor keys by their relative major, so the relative
minor cadence, Bm7b5-E7-Am7, maps to viih-iii7-vim.

Root C D♭ D E♭ E F G♭ G A♭ A B♭ B
RN i ♭ii ii ♭iii iii iv ♭v v ♭vi vi ♭vii vii

Table 3. Roman numeral notation: chord roots in C major

5. VECTOR REPRESENTATION

Sections 3 and 4 described our approach for reducing the
dimensionality of chord space, distilling the 1,542 chord
symbols in our corpus to 61 classes. In this section we de-
scribe our method for embedding the chord classes into a
vector space. Our design objective is that common rehar-
monizations be close to each other in cosine similarity, and
it is known that the co-occurrence matrix can capture this
type of characteristic [5, 26–28].

Given a corpus of D chord progressions, with progres-
sion d ∈ {1, 2, . . . , D} containing Nd chords with in-
dices 1, 2 . . . , Nd, we can represent the corresponding se-
quence of chord symbols as sd,1, sd,2, . . . , sd,Nd

. We de-
fine the symmetric, sliding context window, Wk,d, of nom-
inal width Nw with the indices Wk,d = [wl, . . . , (k −
1), (k+1), . . . , wr], where the left and right endpoints are
wl = max(k − Nw, 1) and wr = min(k + Nw, Nd), re-
spectively. With these definitions, the (i, j)th element of
the co-occurrence matrix, Ci,j is computed by

Ci,j =

D∑
d=1

Nd∑
k=1

∑
w∈Wk,d

{
1, if sd,k = ci and sd,w = cj

0, otherwise
(1)

This produces a square, symmetric matrix whose row Ci

(or alternatively, column) is a vector representations of the
ith chord class ci. As it will be useful in the following,
we normalize each row to have unit length. Because co-
occurrence matrices capture contextual information, the
vectors of chord classes that have similar harmonic func-
tion are expected to be close to each other with respect to
the cosine similarity measure, and this seems to be borne
out by an inspection of certain chord vectors. For exam-
ple, of 60 chord classes, the closest vector to the v7 is its
tritone substitute, the ♭ii7, and the closest to the iim is the
iih, a common substitute from the parallel minor scale (see
modal interchange in [19]).

6. MEMBRANE-AREA DISTANCE METRIC

We use the co-occurrence vectors to represent chord pro-
gressions in a way that represents each chord type, du-
ration, and metric position, while being robust to rehar-
monizations. The normalized chord vectors derived from
the co-occurrence matrix can be used to plot the path of
a song’s progression through 61-dimensional space. Start-
ing from the origin, the sequence of chord vectors can be
concatenated from head to tail, beginning with the first,
and terminating with the last vector (see Figure 2). Each
unit vector is scaled by the number of beats of the chord

it represents, and the result is a piecewise linear function
through R61. The comparison of two songs in this space
can be formulated as a trajectory comparison problem, for
which there are many existing techniques [29]. The most
popular ones, however, are not well adapted to our prob-
lem. The Fréchet distance, dynamic time warping, longest
common subsequence, and the edit distance are all based
on matching and comparing points, and would not directly
factor in information about reharmonized chords embodied
in the co-occurrence vectors. For this reason, we introduce
a new metric that accounts for reharmonizations by com-
puting the membrane area between the paths of two songs.

Expressed formally, we represent song vector paths by
piecewise linear functions of the form f(t) ∈ R61, where
t ∈ [0, 1] is a parametric variable representing the number
of normalized beats traversed in the song. We can move
along the entire length of f in discrete, equal increments,
dt, where the starting point of the function, f(0) at t = 0
is the origin, and the end point of the function is at t = 1.
Given two songs and their corresponding piecewise linear
functions, f(t) and g(t), and letting K = 1/dt, we can
define a distance metric between them as the area of a 2D
membrane, M , stretched between the two paths. M is cal-
culated as the integral obtained in the limit of

M(f , g) = lim
dt→0

K∑
k=0

∥f(kdt)− g(kdt)∥dt, (2)

where ∥ · ∥ is the Euclidean norm. The piecewise linear
functions for two identical chord progressions would, natu-
rally, overlay each other, yielding a membrane area of zero.
Two harmonically similar songs should trace out similar
paths keeping the membrane area small. For example,
two chord progressions that differ in just a tritone substitu-
tion will only slightly perturb the path and the membrane
area between songs. Figure 2 is a notional illustration of
how the measure in Equation 2 is evaluated. The red and
blue paths represent two different songs, each having three
chords. Each song begins at the origin, and the chord vec-
tors are added head-to-tail to trace out a piecewise linear
path. The membrane area metric is approximated by sum-
ming the lengths of the N equally spaced black line seg-
ments drawn between the two songs. Note that this way of
representing the harmony of a song accounts for positions
and durations of each chord in the progression, as well as
capturing harmonic similarities of chord transitions.

7. EXPERIMENTS

We have designed some experiments based on a set of jazz
contrafacts listed in a Wikipedia article. 7 The list has 252
jazz songs whose harmonies are known to be based on
other songs (see also [30]). A subset of 91 contrafacts are
available in our corpus, but for 11 of them, only a section
of the harmony is borrowed, and we remove these from the
list. The basic structure of all of our experiments is the
same: for each contrafact, we compute the membrane area

7 https://en.wikipedia.org/wiki/List_of_jazz_
contrafacts
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Figure 2. Conceptual illustration of the membrane-area
distance metric for two, 3-chord sequences

distance between it and each of the other 2,611 songs in
our corpus. We then sort the songs from smallest mem-
brane area to largest, and note the original song’s rank in
that list. Because of reharmonizations, we don’t expect the
membrane area to be zero for all contrafact-original pairs,
but matches should rank high in the list. Original songs
often inspire multiple contrafacts, and some may be closer
to each other than to the original. For these reasons, we
use the histogram of original song rankings to present the
overall performance of our method, and we use the median
rank as a method of comparison between approaches.

7.1 Using Co-Occurrence Vectors

We evaluated six variants of our approach using co-
occurrence chord vectors. The first three were based on
the context window widths Nw = [1, 2, 3]. The second
three variants used the same context window values, but
applied to a filtered version of the chord progressions. For
each chord progression, the filter collapses adjacent iden-
tical chords to a single instance. For Nw = 1, this has
the effect of eliminating the co-occurrence of chords with
themselves, making the diagonal of the co-occurrence ma-
trix zero. Of the six versions, the best result was obtained
for the filtered chord progressions with the context window
width Nw = 1. Figure 3 shows the histogram of original
song rankings for this case. The median rank is 18, mean-
ing that half of the original songs rank in the top 0.7% in
harmonic similarity to their contrafacts. As there is some
histogram mass out to rank 1,382, the histogram makes
use of a log-scale on the x-axis. It is likely that some of the
songs ranking better than the original are also contrafacts,
as the Wikipedia list is far from exhaustive, but it would
require substantial effort and expertise to evaluate this.

As noted, some original songs have inspired many con-
trafacts. As an example of this in our corpus, there are four
known contrafacts of the song All the Things You Are. The
ranks and membrane areas of the original song for each
contrafact are shown in Table 4. The original ranks highly
for three of the four contrafacts in the table. As the chord
progressions for Prince Albert and All the Things You are
are identical, their membrane area is zero. The contrafacts

Figure 3. Histogram of original song ranks for 80 con-
trafacts (median rank = 18)

Ablution and Boston Bernie have some chord substitutions,
and the original song ranks highly for both of them. The
song I Want More, however, does quite poorly, with a rank
of 758th out of the 2,611 songs in our corpus.

Contrafact Rank Membrane Area
Prince Albert 1 0.00
Ablution 1 6.72
Boston Bernie 2 7.72
I Want More 758 26.89

Table 4. Rank and membrane area for All the Things You
Are against its four contrafacts

To investigate, we use the jazz harmony visualization
tool described in [31] to display the chord progressions for
these two songs. The visualization shows a tabular format
with each rectangle representing a measure. Figures 4 and
5 show All the Things You Are and I Want More, respec-
tively. The background colors indicate the key the chords
belong to. Red is for the main key, which is A♭ for both
songs. Other colors indicate modulations. Some chords are
embedded in a geometric shape to indicate they are toni-
cizations: diamonds are secondary dominants, pentagons
are borrowed chords. As the figures illustrate, the two
songs have some similar chords, however, the sequences
of modulations are completely different. Whereas All the
Things You Are modulates through the tonal centers of C
major, E♭ major, G major, and E major, I Want More mod-
ulates to D♭ major and C minor. After verifying the latter’s
chord progression, 8 we conclude that, harmonically, these
two songs have very little in common, and we question the
annotation of this song as a contrafact.

7.2 Using Pitch-Class Vectors

To evaluate the effect of using co-occurrence vectors, we
compare with a baseline vector embedding scheme based

8 Jamey Aebersold play-along book, volume 82, Dexter Gordon



Figure 4. Chord Progression for All the Things You Are

Figure 5. Chord progression for I Want More

on converting chord symbols to their pitch-class vectors.
This is similar to the starting point of the approach used
in [32]. We begin by applying the key estimation algorithm
described in Section 4.1 to transpose all chords in our cor-
pus to the key of C. Subsequently, each chord in the corpus
is converted to a 12-dimensional binary pitch-class vector,
with ones in positions corresponding to pitch classes be-
longing to the chord, and zeroes elsewhere. Thus, for a C7
chord with the notes C, E, G, and B♭, the corresponding
pitch-class vector is [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0].

Following a similar schema as for the previous exper-
iment, the pitch-class vectors can be used to construct
piecewise linear paths, however, now they are constructed
in a 12-dimensional space. We use the membrane area as
previously to rank songs by harmonic similarity. Table 5
compares the performance of co-occurrence vectors for the
best case (chord progression filtering with a window size
of Nw = 1) versus pitch-class vectors using three metrics:
median rank, mean rank, and mean reciprocal rank. Co-
occurrence vectors outperform the pitch-class vectors by a

large margin for each of these criteria.

Vector Type Median Mean MRR
Co-occurrence 18 222 0.305
Pitch-class 318 457 0.200

Table 5. Comparison of median rank, mean rank, and
mean reciprocal rank (MRR) for the filtered-progression,
co-occurrence vectors (Nw = 1) and pitch-class vectors

8. DISCUSSION AND CONCLUSIONS

We showed how co-occurrence vectors can be used to
model harmonic similarity, and introduced the membrane
area as a evaluation metric that is well-adapted for handling
reharmonizations. We use music theory to reduce the di-
mensionality of chord space, and provide a comprehensive
map of all 1,542 chord symbols in our corpus to 61 classes.
The results are used to compute a dense co-occurrence ma-
trix without needing to resort to non-parametric approxi-
mations such as truncated SVD or gradient descent. Using
the cosine similarity measure, we show that the rows of
the co-occurrence matrix embody some characteristics of
common reharmonizations. Using the normalized rows of
the matrix as vector embeddings of chord classes, we mod-
eled songs as piecewise linear paths in R61. A novel dis-
tance metric, the membrane area, was introduced and used
as a measure of harmonic similarity between songs. We
showed that the similarity metric can be used to retrieve
contrafacts from a database of jazz standards, and that it
performs significantly better than a baseline system using
binary pitch-class vectors as chord embeddings.

Although our approach is successful for contrafact de-
tection, there are several weaknesses that require future
work. Our key detection algorithm is simple and static,
despite the fact that jazz harmony exhibits many local key
changes (e.g. see Figures 4 and 5). We also treat minor
keys as equivalent to their relative major, which is not
strictly correct. The chord mapping scheme is limited in its
ability to distinguish common progressions such as triad
progressions i-iv and v-i. A richer chord vocabulary or
local key estimation could disambiguate such situations.
Our song-level similarity assumes only minor structural
differences between pieces. Modifying it to perform sub-
sequence matching would overcome this limitation.

We believe that the methods discussed in this paper
have many additional applications, such as those in eval-
uating harmonic complexity [33] and in musicology [34].
We intend to investigate whether our harmonic similarity
measure can be used to cluster jazz songs by composer or
decade of publication. Although our focus has been on
jazz, chords have similar functions across much of West-
ern tonal harmony. For this reason, we believe that this
work can be adapted to other genres such as classical, rock,
and pop. Furthermore, as our methods are based on captur-
ing the distributional semantics of harmony, the approach
may also be useful in discovering harmonic relationships
in non-Western music genres.
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