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ABSTRACT

In this study we investigate computational methods for as-
sessing music similarity in world music. We use state-of-
the-art audio features to describe musical content in world
music recordings. Our music collection is a subset of the
Smithsonian Folkways Recordings with audio examples
from 31 countries from around the world. Using super-
vised and unsupervised dimensionality reduction techniques
we learn feature representations for music similarity. We
evaluate how well music styles separate in this learned space
with a classification experiment. We obtained moderate
performance classifying the recordings by country. Analy-
sis of misclassifications revealed cases of geographical or
cultural proximity. We further evaluate the learned space
by detecting outliers, i.e. identifying recordings that stand
out in the collection. We use a data mining technique based
on Mahalanobis distances to detect outliers and perform a
listening experiment in the ‘odd one out’ style to evaluate
our findings. We are able to detect, amongst others, record-
ings of non-musical content as outliers as well as music
with distinct timbral and harmonic content. The listening
experiment reveals moderate agreement between subjects’
ratings and our outlier estimation.

1. INTRODUCTION

The analysis, systematic annotation and comparison of
world music styles has been of interest to many research
studies in the fields of ethnomusicology [5, 14, 20] and
Music Information Retrieval (MIR) [7, 12, 28]. The for-
mer studies rely on manually annotating musical attributes
of world music recordings and investigating similarity via
several clustering techniques. The latter studies rely on au-
tomatically extracting features to describe musical content
of recordings and investigating music style similarity via
classification methods. We focus on research studies that
provide a systematic way of annotating music; a method
that often disregards specific characteristics of a music cul-
ture but makes an across-culture comparison feasible. We
are interested in the latter and follow a computational ap-
proach to describe musical content of world music record-
ings and investigate similarity across music cultures.
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This study falls under the general scope of music cor-
pus analysis. While several studies have focused on pop-
ular (mainly Eurogenetic) music corpus analysis, for ex-
ample, the use of modes in American popular music [21],
pitch, loudness and timbre in contemporary Western popu-
lar music [23], harmonic and timbral aspects in USA popu-
lar music [16], only a few studies have considered world or
folk music genres, for example, the use of scales in African
music [17]. Research projects have focused on the devel-
opment of MIR tools for world music analysis 1 , but no
study, to the best of our knowledge, has applied such com-
putational methods to investigate similarity in a world mu-
sic corpus.

While the notion of world music is ambiguous, often
mixing folk, popular, and classical musics from around the
world and from different eras [4], it has been used to study
stylistic similarity between various music cultures. We fo-
cus on a collection of folk recordings from countries from
around the world, and use these to investigate music style
similarity. Here we adopt the notion of music style by [19],
‘style can be recognized by characteristic uses of form,
texture, harmony, melody, and rhythm’. Similarly, we de-
scribe music recordings by features that capture aspects of
timbral, rhythmic, melodic, and harmonic content 2 .

The goal of this work is to infer similarity in collections
of world music recordings. From low-level audio descrip-
tors we are interested to learn high-level representations
that project data to a music similarity space. We compare
three feature learning methods and assess music similarity
with a classification experiment and outlier detection. The
former evaluates recordings that are expected to cluster to-
gether according to some ground truth label and helps us
understand better the notion of ‘similarity’. The latter eval-
uates examples that are different from the rest of the corpus
and is useful to understand ‘dissimilarity’. Outlier detec-
tion in large music collections can also be applied to filter
out irrelevant audio or discover music with unique char-
acteristics. We use an outlier detection method based on
Mahalanobis distances, a common technique for detecting
outliers in multivariate data [1]. To evaluate our findings
we perform a listening test in the ‘odd one out’ framework
where subjects are asked to listen to three audio excerpts
and select the one that is most different [27].

Amongst the main contributions of this paper is a set

1 Digital Music Lab (http://dml.city.ac.uk), CompMusic
(http://compmusic.upf.edu/node/1), Telemata (https://
parisson.github.io/Telemeta/)

2 The use of form is ignored in this study as our music collection is
restricted to 30-second audio excerpts.
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of low-level features to represent musical content in world
music recordings and a method to assess music style sim-
ilarity. Our results reveal similarity in music cultures with
geographical or cultural proximity and identify recordings
with possibly unique musical content. These findings can
be used in subsequent musicological analyses to track in-
fluence and cultural exchange in world music. We per-
formed a listening test with the purpose of collecting simi-
larity ratings to evaluate our outlier detection method. In a
similar way, ratings can be collected for larger collections
and used as a reference for ground truth similarity. The
data and code for extracting audio features, detecting out-
liers and running classification experiments as described in
this study are made publicly available 3 .

The paper is structured as follows. First a detailed de-
scription of the low-level features used in this study is pre-
sented in Section 2. Details of the size, type, and spatio-
temporal spread of our world music collection are pre-
sented in Section 3. Section 4 presents the feature learning
methods with specifications of the models and Section 5
describes the two evaluation methods, namely, classifica-
tion and outlier detection. In Section 5.2 we provide details
of the listening test designed to assess the outlier detection
accuracy. Results are presented in Section 6 and finally a
discussion and concluding remarks are summarised in Sec-
tion 7 and 8 respectively.

2. FEATURES

Over the years several toolboxes have been developed for
music content description and have been applied for tasks
of automatic classification and retrieval [13, 18, 25]. For
content description of world music styles, mainly tim-
bral, rhythmic and tonal features have been used such
as roughness, spectral centroid, pitch histograms, equal-
tempered deviation, tempo and inter-onset interval distri-
butions [7,12,28]. We are interested in world music analy-
sis and add to this list the requirement of melodic descrip-
tors.

We focus on state-of-the-art descriptors (and adapta-
tions of them) that aim at capturing relevant rhythmic,
melodic, harmonic, and timbral content. In particular, we
extract onset patterns with the scale transform [10] for
rhythm, pitch bihistograms [26] for melody, average chro-
magrams [3] for harmony, and Mel frequency cepstrum co-
efficients [2] for timbre content description. We choose
these descriptors because they define low-level representa-
tions of the musical content, i.e. less abstract representa-
tions but ones that are more likely to be robust with respect
to the diversity of the music styles we consider. In addition,
these features have achieved state-of-the-art performances
in relevant classification or retrieval tasks, for example, on-
set patterns with scale transform perform best in classify-
ing Western and non-Western rhythms [9, 15] and pitch
bihistograms have been used successfully in cover song
(pitch content-based) recognition [26]. The low-level de-

3 https://code.soundsoftware.ac.uk/projects/feature-space-world-
music

scriptors are later used to learn high-level representations
using various feature learning methods (Section 4).

The audio features used in this study are computed with
the following specifications. For all features we fix the
sampling rate at 44100 Hz and compute the (first) frame
decomposition using a window size of 40 ms and hop
size of 5 ms. We use a second frame decomposition to
summarise descriptors over 8-second windows with 0.5-
second hop size. This is particularly useful for rhythmic
and melodic descriptors since rhythm and melody are per-
ceived over longer time frames. For consistency, the tim-
bral and harmonic descriptors considered in this study are
summarised by their mean and standard deviation over this
second frame decomposition.

Rhythm and Timbre. For rhythm and timbre features
we compute a Mel spectrogram with 40 Mel bands up
to 8000 Hz using Librosa 4 . To describe rhythmic con-
tent we extract onset strength envelopes for each Mel band
and compute rhythmic periodicities using a second Fourier
transform with window size of 8 seconds and hop size of
0.5 seconds. We then apply the Mellin transform to achieve
tempo invariance [9] and output rhythmic periodicities up
to 960 bpm. The output is averaged across low and high
frequency Mel bands with cutoff at 1758 Hz. Timbral as-
pects are characterised by 20 Mel Frequency Cepstrum Co-
efficients (MFCCs) and 20 first-order delta coefficients [2].
We take the mean and standard deviation of these coeffi-
cients over 8-second windows with 0.5-second hop size.

Harmony and Melody. To describe melodic and har-
monic content we compute chromagrams using variable-
Q transforms [22] with 5 ms hop size and 20-cent pitch
resolution to allow for microtonality. Chromagrams are
aligned to the pitch class of maximum magnitude for key
invariance. Harmonic content is described by the mean and
standard deviation of chroma vectors using 8-second win-
dows with 0.5-second hop size. Melodic aspects are cap-
tured via pitch bihistograms which denote counts of transi-
tions of pitch classes [26]. We use a window d = 0.5 sec-
onds to look for pitch class transitions in the chromagram.
The resulting pitch bihistogram matrix is decomposed us-
ing non-negative matrix factorization [24] and we keep 2
basis vectors with their corresponding activations to rep-
resent melodic content. Pitch bihistograms are computed
again over 8-second windows with 0.5-second hop size.

3. DATASET

Our dataset is a subset of the Smithsonian Folkways
Recordings, a collection of documents of “people’s mu-
sic”, spoken word, instruction, and sounds from around
the world 5 . We use the publicly available 30-second audio
previews and from available metadata we choose the coun-
try of the recording as a proxy for music style. We choose a
minimum number of N = 50 recordings for each country
to capture adequate variability of its style-specific charac-
teristics. For evaluation purposes we further require the

4 https://bmcfee.github.io/librosa/
5 http://www.folkways.si.edu
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dataset to have the same number of recordings per coun-
try. By manually sub-setting the data we observe that an
optimal number of recordings is obtained for N = 70, re-
sulting in a total of 2170 recordings, 70 recordings chosen
at random from each of 31 countries from North Amer-
ica, Europe, Asia, Africa and Australia. According to the
metadata these recordings belong to the genre ‘world’ and
have been recorded between 1949 and 2009.

4. FEATURE LEARNING

For the low-level descriptors presented in Section 2 and
the music dataset in Section 3, we aim to learn feature
representations that best characterise music style similar-
ity. Feature learning is also appropriate for reducing di-
mensionality, an essential step for the amount of data we
currently analyse. In our analysis we approximate style
by the country label of a recording and use this for super-
vised training and cross-validating our methods. We learn
feature representations from the 8-second frame-based de-
scriptors.

The audio features described in Section 2 are standard-
ised using z-scores and aggregated to a single feature vec-
tor for each 8-second frame of a recording. A recording
consists of multiple 8-second frame feature vectors, each
annotated with the country label of the recording. Fea-
ture representations are learned using Principal Compo-
nent Analysis (PCA), Non-Negative Matrix Factorisation
(NMF) and Linear Discriminant Analysis (LDA) meth-
ods [24]. PCA and NMF are unsupervised methods and
try to extract components that account for the most vari-
ance in the data. LDA is a supervised method and tries to
identify attributes that account for the most variance be-
tween classes (in this case country labels).

We split the 2170 recordings of our collection into train-
ing (60%), validation (20%), and testing (20%) sets. We
train and test our models on the frame-based descriptors;
this results in a dataset of 57282, 19104, and 19104 frames
for training, validation, and testing, respectively. Frames
used for training do not belong to the same recordings as
frames used for testing or validation and vice versa as this
would bias results. We use the training set to train the PCA,
NMF, and LDA models and the validation set to optimise
the number of components. We investigate performance
accuracy of the models when the number of components
ranges between 5 and the maximum number of classes. We
use the testing set to evaluate the learned space by classifi-
cation and outlier detection tasks as explained below.

5. EVALUATION

5.1 Objective Evaluation

To evaluate whether we have learned a meaningful feature
space we perform two experiments. One experiment aims
at assessing similarity between recordings from the same
country (which we expect to have related styles) via a clas-
sification task, i.e. validating recordings that lie close to
each other in the learned feature space. The second experi-
ment aims at assessing dissimilarity between recordings by

detecting ‘outliers’, i.e. recordings that lie far apart in the
learned feature space.

Classification. For the classification experiment we use
three classifiers: K-Nearest Neighbors (KNN) with K = 3
and Euclidean distance metric, Linear Discriminant Anal-
ysis (LDA), and Support Vector Machines (SVM) with a
Radial Basis Function kernel. We report results on the
accuracy of the predicted frame labels and the predicted
recording labels. To predict the label of the recording we
consider the vote of its frame labels and select the most
popular label.

Outlier Detection. The second experiment uses a
method based on squared Mahalanobis distances to detect
outliers in multivariate data [1,8]. We use the best perform-
ing feature learning method, as indicated by the classifica-
tion experiment, to transform all frame-based features of
our dataset. For each recording we calculare the average of
its transformed feature vectors and use this to compute its
Mahalanobis distance from the set of all recordings. Using
Mahalanobis, an n-dimensional feature vector is expressed
as the distance to the mean of the distribution in standard
deviation units. Data points that lie beyond a threshold,
here set to the 99.5% quantile of the chi-square distribution
with n degrees of freedom [6], are considered outliers.

5.2 Subjective Evaluation

To evaluate the detected outliers we perform a listening
experiment in the ‘odd one out’ fashion [27]. A listener is
asked to evaluate triads of audio excerpts by selecting the
one that is most different from the other two, in terms of its
musical characteristics. For the purpose of evaluating out-
liers, a triad consists of one outlier excerpt and two inliers
as estimated by their Mahalanobis distance from the set of
all recordings.

To distinguish outliers from inliers (the most typical ex-
amples) and other excerpts which are neither outliers nor
inliers, we set two thresholds for the Mahalanobis distance.
Distances above the upper threshold identify outliers, and
distances below the lower threshold identify inliers. The
thresholds are selected such that the majority of excerpts
are neither outliers nor inliers. We randomly select 60 out-
liers and for each of these outliers we randomly select 10
inliers, in order to construct 300 triads (5 triads for each of
60 outliers), which we split into 10 sets of 30 triads. Each
participant rates one randomly selected set of 30 triads.

The triads of outlier-inlier examples are presented in
random order to the participant and we additionally in-
clude 2 control triads to assess the reliability of the partici-
pant. A control triad consists of two audio excerpts (the in-
liers) extracted from the first and second half, respectively,
of the same recording and exhibiting very similar musi-
cal attributes, and one excerpt (the outlier) from a different
recording exhibiting very different musical attributes. At
the end of the experiment we include a questionnaire for
demographic purposes.

We report results on the level of agreement between the
computational outliers and the audio excerpts selected as
the odd ones by the participants of the experiment. We
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Figure 1. Classification accuracy for different numbers of
components for PCA, NMF, and LDA methods (random
baseline is 0.03 for 31 classes).

focus on two metrics; first, we measure the average ac-
curacy between detected and rated outlier across all 300
triads used in the experiment, and second, we measure the
average accuracy for each outlier, i.e. for each of 60 out-
liers we compute the average accuracy of its corresponding
rated triads. Further analysis such as how the music culture
and music education of the participant influences the simi-
larity ratings is left for future work.

6. RESULTS

In this section we present results from the feature learning
methods, their evaluation and the listening test as described
in Sections 4 and 5.

6.1 Number of Components

First we present a comparison of classification perfor-
mance when the number of components for PCA, NMF
and LDA methods ranges between 5 and 30. For each
number of components we train a PCA, NMF and LDA
transformer and report classification accuracies on the val-
idation set. The accuracies correspond to predictions of the
label as estimated by a vote count of its predicted frame la-
bels. We use the KNN classifier with K = 3 neighbors
and Euclidean distance metric. Results are shown in Fig-
ure 1. We observe that the best feature learning method is
LDA and achieves its best performance when the number
of components is 26. PCA and NMF achieve optimal re-
sults when the number of components is 30 and 29 respec-
tively. We fix the number of components to 30 as this gave
good average classification accuracies for all methods.

6.2 Classification

Using 30 components we compute classification accura-
cies for the PCA, NMF and LDA transformed testing set.
We also compute classification accuracies for the non-
transformed testing set. In Table 1 we report accuracies

Classifier Transform. Frame Recording
Method Accuracy Accuracy

KNN – 0.175 0.281
PCA 0.177 0.279
NMF 0.139 0.214
LDA 0.258 0.406

LDA – 0.300 0.401
PCA 0.230 0.283
NMF 0.032 0.032
LDA 0.300 0.401

SVM – 0.038 0.035
PCA 0.046 0.044
NMF 0.152 0.177
LDA 0.277 0.350

Table 1. Classification accuracies for the predicted frame
labels and the predicted recording labels based on a vote
count (– denotes no transformation).
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Figure 2. Confusion matrix for the best performing classi-
fier, KNN with LDA transform (Table 1).

for the predicted frame labels and the predicted record-
ing labels as estimated from a vote count (Section 4). The
KNN classifier with the LDA transform method achieved
the highest accuracy, 0.406, for the predicted recording la-
bels. For the predicted frame labels the LDA classifier and
transform was best with an accuracy of 0.300. In subse-
quent analysis we use the LDA transform as it was shown
to achieve optimal results for our data.

For the highest classification accuracy achieved with the
KNN classifier and the LDA transformation method (Ta-
ble 1), we compute the confusion matrix shown in Fig-
ure 2. From this we note that China is the most accurate
class and Russia and Philippines the least accurate classes.
Analysing the misclassifications we observe the following:
Vietnam is often confused with China and Japan, United
States of America is often confused with Austria, France
and Germany, Russia is confused with Hungary, and South
Africa is confused with Botswana. These cases are char-
acterised by a certain degree of geographical or cultural
proximity which could explain the observed confusion.
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Figure 3. Mahalanobis distances and outliers at the 99.5%
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6.3 Outlier Detection

The second experiment to evaluate the learned space aims
at detecting outliers in the dataset. In this experiment we
are not interested in how close music recordings of the
same country are to each other, but we are rather interested
in recordings that are very different from the rest. We use
the LDA method as found optimal in the classification ex-
periment (Section 6.2) to transform all frame-based feature
vectors in our collection. Each recording is characterised
by the average of its transformed frame-based descriptors.

From our collection of 2170 recordings (70 recordings
for each of 31 countries), 557 recordings (around 26%)
are detected as outliers at the chi-square 99.5% quantile
threshold. In Figure 3 we plot the Mahalanobis distances
for all samples in our dataset and indicate the ones that
have been identified as outliers. The three recordings with
maximum distances, i.e. standing out the most from the
corpus, are identified as follows (in order of high to low
Mahalanobis distance): 1) A recording of the dav dav in-
strument from the culture group ‘Khmu’ from Vietnam 6 ,
2) a rather non-musical example of bells from Greece 7 , 3)
an example of the angklung instrument from Indonesia 8 .
These recordings can be characterised by distinct timbral
and harmonic aspects or, in the case of the second example,
by a distinct combination of all style attributes considered.

We plot the number of detected outliers per country on a
world map (Figure 4) to get an overview of the spatial dis-
tribution of outliers in our music collection. We observe
that Germany was the only country without any outliers (0
outliers out of 70 recordings) and Uganda was the country
with the most outliers (39 outliers out of 70 recordings).
Other countries with high number of outliers were Nigeria
(34 outliers out of 70 recordings), Indonesia and Botswana
(each with 31 outliers out of 70 recordings). We note that
Botswana and Spain had achieved a relatively high classi-
fication accuracy in the previous evaluation (Section 6.2)
and were also detected with a relatively high number of

6 http://s.si.edu/1RuJfuu
7 http://s.si.edu/21DgzP7
8 http://s.si.edu/22yz0qP

outliers (31 and 26 outliers, respectively). This could indi-
cate that recordings from these two countries are consistent
in their music characteristics but also stand out in compar-
ison with other recordings of our world music collection.

6.4 Listening Test

The listening test described in Section 5.2 aimed at evalu-
ating the outlier detection method. A total of 23 subjects
participated in the experiment. There were 15 male and 8
female participants and the majority (83%) aged between
26 and 35 years old. A small number of participants (5) re-
ported they are very familiar with world music genres and
a similar number (6) reported they are quite familiar. The
remaining participants reported they are not so familiar (10
of 23) and not at all familiar (2) with world music genres.

Following the specifications described in Section 5.2,
participant’s reliability was assessed with two control tri-
ads and results showed that all participants rated both these
triads correctly. From the data collected, each of the 300
triads (5 triads for each of 60 detected outliers) was rated
a minimum of 1 and maximum of 5 times. Each of the
60 outliers was rated a minimum of 9 and maximum of 14
times with an average of 11.5.

We received a total of 690 ratings (23 participants rat-
ing 30 triads each). For each rating we assign an accuracy
value of 1 if the odd sample selected by the participant
matches the ‘outlier’ detected by our algorithm versus the
two ‘inliers’ of the triad, and an accuracy of 0 otherwise.
The average accuracy from 690 ratings was 0.53. A sec-
ond measure aimed to evaluate the accuracy per outlier.
For this, the 690 ratings were grouped per outlier, and an
average accuracy was estimated for each outlier. Results
showed that each outlier achieved an average accuracy of
0.54 with standard deviation of 0.25. One particular outlier
was never rated as the odd one by the participants (average
accuracy of 0 from a total of 14 ratings). Conversely, four
outliers were always in agreement with the subjects’ rat-
ings (average accuracy of 1 for about 10 ratings for each
outlier). Overall, there was agreement well above the ran-
dom baseline of 33% between the automatic outlier detec-
tion and the odd one selections made by the participants.

7. DISCUSSION

Several steps in the overall methodology could be imple-
mented differently and audio excerpts and features could
be expanded and improved. Here we discuss a few critical
remarks and point directions for future improvement.

Numerous audio features exist in the literature suitable
to describe musical content in sound recordings depend-
ing on the application. Instead of starting with a large set
of features and narrowing it down to the ones that give
best performance, we chose to start with a small set of
features selected upon their state-of-the-art performance
and relevance and expand the set gradually in future work.
This way we can have more control of what the contri-
bution is from each feature and each music dimension,
timbre, rhythm, melody or harmony, as considered in this
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Figure 4. Number of outliers for each of the 31 countries in our world music collection (grey areas denote missing data).

study. The choice of features and implementation parame-
ters could be improved, for example, in this study we have
assumed descriptor summaries over 8-second windows but
the optimal window size could be investigated further.

We used feature learning methods to learn higher-level
representations from our low-level descriptors. We have
only tested three methods, namely PCA, NMF, LDA, and
did not exhaustively optimise parameters. Depending on
the data and application, more advanced methods could be
employed to learn meaningful feature representations [11].
Similarly, the classification and outlier detection methods
could be tuned to give better accuracies.

The bigger aim of this work is to investigate similar-
ity in a large collection of world music recordings. Here
we have used a small dataset to assess similarity as esti-
mated by classification and outlier detection tasks. It is
difficult to gather representative samples of ‘all’ music of
the world but at least a larger and better geographically
(and temporally) spread dataset than the one used in this
study could be considered. In addition, more metadata can
be incorporated to define ground truth similarity of music
recordings; in this study we have used country labels but
other attributes more suitable to describe the music style
or cultural proximity can be considered. An unweighted
combination of features was used to assess music similar-
ity. Performance accuracies can be improved by exploring
feature weights. What is more, analysing each feature sep-
arately can reveal which music attributes characterise most
each country or which countries share aspects of rhythm,
timbre, melody or harmony.

Whether a music example is selected as the odd one out
depends vastly on what it is compared with. Our outlier de-
tection algorithm compares a single recording to all other
recordings in the collection (1 versus 2169 samples) but
a human listener could not do this with similar efficiency.
Likewise, we could only evaluate a limited set of 60 out-
liers from the total of 557 outliers detected due to time lim-
itations of our subjects. We evaluated comparisons from
sets of three recordings and we used computational meth-
ods to create ‘easy’ triads, i.e. select three recordings from

which one is as different as possible compared to the other
two. However in some cases, as also reported by some
of the participants, the three recordings were very differ-
ent from each other which made it difficult to select the
odd one out. In future work this could be improved by
restricting the genre of the triad, i.e. selecting three audio
examples from the same music style or culture. In addition
the selection criteria could be made more specific; in our
experiment we let participants decide on ‘general’ music
similarity but in some cases it is beneficial to focus on, for
example, only rhythm or only melody.

8. CONCLUSION

In this study we analysed a world music corpus by ex-
tracting audio descriptors and assessing music similarity.
We used feature learning techniques to transform low-level
feature representations. We evaluated the learned space in
a classification manner to check how well recordings of
the same country cluster together. In addition, we used
the learned space to detect outliers and identify recordings
that are different from the rest of the corpus. A listening
test was conducted to evaluate our findings and moderate
agreement was found between computational and human
judgement of odd samples in the collection.

We believe there is a lot for MIR research to learn from
and to contribute to the analysis of world music recordings,
dealing with challenges of the signal processing tools, data
mining techniques, and ground truth annotation procedures
for large data collections. This line of research makes a
large scale comparison of recorded music possible, a sig-
nificant contribution for ethnomusicology, and one we be-
lieve will help us understand better the music cultures of
the world.
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[7] E. Gómez, M. Haro, and P. Herrera. Music and geog-
raphy: Content description of musical audio from dif-
ferent parts of theworld. In Proceedings of the Interna-
tional Society for Music Information Retrieval Confer-
ence, pages 753–758, 2009.

[8] V. Hodge and J. Austin. A Survey of Outlier De-
tection Methodologies. Artificial Intelligence Review,
22(2):85–126, 2004.

[9] A. Holzapfel, A. Flexer, and G. Widmer. Improv-
ing tempo-sensitive and tempo-robust descriptors for
rhythmic similarity. In Proceedings of the Sound and
Music Computing Conference, pages 247–252, 2011.

[10] A. Holzapfel and Y. Stylianou. Scale Transform in
Rhythmic Similarity of Music. IEEE Transactions on
Audio, Speech, and Language Processing, 19(1):176–
185, 2011.

[11] E. J. Humphrey, A. P. Glennon, and J. P. Bello. Non-
linear semantic embedding for organizing large instru-
ment sample libraries. In Proceedings of the Interna-
tional Conference on Machine Learning and Applica-
tions, volume 2, pages 142–147, 2011.

[12] A. Kruspe, H. Lukashevich, J. Abeßer, H. Großmann,
and C. Dittmar. Automatic Classification of Musical
Pieces Into Global Cultural Areas. In AES 42nd Inter-
national Conference, pages 1–10, 2011.

[13] O. Lartillot and P. Toiviainen. A Matlab Toolbox for
Musical Feature Extraction From Audio. In Interna-
tional Conference on Digital Audio Effects, pages 237–
244, 2007.

[14] A. Lomax. Folk song style and culture. American As-
sociation for the Advancement of Science, 1968.

[15] U. Marchand and G. Peeters. The modulation scale
spectrum and its application to rhythm-content descrip-
tion. In International Conference on Difital Audio Ef-
fects, pages 167–172, 2014.

[16] M. Mauch, R. M. MacCallum, M. Levy, and A. M.
Leroi. The evolution of popular music: USA 1960-
2010. Royal Society Open Science, 2(5):150081, 2015.

[17] D. Moelants, O. Cornelis, and M. Leman. Exploring
African Tone Scales. In Proccedings of the Interna-
tional Society for Music Information Retrieval Confer-
ence, pages 489–494, 2009.

[18] G. Peeters. A large set of audio features for
sound description (similarity and classification) in the
CUIDADO project. Technical Report. IRCAM, 2004.

[19] S. Sadie, J. Tyrrell, and M. Levy. The New Grove Dic-
tionary of Music and Musicians. Oxford University
Press, 2001.

[20] P. E. Savage, S. Brown, E. Sakai, and T. E. Currie. Sta-
tistical universals reveal the structures and functions of
human music. Proceedings of the National Academy
of Sciences of the United States of America (PNAS),
112(29):8987–8992, 2015.

[21] E. G. Schellenberg and C. von Scheve. Emotional cues
in American popular music: Five decades of the Top
40. Psychology of Aesthetics, Creativity, and the Arts,
6(3):196–203, 2012.

[22] C. Schörkhuber, A. Klapuri, N. Holighaus, and
M. Dörfler. A Matlab Toolbox for Efficient Perfect
Reconstruction Time-Frequency Transforms with Log-
Frequency Resolution. In AES 53rd Conference on Se-
mantic Audio, pages 1–8, 2014.
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