
A Front End for Adaptive Online Listening Tests

Johan Pauwels
Centre for Digital Music

Queen Mary University of
London

j.pauwels@qmul.ac.uk

Simon Dixon
Centre for Digital Music

Queen Mary University of
London

s.e.dixon@qmul.ac.uk

Joshua D. Reiss
Centre for Digital Music

Queen Mary University of
London

joshua.reiss@qmul.ac.uk

ABSTRACT
A number of tools to create online listening tests are cur-
rently available. They provide an integrated platform con-
sisting of a user-facing front end and a back end to collect
responses. These platforms provide an out-of-the-box so-
lution for setting up static listening tests, where questions
and audio stimuli remain unchanged and user-independent.
In this paper, we detail the changes we made to the web-
MUSHRA platform to convert it into a front end for adaptive
online listening tests. Some of the more advanced workflows
that can be built around this front end include session man-
agement to resume listening tests, server-based sampling of
stimuli to enforce a certain distribution over all participants,
and follow-up questions based on previous responses. The
back ends required for such workflows need a large amount
of customisation based on the exact listening test specifica-
tion, and are therefore deemed out of scope for this project.
Consequently, the proposed front end is not meant as a re-
placement for the existing webMUSHRA platform, but as
starting point to create custom listening tests. Nonetheless,
a fair number of the proposed changes are also beneficial for
the creation of static listening tests.

1. INTRODUCTION
Creating a typical online listening test starts with prepar-

ing a set of audio files as stimuli and a set of questions to
be asked. Then a listening test platform is configured with
these inputs and deployed online. A number of such inte-
grated platforms, consisting of a user-facing front end and
a back end to store listeners’ responses, are now available,
including webMUSHRA [9], BeaqleJS [4], the WebAudioE-
valuationTool [3] and Go Listen1. What all of these have in
common is that they only allow one to define static listening
tests. The experiment designer needs to define beforehand
what stimuli to use and what questions to ask; no changes
to the test can be made based on users’ responses. The re-
sult is that the test will behave exactly the same way every
time it is run, apart from some potential random shuffling.
While this might be exactly the intended behaviour in some

1https://golisten.ucd.ie/

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2021, July 5–7, 2021, Barcelona, Spain.

© 2021 Copyright held by the owner/author(s).

cases, for some use-cases a more adaptive setup would be
required. Examples of the latter include progress manage-
ment such that partially completed sessions can be resumed,
server-based stimulus sampling such that a distribution can
be enforced over multiple participants, and follow-up ques-
tions triggered by previous answers.

In this paper, we discuss the changes we made to an exist-
ing tool for online listening tests, webMUSHRA, in order to
make it suitable as a front end for adaptive listening tests.
As part of these changes, some improvements were made
that also benefit the creation of static listening tests. We
start in section 2 by briefly explaining the current state of
the webMUSHRA platform to the extent that is required to
understand the rest of the text. In section 3, we will detail
the general improvements to the front end that are beneficial
for static and adaptive listening tests alike. We then move
on to the architectural changes made to adaptively update
the front end in section 4. We conclude with some remarks
about back ends and future improvements in section 5.

2. CURRENT ARCHITECTURE OF WEB-
MUSHRA

The front end of webMUSHRA is a single-page web ap-
plication coded in JavaScript following the 5th edition of
the ECMAScript standard. It is configured by means of a
YAML file specifying the audio stimuli and questions for a
number of tests, along with additional UI and UX options.
The tests are presented on different “pages”, each with their
associated user interface, and can be of the following types:

Generic page A non-audio page that simply displays the
HTML content given in the YAML configuration, typ-
ically used for providing additional explanation about
following experiments.

Volume test A volume calibration page that allows adjust-
ing the overall volume to a comfortable level at the
start and stores this level.

ITU-R BS.1116 (BAQ) test A Basic Audio Quality test as
specified by the ITU-R standard BS.1116 [1, 12],
wherein an audio condition under test and a hidden
copy of a reference need to be compared blindly to
that reference.

ITU-R BS.1534 (MUSHRA) test A Multiple Stimulus with
Hidden Reference and Anchor test as specified by the
ITU-R standard BS.1534 [2], where multiple audio
conditions need to be compared to a reference together



with automatically degraded versions of the reference
and a straight copy of it.

Forced or unforced paired test A test where the audio con-
dition most similar to a reference needs to be chosen
out of two options, potentially with a “don’t know”
option.

Spatial localisation test A page where the origin of a
3D sound can be indicated in a variety of three-
dimensional spaces with different attributes such
as width, height, depth, apparent/auditory source
width [6, 7] or listener envelopment [11].

Single-stimulus Likert test A page that presents a single au-
dio stimulus with an arbitrary question that needs to
be answered by selecting a point on a Likert scale [5].

Multi-stimulus Likert test A page with multiple audio stim-
uli, each having an associated Likert scale to respond
to the same question.

Final page An obligatory final page to finish a set of one
or more tests, optionally containing a questionnaire or
feedback on the participant’s performance.

The front end makes extensive use of the jQuery library
version 2.1 and uses jQuery Mobile v1.4 for its UI elements.
Further details about the libraries used can be found in [8].
Communication-wise, only few exchanges are made between
client and server. At the start of the webapp, the YAML
configuration file is received from the webserver together
with the client code and all assets. The URIs of the au-
dio files are then read from the configuration, whereafter
the files get requested from the webserver and loaded into
the front end. The listening tests are now ready for user
interaction and participants can make their way through all
pages. In addition to their responses, the time spent on
each page is recorded, such that fatigue effects can be moni-
tored[10]. After completing the final page, all user responses
are gathered and posted to the server as JSON. A diagram
of this client-server interaction can be seen in fig. 1.

The accumulated responses can be configured to send to
any back end that accepts JSON; it does not have to be
the webserver that the front end is served from. A PHP-
based back end that writes the JSON to a tabular format
on disk is included as part of the webMUSHRA platform,
but an alternative back end in Python is also available2,
which is built on the Flask microframework. This loose cou-
pling between front end and back end was one of the main
reasons why we chose webMUSHRA as a starting point for
our modifications, together with its ease of configuration and
high-quality audio engine built around the Web Audio API.

3. GENERAL FRONT END IMPROVE-
MENTS

The biggest general improvement made to the web-
MUSHRA front end is that the questionnaire creation ca-
pability was extracted from the final page and can now be
used everywhere. Furthermore, the number of user interface
elements that can be used in questionnaires has been signif-
icantly extended. In addition to the existing textboxes and

2https://github.com/nils-werner/pymushra

Figure 1: Client-server communication diagram of the current
webMUSHRA version.

Likert scales (radio buttons), also toggle switches, check-
boxes, date selectors, file selectors, email and password
fields, sliders and dropdown lists have been added and num-
ber selection improved. In table 1, examples of each of
the possible interface elements are displayed together with
the YAML configuration that produces them. Some exam-
ple use-cases for this generalised questionnaire include the
creation of a consent form by adding a questionnaire to a
generic page before the actual test starts, or the addition of
optional free-form feedback to any listening test. These ex-
tensions make webMUSHRA comparable to general-purpose
survey services, such as Google Forms, but with added audio
capabilities.

The main consequence of the general availability of ques-
tionnaires, however, is for the single and multi-stimulus Lik-
ert tests. A questionnaire can consist of a single Likert scale,
and therefore supersedes the page-specific Likert function-
ality. The latter is thus removed, leaving only the audio
player to be rendered by default, but it can be recreated in
a more general way as a questionnaire. For multi-stimulus
tests, a general questionnaire is also possible, but in addition
the stimulus-specific Likert scale is replaced by a stimulus-
specific questionnaire which is replicated for every stimulus.
This allows one to recreate the previously available function-
ality, and create more complex test layouts such as the one
seen in fig. 2.

With the questionnaire capability comes the option to
control for each input whether answering it is required or
optional, unlocking the navigation to move to the next page
when all required answers are given. Similarly, the audio
players of the single and multi-stimulus pages have the abil-
ity to lock the questionnaire input elements until playback
of the corresponding audio file has either been started or
fully completed. Finally, further minor improvements have
been made, such as the optional display of a waveform on
single stimulus pages. Keyboard shortcuts have been added
to all interface elements, such that listening tests can be
completed using only a keyboard.

4. TOWARDS AN ADAPTIVE FRONT END
Whereas the changes proposed in the previous section are

clear-cut improvements to static and adaptive listening tests
alike, in this section we go over some changes that are neces-
sary for adaptive listening tests, but are not necessarily en-



Figure 2: Multi-stimulus listening test demonstrating a more
complex layout consisting of multiple UI elements per stimu-
lus.

hancing static listening tests. More precisely, these changes
are the lazy loading of audio files and immediate posting of
responses.

Instead of loading all audio files specified in the YAML
config files before the listening test starts, we modified the
code to only request and load the files necessary for the next
page. A noticeable drawback of this, is that navigating be-
tween pages is no longer as smooth as with the standard
webMUSHRA front end. However, it has the advantage
that the first page becomes available almost immediately,
whereas the loading time at the start of the web app can be
significant when tens of audio files are used.

Each type of page now has the option to post the user’s
responses to the back end as soon as the page is exited, in-
stead of waiting until the final page to accumulate and send
all responses. This functionality can be activated by adding
the key send to the page configuration. Whenever this key
is present (and does not have a value false), all accumu-
lated responses up to that point are sent, so it is possible to
send responses at regular checkpoints after every N pages
instead of after every page in order to reduce network com-
munication.

To avoid sending the same trial data multiple times, the
page configuration can be set to send: forget. In this case,
the responses are deleted in the front end after they are suc-
cessfully received by the back end. If communication with
the back end fails, the responses are retained and included
with the next posting of results such that they are not lost.
Specifying send: remember keeps the responses after suc-
cessful posting.

When send: forget is set for a generic page, it is only al-
lowed to delete questionnaire responses of itself and previous
generic pages, whereas the other pages (containing listening
tests) are only allowed to delete responses to listening tests.
This separation makes a variety of workflows possible that
differ in their handling of sensitive data. For instance, it
is common to collect some demographic data from listen-
ing test participants. When this data is obtained through a
questionnaire on a generic page with send: forget, the sen-
sitive data is sent to the back end before the actual listening
test starts. In this case, none of the listening test responses
can be traced back to the demographic data (provided the

Figure 3: Client-server communication diagram with lazy
loading of audio and selective posting of responses.

back end does not store the ip address of the client or the
timestamp), whether the responses to the listening test itself
are sent immediately or not.

Conversely, if the listening test responses need to be linked
to participants’ data, this data can be requested via a ques-
tionnaire on a generic page with send: remember and will
be sent alongside the listening test responses, regardless of
them being sent after each page send: forget or accumu-
lated together at the end send: false3. This collection of
personal data can even be split into two parts, a first ques-
tionnaire in which sensitive data is asked and immediately
dispatched to the server (send: forget), such as a partici-
pant’s real name for a consent form, followed by a question-
naire for less sensitive data that gets linked to subsequent
test responses (send: remember), such as a username.

The added functionality provided by the immediate post-
ing of responses can also be useful for static listening tests,
but it would require a more advanced back end than the
one currently included with webMUSHRA. Among other is-
sues, responding to backwards navigation and the resulting
multiple submissions poses a challenge, although backwards
navigation can simply be disabled to avoid this problem. A
potential advantage is that partial responses of users who
withdraw or whose connection drops during an experiment
are not lost.

The immediate posting of responses is independent of the
lazy loading of audio files, but an example of client-server
communication when both are activated can be seen in fig. 3.

The final change to the front end required to make adap-
tive listening tests, is to add the possibility of dynamically
updating the configuration, more specifically the pages of
the listening test. To this end, the front end checks for a
JSON response from the back end whenever user input is
posted. This JSON response can contain the configuration
for additional pages, which are appended to the existing list
of pages. It can also include the index of the following page,
such that previously completed pages can be skipped and a
session resumed where it was left off.

In order to start an adaptive listening test, a bootstrap
YAML configuration should be present containing at least
one page with a send option that is not false. The following
pages are then requested from the server based on the user’s
response so far. Multiple additional pages can be received

3For actual listening test responses, send: remember rarely
makes sense, as it means that cumulated responses are
posted which would need to be deduped in the backend



Figure 4: Client-server communication diagram for an adap-
tive listening test.

at once, and if one of the new pages also includes a send
key, the process can continue indefinitely. This process is
illustrated in fig. 4. If the goal is simply to provide the
capability to resume a session, all pages can be configured
in the initial YAML configuration and the update sent by
the back end will then just be used to jump to the correct
page in the sequence.

5. CONCLUSION
In this paper, we presented the changes we made to the

webMUSHRA front end to turn it into a front end for adap-
tive listening tests. A sizeable number of these changes are
clear-cut improvements that are beneficial for static listen-
ing tests as well as adaptive listening tests. These changes
are currently being integrated into the next version of the
main release of webMUSHRA.

Furthermore, a set of modifications has been made that
are required for adaptive listening tests, but are not under all
circumstances recommended for static listening tests. These
modifications include lazy loading of audio stimuli, immedi-
ate posting of user responses and dynamically updating the
test configuration. More discussion is required to decide on
how these modifications can best be made available as part
of the wider webMUSHRA platform. For the time being,
they are available in our fork on Github4.

Adaptive listening tests require custom back ends adapted
to the exact workflow that is desired. This allows for the
construction of complex setups including session manage-
ment, user personalisation and population balancing, but it
also means that no back end can be provided that supports
all possible scenarios out-of-the-box. This added complexity
makes adaptive listening tests significantly harder to set up
than static tests, for which the existing webMUSHRA plat-
form remains a more suitable choice. Nonetheless, in order
to lower this barrier to entry for adaptive listening tests,
some proof-of-concept back ends illustrating various usage
scenarios are available in our repository. These are writ-

4https://github.com/jpauwels/webMUSHRA/

ten in Python and use the FastAPI library5, but different
languages and frameworks could potentially be used.

6. REFERENCES
[1] International Telecommunication Union.

Recommendation ITU-R BS.1116-3: Methods for the
subjective assessment of small impairments in audio
systems, 3th edition, February 2015.

[2] International Telecommunication Union.
Recommendation ITU-R BS.1534-3: Method for the
subjective assessment of intermediate quality level of
audio systems, 3th edition, October 2015.

[3] N. Jillings, B. De Man, D. Moffat, J. D. Reiss, and
R. Stables. Web audio evaluation tool: A framework
for subjective assessment of audio. In J. Freeman,
A. Lerch, and M. Paradis, editors, Proceedings of the
2nd Web Audio Conference, WAC ’16, Atlanta, GA,
USA, April 2016. Georgia Tech.

[4] S. Kraft and U. Zolzer. BeaqleJS: HTML5 and
JavaScript based framework for the subjective
evaluation of audio quality. In Proceedings of the
Linux Audio Conference, 2014.

[5] R. Likert. A technique for the measurement of
attitudes. Archives of Psychology, 22(140):5–55, June
1932.

[6] M. Morimoto and K. Iida. Appropriate frequency
bandwidth in measuring interaural cross-correlation as
a physical measure of auditory source width.
Acoustical Science and Technology, 26(2):179–184,
2005.

[7] A. M. Sarroff and J. P. Bello. Toward a computational
model of perceived spaciousness in recorded music.
Journal of the Audio Engineering Society,
59(7/8):498–513, September 2011.

[8] M. Schoeffler, S. Bartoschek, F.-R. Stöter, M. Roess,
S. Westphal, B. Edler, and J. Herre. webMUSHRA – a
comprehensive framework for web-based listening
tests. Journal of Open Research Software, 6(1):8, 2018.

[9] M. Schoeffler, F.-R. Stöter, B. Edler, and J. Herre.
Towards the next generation of web-based
experiments: A case study assessing basic audio
quality following the ITU-R recommendation BS. 1534
(MUSHRA). In Proceedings of the 1st Web Audio
Conference, Paris, France, January 2015. IRCAM.

[10] D. Schwarz, G. Lemâıtre, M. Aramaki, and
R. Kronland-Martinet. Effects of test duration in
subjective listening tests. In International Computer
Music Conference (ICMC), pages 515–519, Utrecht,
Netherlands, Sept. 2016. ICMC, HKU University of
the Arts Utrecht, HKU Music and Technology.

[11] G. A. Soulodre, M. C. Lavoie, and S. G. Norcross.
Objective measures of listener envelopment in
multichannel surround systems. Journal of the Audio
Engineering Society, 51(9):826–840, 2003.

[12] W. C. Treurniet and G. A. Soulodre. Evaluation of the
ITU-R objective audio quality measurement method.
Journal of the Audio Engineering Society,
48(3):164–173, March 2000.

5https://fastapi.tiangolo.com/



type: checkbox
name: checkbox1
label: " Checkbox :"

type: toggle
name: toggle2
label: " Toggle :"
response :

− value: ""
label: no

− value: yes
label: yes
selected : true

type: text
name: text3
label: "Text :"

type: email
name: email4
label: "Email :"

type: password
name: password5
label: " Password :"

type: file
name: file6
label: "File :"

type: date
name: date7
label: "Date :"

type: number
name: number8
label: " Number :"
default : 42

type: slider
name: slider9
label: " Slider :"
min: 0
max: 100
step: 1
default : 42



type: likert
name: likert10
label: " Likert scale :"
response :

− value: 0
label: alpha
shortcut : q

− value: 1
label: beta
shortcut : w

− value: 2
label: gamma
shortcut : e

type: dropdown
name: dropdown11
label: " Dropdown :"
response :

− value: 0
label: alpha

− value: 1
label: beta
selected : true

− value: 2
label: gamma

type: long_text
name: long_text12
label: " Longform text :"

Table 1: User interface elements possible in questionnaires


