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A data-driven model of tonal chord sequence
complexity
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Abstract—We present a compound language model of tonal
chord sequences, and evaluate its capability to estimate perceived
harmonic complexity. In order to build the compound model we
trained three different models: prediction by partial matching, a
hidden Markov model and a deep recurrent neural network,
on a novel large dataset containing half a million annotated
chord sequences. We describe the training process and propose
an interpretation of the harmonic patterns that are learned by
the hidden states of these models. We use the compound model
to generate new chord sequences and estimate their probability,
which we then relate to perceived harmonic complexity. In order
to collect subjective ratings of complexity, we devised a listening
test comprising two different experiments. In the first, subjects
choose the more complex chord sequence between two. In the
second, subjects rate with a continuous scale the complexity
of a single chord sequence. The results of both experiments
show a strong relation between negative log probability, given by
our language model, and the perceived complexity ratings. The
relation is stronger for subjects with high musical sophistication
index, acquired through the GoldMSI standard questionnaire.
The analysis of the results also includes the preference ratings
that have been collected along with the complexity ratings; a
weak negative correlation emerged between preference and log
probability.

Index Terms—Harmonic complexity, Chord sequences, Lan-
guage models

I. INTRODUCTION

THE estimation of complexity of musical content is among
the various tasks of Music Information Retrieval (MIR).

Numerous studies about complexity hypothesized a tight re-
lationship between complexity and preference [1], [2], [3],
arousal [4] and cultural evolution of music [5].

However, the automatic estimation of perceived complexity
from music is an ill-conditioned problem. In fact, while every-
one can think of relatively complex or simple songs, assigning
a precise meaning to the word “complexity” is as hard as
describing our mental representation of music. Nevertheless,
it is reasonable to address different musical facets separately,
assuming that listeners resort to many concurrent and hier-
archical models to globally represent the perceived acoustic
signal [6]. In this work we focus on harmony and propose a
data-driven language model of tonal chord sequences, showing
its ability to automatically estimate the perceived complexity
and preference. In particular, we show that the probability of
a chord sequence, given by a language model trained on a
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sufficiently large dataset, can be related to these perceptual
quantities. In order to quantitatively evaluate our hypothesis
we collected the ratings of complexity and preference ob-
tained from a listening test. Since we deal with the harmonic
complexity of tonal chord sequences, we provide hereafter
a definition of tonal harmony and a hierarchy of the main
interpretations of harmonic complexity.

Tonal Harmony (TH) has been the main theoretical frame-
work for harmony in Western music since the baroque period
(around 1650). It implies that there is a certain pitch class,
called the tonic, acting as a referential point. The building
blocks of this framework are the chords, whose function can be
established by the interval between their root and the tonic [7].
It is also important to stress that it has been shown that even
musically untrained listeners possess a kind of unconscious
natural model of tonal harmony [8], [9].

A taxonomy of different sources of harmonic complexity
is proposed by Temperley [6] and includes harmonic rhythm,
harmonic dissonance and harmonic evolution.

Harmonic rhythm consists of the rate of chord changes as
well as their position within the meter. Both quantities are
assumed to correlate with tension [6].

Harmonic dissonance is a property of the intervals between
simultaneously sounding pitches. Weiss dealt with similar
approaches, proposing a number of dissonance features in
order to analyze different sections of Beethoven’s sonatas
[10] and classify four historical music periods [11]. In [12]
a chroma complexity measure is used to predict the year of a
set of last century top hits.

Harmonic evolution encompasses the dynamic properties
of harmony, and in particular harmonic priming, by which
the listener develops expectations of what is to come next,
given a harmonic context. If the expectation is confirmed
by the following harmony, perception will be easier and
quicker [4], [13]. Models belonging to this class may be
further subdivided based on how the expectation is formed: the
sensory expectation is formed using low-level properties of the
context, e.g. implying temporal continuity on the pitch class
profiles, while the cognitive expectation is formed from using a
higher level (more abstract) representation of the context, e.g.
using rules of a given musical idiom such as tonal harmony
[14].

Methods for estimating harmonic complexity based on
sensory expectations rely on distance metrics between adjacent
Pitch Class Profiles (PCPs, also called chroma). For example,
Mauch [5] introduces and applies a structural change measure
directly to chroma. The relationship of structural change with
complexity is hypothesized but left for future work. Streich



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

[15] evaluates the distance between a PCP with short time
span and one with longer time span. The comparison is
computed with both the Pearson correlation coefficient and
city block distance. Among other PCP similarity metrics used
for estimating chord expectations is the spectral pitch distance
described in [16], that implements ideas of perceptual affinity
from the model of Parncutt [17]. In [18], chord expectations
are formed favoring temporal continuity of chord voices,
considering multiple temporal scales.

Methods focusing on cognitive harmonic expectations esti-
mate the amount of surprise using rules from music theory or
machine learning models. In [19], [20] the surprise is estimated
as the number of applications of two rules, which comply with
music theory, to transform the previous chord into the next
chord. This measure is then tested on a genre classification
problem. In [21], the authors train and compare different
machine learning models on a corpus of Jazz chord sequences.
In [22], a multiple viewpoint model is used to model prediction
in a four part chorale setting. In [23], a machine learning
approach is used to compute predictions and a set of chord
substitution rules is also inferred from data. However, in [21],
[22] and [23], no claim is made about the relationship between
surprise and harmonic complexity.

It is also important to mention contributions coming from
the field of psychology about harmonic priming. In [8], the
authors perform three listening tests with a list of ad hoc
chord sequences. Among the other results they prove that
reaction times are quicker for expected chords and that priming
is independent from musical training. In [14], the prevalence
of cognitive priming over sensory priming is experimentally
proved, even with very fast harmonic rhythm.

In this article, we design the architecture of a language
model of tonal chord sequences that we use to model cognitive
expectation. Then, we evaluate its capability to estimate the
perceived harmonic complexity. The model is trained on a
novel dataset containing approximately half a million chord
sequence annotations, therefore being the largest such dataset,
to the best of the authors knowledge. The dataset has been
collected from the website ultimateguitar.com and contains
annotations uploaded by users. Although these data may have
questionable accuracy, we believe that the benefits of such
a large data set outweigh any effect of the noise in the data.
Apart from transcription errors, the differences from high qual-
ity annotations may include chord simplification, substitution
using similar chord functions and reharmonization, but we
cannot quantify them. It can be argued that with such an
amount of data, the models would learn the typical chord
substitutions, while filtering out the more random errors.

It is known from music theory that we can formulate much
better hypotheses on chords when we know the key of the
piece, because of the strong relationship between the two en-
tities. In fact, the key is often interpreted as a latent variable in
probabilistic models of chords [24], [25], [26], [27]. Therefore,
we estimate the tonic as a pre-processing step, and represent
chords using a relative notation (i.e. Cmaj as 0maj when the
tonic is C). Estimating only the tonic, but not the specific
scale or mode, allows the model to learn common chord
progression patterns, such as modal interchange and secondary

dominants, that exploit notes from different scales or modes.
Furthermore, this way we ensure a maximally efficient usage
of the models, avoiding a 12-times augmentation of the dataset
with the transposed versions of each song.

The machine learning language models used in this work
are: Prediction by Partial Matching (PPM) [28], discrete
Hidden Markov Model (HMM) [29] and Recurrent Neural
Network (RNN) [30]. We investigate to find the optimal
combination of these three models, which is the final approach
described here. We will then evaluate, with two perceptual
tests, that the probability of a chord sequence evaluated by
our model is strongly correlated to the high level concept of
harmonic complexity.

The remainder of the paper is organized as follows: in
Section II we review the background of the tonic identification
task and the language models used; Section III discusses
the dataset and our tonic identification algorithm; Section IV
details the process of training and combination of the chord
language models; in Section V we provide the specification
and discuss the results of the two perceptual tests; in Section
VI we present the conclusions and possible extensions of the
work.

II. BACKGROUND

In this section we provide an overview of the three lan-
guage models, Prediction by Partial Matching (PPM), Hidden
Markov Model (HMM) and Recurrent Neural Network (RNN),
used for computing the prediction probability p(xi|xi−1i−n),
hence the expectation of a chord xi, given the sequence of the
previous n chords. Such models can compute a distribution
over chord sequences, given by:

p(x) = p(x0)
∏
i>0

p(xi|xi−10 ) (1)

The overview is focused on the prediction task and uses a
consistent notation in order to highlight the differences among
the models. For each model, we also provide some references
on music related works.

A. Prediction by Partial Matching

PPM [28] was originally developed as a method for data
compression, assuming a Markov model of the source. The
nth-order Markov model is a probabilistic language model
where an element depends only on the previous n elements:

p(xi|xN0 ) = p(xi|xi−1i−n), (2)

where xji is the sequence of symbols from i to j. (n − 1)th-
order Markov model sources are modeled using n-grams
where the probability of observing a particular symbol xi is
estimated by counting the occurrences in the set of training
sequences:

p(xi|xi−1i−(n−1)) =
c(xi|xi−1i−(n−1))∑
x∈X c(x|xi−1i−(n−1))

(3)

where the function c(gn|gn−11 ) counts the occurrences of the
n-gram gn1 in the training set and X is the alphabet. The



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

zi

xi

zi�1

xi�1x0

z0

Fig. 1. In this article we use Hidden Markov models for prediction of the
next symbol xi given the previous ones xi−1

0 . The observed variables are
shaded.

Equation (3) is called the Maximum Likelihood estimate and
can lead to poor performance, particularly in the case that
some n-grams never occur in the training set, known as the
zero frequency problem. In PPM, the prediction probability
is estimated using also the lower order models. This allows
to cope with the sparsity of higher order models, i.e. if a
particular n-gram xi|xi−1i−(n−1) is novel to the (n− 1)th-order
model, the symbol xi−(n−1) is dropped and the (n − 1)-
gram xi|xi−1i−(n−2) is considered using the (n − 2)th-order
model. This procedure of combining different order models
is known as back-off smoothing, and it solves the zero-
frequency problem [31] of fixed order n-gram models. A
general framework for back-off smoothing [32] is expressed
by the following equations:

p(xi|xi−1(i−n)+1) =

=

{
α(xi|xi−1(i−n)+1) if c(xi|xi−1(i−n)+1) > 0

γ(xi−1(i−n)+1)p(xi|xi−1(i−n)+2) otherwise,
(4)

where α(xi|xi−1(i−n)+1) is an estimate of the probability of an
already seen n-gram and the escape probability γ(xi−1(i−n)+1)
represents the probability mass assigned to all symbols that
are novel in the current context xi−1(i−n)+1, in the training set:∑

xi∈X
α(xi|xi−1(i−n)+1) + γ(xi−1(i−n)+1) = 1. (5)

A series of heuristics have been proposed to compute the
functions α and γ. As stated in [31], [28], there seems to be
no theoretical basis for choosing any particular heuristic. In
our experiments (see Sect. IV-A) we tried several approaches
[28], [33], [34], [35], as well as some common enhancement
techniques such as exclusion [28] and interpolation [36].

In the realm of music, PPM has been used in [37], [22] and
[21] as part of a multiple viewpoint model, respectively for
extrapolating melody, harmonizations and chord progressions.
Fixed order n-grams and n-grams with simpler smoothing
techniques have been used in [38] for predicting the next chord
of a progression.

B. Hidden Markov Models

HMMs abstract the sequence dependences from the ob-
served sequence x to a hidden sequence z, called the state
sequence. The hidden sequence is modeled as a first order
Markov model, while each observed element xi depends only
on the current state zi. Using the d-separation criterion, it is
possible to show that the predictive distribution p(xi|xi−10 ) for
observation xi given all previous observations does not exhibit

any conditional independence properties [39, p. 372–383].
Therefore, HMMs overcome the Markov model limitation,
rendering the prediction of xi dependent on all previous
observations.

HMMs are fully described by three probability distribu-
tions: the state transition probability p(zi|zi−1), the emission
probability p(xi|zi) and the initial state probability p(z0).
In our case these are all categorical distributions, and the
maximum likelihood value of their parameters can be learned
from a training set of observed sequences using the iterative
Expectation-Maximization (EM) algorithm. The hidden states
Z are abstract classes and do not have a semantic meaning.
They represent different distributions over the chord space,
described by their emission probability. In Sect. IV-A we
show that after training by EM, the states converge to model
meaningful contexts about chord progressions.

Once the model parameters have been learned, the predic-
tion of xi, given the sequence xi−10 , is obtained marginalizing
over the hidden variables zi and zi−1:

p(xi|xi−10 ) =
∑
zi−1

p(zi−1|xi−10 )
∑
zi

p(zi|zi−1)p(xi|zi). (6)

zi−1, in turn, depends on the whole sequence xi−10 :

p(zi−1|xi−10 ) =
p(xi−10 , zi−1)

p(xi−10 )
. (7)

The denominator of Eq. (7) is a normalization factor, and
the joint probability p(xi−10 , zi−1) can be obtained by the
following recursive relations:

p(xi0, zi) = p(xi|zi)
∑
zi−1

p(xi−10 , zi−1)p(zi|zi−1) (8)

p(x0, z0) = p(x0|z0)p(z0), (9)

known as the forward part of the forward-backward algorithm,
since its computation propagates forward from the start of the
sequence (Eq. 9) up to the previous frame (Eq. 8), iteratively
marginalizing over the hidden variables zi−20 .

The equations (6), (8) and (9) effectively marginalize over
all the hidden nodes of the graphical model of Figure 1. Eq.
(8) and (9) are also used in [40] to demonstrate the exponential
forgetting rate behavior of this model.

An HMM has been used as a language model for chord
prediction in [21]. The common usage for chord recognition
[41] is fundamentally different because of the chord sequence
being the hidden variable with audio features, commonly the
chromagram, as the observed variable. In that case, the HMM
can be interpreted as a chromagram language model, using a
meaningful hidden state: chords. In our case HMM functions
as a chord language model, with an abstract hidden state.

C. Recurrent Neural Networks

RNNs extend standard feed-forward deep neural networks
(FNNs), adding the capability of modeling sequential data.
FNNs are biologically inspired machine learning models used
for classification and regression, where the input data x
undergoes a series of non-linear transformations:

hl+1 = f(Wlhl + bl), (10)
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Fig. 2. A Recurrent Neural Network used for the prediction of the next symbol
xi given the previous ones xi−1

0 . H represents the stack of the hidden layers
hl : 1 ≤ l ≤ L, which is the state of the model.

where h0 = x; for each of the layers 0 ≤ l ≤ L, hl is the
vector of hidden units, Wl is the weight matrix and bl is the
bias vector; f is a non-linear function applied element-wise.
For the task of classification with K alternative classes, the
last layer hL is a vector of K units, which is transformed by
a softmax non-linearity to yield the probability distribution of
each class p(y|x), given the input. The problem with standard
FNNs is that no state is maintained between successive inputs.

RNNs introduce the notion of time by including connections
between adjacent time steps:

htl+1 = f(W f
l h

t
l +W r

l h
t−1
l + bl), (11)

where W f
l is the matrix of weights for the forward propagation

of input while W r
l is the matrix of weights for the recurrent

connection between the same layers of units. The set of
parameters of the RNN includes W f

l , W r
l and bl for each layer

and is trained using the algorithm called back-propagation
through time, introduced in [42].

While for FNNs only fixed-length sequences can be used to
predict the probability of observing the next symbol, for RNNs
there is no such limitation. Since RNNs explicitly model the
concept of time, sequences of arbitrary length can be used as
a context, similarly to HMMs. The model is trained using
sequences of (input, target) pairs of examples of the form
(xi, xi+1). Although there is only one symbol as input for
each example pair, the sequential nature of the data and the
particular model structure ensure that the model will learn to
estimate the probability p(xi|xi−10 ) of a given symbol as the
next symbol after a given sequence of previous symbols. This
is a consequence of the autoregressive nature of the model,
meaning that the state is function of the current input and the
previous state. Therefore the state used to predict the current
output is a representation of the current and all the previous
inputs [43].

Once the model is trained, this estimation is performed
inputting one symbol at a time and considering only the last
output of the network, as shown in Figure 2.

In comparison to HMMs, the state of an RNN is distributed,
which allows a larger and more flexible memory capacity [44]:
the number of distinct states that can be represented in a hidden
layer of nodes grows exponentially with the number of nodes
in the layer [30]. An in depth review of RNNs used as language
models is provided by De Mulder [43].

RNNs have been previously used in [45], [46] as language
models for audio chord recognition. In those works, usage
of the RNN is fundamentally different from ours, in terms
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Fig. 3. The top figure shows the number of annotations per song (a) on
the entire dataset. The most annotated song is “The A Team” by Ed Sheeran,
which is the only one counting 22 annotations. 51k songs have more than one
annotation. The bottom figure (b) shows the percentage of annotations created
by a percentage of annotators and is computed on the 2575 annotations for
which it was possible to extract the name of the annotator. Approximately
20% of the annotators created 60% of the annotations.

of purpose (smoothing rather than prediction) and domain of
input variables.

III. DATASET

The dataset used in this work contains all the chord an-
notations of the website ultimateguitar.com. Overall, it in-
volves 26545277 chord occurrences stemming from 412924
annotations, referring to approximately 328k songs by 40k
authors 1. 51k songs have been annotated more than once,
as showed in Fig. 3a. Moreover, for 2575 annotations it has
been possible to extract the name the annotator. For these
annotations, approximately 20% of the annotators created 60%
of the annotations as showed in Fig. 3b. We expect a similarly
shaped distribution for the entire dataset.

Style tags show a significant prevalence of Rock, Pop and
Alternative music. 373 different chord type labels were found
and manually mapped to 4, thus obtaining an alphabet of 48
symbols: 12 pitch classes for the root (discarding enharmonic
information) and 4 chord types. The chosen chord types are
maj, min, 7 and (5), expressed using the syntax proposed
in [47]. The first three were chosen because they are, as
expected, the most frequently occurring in the dataset (89% of
all occurrences), while (5) was retained because the mapping
to any of the three previous types is not possible without any
prior information about the tonality. Generally, the mappings
just delete the extensions, for example transforming maj7 into
maj and 9 into 7. In Table I we show the most common
chord types found in the annotations, their proportion and
the mapping to the chosen alphabet. Some of the mappings
required a stronger decision, e.g. turning dim into min and
aug into maj; regarding these choices, we used the the
interval of third as a decision factor, because it gave us fewer
and more significant categories than using the fifth.

Approximately 2% of the chords of the dataset have orig-
inally been annotated with a bass note that is different from

1The dataset is available at http://ispg.deib.polimi.it/mir-software.html
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TABLE I
MAIN CHORD TYPE MAPPINGS AND DISTRIBUTION

source target %
Z Z 64.73
Z:min Z:min 21.60
Z:7 Z:7 3.45
Z:min7 Z:min 1.99
Z:(5) Z:(5) 1.88
Z/X Z 1.74
Z:maj7 Z 0.84
Z:(3,5,9) Z 0.83
Z:sus4 Z:(5) 0.56
Z:(2,3,5) Z:(5) 0.47
Z:9 Z:7 0.28

source target %
Z:min/X Z:min 0.25
Z:maj6 Z 0.24
Z:(4,5,b7) Z:7 0.09
Z:dim Z:min 0.09
Z:min9 Z:min 0.07
Z:min6 Z:min 0.07
Z:min7/X Z:min 0.05
Z:maj9 Z 0.05
Z:7/X Z:7 0.04
Z:11 Z:7 0.03
Z:aug Z 0.02

the root (for example C/E, A:min/G). We decided to drop
the bass note, assuming that the information contained in it
was not substantial enough to justify a much larger alphabet.

A. Tonic identification

In our dataset there is no information about chord onset
times or durations. This fact undermines our ability to eval-
uate the relative importance of the different chords within a
sequence. Furthermore, to the best of our knowledge, there
exists no method for tonic-identification from chords that deals
with the absence of time information. Therefore we designed
a simple method for tonic identification tailored for our needs.

The tonic t ∈ {0, . . . , 11}, representing pitch classes {’C’,
’C#’, ..., ’B’} is found by maximizing the Pearson correlation
coefficient ρ between the sum X of the pitch class profiles
of all the chords in the sequence and a key template Y (t,m)
obtained as a cyclic permutation of a mode template ϕm:

t = argmax
t

(
max
m

(ρ(X,Y (t,m))πm)
)

(12)

X =

N−1∑
i=0

βxi
(13)

Yi(t,m) = ϕm((t+ i) mod 12) i = 0, . . . , 11 (14)
(15)

where βx ∈ {0, 1}12 is the pitch class profile of a chord x, N
is the number of chords in the song, ϕm is the mode template,
i.e. the pitch class profile of the mode (see Table II), πm is a
prior distribution over the set of considered modes (the seven
diatonic modes). Maximizing over the mode m has the desired
effect of considering only the best fitting mode for each tonic
t. With reference to Table II, the parameters of the model are
the weight τ of the tonic in the mode profiles (τ > 1), and the
parameters a, b, c of the distribution πm, with 2a+2b+2c+d =
1, (the factor 2 is due to a, b and c being applied to two modes
each). Based on empirical estimates of the relative occurrence
of the modes in popular music, we set τ = 2, a = 0.02,
b = 0.33, c = 0.15, d = 0.

In order to qualitatively evaluate the accuracy of our
method, we compared it with our implementation of the
Temperley model in [48], which is also based on key template
matching and achieved the best performance in the symbolic
key estimation task at the Music Information Retrieval Eval-
uation eXchange (MIREX) contest in the 2005 edition, the

TABLE II
PITCH CLASS PROFILES OF THE DIATONIC MODES

mode name ϕm πm
lydian [τ , 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1] a
ionian [τ , 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1] b
mixolydian [τ , 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0] c
dorian [τ , 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0] c
aeolian [τ , 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0] b
phrygian [τ , 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0] a
locrian [τ , 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0] d

0.0 0.1 0.2 0.3 0.4 0.5 0.6
accuracy

Di_Giorgi

Temperleym
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Fig. 4. The mean accuracy of our tonic identification algorithm, compared
to our modified implementation of [48]. The modification concerns the
computation of the required polyphonic representation starting from the
sequence of chords, which are assumed to have constant duration. The results
are based on a set of 100 songs where they disagree. 95% confidence intervals
are obtained by 1000 iterations of bootstrapping.

last one hosting this task. [48] learns key templates from the
Kostka-Payne corpus and then correlates them with binary
pitch class profile vectors obtained from 1.2 second long
frames of a polyphonic representation (Musical Instrument
Digital Interface, MIDI). Frame-wise key probabilities are
then smoothed using dynamic programming. We obtained the
polyphonic representation that [48] requires by aggregating
adjacent chords within a moving frame, using max function,
and assuming that all chords have the same duration. We
noticed negligible difference changing the frame duration (i.e.
the number of chords to aggregate), the aggregation function
or the overlap between successive frames.

For 70% of the songs, our algorithm and [48] agree,
estimating the same pitch class as tonic. We randomly selected
100 songs from the remaining set and manually annotated the
tonic. An estimation of the mean accuracy of both algorithms
in this “disagreement set” revealed a meaningful advantage in
using our method for tonic-identification (Figure 4). The same
test was repeated using the original and the reduced alphabet of
chords, obtaining no noticeable difference in the results. This
is due to the predominance of the four chord types included in
the reduced alphabet, and generally the invariance of the tonic
estimation process to the chord type mappings described in
Table I.

After estimating the tonic of every song, we can represent
all the chord symbols relatively to the tonic, in terms of the
interval (in semitones) between the tonic and the chord’s root.
A relative notation is usually found in harmony textbooks
using roman numerals indicating scale degree (“I”, “ii”) and
brings some advantages with respect to absolute notation
(C:maj, D:min), as also argued in [49], [38]. First, it is closer
to our perception of tonal music because similar sounding
progressions such as [C:maj, A:min, D:min, G:7] and
[G:maj, E:min, A:min, D:7] are represented by the
same symbols: [0:maj, 9:min, 2:min, 7:7]. Second,
it changes the distribution of the symbols in our dataset (Fig.
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Fig. 5. The distribution of chord symbols in our dataset changes when we
represent chords absolutely (e.g. C:maj) or relatively to the tonic of each
song (e.g. 0:maj). The figure shows the two distributions, where the 48 chord
symbols are independently sorted from the most probable to the less probable.
Using the relative notation, a fraction of the probability mass concentrate on
just three symbols, which unsurprisingly are the three most common chords
in tonal harmony theory: 0:maj (I), 5:maj (IV) and 7:maj (V).

TABLE III
ESCAPE METHODS

method escape if ξ ĉ(x)
∑

x∈X ĉ(x)

A [28] c(x) = 0 1 c(x) N
B [28] c(x) ≤ 1 N2+ c(x)− 1 N −N1 −N2+

C [33] c(x) = 0 N1+ c(x) N
D [34] c(x) = 0 .5N1+ c(x)− .5 N − .5N1+

AX [35] c(x) = 0 N1 + 1 c(x) N

5), reducing its entropy from 4.30 to 3.77 bits/symbol. We use
the interval in semitones rather than scale degree so that we
can represent chords built on non-scale notes more clearly.

IV. LANGUAGE MODELS TRAINING

In this section we describe the process of training the three
language models (PPM, HMM and RNN). The evaluation
metric that is commonly used for language models is the cross-
entropy:

Hp(T ) =
1

|T |
∑
x∈T
− log2 p(x), (16)

where T represents the test data and Hp is measured in
bits/symbol. Therefore, the lower the cross-entropy, the better
we can expect the language model to predict the next symbol.
Furthermore, we evaluate the variability of our cross-entropy
estimates using 5-fold cross-validation.

A. PPM

With reference to Eq. 4, different heuristics have been
proposed to compute α(xi) and γ, where the dependence on
the context xi−1i−n has been omitted to simplify the notation.
α(xi) and γ can be represented in terms of the smoothed
counts ĉ(x) and the virtual count ξ attributed to chord symbols
that are novel in the current context:

α(xi) =
ĉ(xi)

ξ +
∑
x∈X ĉ(x)

(17)

γ =
ξ

ξ +
∑
x∈X ĉ(x)

(18)

A summary of the different methods to obtain ĉ(x) and ξ is
given in Table III, where the following definitions have been
used:
• c(x) is the count of occurrences of the chord x
• N is the total number of occurrences
• Nk is the number of chord symbols occurring exactly k

times
• Nk+ is the number of chord symbols appearing at least
k times

in the training set. All the afore-mentioned variables depend on
the current context and are related by the following equations:

N =

∞∑
k=1

kNk =
∑
x∈X

c(x) (19)

Nj+ =

∞∑
k=j

Nk. (20)

The computation of p(xi|xi−1i−n) is carried out by decreasing
the order of the model until the recursion in Eq. (4) terminates.
If a chord symbol is not found with a 0-order model (i.e. with
1-grams), a uniform distribution on the alphabet is used.

Two common enhancement techniques that we tested are
exclusion and interpolation. Exclusion removes the symbols
found at higher order models (i.e. with longer contexts)
from the computation of

∑
ĉ(x) in equations (17) and (18).

Interpolated smoothing is an alternative approach to backoff
smoothing Eq. (4) and is described by the following equation:

p(xi|xi−1(i−n)+1) =max
(
α(xi|xi−1(i−n)+1), 0

)
+

γ(xi−1(i−n)+1)p(xi|xi−1(i−n)+2), (21)

where it can be noticed that interpolated smoothing uses lower
order models even for n-grams with non-zero count.

The cross-entropy results achieved by the methods in Table
III, with backoff and interpolated smoothing, are shown in
Figure 6. All methods used the exclusion technique because it
consistently led to better results. The variation in Hp observed
with 5-fold cross validation is two orders of magnitude smaller
than the data, meaning that our estimates are stable and
independent of the particular choice of the training and test
sets. Backoff smoothing seem to plateau or even overfit for
high order models, due to the increasing sparsity of the
occurrences for longer contexts. In particular, if a symbol
is found in a high order model with a sparse distribution,
the probability estimation might be a bad approximation and
would benefit from exploiting the lower order models. Such
a claim is fostered by the fact that there is no such trend
for interpolated models. In the latter category, only method
A does not benefit from increasing the order, probably due
to its small escape probability that leads to small differences
between backoff and interpolated smoothing.
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Fig. 6. Five smoothing methods for the PPM language model are compared
using (a) backoff and (b) interpolated smoothing. Order 0 (the 1-gram model)
is not shown in the figure and achieves the same value of cross-entropy (3.77
bits/symbol) independently of the smoothing method. Error bars computed by
5-fold cross validation are not visible, being two orders of magnitude smaller
than the data.
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Fig. 7. The cross-entropy metric Hp obtained by the HMM with different
hidden node alphabet sizes |Z|. As expected, with increasing |Z| the model
becomes more flexible and computes more accurate predictions. Error bars are
computed using 5-fold cross validation. No overfitting behavior is observed
for the sizes that we tested (|Z| ≤ 1000).

B. HMM

We trained a series of HMMs varying the size of the
alphabet Z of the hidden nodes z logarithmically from 1 to
1000, using 100 iterations of the EM algorithm with random
parameter initialization. The distributions used by the model
contain a total number of parameters equal to:

(|Z| − 1) + |Z|(|X | − 1) + |Z|(|Z| − 1). (22)

As expected, results (Figure 7) show that cross-entropy
Hp decreases with increasing numbers of parameters. When
|Z| = 1 the model just learns one distribution p(xi|zi = 1),
effectively reducing to the 1-gram model. For the model with
|Z| = 2, the cross validation leads to much larger variance
than the models with |Z| > 2. Arguably the variance is
caused by the different local maxima found by EM, due to
the random initialization of the parameters. In order to get a
better understanding of the model and interpret the results, we
briefly analyze the meaning of the latent variable z.

If we focus on the Markov model on z and consider
only transition probabilities p(zi|zi−1) larger than a certain
threshold, it is possible to create a graph of hidden node

0:min
8:maj
10:maj
5:min
3:maj

0:maj
5:maj
7:maj
9:min
2:min

|Z|= 2 0:maj
7:maj
9:min 5:maj

7:maj

10:maj
7:maj
7:min

0:maj
5:maj

0:min
8:maj
3:maj
5:min

|Z|= 5

0:maj
9:min
2:min

5:maj

0:maj
2:min

0:min
8:maj
10:maj
5:min

7:maj
7:7

5:maj
9:min

0:maj
5:maj 10:maj

7:maj

7:maj
4:min

|Z|= 10 |Z|= 200

Fig. 8. The figure represents four HMM models with varying hidden node
alphabet sizes |Z|. The representation is an extension of a state diagram
where points are hidden states and the arrows represent transitions, having
opacity proportional to the transition probability p(zi|zi−1). Labels of the
most probable chord symbols emitted are shown near each state, with
opacity proportional to the emission probability p(xi|zi). The two connected
components of the state diagram learned by the simplest model with |Z| = 2
(top left) exactly represent major (ionian) and natural minor (aeolian) modes.
The two modes are also learned by the model with |Z| = 5 (top right), this
time with connected components including two states each. The subdivision
of chord emissions between the two states of the minor mode, is also
tonally relevant, because it highlights the tonal function of the dominant. For
|Z| = 10 (bottom left) a more structured component represents the major
mode, and a single state component the minor mode. Interestingly, a third
component includes a chromatic chord, 10:maj, among other chords from
the major mode. The bottom right figure simply shows the approximate state
diagram for a much richer model |Z| = 200.

connections, similar to a state diagram. Adding the most
probable chord symbols emitted by each hidden node (i.e.
thresholding the emission probability p(xi|zi)), it becomes
clear how the different connected components of the graph
identify different modes or chord progressions (Figure 8). The
models with fewer hidden nodes can capture only few of those
modes or progressions, and the choice is greatly influenced by
the random initialization of the model parameters.

Discussion: In order to experiment with models having a
high number of parameters (|Z| > 100), given the size of
our dataset, we had to develop a custom optimized imple-
mentation of the EM algorithm. Our implementation 2 the
dataset is stored in memory-efficient data structures, each
iteration of the Expectation step is split among multiple
threads, and all computations use Single Instruction, Multiple
Data (SIMD) parallelism whenever possible. Although this
granted a speedup of three orders of magnitude and memory
savings of two orders of magnitude with respect to the
other implementations that we experimented with, training the
largest model (|Z| = 1000) for 100 EM iterations with our
implementation took approximately five days.

C. RNN

We experimented with the training of several RNNs, varying
the number of hidden layers and the number of units that

2https://github.com/brunodigiorgi/fdhmm
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Fig. 9. The cross-entropy achieved by different RNN configurations, varying
the number of hidden layers and the number of units for each layer.

they contain. Before analyzing the performance, we list some
additional details of the models.
• The 1-of-K representation is required as the input of

this model, therefore each chord symbol x is mapped
to a binary vector of X = 48 entries, with only the
corresponding entry being equal to one.

• We adopted an extension of the basic RNN called Long
Short Term Memory (LSTM) [50], in which units them-
selves contain recurrently connected subnets, leading to
a longer effective context.

• After the recurrent layers, a fully-connected layer with
a softmax non-linearity is used to compute the output
probabilities.

• The gradients are computed using full BPTT, which back
propagates error gradients along the full network unrolled
in time.

• We used the RMSProp optimizer, a variation of Gradient
Descent, where the learning rate is rescaled for each
parameter, exploiting the history of the gradients for that
parameter.

• The early stopping criterion was set to automatically
terminate the training loop as soon as the validation
error does not decrease for 5 consecutive epochs, with
a tolerance equal to 1% the mean of the validation error
of the last 5 epochs.

As expected, models with more units per layer are more
flexible and achieve lower cross-entropy values (Fig 9).
Adding more layers improves the performance, but not as
much as doubling the number of units of a single hidden
layer. In an RNN, each recurrent layer learns a dense latent
representation of sequences of its input; the results suggest
that while chord sequences are very well described by such a
representation, there is less structure in higher level represen-
tations.

In Figure 10, we visualize what has been learnt by the
hidden units of the network. Considering the simplest model,
which includes only one hidden recurrent layer of 32 units,
we chose some input chord sequences for which some units
responded in a peculiar way. We noticed that different units
learn patterns of different lengths and respond with different

Fig. 10. Some explanatory patterns of activations of different hidden units in
the RNN. Each row represents a particular hidden unit (its number is shown
with a bold label at the left). The input chord sequences are represented as
strips of chord labels. Chord symbol format is r:m with r being the root,
relative to the tonic, and t being the type of the chord (:M for :maj and
:m for :min for compactness). The hidden state of the unit is a continuous
value in [–1, 1], and is represented by the background color of each chord
label. Some units (a) are suddenly activated by specific chords, e.g. unit 0 is
excited by 5:m, unit 6 by 0:M and 0:m. Other units (b) seem to recognize
transitions or short sequences, e.g. unit 18 is excited by 0:m followed by
3:M. Still others (c) are activated more gradually and seem to recognize
longer contexts or chord types, e.g. unit 17 recognizes the aeolian mode, unit
21 is activated by the :7 chord type.

speed. Some are suddenly activated by single chords, others
are activated more gradually by longer patterns. Some units
learn latent invariances, for example they are excited by chords
that share the same root (e.g. 0:maj and 0:min) or the same
type (e.g. 0:7 and 2:7). A more in depth analysis is hard
because the states are recurrent and interconnected, i.e. each
hidden cell is fed by the inputs and by all hidden cells of the
same hidden layer at the previous time step.

The space of hidden states is much larger than that of the
HMM, because it is exponential in the number of hidden units.
Moreover, units are continuous-valued, which makes the space
even larger. For this reason the RNN exhibits a much better
predictive power than the HMM. A fair comparison with PPM
would require the RNN and HMM to be constrained to have
finite memory, which is what we do in the next section in
order to create a compound model.

D. Compound Model

The three models described in the previous sections will be
used as generative models to create short chord sequences to
be used in two perceptual experiments. As we detail in Sect.
V, the chord sequences used in the perceptual experiments
contain 4 chords.

In order to generate such chord progressions, we created a
compound model as a weighted average of the three models:

p(xi|xi−10 ) =
∑
m∈M

πmpm(xi|xi−10 ), (23)

where M is the set of models, including a representative
model for each model class (PPM, HMM and RNN), and the
weights πm sum to 1. Each model class is represented by the
best performing model in the previous evaluations:
• For PPM, we chose method C with backoff smoothing

(which performed best at order 3).
• For HMM, we chose |Z| = 1000
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Fig. 11. Cross entropy of the compound model consisting of the weighted
average of three models based on PPM, HMM and RNN. The cross entropy
values are evaluated on the 2-simplex formed by the weights πm, with∑

m πm = 1. These values are reported in the contour labels and are
expressed in bits/sample.

• For RNN, we chose the network with 3 layers of 128
units.

We maximize the prediction accuracy, measured with cross-
entropy, with a grid search over the weights πm. Since we
need to create 4-chord progressions, we evaluate cross-entropy
of the compound model using a fixed-memory context of
3 chords. We use data held out from previous training and
validation sets to optimize the compound model. As shown
in Figure 11, the best model is the average between the PPM
and the RNN models, and obtains a cross-entropy value of
2.33 bits/sample. In the separate evaluations RNN obtained
lower entropy than PPM; however, the comparison was biased
since RNN (as also HMM) used unbounded context (i.e. all
the chords since the start of the song) when predicting the
next symbol. The use of a fixed and short context explains the
different results obtained here.

V. EXPERIMENTS

In this section we present the design and the results of the
listening test, which includes two perceptual experiments. The
goal of both the experiments is to evaluate how the probability
of a chord sequence, given by our language model using Eq.
(1), is related to the subjective evaluation of complexity.

The first experiment is a pairwise comparison between two
chord sequences, where the subject is asked to decide which
is more complex and which he/she liked the most. In this
experiment, we decided to only ask for binary evaluations in
order to limit the cognitive load. Chord sequences used in
this experiment belong to K separate groups, where sequences
in the same group share similar values of probability. The
second experiment is a graded evaluation of complexity and
preference on a single chord sequence.

Since the result of the test depends on the meaning that
is subjectively assigned to the word “complexity”, we never
mention words such as “surprising” or “unexpected” in the
instructions in order not to bias the subjects toward a specific
meaning or interpretation. 23 test cases are presented in each
experiment; this number has been chosen to make the whole

test last approximately 30 minutes, estimated as a reasonable
time span for maintaining focus.

The generation of the chord progressions is explained in
Sect. V-A and the creation of the audio files is presented in
Sect. V-B. In Sect. V-C we describe the procedure for profiling
the participants. The results of the tests are presented in Sect.
V-D and V-E.

A. Sampling the chord sequences

The goal of our experiments is to analyze the relation
between chord sequence probability (Eq. (1)) and perceived
complexity. Therefore we need to generate sequences having
different probabilities, to be used in the listening test.

The usual way to use a language model generatively is to
sample one chord at a time: x0 from p(x), then x1 from
p(x|x0), and xi from p(x|xi−10 ). However, using this method
we cannot control the final probability of the sequence. We
used two ways to sample sequences with a desired value of
probability: range sampling and uniform sampling, detailed
below.

1) Range sampling: With range sampling, every chord xi
of the sequence is sampled from a subset X̂k(xi−10 ) ⊂ X
containing chords with constrained probability:

X̂k(xi−10 ) =
{
x|αk ≤ p(x|xi−10 ) < βk

}
, (24)

where [αk, βk), is one of K non-overlapping intervals of
probability values, with k = 0, . . . ,K − 1.

We choose the intervals relatively to the actual values of
p(xi|xi−10 ). In particular, we set intervals of percentiles as
follows:

f(k) = 1−
(
k

K

)η
(25)

α̃k = f(k + 1) (26)

β̃k = f(k), (27)

where the parameter η controls the progression of the interval
sizes, e.g. fixed for η = 1 and linearly increasing with k for
η = 2. We assign the 100α̃k percentile and the 100β̃k per-
centile of p(x|xi−10 ) to αk and βk respectively. Using relative
boundaries ensures that the subset of candidate next chords
X̂k(xi−10 ) is non empty for every contexts and intervals. In
particular, X̂k(xi−10 ) always contains |X |

(
β̃k − α̃k

)
chords.

Now, for any two sequences xj and xl sampled using k = j
and k = l, it is very likely that p(xj) > p(xl) if j < l,
although not true in general. For the first experiment we used
K = 5 groups of chord sequences and set η = 1.8 to distribute
them evenly in the log probability domain, as shown in Figure
12a.

2) Uniform sampling: Uniform sampling simply consists
of sampling a large number of sequences by choosing each
chord of the sequence from the uniform distribution over X .
The procedure results in the distribution over sequence prob-
abilities shown in Figure 12b. For our second experiment we
use uniform distribution just as a starting point to generate a
large number of chord sequences, then we chose 40 sequences
with evenly spaced log probability values.
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Fig. 12. Estimated density of the probability of the chord sequences generated
with (a) range sampling and (b) uniform sampling. (a) shows how the
parameter k controls the sampled sequence probability in range sampling.
Range sampling produces good separation between different groups, and
has therefore been chosen for generating the chord sequences for the first
experiment. The densities in the figures are estimated by generating 10000
sequences for each configuration and using a Gaussian kernel with unit size.

B. Creation of the audio excerpts

The chord sequences need to be rendered in audio format
in order to perform the listening test. This conversion from
symbolic to audio domain raises questions about tonic, tempo,
instrumentation and chord voicing (i.e. the octave and the
doubling of the pitch classes contained in the chord) that we
addressed with the goal of narrowing the focus of the subject
on the only relevant aspect: the chord sequence.

We chose the note C as the tonic and C:maj as the first
chord of each sequence. Fixing the tonic and the first chord
establish the same reference point for each chord progression
listened during the test session, therefore eliminating a possible
hidden source of noise in the survey. We decided to start
only with a major chord in order to reduce the parameter
space and the test duration. Regarding the tempo, we chose
to change chord every 1.5 seconds, corresponding to 4 beats
at 160 beats per minute (BPM) or 2 beats at 80 BPM.
For the instrumentation and arrangement, we limited to the
grand piano playing sustained chords. In particular, to avoid
introducing any bias with human performances, we rendered
the chord sequences from automatically created MIDI files,
using sounds from a commercial grand piano sample library.
Regarding the voicings, we chose to only use chords in root
position, i.e. where the lowest note plays the root of the chord.
We used four upper voices, enough to contain all the notes of
the 7 chord, the richest one in our reduced alphabet. Another
important issue regarding the voicings lies in the choice of
the upper voices and how they evolve during chord changes.
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Fig. 13. Sheet music representation of two examples of progressions used
in the test. Our simple voice leading model promotes continuity within the
voices, apart from the lowest note, fixed to the root of the chord. Progression
(a) has higher probability than progression (b): log p(x(a)) = −4.7,
log p(x(b)) = −15.7.

The musical theory of counterpoint deals with this problem,
and it is known that moving all voices by parallel motion (i.e.
in the same direction and of the same interval) sounds boring
and dull. Although we did not implement a comprehensive
counterpoint model, we focused on voice leading and tried
to address specific aspects, such as minimizing jumps in the
melodic lines of the voices.

Our simple voice leading model takes a sequence of chords
and outputs a sequence of voicings (Fig. 13) ready to be
synthesized to audio. The process is performed in three steps:

1) each chord generates a list of possible voicings and
associates a score to each one.

2) transition probabilities among every pair of successive
sets of voicings are computed using voice leading rules
(i.e. enforcing continuity of the voices).

3) the optimal sequence of voicings is found by the Viterbi
algorithm, which jointly maximizes the score of each
voicing and the transition probabilities.

C. Subject profiling

We chose to profile the musical attitudes of participants
using the self-report questionnaire of the Goldsmiths Musical
Sophistication Index (Gold MSI v1.0) [51]. The test includes
38 questions with seven-point scale answers, ranging from
complete agreement to complete disagreement, that can be
combined to form 5 sub-factors and one general factor called
General Musical Sophistication (GMS). The average GMS
factor for the 56 subjects who participated in the experiment
is 75. This agrees with the study in [52], where groups of
subjects with different socio-economic status have averages
around 80.

We also added a question specifically addressing harmony
skills, with a five-scale answer. The correlation between GMS
and the answers to this question is positive, strong and
statistically significant (r = .71, p < .001), therefore we will
just refer to the GMS value hereafter.
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D. Experiment 1

In the first experiment, the subject is required to listen to
two chord sequences, then select the most complex and the one
he/she found more likable. The subject evaluates 23 such test
cases, of which the initial three are used to familiarize with the
user interface and are not recorded. During the setup phase,
the sequences are generated with range sampling with K = 5
groups and n = 16 chord sequences per group. This set is
then divided into two round-robin subsets (with nr = 8 chord
sequences per group). Round-robin means that the system will
select one of the two subsets on each session, in alternating
fashion. Then, each time a new subject begins the experiment,
the system:

1) selects one of the two round-robin sets
2) shuffles the sequences within each of the K groups, in

order to randomize the pairs and their presentation order
3) creates 2

(
K
2

)
= 20 pairwise comparisons

4) inserts three dummy test cases at the beginning of the
test, containing sequences from the unused round-robin
set.

These steps result in the comparison between every pair of
groups being performed twice, but no chord sequence being
heard in more than one test case.

The results for complexity and preference are shown in
Figure 14 as two lower triangular matrices. For the complexity
matrix C, the entry Ci,j contains the number of times a chord
progression from group i was selected as more complex when
compared to a chord sequence from group j, divided by the
number of comparisons between the two groups. Only the
lower triangular part is shown, because Ci,j + Cj,i = 1. The
same holds for the preference matrix P.

As expected, if i > j, then Ci,j > .5, meaning that the
majority of the subjects evaluated as more complex, a sequence
having lower probability. Another interesting result is that
Ci,j > Ci,l if j < l and Ci,j > Cl,j if l < i, which
means that moving along rows or columns, the agreement in
choosing the more complex sequence increases by increasing
the distance between the two groups; with only one exception
for C3,0 = .97 and C4,0 = .95. Furthermore, results show
that with fixed distance between the groups (i.e. moving along
the diagonals) Ci,i−l > Cj,j−l if i > j, meaning that there
is more agreement for less complex groups. This last result
might derive from the sequences of some groups (e.g. groups
3 and 4) having such low probability that they are difficult to
differentiate.

The preference matrix shows the opposite behavior: Pi,j <
.5 (with the exception of P1,0), meaning that the majority
of subjects preferred simpler chord sequences. However, the
exception is meaningful since it may indicate that chord se-
quences in group 1 are more complex than group 0 (C1,0 > .5)
but also more interesting (P1,0 > .5), due to the usage of less
predictable chords. Analogously to the results for complexity,
moving along rows or columns, the agreement in choosing
the preferred sequence increases by increasing the distance
between the two groups: Pi,j < Pi,l if j < l and Pi,j < Pl,j
if l < i (only exception: P3,1 = .26). Moreover, the preference
results show balance in the diagonal i−j = 1 where Pi,j ≈ .5,

0 1 2 3
k discarded

1

2

3

4

k
 c

ho
se

n

0.85

0.94 0.80

0.97 0.87 0.61

0.95 0.93 0.75 0.59

complexity

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(a)

0 1 2 3
k discarded

1

2

3

4

k
 c

ho
se

n

0.54

0.41 0.45

0.38 0.26 0.49

0.32 0.37 0.46 0.49

preference

0.30

0.35

0.40

0.45

0.50

(b)

Fig. 14. The results of the first experiment are summarized in this figure by
the two lower triangular matrices. For each test case the subjects were asked
to chose (a) the more complex; and (b) the preferred, between two chord
sequences belonging to different groups. Chord sequences that belong to the
same group k have similar probability values, where small k means higher
probability. The value of the (i, j) entry correspond to the number of times
the group i has been chosen when compared with the group j, normalized
by the total number of such comparisons.

meaning that there is no agreement about preference for chord
sequences belonging to adjacent groups.

We also recorded the number of times the subject listened
to the two chord sequences in a test case before advancing
to the next test case. Only one listening is required, but the
system allows the subject to play the audio again if needed.
For most of the cases one listening was enough for people to
provide their ratings. However, the comparisons between the
group pairs (2, 3), (2, 4) and (3, 4) required on average one
extra listening. This confirms that those groups are difficult to
discern, as it is also evident in C and P: in fact the agreement
|C− .5| and |P− .5| is minimized for those same pairs.

E. Experiment 2

In the second experiment, the subjects are asked to listen
to a chord sequence and then rate its complexity and how
much they liked it on a continuous scale. As in the first
experiment, the subjects evaluate 23 such test cases, of which
the initial three are used to familiarize with the user interface
and are not recorded. During the setup phase, the sequences are
generated with uniform sampling, by generating 100000 chord
sequences and then picking 40 sequences with linearly spaced
log probability. As in the first experiment, the 40 sequences
are subdivided into two round-robin subsets, with interleaved
splitting to maintain the linear spacing and the range of the
original set. Each time a new subject starts the experiment,
the system:

1) selects one of the two round-robin sets
2) shuffles the sequences in the set
3) inserts three dummy test cases at the beginning of the

test, containing sequences from the unused round-robin
set. Specifically, to set the scale for the ratings, we pick
the three sequences with minimum, maximum and mean
log probability values.

Results of the experiment are shown in Figure 15 and
confirm the existence of a relationship between the probability
of the sequence given our model and the subjects’ ratings of
complexity. For each of the 40 chord sequences we collected



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE IV
PEARSON R CORRELATION COEFFICIENT VS MUSICAL SOPHISTICATION

GMS: high GMS: low GMS: all
complexity 0.65 0.54 0.60
preference 0.20 0.25 0.21

28 ratings of complexity and preference. The negative log
probability exhibits a strong positive correlation with the
complexity ratings (r = .6, p < .001) and a weak negative
correlation with preference ratings (r = −.21, p < .001).

In order to better analyze those relations, we tried different
polynomial regression models, with the negative log probabil-
ity as input and the average ratings as targets. These regressors
have been evaluated using the coefficient of determination
R2 on 200 iterations of shuffle and split cross-validation,
each time using 20% of the examples in the test set. As
shown in Figure 16, the relation between complexity ratings
and negative log probability is best explained by a 2nd-
order polynomial (R2 = 0.81), while the relation between
preference and negative log probability is linear (R2 = 0.14).

Such regression curves are plotted in Figure 15, where we
separated the ratings given by participants with lower and
higher than average musical sophistication, given by the GMS
factor. For both categories the complexity ratings seem to sat-
urate for chord sequences with low probability. This confirms
the intuition that for such chord sequences it is difficult to
discern the harmonic complexity, as also shown by the results
of the first experiment. The saturation effect is less evident for
subjects with high musical sophistication, whose complexity
ratings tend to maintain a more linear behavior. The relation
with preference highlights the tendency to prefer the chord
sequences with high probability. However, this relation is
weaker and independent of the musical sophistication factor.
The Pearson correlation coefficients between the polynomial
regression models and the ratings of subjects in a specific
GMS category is reported in Table IV, where all the values
are statistically significant (p < .001).

VI. CONCLUSION AND FUTURE WORK

In this paper, we design the architecture of a language
model of tonal chord sequences and evaluate its capability
to estimate the perceived harmonic complexity. We build and
train three different language models: prediction by partial
matching, a hidden Markov model and a recurrent neural
network, analyzing several variations of them. For training
we use the largest available annotated dataset, to the best of
the authors knowledge, containing the chords of half a million
songs. We combine the best configurations of the three models
into a more powerful model, which is then used to generate
a set of chord sequences and evaluate their probability. We
devise a listening test, comprising two experiments, that allows
us to collect many perceptual ratings related to complexity and
preference of the generated sequences. By analyzing the results
of the test, we show the existence of a strong positive and
statistically significant correlation between the log probability
of the chord sequences, computed by our language model, and
the complexity ratings.
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Fig. 15. The figure shows the ratings of complexity and preference obtained in
the second experiment, versus the negative log probability of the rated chord
sequences. The ratings are shown in the original scale of [0, 1] used in the
test. Regression models are overlaid, with different colors for for the ratings
of subjects with low and high GMS factor (i.e. lower and higher than the
average). Vertical gray bars are the interquartile ranges of the ratings for each
chord sequence. The confidence intervals of the regression lines are obtained
through 1000 bootstrap iterations.

However, some issues remain open for future investigations.
First, it should be relatively straightforward to complete

the exploration of the parameter space, including in a similar
listening test chord sequences starting from a minor chord
and generated with the different models without averaging
predictions. A fifth tonic chord could be forced at the end of
the progressions in order to avoid drifting away from tonality,
especially for the less probable sequences.

Second, since the results show that the sequences with
very low probability are difficult to distinguish in terms of
complexity, it should be worthwhile to focus on the most
probable sequences, in order to better analyze the relation
with complexity and to see if a stronger relationship with
preference emerges. The correlation between complexity and
preference is something that we find worth investigating more;
in particular, we could not verify the effect of over-familiarity
on the less complex chord progression, which would result
in the famous inverted U-shaped function. Possible reasons
are the bias generated by querying at the same time complex-
ity and preference ratings, and the brevity of progressions:
too short to exhibit meaningful internal structure. Besides,
the more complex progressions often obfuscate the tonality,
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Fig. 16. The values of the coefficient of determination R2 obtained by
different polynomial regression model used to fit the log probability of the
sequences to the average ratings of the second experiment. These values are
obtained through 200 iterations of shuffle and split cross-validation, splitting
the examples into 80% train set and 20% test set. The models that we chose
to represent the relations of log probability with complexity and preference
are circled.

producing an interesting sound for someone used to complex
music. Further experiments that address specifically these
issues would provide an important complement to our results.

Third, it would be interesting to leverage the existing
annotated datasets of chords used for automatic chord recog-
nition research, which cumulatively count approximately two
thousand annotated songs. The quality of those annotations
is superior, on average, to those used in this work, and this
could be exploited by weighting the contribution of different
datasets in the training of the language model.

Finally, the dataset used here contains genre tags, opening
the possibility of analyzing chord sequence complexity across
different genres.
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