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ABSTRACT

This paper describes a technique to transform the sound of an arbi-

trarily selected magnetic pickup into another pickup selection on

the same electric guitar. This is a first step towards replicating

an arbitrary electric guitar timbre in an audio recording using the

signal from another guitar as input. We record 1458 individual

notes from the pickups of a single guitar, varying the string, fret,

plucking position, and dynamics of the tones in order to create a

controlled dataset for training and testing our approach. Given an

input signal and a target signal, a least squares estimator is used

to obtain the coefficients of a finite impulse response (FIR) filter

to match the desired magnetic pickup position. We use spectral

difference to measure the error of the emulation, and test the ef-

fects of independent variables fret, dynamics, plucking position

and repetition on the accuracy. A small reduction in accuracy was

observed for different repetitions; moderate errors arose when the

playing style (plucking position and dynamics) were varied; and

there were large differences between output and target when the

training and test data comprised different notes (fret positions). We

explain results in terms of the acoustics of the vibrating strings.

1. INTRODUCTION

The electric guitar revolutionised Western popular music and was

for several decades the most important instrument in most pop,

rock and blues music. Although it may no longer hold such unique

supremacy, the electric guitar remains an essential element of many

of the styles it helped to define. Perhaps more so than with other

instruments, many famous guitar players are recognisable by their

distinctive electric guitar tone, and guitar enthusiasts are keen to

know the “secrets” behind the unique sound of their favourite artist.

In order to replicate the sound of their favourite guitar player, they

often purchase the same model of guitar and other musical equip-

ment used, and then adjust each of their parameters manually until

similar tone is achieved. In recent years, digital replication of elec-

tric guitar, guitar amplifiers and guitar effects has grown rapidly in

the research community and the music industry.

Several decades of literature exist that deal with synthesising

the sound of plucked string instruments. Research can be divided

into physical modelling, which involves solving the wave equa-

tion describing the vibrating string [1, 2], and more abstract mod-

els which attempt only to imitate the resulting sound, such as the

Karplus-Strong model [3, 4]. These models have been extended
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to account for the characteristics of the electric guitar, based on

waveguide theory [5, 6, 7].

The magnetic pickup contributes heavily to the timbre of an

electric guitar. Thus, accurately modelling the magnetic pickup

of an electric guitar is essential. In [5], the Karplus Strong model

is extended by introducing a pickup position model that emulates

the comb-filtering effect of the position of the magnetic pickup

along the string, whereby harmonics with nodes at or near the

pickup position are suppressed. A parametric synthesis model of

a Fender Stratocaster electric guitar is described in [6] that alters

its level and timbre depending on the distance of the pickup and

also includes the inharmonic behaviour of the pickup. A more de-

tailed model for a magnetic pickup in [7] includes the width of

the pickup, its nonlinearity and circuit response adding to the tonal

colouration of the electric guitar.

As mentioned in [6], the playing technique of a musician also

alters the timbre of an electric guitar. Plucking with fingers or a

plectrum are the two common styles of exciting an electric guitar.

The size, shape and material of the plucking device affect the tone

of the guitar [8] and the plucking point along the string also con-

tributes to the timbre. A plucking point close to the bridge will

produce a brighter sound, while plucking near the fingerboard will

produce a warmer sound [9, 10]. This is caused by the low ampli-

tude of harmonics that have a node at or near the plucking point.

Varying how strongly a string is plucked will also affect the level

of higher harmonics [6].

Outside academia, commercial products including guitar syn-

thesisers are available that are able to emulate the sound of most

popular electric guitars on the market by modifying the sound of

a standard guitar [11, 12]. Each string is detected individually by

a hexaphonic pickup and processed by the magnetic pickup model

of the selected electric guitar sound.

For all physical modelling systems, parameters of the copied

electric guitar must be known accurately in order to model its

sound. Many influential guitar players used electric guitars and

amplifiers that are now considered vintage items; prohibitively ex-

pensive and difficult to obtain today. Certain instruments may have

been discontinued by the manufacturer and modern examples may

not produce a sufficiently similar sound to the older models. The

lack of availability of such instruments makes it difficult to mea-

sure the physical properties of the guitar, thus making it challeng-

ing to model the instrument digitally. In our research, we are ex-

ploring the concept of replicating the electric guitar sound from

an audio recording without having prior knowledge of the phys-

ical parameters of the desired electric guitar sound. In particu-

lar, in this study we analyse recordings of an electric guitar made

using different pickup positions, and we compute filters to trans-
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form the sound recorded by one pickup into the sound of another

pickup. We test the effects of the following variables on the qual-

ity of learnt filters: plucking position, dynamics, fret position and

random variation in human plucking. Although the problem of

inverting a notch filter may appear ill-posed, we show that good

results can be obtained in practice.

Section 2 describes the sound samples used in this study and

the limitations of replicating a desired sound. Section 3 presents

an overview of mathematical foundations for determining the op-

timal FIR coefficients to estimate the desired sound. Furthermore,

Section 4 explains the calculation of the accuracy of the estimated

signal. The transformation of the sound of one pickup into that

of another pickup at a different position is explained and the opti-

mum number of coefficients is described in Section 5. In Section

6, the robustness of the filters when applied to an input signal with

different repetitions, plucking positions, plucking dynamics and

fret positions is measured. Lastly, the conclusions are presented in

Section 7.

2. AN ELECTRIC GUITAR SOUND ANALYSIS DATA SET

Figure 1: The modified Squier Stratocaster diagram. Three 1/8"

output jacks allow us to tap separate signals from each magnetic

pickup simultaneously. The three plucking positions are directly

above each pickup.

The purpose of this research is to investigate whether it is pos-

sible to transform the sound produced by an arbitrary electric gui-

tar to a desired guitar sound in an audio recording using optimisa-

tion techniques. The initial experiments in this study simplify the

purpose by attempting to transform the sound of a pickup position

into another on the same electric guitar. This is an important step

because the magnetic pickup has a large impact on the timbre of

an electric guitar.

Since the playing style of a guitarist affects the colouration

of the electric guitar tone, it is preferable that the input signal is

played at the same plucking point and plucking dynamic as the

target signal. In other words, our aim is to account for differences

due to the instrument or its settings (which we assume are fixed)

from those due to playing technique. Thus we also assume that the

timing and pitch of notes in the input and target signals coincide,

and in particular that the input signal is played at the same fret

position and on the same string as the target. This work utilises

a modified guitar that allows us to tap the signals from each in-

dividual pickup simultaneously. This means that each signal will

be played at exactly the same plucking point, dynamic, pitch and

timing.

The electric guitar that is used in this study is a Squier Stra-

tocaster with three stock magnetic pickups rewired so that each

pickup can be simultaneously recorded (see Figure 1), in order to

isolate differences due to the pickup from those due to time align-

ment or playing style. The pickup positions are situated at 158.75

mm (neck pickup), 101.6 mm (middle pickup) and 38.1 mm - 50.8

mm (slanted bridge pickup) from the bridge. The scale length of

the guitar is 648 mm. The strings used are nickel wound strings

with gauges .010, .013, .017, .026, .036 and .046.

The sound samples used in this paper consist of each string

being plucked using a plectrum at three different fret positions,

three plucking positions and three plucking dynamics, with each

combination being repeated three times. The plucking dynamics

are forte (loud), mezzo-forte (moderately loud) and piano (soft);

the three different plucking positions are when the electric guitar

is plucked near the neck (158.75 mm from the bridge), at a central

playing position (101.6 mm from the bridge) and near the bridge

(45 mm from the bridge); the fret positions are played at open

string, fifth fret and twelfth fret; and lastly, all of the combinations

are played on each string and repeated for three times. This leads

to a total of 6 × 3 × 3 × 3 × 3 = 486 different variations that

are recorded from each of the three pickup positions. Thus, 1458

sound samples are available to be analysed. The duration of the

audio samples ranges from 3 to 28 seconds depending on the decay

rate for each strings. It is planned to make this dataset publicly

available for research purposes.

3. OPTIMISATION TECHNIQUE

In this study, we aimed to transform the sound of any pickup se-

lection into the sound of another pickup on the same guitar us-

ing an FIR filter. As an example, we are taking the sound of the

neck pickup as an input and transforming its sound into the bridge

pickup sound. This is achieved by convolving the input signal

(neck pickup sound), x(n) with an FIR filter, h(n) to estimate

the target signal (bridge pickup), y(n).

y(n) = x(n) ∗ h(n) (1)

As the filter h(n) is unknown, an optimisation technique is re-

quired to estimate the FIR coefficients accurately. In this paper,

the coefficients of the FIR filter are obtained by using the least

squares method. A least squares estimator has been used to es-

timate the coefficients of a filter to reverse engineer a target mix

[13, 14]. The linear combination to estimate the desired response

is given by:

ŷ(n) =
M
∑

k=1

h(k) x(n− k) (2)
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where h(k) is the filter coefficient vector for the FIR filter, M is

the filter order and ŷ(n) is the estimated target response. This can

also be expressed in matrix notation as:

ŷ = Xh (3)

where the matrix X is composed of M shifted versions of x(n).
The estimation error and its matrix notation are given by:

e(n) = y(n)− ŷ(n) = y −Xh (4)

and the set of optimal coefficients are computed by minimising the

sum of squared errors:

ĥ = argmin
h

‖y −Xh‖. (5)

By solving the least-squares normal equations the optimal coeffi-

cients are given by:

ĥ = (XT
X)−1

X
T
y (6)

where XTX is the time-average correlation matrix, R̂, the ele-

ments of which can be calculated by:

r̂ij = x̃T
i x̃j

=
∑Nf

n=Ni
x(n+ 1− i)x∗(n+ 1− j) 1 ≤ i, j ≤ M

(7)

leading to:

r̂i+1,j+1 = r̂ij + x(Ni − i)x∗(Ni − j)

−x(Nf + 1− i)x∗(Nf + 1− j) 1 ≤ i, j < M

(8)

where Ni and Nf are the range of computing the process of the

filtering operation. Here, we set Ni = 0 and Nf = N−1 which is

the pre-windowing method that is extensively used in least squares

adaptive filtering [15].

4. TIMBRAL SIMILARITY MEASUREMENT

Once the set of optimal coefficients for the FIR filter and esti-

mated response are obtained, the similarity between the estimated

signal and target signal is measured. A more meaningful way of

measuring the similarity of both signals is by measuring the dis-

tance between two sounds in a time-frequency representation. The

short-time Fourier transform (STFT) is commonly used for time-

frequency analysis. There are several papers that propose a genetic

optimisation approach to find optimal parameters for frequency

modulation matching synthesis and a method of measuring the

similarity between two sounds [16, 17, 18]. The waveforms that

are being measured are divided into short segments and a discrete

Fourier transform is calculated for each segment. We set the length

of the frame to be 1024 samples with an overlap of 512 samples,

where the sampling rate of the audio signals is 44100 Hz. The raw

distance (or error), DR(Ŷ , Y ) is calculated as follows:

DR(Ŷ , Y ) =
1

T

T
∑

t=1

F
∑

f=1



Ŷt[f ]− Yt[f ]




2
(9)

where Ŷt[f ] is the magnitude spectrum of the estimated response

at time frame t and frequency bin f , Yt[f ] is the magnitude spec-

trum of the target response at frame t and bin f , T is the number

of frames in the STFT and F is the total number of frequency bins

in each frame. Ideally, the sound is considered to be more similar

to the target response when the distance is closer to zero. Due to

the variations in plucking dynamics between different trials, a nor-

malisation is required to compensate for differences in loudness.

The raw distance, DR, is divided by the average energy of the tar-

get signal and the estimated signal, giving the normalised distance

D(Ŷ , Y ):

D(Ŷ , Y ) =
2DR(Ŷ , Y )

∑K

k=0
|y(k)|2 +

∑L

l=0
|ŷ(l)|2

(10)

where K is the sample length of the target signal and L is the

sample length of the estimated signal.

5. RESULTS: AN EXAMPLE

5.1. Learning the Filter

Table 1: Results for transforming one pickup position to another

for a tone played on an open G string (f0 = 196 Hz). The nor-

malised distance between estimated signal Ŷ and target signal Y

is shown in the fourth column. For comparison, the normalised

distance between input X and target signal is given in the third

column showing a large reduction in distance after transforma-

tion.

Input Signal (X) Target Signal (Y ) D(X, Y ) D(Ŷ , Y )
neck pickup bridge pickup 0.802 0.123

bridge pickup neck pickup 0.802 0.011

neck pickup mid pickup 0.434 0.085

mid pickup neck pickup 0.434 0.007

bridge pickup mid pickup 0.234 0.007

mid pickup bridge pickup 0.234 0.009

In this section we demonstrate the use of an FIR filter to trans-

form the sound from the neck pickup into the sound of the bridge

pickup for the open G string (3rd string, f0 = 196 Hz). The elec-

tric guitar is plucked directly above the middle pickup and played

forte. The filter order is set to 1024, with coefficients obtained us-

ing the least squares method described in Section 3; the estimated

signal produced by convolving the input signal and the filter im-

pulse response.

Figure 2 shows the magnitude spectra of the neck pickup sig-

nal, bridge pickup signal and estimated bridge pickup signal for

a tone played on the open G string. The spectral envelope curves

drawn on Figures 2(a) and 2(b) illustrate the comb filtering effect

due to the different pickup positions. The neck pickup, situated

approximately 1

4
of the way along the string, lowers the ampli-

tude of every 4th harmonic, while the bridge pickup, at about 1

14

of the string length, lowers the amplitude of every 14th harmonic.

As shown in Figure 2(c), the amplitude of every 4th harmonic is

increased and every 14th harmonic is decreased relative to the in-

put (Figure 2(a)), which indicates that the magnitude spectrum of

the estimated signal matches that of the target signal. The accu-

racy of the estimated signal is calculated as the normalised dis-

tance D(Ŷ , Y ) between target (Y ) and estimated (Ŷ ) signals us-

ing Equation 10. For this example, the distance is 0.123, compared
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Figure 2: Magnitude spectra for a guitar tone played on the open 3rd string (f0 = 196 Hz), calculated from (a) the neck pickup signal, (b)

the bridge pickup signal and (c) the estimated bridge pickup signal. The spectral envelopes are drawn for illustrative purposes to show the

comb filtering effect of the pickup position.

with the distance D(X, Y ) = 0.802 between input (X) and target

signals, a reduction of 85% in the spectral difference.

The filter coefficients can also be determined for other pairs of

input and target signals. Table 1 shows the distances calculated for

transforming between pickup positions for one tone. In all cases

the filter is able to simulate the effect of moving the pickup posi-

tion, reducing the spectral difference by 80% to 99% for the vari-

ous cases. The transformation of the neck pickup sound appears to

be more difficult than the other cases; we discuss reasons for this in

subsection 5.3. In Section 6 we investigate the factors influencing

the generalisation of these results.

5.2. Estimating the Filter Order

The accuracy of the estimated signal was computed for various fil-

ter orders, to estimate a suitable number of coefficients for the FIR

filter. Figure 3 shows that the error converges for higher order fil-

ters. We choose 1024 FIR coefficients as a reasonable compromise

of accuracy and efficiency to estimate the target signal.

5.3. Comparison with Theoretical Model

The filter that was obtained in Section 5.1 is analysed and com-

pared with a theoretical model. Transforming the sound of a neck

pickup sound into bridge pickup sound is achieved by cascading

an inverse neck pickup model and bridge pickup model. The theo-

retical model, Ht(z) is computed as follows:

Ht(z) =
Hb(z)

Hn(z)
(11)

where Hn(z) is the neck pickup model and Hb(z) is the bridge

pickup model. The inverse neck pickup model and bridge pickup
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Figure 3: Normalised spectral distance of the estimated signal

from the target signal (Equation 10) as a function of filter order.

Error starts to converge above order 1000 so we choose 1024 as

our filter order for experiments here.

model are essentially a feedback comb filter and feedforward comb

filter, respectively, which include a fractional delay and a disper-

sive filter [6, 7, 19]. We excluded some of the details in building

the theoretical model such as the nonlinearity of pickup [7, 20]

and pickup response [7] which are beyond the scope of this paper.

The simplified theoretical model captures the basic behaviour of

the system.

Figures 4(a) and 4(b) show the frequency responses of the in-

verse neck pickup model and bridge pickup model respectively.

Also, a comparison of the frequency responses of the theoretical

model and the estimated FIR filter is shown in Figure 4(c). We

observe that the estimated FIR filter tends to be closer to the the-
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Figure 4: (a) Frequency response of inverse neck pickup model; (b) frequency response of bridge pickup model; (c) frequency response of

the cascaded filter (dashed line) and estimated FIR filter (solid line) for the electric guitar played at open G string. The vertical dotted

lines show the frequencies of the partials of the tone.

oretical model at or near the partial frequencies. This is because

most of the energy of the input and target signals is found at the

partials, so the filter optimisation is biased to give low errors at

these frequencies rather than the frequencies between partials. By

the same reasoning, the filter is less accurate at higher frequen-

cies, where the signal has less energy. In addition, the nulls of the

pickup model remove energy at specific frequencies. In theory,

this could lead to numerical problems when inverting the model

but we did not experience this problem with our data. It is either

because the notches are not perfectly nulling or because the par-

tial overtones never coincided with notch frequencies. Overall, the

frequency response of the estimated FIR filter follows the curves

of the theoretical model and captures the most important timbral

features.

To explain the results in Table 1, we note that the inverse filter

for the neck pickup has the poles most closely spaced, so more

poles occur in the region where the signal has the most energy.

Since we are using an FIR filter, the approximation of the poles

will have some error, which is most noticeable in the case where

the neck pickup is the input sound. The error in these cases is

approximately one order of magnitude greater.

6. RESULTS: TESTS OF ROBUSTNESS

In guitar synthesisers, each string is processed by an individual

filter to emulate the sound of an electric guitar. In Section 5, we

extract a filter for a single string played at a particular plucking

point and plucking dynamic. In this section we test the general-

ity of learnt filters for each string, to assess the effect of different

playing techniques such as variations in plucking dynamics and

plucking positions.

In order to measure the robustness of the filter to such dif-

ferences, we extract a filter for a particular input/target pair (the

training pair) and test how well it performs given a different in-

put/target pair (the testing pair). In the simplest case, the training

and testing pairs are different instances (repetitions) of the same

parameters (string, fret, dynamic, plucking position), but we also

test for variations in one of the other parameters at a time (ex-

cept for string). Thus, the variables that we analyse are repetition,

plucking position, plucking dynamic and fret position. To keep the

results manageable, we only report results where the input signal

is from the neck pickup and target signal is from the bridge pickup.

6.1. Analysing Filter Generality

We used the guitar recordings described in Section 2. The process

of analysing each variable can be explained by an example. In this

case, we take the variable repetition. The steps for analysing the

robustness of the filter to different repetitions are as follows:

1. Take three input/target pairs xi(n) and yi(n) where i ∈
{1, 2, 3} is the index of the repetition and other variables

remained constant.

2. Obtain the filters hi(n) as described in Section 5 for each

repetition.

3. The input signals xi(n) are convolved with each filterhj(n),
j ∈ {1, 2, 3} separately to obtain estimated signals ŷi,j(n).

The distance D(Ŷi,j , Yi) between the estimated signal and

target signal yi(n) is calculated.

4. Steps 1, 2 and 3 are repeated for all cases (i.e. for each

combination of plucking position, plucking dynamic, fret

position and string), leading to a total of 162 cases.

The same process can be used for analysing the robustness of the

filters to different plucking positions, plucking dynamics and fret
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Table 2: Errors measured for filters applied to an input/target pair with different (a) repetition, (b) plucking position, (c) plucking dynamic,

(d) fret position and (e) fret position (improved filter); where d is the distance of the plucking point from the bridge. All values are averages

over 162 different cases, as described in Section 6.1.

Input signal
h1(n)
Rep 1

h2(n)
Rep 2

h3(n)
Rep 3

Repetition 1 0.186 0.240 0.260

Repetition 2 0.216 0.184 0.238

Repetition 3 0.217 0.225 0.187

Input signal
h1(n)
d1

h2(n)
d2

h3(n)
d3

d1 = 158.75mm 0.154 0.391 0.705

d2 = 101.6mm 0.597 0.222 0.366

d3 = 45mm 0.836 0.453 0.181

(a) (b)

Input signal
h1(n)

f

h2(n)
mf

h3(n)
p

Forte, f 0.195 0.364 0.535

Mezzoforte, mf 0.358 0.211 0.287

Piano, p 0.352 0.258 0.152

Input signal
h1(n)

Open string

h2(n)
5th fret

h3(n)
12th fret

Open string 0.135 0.705 0.591

5th fret 1.080 0.111 0.505

12th fret 0.773 1.949 0.310

(c) (d)

Input Signal
h1(n)

Open string & 5th fret

h2(n)
Open string & 12th fret

h3(n)
5th & 12th fret

h4(n)
Open string, 5th & 12th fret

Open string 0.151 0.241 0.432 0.242

5th fret 0.121 0.495 0.152 0.152

12th fret 0.644 0.311 0.333 0.325

(e)

positions where the variable repetition is exchanged with the vari-

able to be analysed in the above four steps.

6.2. Results

Following the steps in Section 6.1, we obtain nine distances for

each of 162 cases to analyse each variable. Each of the nine dis-

tances, or errors, is then averaged over all 162 cases. Tables 2(a),

2(b), 2(c) and 2(d) show the errors for analysing the robustness

of the filters when applied to an input/target pair with a different

repetition, plucking position, plucking dynamic or fret position re-

spectively. For the learnt filters hi(n), the values of the variable

that we are analysing are indexed by i. For instance, in Table 2(b),

h1(n), h2(n) and h3(n) are extracted from input/target pairs that

were plucked at 158.75 mm, 101.6 mm and 45 mm from the bridge

respectively. The filters are then evaluated on input/target pairs

from each of the three different plucking positions. The figures in

bold emphasise the cases where the training and testing pairs co-

incide. These can be used a reference values, to obtain the loss in

accuracy due to the variable under analysis.

As shown in Table 2(a), the increase in error when the filters

are applied to different repetitions ranges from 16% to 39%. We

would expect the filters to be reasonably robust towards other rep-

etitions, because the notes are being plucked at similar positions,

dynamics, frets and strings. Note that we did not use a mechanical

plucking device, so there are slight random variations in playing

technique between the repetitions, but there should be no system-

atic variation. Hence all non-bold values are quite consistent, be-

cause different repetitions have similar timbre.

According to Table 2(b), error increases by a factor of 2 to

5 when the input signal is convolved with a filter learnt from a

different plucking position. In this case, the comb filter effect of

plucking position creates nodes which effectively suppress infor-

mation about the filter to be learnt. The filterh2(n) has a lower off-

diagonal error than filters h1(n) and h3(n). Likewise input/target

pair 2 has lower off-diagonal errors than the other pairs. It appears

that the effect of the middle plucking point, like the position itself,

is closer to the other plucking points than they are to each other.

Table 2(c) shows that the error also increases when the filter is

applied to a signal with different plucking dynamics. Here the ef-

fect of changes in plucking dynamics is approximately a doubling

of error, although for the filter h3(n) learnt from a quiet pluck, a

much larger error is observed. The reason for this could be a lack

of information for filter estimation at high frequencies, due to the

signal’s energy being concentrated towards lower frequencies in

the case of p (piano) dynamic.

By far the largest errors are recorded in Table 2(d), when the

filters are applied to different fret positions. Two reasons can be

given for this result: first, the filter is learnt accurately only at

the partials of the training tone; for a different testing tone, the

frequency response of the filter is inaccurate. The second reason is

that each different fret position results in a different comb filtering

effect of the pickup. For example, the neck pickup is 1

4
of the way

along an open string, but 1

3
of the way between the 5th fret and

bridge, and 1

2
way between the 12th fret and the bridge. The comb

filtering effect of the pickup is to attenuate every 4th, 3rd or 2nd

partial in the respective cases.

In order to improve the results from Table 2(d), we concate-

nated the input (respectively target) signals played on the open

string, at the fifth fret and at the twelfth fret, in order to learn a

composite filter. The filter h1(n) was learnt from the open string

and fifth fret signal pairs, h2(n) from the open string and twelfth

fret pairs, h3(n) from the fifth fret and twelfth fret pairs and filter

h4(n) from all three pairs. The same filter order of 1024 coeffi-

cients is used for the composite filters. The filters were then eval-

uated on input/target pairs for the three fret positions. Table 2(e)

shows considerable improvement compared to the errors measured

in Table 2(d). The filter with the least error is h4(n), which uses

information from all input/target pairs.

Figure 5 shows the composite filter, h4(n). We can observe
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Figure 5: Frequency response of the cascaded filter (dashed line) and the composite filter h4(n) (solid line) which is learnt from electric

guitar played at open string (f0 = 196 Hz), fifth fret (f0 = 262 Hz) and twelfth fret (f0 = 392 Hz). The electric guitar is played forte and

plucked directly above the middle pickup. The vertical dotted lines show the frequencies of the partials of the tones.

that the frequency response of the composite filter is flatter than

the filter in Figure 4. This is because the composite filter has more

information from which it can learn the frequency response. In

particular, the frequency response of the filter is more accurate at

the partials of fifth (f0 = 262 Hz) and twelfth fret(f0 = 392 Hz).

6.3. Comparisons Between Variables

Table 3: Summary table for comparisons between each variables.

Mean Mean

Variables Diagonal Off-diagonal Improved

Repetitions 0.186 0.233

Plucking positions 0.186 0.558

Plucking dynamics 0.186 0.359

Fret positions 0.186 0.934 0.240

Table 3 summarises the results of Table 2. The second column

shows the averages of the diagonal values, which is the global av-

erage error of transforming the neck pickup sound into the bridge

pickup sound across all cases where the training and testing pairs

coincide (thus it is independent of row). The third column shows

the averages of the off-diagonal values for Tables 2(a), 2(b), 2(c)

and 2(d) and the averages for the fifth column in Table 2(e). These

results give insight into the relative contributions of the variables,

and thus the robustness of the filters to changes in repetition, pluck-

ing position, plucking dynamic and fret position. The filters are

most robust to changes in repetition, which should have no sys-

tematic difference. Changes in plucking dynamics double the error

on average, and changes in plucking position triple the error. The

filters are least robust to changes in fret position, which result in a

5-fold increase in error. By learning composite filters across mul-

tiple notes, a significant reduction in error appears possible.

7. CONCLUSIONS

We described a preliminary step towards altering the sound of an

electric guitar in order to replicate a desired electric guitar sound

in an audio recording. In this study, a method of transforming the

sound of an electric guitar pickup into that of another pickup po-

sition has been described as a first step. Although we have not yet

performed a formal listening test, informal listening suggests that

the technique yields good results. This is supported by a spectral

distance measure which shows that around 80% of the difference

between input and target signal is reduced by the learnt filter in the

case that the target signal is known. It is shown that an FIR filter

with 1024 coefficients is sufficient for the current approach.

However, there are limitations to replicating the target signal

in the practical use case, such as a guitar synthesiser, where the

target signal is not known. As mentioned in Section 2, differ-

ences between playing techniques in the input and training signals

will affect the accuracy of any emulation. We quantified these ef-

fects by testing learnt filters against input/target pairs that failed

to match in one of four dimensions. While a small degradation

is observed due to random differences between repetitions (which

could correspond to the degree of overfitting of the learnt filter),

we found the that the filter is somewhat less robust when applied

to an input with different playing technique (i.e. plucking position

or dynamic), and not at all robust when the input changes fret po-

sitions to a different pitch.

The results for different fret positions can be improved by

training the filter using multiple tones played on different frets

along the string. This allows the filter to “fill the gaps” of un-

known values in the frequency response between partials of a sin-

gle training tone. This approach could also be applied to improve

performance across different values of the other variables. Future

work could compare alternative approaches, such as approximat-

ing the target frequency response by smoothing to obtain the spec-

tral envelope, or using a parametric model to explicitly model the

physical properties of the instrument and the playing gestures.
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