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ABSTRACT

We propose the Probabilistic YIN (PYIN) algorithm, a mod-

ification of the well-known YIN algorithm for fundamental

frequency (F0) estimation. Conventional YIN is a simple

yet effective method for frame-wise monophonic F0 estima-

tion and remains one of the most popular methods in this do-

main. In order to eliminate short-term errors, outputs of fre-

quency estimators are usually post-processed resulting in a

smoother pitch track. One shortcoming of YIN is that such

post-processing cannot fall back on alternative interpretations

of the signal because the method outputs precisely one es-

timate per frame. To address this problem we modify YIN

to output multiple pitch candidates with associated probabili-

ties (PYIN Stage 1). These probabilities arise naturally from

a prior distribution on the YIN threshold parameter. We use

these probabilities as observations in a hidden Markov model,

which is Viterbi-decoded to produce an improved pitch track

(PYIN Stage 2). We demonstrate that the combination of

Stages 1 and 2 raises recall and precision substantially. The

additional computational complexity of PYIN over YIN is

low. We make the method freely available online1 as an open

source C++ library for Vamp hosts.

Index Terms— Pitch estimation, pitch tracking, YIN

1. INTRODUCTION

The estimation of the fundamental frequency (F0) from

monophonic human voice signals is a prerequisite to com-

prehensive analysis of intonation in speech [1] and singing

[2]. Since frame-wise pitch estimates are not completely

reliable, post-processing is often used to clean the raw pitch

track (see, e.g. [3]). Despite the high success rate of existing

algorithms, this procedure is generally flawed because (po-

tentially correct) frequency candidates that were discarded in

the frame-wise stage cannot be recovered in the smoothing

stage, and hence multiple frame-wise pitch candidates should

be used before smoothing [4].

Several solutions to the problem of F0 estimation have

been proposed in the area of speech processing [4, 5, 6, 7].

Among these, the YIN fundamental frequency estimator [7]

Matthias Mauch was funded by the Royal Academy of Engineering.
1http://code.soundsoftware.ac.uk/projects/pyin

has gained popularity beyond the speech processing commu-

nity, especially in the analysis of singing [8, 9]. Babacan et

al. [10] provide an overview of the performance of F0 track-

ers on singing, in which YIN is shown to be state of the art,

and particularly good at fine pitch recognition.

The original YIN paper outlines a smoothing procedure

that does not use the frame-wise estimate, but tracks low val-

ues in the underlying periodicity function. In this paper, we

take YIN and modify its frame-wise variant in a probabilis-

tic way to output multiple pitch candidates with associated

probabilities, hence also reducing the loss of useful informa-

tion before smoothing. We then employ a hidden Markov

model which uses the modified frame-wise output to calcu-

late a smoothed pitch track which retains YIN’s well-known

pitch accuracy and at the same time can be shown to provide

excellent recall and precision.

2. METHOD

This section describes PYIN, our proposed method, which is

divided into two stages: (1) frame-wise extraction of mul-

tiple pitch candidates with associated probabilities, and (2)

HMM-based tracking of the pitch candidates into a mono-

phonic pitch track. These stages will be addressed in turn.

2.1. Stage 1: F0 Candidates

The first stage of PYIN follows the same steps as the original

YIN algorithm, differing only in the thresholding stage, where

it assumes a threshold distribution, in contrast to YIN, which

relies on a single threshold (see Fig. 1).

The YIN algorithm is based on the intuition that, in a sig-

nal xi, i = 1, . . . , 2W , the difference

dt(τ) =

W
∑

j=1

(xj − xj+τ )
2, (1)

will be small if the signal is approximately periodic with fun-

damental period τ = 1/f0. It can be shown [7] that this dif-

ference can be conveniently obtained by first calculating the
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Fig. 1: Comparison of the first steps of the original YIN al-

gorithm the proposed PYIN algorithm, with our contribution

in bold print. Both have further steps for pitch refinement and

pitch track smoothing, not pictured.

auto-correlation function (ACF)

rt(τ) =

t+W
∑

j=t+1

xjxj+τ , (2)

from which (1) can be calculated as

dt(τ) = rt(0) + rt+τ (0)− 2rt(τ). (3)

These two calculations comprise the first two steps of the

original YIN algorithm, as illustrated in Fig. 1. The third

step of the original YIN algorithm is a normalisation of the

difference (1) obtaining a ‘cumulative mean normalised dif-

ference function’ d′(τ) (we omit the subscript index t for sim-

plicity) via a heuristic designed to compensate for low values

at short periods (high frequencies) induced by formant reso-

nances (for details see [7]).

The fourth step of the original YIN algorithm is to find the

dip in the difference function d′ that corresponds to the fun-

damental period. This is done by picking the smallest period

τ for which d′ has a local minimum and d′(τ) < s for a fixed

threshold s (usually s = 0.1 or s = 0.15). In the case that

d′(τ) > s for all τ (above threshold), the original YIN paper

proposes argminτ d
′(τ) as the period estimate; alternatively

this can be used to estimate the pitch as unvoiced [11]. We

notate the period estimated by YIN as Y (xt, s).
Since both the choice of s and the strategy for handling the

case that all values are above the threshold affect the result,

we propose to abandon the use of a single absolute thresh-

old and instead use a prior parameter distribution S given by

P (si), where si, i = 1, . . . , N are possible thresholds. We

use thresholds ranging from 0.01 to unity in steps of 0.01,

i.e. N = 100. The distributions used in our experiments

are Beta distributions with means 0.1, 0.15, 0.2 (α = 1 and
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Fig. 2: The set of Beta distributions used as parameter priors

for PYIN.

β = 18, 11 1

3
, 8), as shown in Fig.2. Given such a distribution,

and the prior probability pa of using the absolute minimum

strategy we can then define the probability that a period τ is

the fundamental period τ0 according to YIN as

P (τ = τ0|S, xt) =
N
∑

i=1

a(si, τ)P (si) [Y (xt, si) = τ ], (4)

where [ · ] is the Iverson bracket evaluating to unity for a true

expression and to zero otherwise, and

a(si, τ) =

{

1, if d′(τ) < si

pa, otherwise.
(5)

We use pa = 0.01. Note that if pa < 1, then (4) does not

necessarily sum to unity. The remaining probability mass can

be interpreted as the probability that the frame is unvoiced.

Any τ for which P (τ = τ0|S, xt) > 0 yields a funda-

mental frequency candidate f = 1/τ . As in the original YIN

algorithm frequency estimates are improved by parabolic in-

terpolation on the difference function d′.
The set of fundamental frequency candidates along with

their probabilities is the output of the first stage of the pro-

posed PYIN algorithm. It has several appealing properties:

1. Any τ for which (4) is non-zero is a genuine YIN fre-

quency estimate for some threshold s, at a minimum of

the d′ difference function.

2. The probabilistic estimate can be obtained in one orig-

inal YIN loop with minimal computational overhead.

3. The conventional Yin estimate is among the candidates,

i.e. PYIN covers at least as many true fundamental fre-

quencies as the original YIN.

This last point is the main motivation for our method. In

the original YIN algorithm, once an estimate is erroneous, the

true value cannot be recovered. Our modification is based on



orig. noise sound live rec. phone rec. clip.

full cand. 0.993 0.993 0.990 0.750 0.953 0.985

YIN .10 0.988 0.980 0.886 0.648 0.880 0.979

YIN .15 0.989 0.988 0.934 0.644 0.843 0.958

YIN .20 0.980 0.986 0.953 0.632 0.803 0.931

Table 1: Recall by YIN parameter and degradation.

the observation that in many cases there exists an unknown

threshold for which YIN will output the correct pitch, which

is illustrated in Table 1: PYIN’s set of candidates always has

a higher pitch recall than any YIN parametrisation. We will

show later that this substantially boosts the effectiveness of

pitch tracking in Stage 2 of our proposed PYIN method.

2.2. Stage 2: HMM-based Pitch Tracking

The pitch tracking step consists of choosing at most one pitch

candidate at every frame. We divide the pitch space into M =
480 bins ranging over four octaves from 55Hz (A1) to just

under 880Hz (A5) in steps of 10 cents (0.1 semitones).

Such pitch bins can be modelled as states in a hidden

Markov model (HMM). The model would then directly use

the probabilities of pitch candidates obtained in the first PYIN

step as observation probabilities: the probability of each ob-

served pitch candidate is assigned to the bin closest to its es-

timated frequency; this results in a sparse observation vector

p∗m,m = 1, . . . ,M , where the only non-zero elements are

those closest to pitch candidates. We use this idea but de-

velop a more realistic HMM with one voiced (v = 1) and one

unvoiced (v = 0) state per pitch (i.e. with 2M pitches), in-

spired by an existing note tracking method [9]. Assuming that

the prior probability of being in either a voiced or an unvoiced

state is P (v = 1) = P (v = 0) = 0.5, we define our model’s

observation probability as

pm,v =

{

0.5 · p∗m, for v = 1

0.5 · (1−
∑

k P
∗

k ) for v = 0.
(6)

Transition probabilities in this model have two main pur-

poses: to favour natural (smooth) pitch tracks over discontin-

uous ones, and to favour few changes between unvoiced and

voiced states. We encode this behaviour in two distributions

pertaining to voicing transition and pitch transition:

pv = P (vt | vt−1)

=

{

0.99, if no change

0.01 otherwise, and
(7)

pij = P (pitcht = j | pitcht−1 = i). (8)

The latter is realised as a triangular weight distribution which

encodes that a pitch jump can be at most 25 ‘bins’, which cor-

responds to 2.5 semitones per frame. The highest likelihood

peak is at 0 semitones. The window is always normalised to

sum to 1. For more information refer to the source code. As-

suming independence between voicedness and pitch, the ac-

tual transition probability between two states defined by pitch

and voicedness is simply the product of the two individual

probabilities. The initial probabilities are set to be uniformly

distributed over the unvoiced states, and the HMM is decoded

using an efficient version of the Viterbi algorithm that exploits

the sparseness of the transition matrix.

3. RESULTS

We synthesised singing from the F0 pitch tracks available

with the RWC Music Database [12] and saved them as lin-

ear PCM wav files at a sample rate of 44.1kHz. The tracks

cover the 100 full-length songs of the popular music subsec-

tion of the database. In order to simulate a more realistic sit-

uation without such clean data, we degraded the audio using

five presets of the Audio Degradation Toolbox (ADT [13]) in

addition to the original wav files. The complete data com-

prises in excess of 30 hours of audio. All results given are on

this complete data set.

We ran three different versions of the proposed PYIN

method with the Beta parameter distributions introduced in

Section 2.1 (means 0.10, 0.15, 0.20, see Fig. 2). For compar-

ison we also ran three versions with a parameter distribution

S that has only one non-zero element si (here, too, these

were 0.10, 0.15, 0.20). Since this effectively simplifies to

original YIN plus smoothing, we refer to these as YIN+S.

The baseline is the conventional YIN, also with three dif-

ferent versions of the original YIN method with threshold

parameters s = 0.10, 0.15, 0.20. All methods are run in a

Vamp plugin implementation with a step size of 256 (5.8ms)

and a frame size of 2048 (46.4ms).

3.1. Quantitative Analysis on Synthetic Data

Recall. In the context of intonation analysis, it is desirable to

have a correct frequency estimate for as much of the voiced

data as possible, i.e. to obtain high recall. We calculate recall

as the proportion of actually voiced frames (according to the

ground truth) which the extractor recognises as voiced and

tracks with the correct frequency. We follow [10] and accept

a frame as correctly tracked if the estimate is within one semi-

tone of the true frequency.

Figure 3a shows that the proposed method with any of the

beta distributions tested (PYIN .10, .15, .20) clearly outper-

forms the original YIN estimate. The PYIN median recall

values (0.977, 0.982, 0.984) approach much more closely the

upper bound given by the number of correct pitches covered

by the full candidate set (0.98) than any of the conventional

YIN methods (medians all below 0.951). Note that this is true

despite the fact that the YIN methods have an advantage due



Y
IN

 .
1

0

Y
IN

 .
1

5

Y
IN

 .
2

0

Y
IN

+
S

 .
1

0

Y
IN

+
S

 .
1

5

Y
IN

+
S

 .
2

0

P
Y

IN
 .

1
0

P
Y

IN
 .

1
5

P
Y

IN
 .

2
0

fu
ll 

c
a

n
d

.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

re
c
a

ll

 0
.9

8
9
  
  
  

 0
.9

7
7
  
  
  

 0
.9

8
2
  
  
  

 0
.9

8
4
  
  
  

 0
.9

4
2
  
  
  

 0
.9

5
1
  
  
  

 0
.9

4
8
  
  
  

 0
.9

1
8
  
  
  

 0
.9

3
5
  
  
  

 0
.9

3
3
  
  
  

(a) Recall

Y
IN

 .
1

0

Y
IN

 .
1

5

Y
IN

 .
2

0

Y
IN

+
S

 .
1

0

Y
IN

+
S

 .
1

5

Y
IN

+
S

 .
2

0

P
Y

IN
 .

1
0

P
Y

IN
 .

1
5

P
Y

IN
 .

2
0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

p
re

c
is

io
n

 0
.9

8
5
  
  
  

 0
.9

8
1
  
  
  

 0
.9

7
0
  
  
  

 0
.9

0
8
  
  
  

 0
.8

5
2
  
  
  

 0
.8

0
9
  
  
  

 0
.9

8
7
  
  
  

 0
.9

8
6
  
  
  

 0
.9

8
4
  
  
  

(b) Precision

Y
IN

 .
1

0

Y
IN

 .
1

5

Y
IN

 .
2

0

Y
IN

+
S

 .
1

0

Y
IN

+
S

 .
1

5

Y
IN

+
S

 .
2

0

P
Y

IN
 .

1
0

P
Y

IN
 .

1
5

P
Y

IN
 .

2
0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F

 0
.9

8
1
  
  
  

 0
.9

8
1
  
  
  

 0
.9

7
5
  
  
  

 0
.9

1
7
  
  
  

 0
.8

9
4
  
  
  

 0
.8

5
8
  
  
  

 0
.9

5
0
  
  
  

 0
.9

6
0
  
  
  

 0
.9

5
8
  
  
  

(c) F measure

Fig. 3: Box plots of performance measures providing median and 1st and 3rd quartiles.

to not making a voicing decision, i.e. they always provide an

estimate.

Note that the YIN+S estimates have a worse recall than

the original YIN method. This is because there is only a single

YIN estimate per frame to smooth over, and hence recall is

bounded by the performance of YIN.

Precision and F Score. In addition to recall, any analysis of

pitch and intonation requires good precision, that is: a high

proportion of correct pitch estimates in frames marked by the

extractor as voiced. As is shown in Figure 3b, all PYIN and

YIN+S estimates perform better than the original YIN, even

though—again—our evaluation favours YIN by using only

those frames for evaluation that YIN recognises as voiced.

Note that the YIN+S methods have the best precision, by

virtue of recognising fewer frames as voiced. The optimum

tradeoff between precision and recall as measured by the F
score F = 2 precision×recall

precision+recall
is obtained by using the proposed

PYIN algorithm with a Beta parameter distribution, as illus-

trated in Figure 3c.

Octave Errors and Voicing Detection. The PYIN methods

also provide excellent robustness against octave errors (0.5%,

0.9% and 1.7%, respectively) and very good voicing detec-

tion recall (92.5%, 94.1% and 95.0%) and specificity (91.9%,

90.6% and 88.9%).

3.2. Real Human Singing: Qualitative Example

Figure 4 shows pitch tracks of the last four notes of the song

‘Happy Birthday’ extracted by YIN .15 and PYIN .15. The

recording was sung by a female singer for a study on singing

intonation [14]. While the first two notes (up to 59 seconds)

are tracked almost perfectly by both pitch trackers, many oc-

tave errors occur in the YIN pitch track. This may have been

caused by the unusual breathy timbre of the singer. PYIN is

robust to these errors and extracts the correct pitch track.
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Fig. 4: Pitch tracks of PYIN .15 (black) and YIN .15 (grey) on

an example of real human singing (last four notes of ‘Happy

Birthday’ sung by a female singer).

4. CONCLUSION

We presented the PYIN algorithm, a modification of YIN

which jointly considers multiple pitch candidates based on a

probabilistic interpretation of YIN. A prior distribution on the

YIN threshold parameter yields a set of pitch candidates with

associated probabilities, computed using YIN. The procedure

effectively turns the popular frame-wise YIN algorithm into

a probabilistic machine which outputs pitch candidates with

associated probabilities. Temporal smoothness is obtained by

using the candidate probabilities as observations in an HMM,

which is Viterbi-decoded to produce the final pitch track. We

demonstrated that PYIN has superior precision and recall to

YIN on a database of over 30 hours of synthesised singing.

Since PYIN is parametrised by a distribution of YIN thresh-

olds, the algorithm is more robust to choice of distribution

than YIN is to its choice of threshold.
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