
Automatic Lyrics Transcription using Dilated
Convolutional Neural Networks with Self-Attention

*

Emir Demirel
Centre for Digital Music

Queen Mary University of London

London, UK

e.demirel@qmul.ac.uk

Sven Ahlbäck
Doremir Music Research AB

Stockholm, Sweden

sven.ahlback@doremir.com

Simon Dixon
Centre for Digital Music

Queen Mary University of London

London, UK

s.e.dixon@qmul.ac.uk

Abstract—Speech recognition is a well developed research field
so that the current state of the art systems are being used in
many applications in the software industry, yet as by today, there
still does not exist such robust system for the recognition of
words and sentences from singing voice. This paper proposes
a complete pipeline for this task which may commonly be
referred as automatic lyrics transcription (ALT). We have trained
convolutional time-delay neural networks with self-attention on
monophonic karaoke recordings using a sequence classification
objective for building the acoustic model. The dataset used
in this study, DAMP - Sing! 300x30x2 [1] is filtered to have
songs with only English lyrics. Different language models are
tested including MaxEnt and Recurrent Neural Networks based
methods which are trained on the lyrics of pop songs in English.
An in-depth analysis of the self-attention mechanism is held while
tuning its context width and the number of attention heads. Using
the best settings, our system achieves notable improvement to the
state-of-the-art in ALT and provides a new baseline for the task.

Index Terms—automatic speech recognition, machine learning,
deep learning, music information retrieval, automatic lyrics
transcription, language modeling

I. INTRODUCTION

In contemporary pop music, the linguistic content in the
singing voice is generally referred as lyrics and the process
of automatic retrieval this lyrics content from singing voice
can then be defined as Automatic Lyrics Transcription [2]
[3]. The automatic retrieval of pronounced words from speech
signals is a widely developed research field and the state of the
art systems by today can be successfully applied to industrial

applications. However, the same level of robustness has not yet
been reached when the input is singing voice. According to
prior research, there are several domain specific reasons word
recognition performance reduces in singing including domain
specific acoustic characteristics [2], [4] and the alterations of
word pronunciations [5]. Specifically from a machine learn-
ing perspective, the main bottleneck for achieving a robust
system is the availability of training data with fine-grained
annotations, to be used in a supervised learning framework.

In this study, we exploit such large-scale singing voice
dataset, DAMP - Sing! 300x30x2 [1] - released by Smule 1,
where prompt-level2 (and occasionally word-level) annotations
are provided. The dataset consists of monophonic Karaoke
recordings of pop songs by multiple performers providing near
150 hours of trainable audio data. However, this dataset has
not been widely utilized for the purpose of training a word
recognition system. Through our proposed framework, we aim
to highlight one way of utilization of this dataset in a complete
ALT framework and further conduct an in-depth self-attention
analysis via fine-tuning experiments.

A robust system for the retrieval of sung lyrics has a variety
of potential applications in music information retrieval (MIR)
related tasks and the music tech industry. In karaoke and music
education apps, the recognition of sung words is essential for
tracking a performance and providing feedback to the user. In

1Smule is a commercial Karaoke singing application. More info at
https://www.smule.com/

2In Smule app, lyrics are prompted to the users as words or sentences de-
pending on the song arrangement. Each prompted sentence or word annotation
is referred as prompt-level annotation.

ar
X

iv
:2

00
7.

06
48

6v
1

 [
ee

ss
.A

S]
 1

3
Ju

l 2
02

0

combination with techniques like query-by-humming, ALT can
be utilized for the song identification and metadata retrieval
tasks.

Our system uses deep neural networks for building the final
acoustic model that is composed of 2D convolutional layers
at the front end for extracting more robust features followed
by time-delay layers due to their capability of modeling long-
term context information. A self-attention layer is added before
the final projection layer for weighting the time context when
computing the output activations for classification.

Overall, this paper targets at making the following contri-
butions:

• Presenting a complete pipeline for ALT in monophonic
singing

• Testing different language modeling strategies for lyrics
• Proposing a neural network architecture combining Self-

Attention with CNN and TDNN layers
• Performing an in-depth analysis for Self-Attention,
• Reporting best results for ALT on a public dataset
• Providing the code for open-science and reproducibility

This paper is structured as follows: literature on ALT
on monophonic singing recordings is reviewed (II). Then
the details of the data used in training and evaluation are
given (III). Then the proposed system (IV) and the basis of
our experiments (V) are explained. The results for each of
experimental steps are shown and an in-depth analysis of the
self attention parameters is performed (VI). Finally, potential
improvements to the proposed system are discussed (VII).

II. RELATED WORK

Since the early days of ALT, researchers have shown a
tendency to adapting ASR techniques for the retrieval of
words or phonemes from the singing voice. Mesaros et al. [4]
adapted a pretrained GMM-HMM based speech recognizer to
singing domain using Maximum Linear Likelihood Regression
(MLLR) transformation. In [7], the vocal parts were separated,
and their proposed method was able to achieve 70% Phoneme
Error Rate (PER) and 88 % Word Error Rate (WER) on clean
and monophonic singing.

The performance of the ALT systems proposed in recent
years has had a notable improvement due to the availability
of new open datasets for singing voice. Within the DAMP

repository3 there are a few separate open-source datasets for

3Can be accessed from https://ccrma.stanford.edu/damp/

singing made publicly available for research by Smule. The
repository consists of Karaoke recordings performed by real-
world users of the Smule app. Due to its nature, the audio
recordings in the datasets are mostly monophonic accapella
singing voice recordings. On one of the earlier releases within
the repository, the DAMP (multiple songs) [8] dataset where no
line-level lyrics annotations are provided, Kruspe [2] trained
a DNN-HMM system and reported 77% PER on subset of
the aforementioned dataset as the evaluation set. Tsai et. al
[10] use a speech-pretrained TDNN-BiLSTM neural network
and retrains on a smaller dataset of 110 monophonic singing
recordings obtained from Youtube and reports a WER of
73.09%. Gupta et al. [11] adapted a pretrained DNN-HMM
based speech recognizer on the DAMP dataset and reported
36.32% WER on a carefully selected subset of this dataset.
Further in their work [5], they achieved 29.65% WER by
extending the length of pronounced vowels in the pronun-
ciation lexicon. This idea is plausible not only due to the
observed performance boost, but also inherently increasing the
probability of a frame of a voiced phoneme (i.e phonemes with
vowels pronounced) to be followed by another frame with the
same phoneme, which is a frequent case in singing.

One of the main challenges of ALT research is the lack
of benchmark evaluation sets. Most prior work reports results
on different datasets, which makes it harder to compare and
evaluate different systems. To overcome this problem, Gerardo
et al. [6] curated a new training and evaluation set, namely
the ‘DSing Corpus’ based on the Sing! 300x30x2 dataset
[1] within the DAMP repository. On this new evaluation set,
the authors reported 19.60% WER using a factorized Time-
Delay Neural Network (TDNN-F) setting and a 4G Language
Modeling which is trained on lyrics pop songs in English. To
our knowledge, this is the best result reported for ALT from
monophonic singing.

III. DATASET

All of the experiments of this study are performed on
Sing! 300x30x2 3. The dataset consists of 18,767 real-world
karaoke recordings performed by 13,154 Smule app users,
and includes the lyrics prompt timings that are shown to
users for the purpose of singing along with the original
versions of songs. The karaoke performances in the dataset
are unique interpretations of the 300 most popular songs from
30 countries, where the popularity is determined by user votes
via the Smule app.

Even though the dataset is curated in a balanced manner
and time-level annotations are provided alongside the audio
recordings, the data still needs preprocessing to be used for
training and evaluation. For instance, the prompt timings are
not always in the same granularity, i.e there are both word and
sentence level annotations. Dabike et al. [6] curated a cleaner
version of this dataset based on heuristics, with the goal of
removing noisy data. The dataset is also filtered out to keep
recordings with lyrics only in English providing nearly 150
hours training data.

From these recordings, 70 of them with 480 utterances from
43 singers in total are chosen for the Test set and 66 songs
with 482 utterances from 40 singers for the validation (Dev)
set, where these recordings from both sets are originating from
the UK. In order to meet ‘the gold standard’ for evaluation,
the annotations in the Dev and Test sets are corrected and
validated by human experts.

IV. SYSTEM DETAILS

Our workflow is based on Kaldi [12] which is a WFST-
based ASR framework that implements the state-of-the-art
in research4. WFST-based speech recognizers [13] build a
decoding graph composing separate lexicon, acoustic and
language models. We use the CMU English Pronunciation
Dictionary5 as the lexicon, and train the acoustic and language
models via separate neural networks using in-domain data. In
this section, we give the details of different components in our
automatic lyrics transcription pipeline.

A. Dilated Convolutional Neural Networks with Self-Attention

For the acoustic model, we propose a deep convolutional
neural neural network structure that has three major compo-
nents: six 2-D convolutional layers at the front-end followed
by a stack of sub-sampled factorized Time-Delay Neural
Network (TDNN-f) [14], and finally, a time-restricted self-
attention layer [15]. The TDNN-f layers are essentially equiv-
alent to dilated 1-D convolutions on the time axis. For this
reason, we refer our architecture as a ‘Dilated Convolutional
Neural Network’.

The CNN part consists of six convolutional layers with 3x3
filters. Subsampling (i.e MaxPooling) with a factor of 2 is
applied after layers CNN_3, CNN_5, CNN_6, to extract more
robust features for TDNN-F layers and to reduce the size of

4Kaldi-ASR is an open-source toolkit and can be accessed from
kaldi_url=https://github.com/kaldi-asr/kaldi/blob/master/

5Can be accessed from http://www.speech.cs.cmu.edu/cgi-bin/cmudict

the feature vectors. The rest of the CNN parameters are shown
in Table 1.

CNN_1,2 CNN_3 CNN_4 CNN_5 CNN_6
Height 40 40 20 20 10

Num_filters 48 64 64 64 128
Subsamp. factor N/A 2 N/A 2 2

TABLE I: Settings of the 2D convolutional layers

Time Delay Neural Networks (TDNN) are widely used in
ASR systems due to their capability of successfully modelling
long-term context and makes parallelization possible unlike
RNNs. TDNN-F part of the network consists of nine hidden
layers with dimension 1024 and a bottleneck dimension of
128. We use the same factorization setting in [14] for the
TDNN-F layers. Each layer in the network is followed by a
ReLU and batch normalization. This architecture without the
self-attention layer is set as the baseline NN model in our
experiments. We refer this part of the architecture as CTDNN
in this paper.

Since its introduction in the seminal paper [16], the self-
attention mechanism has been used in many state-of-the-art
systems in Natural Language Processing (NLP) [17]. Re-
cently, this mechanism is also successfully applied in speech
recognition [18] [19]. Motivated by its success in ASR, we
further extend our architecture design by adding a multi-head
time-restricted self-attention layer [15] on top of the network,
right before the final linear projection layer. In this attention
design, multiple heads learn weights in parallel, focusing on
different parts of the time context. Multi-head mechanism is
shown to be useful in [15]. We have set a fixed size for
key and query dimensions to 60, value to 40 and tune the
context width and the number of heads in the experiments. The
models that include the self-attention layer will be referred as
CTDNN_SA.

After the attention layer the weights are projected to one
dimensional vectors via Linear Layer continued by soft-
max. There are two separate output layers that are jointly
trained on different objective functions: Maximum Mutual
Information (Output - chain) and Cross-Entropy (Output
- xent). This joint training is done for regularization as
explained in Section V.

B. Language Models

In our lyrics transcription framework, we use Language
Models (LM) that are constructed using in-domain text data

that consists of the lyrics of all songs by all artists from UK,
USA and Australia in the DSing30 corpus and the artists from
the Billboard ‘The Hot 100’ for the years from 2015 to 2018,
which is the same training corpus as in [6]. The training of
language models are validated on a set of lyrics from the songs
in the validation (Dev) set of the DSing30 corpus. The lyrics
of the songs in the Test set are excluded from the training text
corpus when building the LMs. Some statistics of the training
text corpus are shown in Table II.

Training Corpus Validation Corpus
Words 7,931,215 4018

Sentences 1,117,152 482
Songs 4,324 66

TABLE II: Some statistics of the LM training & validation
corpora

In this study, we test three different language models, 3-
gram (3G) and 4-gram (4G) LMs train with a maximum
entropy objective (MaxENT) built using SRILM [20] and an
LM built using Recurrent Neural Networks (RNNLM) [21].

Lyrics may contain made-up words that are not necessary
included in the dictionary used in the decoding graph. To
handle such words that may exist in the evaluation set, we
followed the approach at 6. This procedure helps with the word
insertion penalty in scoring when ambigious phone sequences
are observed. By ambigious phone sequences, we mean phone
sequences that do not exist in the pronunciation dictionary
provided. The resulting language model used in decoding will
be referred as n-G_unk in the experimental results.

V. EXPERIMENTAL SETUP

We adapt a similar procedure with the ‘chain’ recipes7 in
Kaldi for training the neural networks. First a GMM-HMM
triphone model is trained to generate phone-level alignments.
Based on this model and the alignments, a data cleanup
strategy is applied. Using the alignments on the cleaned
data, a sequence classifier is trained with the NN architecture
proposed in Section IV.

A. GMM-HMM Training

For training the GMM-HMM system, we use 13-band
MFCCs plus delta and delta-delta features with a frame length
of 25 milliseconds and a hop size of 15 milliseconds. ±4

6kaldi_url/egs/wsj/s5/utils/lang/make_unk_lm.sh
7kaldi_urlegs/wsj/s5/local/chain/

neighbouring frames are concatenated on the feature vectors
(9 consecutive frames in total) to obtain context dependent
features. Zero-mean normalization per singer is applied to
MFCCs. The spliced frames are then projected to 40 di-
mensional feature vectors using Linear Discriminant Analysis
(LDA). Maximum Likelihood Linear Transformation (MLLT)
is applied on the LDA features. Further, ‘speaker adaptive
training (SAT)’ is applied by transforming the feature space
(LDA + MLLT) using feature-space maximum likelihood
linear regression (fMLLR) per singer [22].

A data cleanup strategy is applied with the goal of removing
the noise and bad portions of transcripts from the training
data using the script at 8. We then retrain another GMM-
HMM triphone model on the clean training set and generate
alignments using this model to be used in neural network
training.

B. Neural Network Training

The acoustic model is trained using Convolutional Time-
Delay Neural Networks (CTDNN) with a lattice-free sequence
discriminative training strategy that uses Maximum Mutual
Information (MMI) as the objective criterion (LF-MMI) [23].
A 3-way speed-perturbation [24] is applied for data augmen-
tation, changing the speed of the original signal with the
factors of 0.9 and 1.1. Speed perturbation helps to increase the
generalizability by modeling different durations for phonemes.
Then, we generate lattice alignments as the soft target phone
boundaries using the triphone GMM-HMM model prior to
training the network. As opposed to GMM-HMM training,
we use mel-spectrogram features with 40 filter banks as the
input to the neural network. Our framework performs SAT for
training the neural networks based on i-vector extraction [25]
as the input speaker (singer) representations with the height
of 200. The i-vector speaker representations are projected to
smaller matrices with the height of 40 and then combined
with filter bank features as separate feature maps but sharing
the same trainable weight matrix. The convolutional layers
are preceded by a fully connected layer that applies a linear
transformation to the input with a trainable matrix to feed to
the convolutional layers.

One of the challenges in sequence-level training is that it
is prone to overfitting. To overcome this problem we use the
combination of three regularization techniques during training
[26]: Cross-entropy regularization, l-2 regularization and leaky

8kaldi_url/egs/wsj/steps/cleanup/clean_and_segment_data.sh

HMMs. In addition, dropout is used at each layer to alleviate
the risk of overfitting. Dropout scheduling is used as suggested
in [27]. Training is done on minibatches having sizes of 128
where the data chunks of variable sizes of 140, 100, 160
processed in each minibatch. We use preconditioned Stochastic
Gradient Descent (SGD) as the optimizer. The initial and
final learning rates are set to 0.0005 and 0.00005 respectively,
where the learning rate is shrunk after each iteration (mini-
batch processing). Half of the global learning rate is applied to
the last and second-to-last layer weights. We train the network
for 8 epochs. After the final iteration of training, we combine
models from the last 10 iterations into a final single model
using a weighted-average operation [28].

VI. RESULTS AND DISCUSSION

In this section, we provide transcription performances of
various models studied in this paper. These models include
the baseline GMM-HMM model and neural networks with
different language models. The effect of number of heads in
the attention layer is tested. The training and validation losses
of best performing neural network based models are illustrated.

A. GMM-HMM Baseline

First, we observe how much performance gain can be
achieved using a larger dataset by comparing the WERs of
GMM-HMM triphone models trained on DSing1 and DSing30

corpuses. In Table III, the scores are obtained using the 3G
MaxEnt language model. Around 10% performance gain is
observed when using the larger dataset. This improvement
is due not only to the larger train set but also because the
DSing30 corpus has more variety in singing accents resulting
in learning a more generalizable model.

Train Set Dev WER (%) Test WER (%)
DSing1 63.51 63.12

DSing30 52.69 50.80

TABLE III: WERs of Triphone GMM-HMM models on Dev
/ Test Sets using 3-gram LM.

B. Language Models

At this step, our goal is to find the most suitable LM for
our task. First, the scoring is done by decoding the FST built
using the 3G LM. Then generated lattices are rescored using
a graph with 4G LM. Scoring is redone using LMs with
‘unknown’ language modeling. The second-pass scoring is

done on RNNLMs for both n-gram models using a pruned
rescoring method [29]. The scores in Table IV are obtained
using the baseline CTDNN architecture.

LM model MaxEnt RNNLM

Dev Test Dev Test

3G 24.84 20.84 20.93 17.44

3G_unk 24.56 20.84 20.98 17.47

4G 21.20 18.59 18.09 16.23

4G_unk 21.08 18.57 17.70 15.65

TABLE IV: WERs (%) of different language models using the
CTDNN model

It is seen that RNNLM’s outperform the MaxEnt LMs for
both n-grams having 2-3 % WER improvement. Composing
the n-gram_unk language model generally helps with the final
WER score.

C. Neural Networks

In general, the proposed NN architectures in this study
outperform the previously reported score of 23.33 on Dev

set and 19.60 WER (%) on Test set using a 4-gram (4G)
MaxEnt language model [6]. Using the same settings with the
aforementioned study, the baseline CTDNN model obtained
18.57% on the Test set showing around 1% improvement.

The train and validation log-probability losses (vs. itera-
tions) of CTDNN and CTDNN_SA with different contexts are
shown in Figure 2. The losses in models with SA have lower
values than the baseline CTDNN model. No explicit sign of
overfitting is observed from the train/validation loss plots for
any of the models. Early-stopping is not used, yet we have not
observed any improvement with further training.

D. Self-Attention Analysis

At this stage, we aimed at tuning the self-attention layer by
testing the number of heads and the context width by testing
different configurations and performed an in-depth analysis of
what the self-attention layer has learned. Rows # 1 and #3 in
Figure 2 show the attention weight vectors for each head in
the self-attention layer and below are the averaged values over
all heads.

From (a,b,c,d), it is seen that the distribution of the attention
weights gets closer to a uniform distribution as the number
of heads gets higher, which implies that the self-attention

Fig. 1: Illustration of the weight vectors in the self-attention layer. (a,b,c,d) shows the weights for 1, 15, 30, 60 number of
heads respectively with a context of (-6,15). Context of (e,f,g,h) are (-15,15), (-30,15), (-30,30), (-45,45) respectively with 15
heads. The figures on top are the the weights for all the heads sorted bottom-to-top w.r.t the weight of leftmost context. The
dashed horizontal line in the bottom figures indicates the median of the averaged weights.

Fig. 2: Log-probability losses of neural network models. ‘cw’
in legends stand for ‘context’. Both models with SA have 15
heads.’

NN Model #heads MaxEnt RNNLM

Dev Test Dev Test

TDNN [6] N/A 23.33 19.60 N/A N/A

CTDNN N/A 21.08 18.57 17.70 15.65

CTDNN_SA 1 21.48 17.99 18.24 15.56

CTDNN_SA 15 20.38 17.01 18.74 14.96

CTDNN_SA 30 20.46 17.79 19.49 16.13

CTDNN_SA 60 21.06 17.75 18.82 16.21

TABLE V: WERs (%) using different number of heads in the
self-attention layer. TDNN-f is given in the table to provide a
comparison with the previous best result on the same dataset

assigns similar weights to context, thus achieving less non-
linearity, and reducing the performance. Table V shows the
scores of different number of heads in the self-attention layer.

These results confirms with the above observation as 15 heads
show the best performance. Moreover, the number of trainable
parameters increase in the order of millions as the number of
heads gets higher (Figure 4).

It is observed that the attention score peaks at the centering
bin (t = 0) and the weights gradually decrease as getting
further from the center. Notice the lower amplitude of the
context around the centering bin as the context width gets
larger. The attention weights are normalized values due to the
softmax layer within the self-attention structure. As the num-
ber of context bins increase, the weights assigned to centering
bins decrease, while keeping the position of the peaking region
in the distribution. The smaller attention weights cause the
centering bins have a lesser effect on the final classification.
In both of the cases where the context is symmetrical (i.e. the
same number of context bins from the past and the future), the
decrease of attention scores is slightly sharper for the future
bins, implying more attention paid to the past. Finally, Figure
4 shows that the number of trainable parameters increase in
the order of 100K for each step we increase the context width.
As a conclusion, even though larger context size helps with
the training loss (see Figure 3), the WER performance does
not improve accordingly as shown in Table VI.

Overall, setting the context to (-15,6) and number of heads
to 15 shows the best WER performance which sets the best

Fig. 3: Number of trainable parameters for each NN model

score reported in this paper.

Context (-15,6) (-15,15) (-30,15) (-30,30) (-45,30) (-45,45)
Dev 18.74 18.24 18.62 18.42 18.37 17.30
Test 14.96 15.61 15.93 16.26 15.13 15.26

TABLE VI: CTDNN_SA scores with different context widths.
The results are reported using 4G RNNLM

E. Decoding Lattices

Figure 5 illustrates the lattices generated during the decod-
ing stage. The lattices in (a) are obtained using the baseline
CTDNN acoustic model with 4G - MaxEnt LM. Adding the
self-attention layer to the baseline model results in a much
simpler lattice graph (b) reducing the computational complex-
ity and potential confusions during decoding. The graph in (c)
is generated by rescoring the lattices using RNNLM where
there is only one possible word sequence prediction, boosting
the decoding performance even further.

Compared to the state-of-the-art in ASR, there is still room
for improvement for achieving a robust lyrics transcription
system. One of the potential reasons for the high WERs in the
experiments might be due to the cleanness of both the training
and test data. By inspection, we have observed that the clean-
up process described in Section IV does not perfectly clean
the dataset from utterances with bad portions or imperfect
annotations. In some utterances, the intelligibility of the sung
lyrics is not even sufficient for human listeners. For further
improvement, the alterations in word pronunciations have to
be modified. The lexicon can be modified as suggested in [5]
or learned from data which requires pronunciation annotations
in singing recordings. The neural networks can be further
tuned and more training data can be acquired through the
combination of different datasets.

VII. CONCLUSION

Though achieving an approximately 5% WER improvement
to the previously reported best result on the same dataset [6],

0 11318:AS
723411:THA

2

23440:THE

1321652:SON

8

22690:SUN
6

21652:SON

3

22690:SUN

19

25645:WE'LL

1425993:WILL

525645:WE'LL

4

25993:WILL

20

19433:RISE 12

19365:RIDE

10

19433:RISE

18

19365:RIDE

23
239:<UNK>

16
24866:UP

21

24867:UP'

239:<UNK>

24867:UP'

2224866:UP

19433:RISE

2419365:RIDE

19365:RIDE

15
19433:RISE

17
19433:RISE

25645:WE'LL

25993:WILL

11

25645:WE'LL

9

25993:WILL

19433:RISE

19365:RIDE

19433:RISE
19365:RIDE

239:<UNK>

24866:UP

24867:UP'

(a) CTDNN - 4G MaxEnt

(b) CTDNN_SA - 4G MaxEnt

0 11318:AS 223440:THE 322690:SUN 425993:WILL 519433:RISE

(c) CTDNN_SA - 4G RNNLM

Fig. 4: Decoding lattices generated with different acoustic and
language models for the utterance: ‘AS THE SUN WILL RISE’.
The lattice graph in (a) got much simplified in (b) where Self-
Attention is used in the neural network. In (c), using RNNLM
results in the simplest lattice graph.

.

the performance and the generalizability of the proposed sys-
tem needs further evaluation on different benchmark datasets.
Moreover, an evaluation is needed to compare the WER scores
of human listeners in order to obtain a performance measure
relative to the human level. Considering the current state of
the art in ASR, further improvement is necessary to reach a
similar robustness level. For reproducibility, we share our code
to reproduce the results reported in this paper9.

The next steps of this research will focus on handling
variances in word pronunciations in singing, building a better
language model and curating a larger and cleaner training
dataset. Unlike spontaneous speech, sung lyrics tend to be
pronounced with longer vowels and voiced phonemes. The
lexicon used in the decoding graphs needs to be modified
in consideration of these alterations in word pronunciations.
This new lexicon can be created either be using heuristics

9https://github.com/emirdemirel/AutomaticLyricsTranscription-with-Self-
Attention

[5] or by learning a pronunciation dictionary from singing
data. Language modeling plays an important role in achieving
an improved ALT system as shown in our experiments. To
achieve this, one might focus on extending/refining the training
data and more advanced methods for building the LM. For the
former, a larger dataset of lyrics could be constructed and for
the latter style-specific LMs can be trained as suggested in
[3]. Finally, the size and variance of the training data for the
acoustic model are crucial for performance boost. Training
data can be cleaned and new annotations could be generated
from weakly or unannotated data using musical heuristics.

The task of ALT for monophonic singing voice is a task far
from being solved, yet recent research indicates a promising
future to achieve a robust system. Through this study, we
hope to draw more attention to ALT from researchers in both
ASR and Music Information Retrieval (MIR) communities,
potentially bridging the gap between these two research fields.

REFERENCES

[1] Smule Sing! 300x30x2 Dataset, “https://ccrma.stanford.edu/damp/“, ac-
cessed October 2019.

[2] A. Kruspe, “Bootstrapping a system for phoneme recognition and
keyword spotting in unaccompanied singing.“ International Society for
Music Information Retrieval Conference, 2016.

[3] C. Gupta, E. Yılmaz and H. Li. “Automatic lyrics transcription in
polyphonic music: Does background music help?“ arXiv preprint
arXiv:1909.10200, unpublished.

[4] A. Mesaros and T. Virtanen, "Adaptation of a speech recognizer for
singing voice," in European Signal Processing Conference, 2009.

[5] C. Gupta, H. Li, and Y. Wang, “Automatic Pronunciation Evaluation of
Singing.“ Interspeech. 2018.

[6] G. R. Dabike and J. Barker. “Automatic lyric transcription from Karaoke
vocal tracks: Resources and a Baseline System“ Interspeech, 2019.

[7] A. Mesaros, “Singing voice identification and lyrics transcription for
music information retrieval invited paper.“ 2013 7th Conference on
Speech Technology and Human-Computer Dialogue, 2013.

[8] Smule, “Digital Archive Mobile Performances (DAMP), ”https: //c-
crma.stanford.edu/damp/“, accessed October 2019.

[9] A. Kruspe, “Retrieval of textual song lyrics from sung inputs.“ Inter-
speech, 2016.

[10] C.-P. Tsai, Y.-L. Tuan and L.-S. Lee, “Transcribing lyrics from com-
mercial song audio: The first step towards singing content processing,”
in 43th International Conference on Acoustics, Speech and Signal
Processing, 2018.

[11] C. Gupta and H. L. R. Tong, “Semi-supervised lyrics and solo-singing
alignment“ International Society for Music Information Retrieval Con-
ference, 2018.

[12] D. Povey, et. al, “The Kaldi speech recognition toolkit", IEEE 2011
Workshop on Automatic Speech Recognition and Understanding, 2011.

[13] M.Mohri, Fernando Pereira and M Riley, “Weighted finite-state trans-
ducers in speech recognition“ Computer Speech & Language 16 No:1,
2002.

[14] V. Peddinti, D. Povey and S. Khudanpur. “A time delay neural network
architecture for efficient modeling of long temporal“, International
Speech Communication Association, 2015.

[15] D. Povey, H. Hadian, P. Ghahremani1, K. Li and S. Khudanpur, “A
time-restricted self-attention layer for ASR“, International Conference
on Acoustics, Speech and Signal Processing, 2018.

[16] A. Vaswani, et al. “Attention is all you need“, Advances in neural
information processing systems, 2017.

[17] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, “BERT: Pre-training
of deep bidirectional Transformers for language understanding”, North
American Chapter of the Association for Computational Linguistics,
2019. https://arxiv.org/abs/1810.04805

[18] M. Sperber, J. Niehues, G. Neubig, S. Stüker and A. Waibel,
“Self-attentional acoustic models“, Interspeech,2018. arXiv preprint
arXiv:1803.09519.

[19] W. Chan, N. Jaitly, Q. Le and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition“,
International Conference on Acoustics, Speech and Signal Processing,
2016.

[20] A. Stolcke, “SRILM — An extensible language modeling toolkit”,
International Conference on Spoken Language Processing, 2002.

[21] K. Li, H. Xu, Y. Wang, D. Povey and S. Khudanpur “Recurrent
neural network language model adaptation for conversational Speech
Recognition“, Interspeech, 2018.

[22] M.J.F. Gales "Maximum likelihood linear transformations for HMM-
based speech recognition", Computer speech and language 12.2, 1998.

[23] D. Povey, et. al, “Purely sequence-trained neural networks for ASR
based on lattice-free MMI”, International Speech Communication As-
sociation – Interspeech, 2016.

[24] T. Ko, V. Peddinti, D. Povey and S. Khudanpur, “Audio augmentation
for speech recognition”, Interspeech, 2015

[25] G. Saon, H. Soltau, D. Nahamoo and M. Picheny, “Speaker adaptation
of neural network acoustic models using i-vectors”, Automatic Speech
Recognition and Understanding (ASRU), 2013.

[26] K. Veselý, A. Ghoshal, L. Burget and D. Povey, "Sequence-
discriminative training of deep neural networks", Interspeech Vol. 2013,
2013.

[27] G. Cheng, et al. “An exploration of dropout with LSTMs“, Interspeech,
2017.

[28] X. Zhang, Xiaohui, J. Trmal, D. Povey, S. Khudanpur, “Improving deep
neural network acoustic models using generalized maxout networks“,
International Conference on Acoustics, Speech and Signal Processing,
2014.

[29] H. Xu, et al. "A pruned rnnlm lattice-rescoring algorithm for automatic
speech recognition", International Conference on Acoustics, Speech and
Signal Processing, 2018.

