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ABSTRACT

The estimation of rhythmic properties such as tempo, beat
positions or metrical structure are central aspects of Music
Information Retrieval (MIR) research. Meter inference al-
gorithms are typically designed to track metrical structure in
presence of mild deviations of the feature estimates over time
in order to account for performance imprecisions, expres-
sive timing or musical effects such as accelerando. Abrupt
changes of metrical structure over time are comparatively
rarely addressed. In this paper, we present an unsupervised
approach to detect metrical structure changes. Formulating
the problem as a metrical structure based segmentation re-
trieval task, we present a variant of sparse NMF and compare
it to existing methods. For evaluation, we introduce a new
dataset of music recordings containing metric modulations
with the corresponding annotations.

Index Terms— MIR, rhythm, meter, segmentation, NMF

1. INTRODUCTION

Automatic extraction of the metrical structure of music from
audio recordings is a complex and challenging task. Meter in-
ference may be approached by tracking several (usually two
or three) metrical cycles of different length such as the beat,
downbeat and tatum, typically using latent state space models
[1, 2, 3] or by analysing the metrical structure in the frequency
domain where peaks in the beat spectra relate to metrical level
pulse rates [4, 5]. Meter inference algorithms are typically
designed to track metrical structure in presence of mild devi-
ations of the feature estimates over time in order to account
for expressive timing or performance imprecisions [1, 2]. As
a consequence, tracking musical effects such as accelerando
is made possible. Abrupt changes of metrical structure over
time are comparatively rarely addressed and even less so as a
task in itself. See for instance the bar pointer model, which
allows the tracking of abrupt meter changes but requires su-
pervised learning of the metrical structures [6].

In this paper we propose an unsupervised method for the
detection of metric modulations within a music piece. We
formulate the task as a metrical structure based segmentation
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retrieval problem [7]. We restrict this study to abrupt modula-
tions from one section of stable metrical structure to another
section with a different but still stable metrical structure. Seg-
ment boundaries represent the time points at which the metric
modulation happens. The number, length and metrical struc-
ture of each segment is a priori unknown.

Multiplying the Fast Fourier Transform (FFT) and Au-
tocorrelation Function (ACF) based beat spectra, as initially
suggested by Peeters [8] was shown to be effective to filter out
harmonics in the spectrum so that its peaks more closely relate
to the hierarchy of metrical level pulse rates of the music [9].
So far, such beat spectra have only been used as a summary
feature (i.e. averaged over time). In this paper we extend this
approach to the use of a metergram in which every frame is
the product of FFT and ACF beat spectra. Changes in met-
rical structure over time therefore result in apparent structure
in the metergram, which we seek to recover.

Segments of consistent metrical structure are expected to
correspond to homogeneous regions in the metergram so that
segmentation may be retrieved by detection of homogeneity
[10]. NMF has previously been used for homogeneity-based
segmentation [11, 12, 13, 14]. Here we present a variant of
sparse-NMF which we compare to existing NMF methods as
well as a popular novelty-based approach [15] to perform seg-
mentation. As an additional contribution, we introduce a new
dataset made of a corpus of music recordings containing met-
ric modulations and the corresponding metrical structure an-
notations.

We detail the computation of the metergram in section 2
and present our segmentation method as well as baselines in
section 3. In section 4 we introduce a new dataset and discuss
the algorithms performance. We conclude in section 5.

2. METERGRAM

We first compute a spectrogram of the audio signal using
a 11.6ms Hann window with 50% overlap. An onset de-
tection function is derived using the superflux method with
the parameter values recommended by the authors [16]. We
then compute two rhythmograms RF and RA, based on the
FFT and ACF of the windowed onset detection function re-
spectively, using 12s Hann windows with 0.24s overlap. The
ACF rhythmogram is mapped to the frequency domain, as
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Fig. 1: Metergram with annotated segment boundaries over-
laid for the track “Geno (Tribute to Dexys Midnight Run-
ners)” by Union of Sound.

proposed in [8], so that the metergram may be computed as
the element-wise product (denoted by �) of the two rhyth-
mograms R(m,n) = RF (m,n) � RA(m,n). The bins
of the metergram are then re-assigned to a logarithmic fre-
quency scale with ωm = ω0 × 2(m

b ) where ω0 = 20 BPM
and b = 100 bins/octave.

Moreover, the energy distribution of interest in a meter-
gram resembles what would be called a harmonic structure
in an audio spectrogram, each horizontal line typically cor-
responding to a metrical level pulse rate [9]; whereas broad
band energy distributions/noise are not informative about the
metrical structure. As a result, we apply median filtering on
the metergram with a 15s window, in order to only keep the
“harmonic” part [17]. An example of such a metergram over-
laid with the annotated metrical structure change boundaries
is given in Figure 1. It is apparent in this example that the
metric modulations correlate with changes in energy distribu-
tion in the metergram and this is what we seek to capture.

3. SEGMENTATION

3.1. Self-similarity novelty-based segmentation

Metric modulations such as those apparent in Figure 1 may
be characterised by a change of energy distribution in the
metergram frames so that the segmentation may be per-
formed by detection of novelty over time. Foote introduced
a novelty-based method that has since become a standard
for automatic structural segmentation and which we apply to
the Self-Similarity Matrix (SSM) of the metergram [15]. We
assume that sections of consistent metrical structure will be
at least around 10s long. We found that varying the Gaussian
tapered checkerboard kernel size by a few seconds did not
have a significant impact and set it to 15s. The segmentation
has been computed for a range of novelty curve peak-picking
threshold values. We present the results obtained with the
threshold value resulting in the highest performance.

3.2. NMF for segmentation by frame clustering

Non-negative Matrix Factorisation (NMF) seeks to factorise a
non-negative matrix V ∈ RM×N≥0 such that V ≈WH where
W ∈ RM×K≥0 contains a template vector in each column, with
activations in the corresopnding row of H ∈ RK×N≥0 and
the decomposition rank K is set in advance. NMF is typ-
ically performed through gradient-based optimisation [18].
The generalised β-divergence

Dβ(s|z) =
1

β(β − 1)

∑
i

sβi + (β − 1)zβi − β(siz
β−1
i ) (1)

includes Euclidean distance (β = 2), Kullback-Leibler
(KL) and Itakuro-Saito (IS) divergences as limit cases as
β → {1, 0}, respectively. Penalty terms γ can be used to en-
courage certain behaviours in NMF, such as sparse activation
[19]. The cost function to minimise is thenDβ(V|WH)+λγ
where λ controls the impact of the penalty. Multiplicative up-
dates for penalised β-NMF are given by

H← H�
[
WT

(
V � (WH)(β−2)

)
WT (WH)(β−1) + λΨH

]ϕ(β)
(2)

W←W �
[ (

V � (WH)(β−2)
)
HT

(WH)(β−1) HT + λΨW

]ϕ(β)
(3)

where ΨH and ΨW typically describe the gradient of the
penalty and ϕ(β) is a parameter that ensures monotonicity.

Applying NMF to the metergram (V = R), the templates
should correspond to the beat spectrum of each section and
the activations revealing their temporal extent, i.e. the seg-
mentation. From a metrical structure point of view, the track
with metergram shown in Figure 1 has three different parts:
a short introduction and two main alternating parts. Figure
2 (a), (b) and (c) depicts the corresponding activation matrix
H obtained with NMF (β = 1) for K = {1, 3, 10} respec-
tively, illustrating that segmentation is performed best when
the rank equals the number of parts in the track. However, in
our scenario this number is not known a priori.

3.2.1. Heuristic automatic rank determination baseline

When the chosen rank is too small, the factorisation can not be
accurate (cf. Figure 2), implying a large reconstruction error.
This error is expected to decrease when the rank increases,
becoming reasonably small when K is equal to the number
of different segments in the track, with small decreases in er-
ror for further rank augmentation. On this premise, we de-
vise a baseline automatic rank estimation method, notated
NMF-Ke. For each track, an NMF decomposition and the
reconstruction error is computed for a range of ranks, i.e.
K ∈ {1, ..., 10}. The effective rank Ke is selected so that

Ke , K : D1(V,WH)K ≥ ε and D1(V,WH)K+1 < ε (4)

with ε = 2.10−4. The factorisation of rank Ke is then used to
retrieve segmentation.
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(a) H from NMF with K = 1
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(b) H from NMF with K = 3
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(c) H from NMF with K = 10
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(d) H from SNMF-S with K = 10
and λ = 100
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(e) H From ARD, with K =
10,β = 1, φ = 0.1 and a = 500
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(f) H from sparse Lβ -S-β-NMF
with K = 10, β = 0.5 and λ = 5

Fig. 2: Activation matrices for the track “Geno (Tribute to
Dexy’s Midnight Runners)” by Union of Sound for a range of
NMF variants with segment boundary annotations overlaid as
vertical lines

As NMF is employed as a clustering tool here, we also
compare to the popular K-means clustering method. A data
representation similar to NMF is formed, where the columns
of W are the cluster centroids, and each entry of H is defined
as hk,n = δkcn where cn is the index of the cluster to which
the nth frame is assigned. The effective rank is also deter-
mined using (4). Let us notate this method K-means-Ke.

3.3. Sparse-NMF / Automatic Relevance Determination

We now introduce a sparse NMF algorithm for β-divergence
which we label Lβ-S-β-NMF, inspired by the approach in
[20], employing the penalty γ = 1

β

∑N
n=1‖yn‖

β
β where

yk,n = hk,n‖wk‖2 and hk,n is the activation coefficient of
the kth component at nth time frame. Multiplicative up-
dates for Lβ-S-β-NMF are given by substituting ΨW =

W� repmat
(∑

n

√
hTk,n,M, 1

)
, ΨH = 1/

√
H and ϕ(β) =

1/(3 − β) into (3) and (4). Stronger sparsity is enforced by

setting β < 1, and we employ β = 1
2 in the experiments in

this paper.
For comparison then, we employ the method proposed by

Tan and Févotte to perform Automatic Relevance Determina-
tion (ARD) by aggressively and jointly sparsifying H and W
row-wise and column-wise respectively so that unnecessary
components are de-activated while iteratively optimising the
factorisation w.r.t. the β-divergence in [21]. We refer to the
original publication for details of the algorithm, but we note
that multiplicative update rules for H and W proposed by the
authors consist of the standard β-NMF updates with the ad-
dition of a penalty term whose influence is controlled by a
parameter φ. It was noted in [22] that ARD bears some simi-
larities with reweighted L1-minimisation [23] which suggests
that it enforces a sparsity constraint stronger than L1 penalty.

We compare to a sparse KL factorisation using the more
typical L1 norm of H [19], which we denote as SNMF-S. For
all approaches a rank purposefully too large is selected, hop-
ing that the sparse penalisation will select few components
[11]. In particular, we set K =10 in our experiments as we
assume unlikely that a music piece contains more than 10 dif-
ferent metrical structures.

3.4. Hidden Markov Model for final segmentation

Transitional and simultaneous activations may arise in H (cf
Figure 2). We employ a Hidden Markov Model (HMM) to fil-
ter out these artefacts and produce the final segmentation by
decoding the state sequence using the Viterbi algorithm. The
number of hidden states is set equal to the number of NMF
components K, each state being associated with the true acti-
vation of a component. We define the probability of emitting
the component index k from the kth hidden state ψk as:

π(k|ψk) =
exp (−Ak,n)∑K
k=1 exp (−Ak,n)

(5)

where Ak,n = (hk,n − µ)2/2σ2, µ = maxk,n(hk,n), and
σ = µ. π(k|ψk) is therefore large for large activation coeffi-
cients and vice versa. The transition probabilities are defined
in two classes: remain in the same state P (ψi|ψi) and transi-
tion from state ψi to state ψj notated P (ψj |ψi).

∀(i, j) ∈ {1, ...,K},
{
P (ψj |ψi) = Pd i = j

P (ψj |ψi) = 1−Pd
K−1

i 6= j
(6)

We set Pd = 0.9 in our experiments, as it has empirically
been found to work well.

4. EVALUATION

4.1. Dataset

In order to evaluate the performance of the proposed system,
we introduce a new dataset of music pieces containing met-
ric modulations1. The music corpus was composed thanks

1http://isophonics.net/content/metric-modulations-dataset
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to a crowdsourcing campaign. No musical style constraints
were enforced so that a variety of genres are represented, al-
though submissions predominantly consisted of western pop-
ular, rock and progressive rock music. From all the sugges-
tions, only the pieces featuring exclusively abrupt modula-
tions from a section of stable metrical structure to a section of
different, yet stable structure were kept. Each track was man-
ually annotated with beat, downbeat and segment boundary
positions as well as with all metrical level pulse rates present
in each segment. The segment boundaries are located at the
first downbeat of the new section. The dataset contains 67
tracks featuring 2 to 16 segments each, that being 378 seg-
ments in total and an average of 5.6 segments per track. How-
ever, due to repetition, the number of unique metrical struc-
tures per track rarely exceeds 4 and is always largely lower
than 10. A large variety of metric modulation types are repre-
sented, including changes of tempo, meter and combinations
thereof.

4.2. Evaluation metrics

We use a range of standard metrics to evaluate the quality of
the segmentation produced by the various methods under test.
The pairwise precision, recall and f-measure, notated ppr ,
prr and pfm respectively are calculated as ppr = |Pe∩Pa|

|Pe| ,

prr = |Pe∩Pa|
|Pa| and pfm = 2 ppr ·prr

ppr+prr where Pe is the set of
similarly-labelled pairs of frames estimated by the machine
and Pa is the set of similarly-labelled pairs of frames anno-
tated in the human-generated reference annotations.

We also compute the over- and under-segmentation
scores, So and Su as proposed in [24] as well as the cor-
responding simile F-measure metric: Sf = 2 SoSu

So+Su
.

Boundary hit rate whereby segment boundaries estimated
by the algorithm are regarded as correct if they are within a
tolerance window from an annotated boundary is also com-
puted. We report the hit rate F-measure with threshold of 3s
and 8s, notated Fm3 and Fm8 respectively.

4.3. Results

The evaluation results obtained for all methods considered in
this paper are given in Table 1. All methods have at least
one adjustable parameter. For conciseness, we only present
here the results obtained with the parameter configuration that
produces the highest pfm . It is to be noted that configurations
that produce the highest pfm also produce the highest hit rate
F-measure and Sf in the vast majority of the cases. In other
words, the performance of the methods tends to peak in the
same area of the parameter space for all F-measure metrics.

Considering the pairwise frame clustering metrics, it is
interesting to note that the ARD method leans towards high
recall whereas other NMF-based methods lean towards higher
precision, with the exception of the Lβ-S-β-NMF which ex-
hibits a very balanced performance. ARD with β = 1 pro-

Table 1: Segmentation performance for all methods consid-
ered in this paper. For each method, we present the results
obtained with the parameter configuration leading to the best
pfm . The highest score for each metric is in bold characters.

Methods ppr prr pfm So Su Sf Fm3 Fm8

ARD β = 0 0.59 0.92 0.66 0.59 0.58 0.58 0.22 0.38
ARD β = 1 0.70 0.91 0.75 0.69 0.70 0.70 0.42 0.53
ARD β = 2 0.61 0.84 0.66 0.61 0.63 0.62 0.28 0.36
Lβ-S-β-NMF 0.77 0.78 0.73 0.72 0.84 0.75 0.41 0.52
SNMF-S 0.84 0.50 0.57 0.58 0.85 0.69 0.31 0.43
NMF-Ke 0.80 0.67 0.67 0.66 0.81 0.73 0.39 0.53
Kmeans-Ke 0.89 0.47 0.57 0.61 0.90 0.73 0.37 0.45
SSM Foote 0.66 0.81 0.68 0.68 0.68 0.68 0.07 0.42

duces the best pfm performance, with Lβ-S-β-NMF closely
following. The examination of under- and over-segmentation
scores reveals that all methods tend to over-segment more
than they under-segment and Lβ-S-β-NMF produces the
highest Sf score.

For every NMF+HMM method, raising the hit rate thresh-
old from 3s to 8s improves the F-measure score by about
0.1 points, which suggests that the precise localisation of the
boundaries is a significantly challenging problem on which to
improve in future work. The effect is even more pronounced
in the case of novelty-based segmentation, which suggests
that the NMF+HMM strategy leads to more precise boundary
locations estimates than peak-picking a Foote novelty curve.

Overall it appears that ARD with β = 1 andLβ-S-β-NMF
share the highest scores on all F-measure metrics (i.e. pfm ,
Sf ,Fm3 and Fm8), often exhibiting close scores. These
are the only two methods to consistently equal or outperform
SSM Foote and automatic rank determination baselines and
may therefore be considered as the two best performing meth-
ods. They are also the two methods enforcing the strongest
sparsity constraints in the NMF decomposition — cf. Figure
2 for illustration. In addition, SNMF-S performs best when
the weight of its sparsity constraint, which is comparatively
weaker, is extremely large (λ = 100). This suggests in more
general terms that very strong sparsity constraints are benefi-
cial for the quality of the segmentation produced.

5. CONCLUSION

We have presented an unsupervised method to segment musi-
cal recordings with respect to metrical structure and therefore
took a step towards the automatic tracking of metric modula-
tions. In addition, we presented a new dataset to evaluate such
systems. The results show that homogeneity-based NMF-
powered methods outperform the standard novelty-based ap-
proach and that very strong sparsity constraints are instrumen-
tal in achieving such a result. Directions for future work con-
sist in improving the segment boundary location precision and
extended evaluation of the metrical structure templates learnt.

44



6. REFERENCES

[1] A. P. Klapuri, A. J. Eronen, and J. T. Astola, “Analysis
of the meter of acoustic musical signals,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol.
14, no. 1, pp. 342–355, 2006.

[2] F. Krebs, A. Holzapfel, A. T. Cemgil, and G. Widmer,
“Inferring metrical structure in music using particle fil-
ters,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 23, no. 5, pp. 817–827, 2015.

[3] A. Holzapfel, F. Krebs, and A. Srinivasamurthy, “Track-
ing the "Odd": Meter Inference in a Culturally Diverse
Music Corpus.,” in International Society for Music
Information Retrieval (ISMIR) Conference, 2014, pp.
425–430.

[4] F. Gouyon and P. Herrera, “Determination of the me-
ter of musical audio signals: Seeking recurrences in
beat segment descriptors,” in Audio Engineering Society
Convention 114, 2003.

[5] M. Robine, P. Hanna, and M. Lagrange, “Meter Class
Profiles for Music Similarity and Retrieval.,” in Interna-
tional Society for Music Information Retrieval (ISMIR)
Conference, 2009, pp. 639–644.

[6] N. Whiteley, A. T. Cemgil, and S. J. Godsill, “Bayesian
Modelling of Temporal Structure in Musical Audio.,”
in International Society for Music Information Retrieval
(ISMIR) Conference, 2006, pp. 29–34.

[7] B. Thoshkahna, M. Müller, V. Kulkarni, and N. Jiang,
“Novel Audio Features for Capturing Tempo Salience in
Music Recordings,” in IEEE International Conference
on Acoustics Speech and Signal Processing. 2015.

[8] G. Peeters, “Time variable tempo detection and beat
marking,” in Proceedings of the ICMC, 2005.

[9] E. Quinton, C. Harte, and M. Sandler, “Extraction of
Metrical Structure from Music Recordings,” in Int. Con-
ference on Digital Audio Effects (DAFx), 2015.

[10] J. Paulus, M. Müller, and A. Klapuri, “State of the Art
Report: Audio-Based Music Structure Analysis.,” in In-
ternational Society for Music Information Retrieval (IS-
MIR) Conference, 2010, pp. 625–636.

[11] R. J. Weiss and J. P. Bello, “Identifying Repeated Pat-
terns in Music Using Sparse Convolutive Non-Negative
Matrix Factorization,” in International Society for Mu-
sic Information Retrieval (ISMIR) Conference, 2010.

[12] O. Nieto and T. Jehan, “Convex non-negative matrix
factorization for automatic music structure identifica-
tion,” in IEEE International Conference on Acoustics,
Speech and Signal Processing. 2013, pp. 236–240.

[13] F. Kaiser and T. Sikora, “Music Structure Discovery
in Popular Music using Non-negative Matrix Factoriza-
tion.,” in International Society for Music Information
Retrieval (ISMIR) Conference, 2010, pp. 429–434.

[14] P. Seetharaman and B. Pardo, “Simultaneous Separation
and Segmentation in Layered Music,” in International
Society for Music Information Retrieval (ISMIR) Con-
ference, 2016.

[15] J. Foote, “Automatic audio segmentation using a mea-
sure of audio novelty,” in IEEE International Confer-
ence on Multimedia and Expo (ICME). 2000, vol. 1, pp.
452–455.

[16] S. Böck and G. Widmer, “Maximum filter vibrato sup-
pression for onset detection,” in Int. Conf. on Digital
Audio Effects (DAFx), 2013.

[17] D. Fitzgerald, “Harmonic/percussive separation using
median filtering,” in Int. Conf. on Digital Audio Effects
(DAFx), 2010.

[18] D. D. Lee and H. S. Seung, “Learning the parts of ob-
jects by non-negative matrix factorization,” Nature, vol.
401, no. 6755, pp. 788–791, 1999.

[19] J. Eggert and E. Korner, “Sparse coding and NMF,”
in Proceedings of the International Joint Conference on
Neural Networks. 2004, vol. 4, pp. 2529–2533, IEEE.

[20] K. O’Hanlon, H. Nagano, N. Keriven, and M. D. Plumb-
ley, “Non-negative group sparsity with subspace note
modelling for polyphonic transcription,” IEEE/ACM
Transactions on Audio, Speech, and Language Process-
ing, vol. 24, no. 3, pp. 530–542, 2016.

[21] V. YF Tan and C. Févotte, “Automatic relevance de-
termination in nonnegative matrix factorization with the
β-Divergence,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 7, pp. 1592–1605,
2013.

[22] V. YF Tan and C. Févotte, “Supplementary material
to “Automatic Relevance Determination in Nonnegative
Matrix Factorization with the β-Divergence”,” 2012,
https://www.ece.nus.edu.sg/stfpage/vtan/supp_mat.pdf.

[23] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing
sparsity by reweighted l 1 minimization,” Journal of
Fourier analysis and applications, vol. 14, no. 5-6, pp.
877–905, 2008.

[24] H. M. Lukashevich, “Towards Quantitative Measures of
Evaluating Song Segmentation.,” in International So-
ciety for Music Information Retrieval (ISMIR) Confer-
ence, 2008, pp. 375–380.

45


