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Abstract. We present an algorithm for tracking individual instruments
in polyphonic music recordings. The algorithm takes as input the instru-
ment identities of the recording and uses non-negative matrix factori-
sation to compute an instrument-independent pitch activation function.
The Viterbi algorithm is applied to find the most likely path through
a number of candidate instrument and pitch combinations in each time
frame. The transition probability of the Viterbi algorithm includes three
different criteria: the frame-wise reconstruction error of the instrument
combination, a pitch continuity measure that favours similar pitches
in consecutive frames, and the activity status of each instrument. The
method was evaluated on mixtures of 2 to 5 instruments and outper-
formed other state-of-the-art multi-instrument tracking methods.
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1 Introduction

The task of automatic music transcription has been studied for several decades
and is regarded as an enabling technology for a multitude of applications such as
music retrieval and discovery, intelligent music processing and large-scale musi-
cological analyses [1]. In a musicological sense, a transcription refers to a manual
notation of a music performance which can include the whole range of perfor-
mance instructions ranging from notes and chords over dynamics, tempo and
rhythm to specific instrument-dependent playing styles. In scores of Western
music each instrument or instrument group is usually notated on its own staff.

Computational approaches to music transcription have mainly focussed on
the extraction of pitch, note onset and note offset information from a perfor-
mance (e. g. [2], [3], [4]). Only few approaches have addressed the task of ad-
ditionally assigning the notes to their sound sources (instruments) in order to
obtain a parts-based transcription. The transcription of individual instrument
parts, however, is crucial for many of the above mentioned applications.
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In an early paper, Kashino et al. [5] incorporated a feature-based timbre
model in their hypothesis-driven auditory scene analysis system in an attempt
to assign detected notes to instruments. Vincent and Rodet [6] combined inde-
pendent subspace analysis (ISA) with 2-state hidden Markov models (HMM).
Instrument spectra were learned from solo recordings and the method was ap-
plied to duet recordings. The harmonic-temporal clustering (HTC) algorithm
by Kameoka et al. [7] incorporates explicit parameters for the amplitudes of
harmonic partials of each source and thus enables an instrument-specific tran-
scription. However, no explicit instrument priors were used in the evaluation and
the method was only tested on single-instrument polyphonic material. Duan et
al. [8], [9] proposed a tracking method that clusters frame-based pitch estimates
into instrument streams based on pitch and harmonic structure. Grindlay and
Ellis [10] used their eigeninstruments method as a more generalised way of rep-
resenting instruments to obtain parts-based transcriptions.

The standard non-negative matrix factorisation (NMF) framework with in-
strument-specific basis functions is capable of extracting parts-based pitch acti-
vations. However, it only relies on spectral similarity and does not involve pitch
tracking and other explicit modelling of temporal continuity. Bay et al. [11] there-
fore combined a probabilistic latent component analysis model and a subsequent
HMM to track individual instruments over time.

In this paper we follow a similar approach as in [11]. We also employ the
Viterbi algorithm to find the most likely path through a number of candidate
instrument combinations at each time frame. However, we use a more refined
method for computing the transition probabilities between the states of con-
secutive time frames. The proposed transition probability is based on the re-
construction error of each instrument combination and the continuity of pitches
across time frames. Additionally we address the fact that one or more instru-
ments might be inactive in any time frame by an explicit activity model. For
this work we assume that all instruments are monophonic but the method could
be extended to include polyphonic instruments.

The paper is structured as follows: In Section 2 we describe our multiple in-
strument tracking method. We explain the preliminary steps of finding candidate
instrument combinations and illustrate the details of the Viterbi algorithm. Sec-
tion 3 outlines the evaluation procedure and presents the experimental results.
We conclude the paper in Section 4.

2 Multiple instrument tracking

2.1 Overview

Given the identities of the I instruments, we learn protoype spectra for the in-
struments in the mixture from a musical instrument database. These spectra are
used as basis functions in an NMF framework in order to obtain pitch activations
for each instrument individually. Instrument confusions are likely to happen in
the NMF analysis. We therefore sum all instrument activations at the same pitch
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into an overall pitch activation matrix from which we can obtain more reliable
pitch information in each time frame.

In the resulting pitch activation matrix, we identify the P most prominent
peaks in each time frame (P ≥ I) and consider all possible assignments of each
peak to each of the I instruments. For each of these instrument-pitch combi-
nations, the reconstruction error is determined and the combinations are sorted
in ascending order of their reconstruction error. The N combinations with the
lowest reconstruction errors at each time frame are selected as candidates for the
Viterbi algorithm. We then find the most likely path through the Viterbi state
sequence by applying a transition probability function that takes into account
the reconstruction error of each instrument combination, the pitch continuity as
well as the fact that instruments might be inactive in each time frame.

2.2 Pitch activation function

To obtain the pitch activation function, we apply the non-negative matrix fac-
torisation algorithm with a set of fixed instrument spectra on a constant-Q
spectrogram and use the generalised Kullback-Leibler divergence as a cost func-
tion. The instrument spectra for each instrument type in the target mixture were
learned from the RWC musical instrument database [12]. The constant-Q spec-
trogram was computed with a sub-semitone resolution of 4 bins per semitone,
and in order to detect pitch activations with the same resolution, additional
shifted versions of the instrument spectra up to ± 0.5 semitones were employed.

The NMF analysis with instrument-specific basis functions actually pro-
vides instrument-specific pitch activation functions, however, we realised that
instrument-confusions do occur occasionally which introduce errors at an early
stage. We therefore compute a combined pitch activation matrix by summing
the activations of all instruments at the same pitch, which provides more reli-
able estimates of the active pitches. It should be pointed out here that numerous
other ways of computing pitch activations have been proposed (e. g. [3]) which
might equally well be used for the initial pitch analysis.

2.3 Instrument combinations

From the pitch activation function, the P highest peaks are extracted and all
assignments of peaks to instruments are considered. To make this combinatorial
problem tractable we make the assumptions that each instrument is monophonic
and that no two instruments will play the same pitch at the same time. An
extension to polyphonic instruments is discussed in Section 4. The total number
of pitch-to-instrument assignments is given by

C(P, I) =
P !

(P − I)!
, (1)

where P denotes the number of extracted peaks per frame and I the number
of instruments. Depending on both P and I, this can lead to a large number of
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combinations. In practice, however, we can discard all combinations for which a
peak lies outside the playing range of one of the instruments. In our experiments
this reduced the number of combinations considerably. If all peaks lie outside
the range of an instrument, however, the case in which the instrument is inactive
has to be included.

In order to determine the reconstruction error for each instrument-pitch com-
bination we computed another NMF with fixed instrument spectra. Here, only
a single spectrum per instrument at the assigned pitch was used and we ap-
plied only 5 iterations of the NMF update rules for the gains. Due to the small
number of basis functions and iterations, this can be computed reasonably fast.
Given the reconstruction errors for each combination at each time frame, we se-
lect the N combinations with the lowest reconstruction errors as our candidate
instrument-pitch combinations. The gains obtained from these NMF analyses
are used for the activity modelling as described in the following section.

2.4 Viterbi algorithm

We employ the Viterbi algorithm to find the most likely sequence of instrument-
pitch combinations over time. A general description of the Viterbi algorithm can
be found in [13]. In our framework, a state j at time frame t can mathematically
be described as Sj,t = (φj,t,i, aj,t,i) with i ∈ {1, . . . , I}. In this formulation, φj,t,i
denotes the pitch of instrument i and aj,t,i is a binary activity flag that indicates
whether the instrument is active at that time frame. The observed gain values
for the instruments i of a state Sj,t are denoted by gj,t,i and the reconstruction
error of the state is given by ej,t.

The states of the Viterbi algorithm are obtained by considering all possible
combinations of instruments being active (aj,t,i = a) and inactive (aj,t,i = a) for
each of the selected instrument-pitch combinations from Section 2.3. These can
be seen as activity hypotheses for each combination. Note that in this process,
a large number of duplicates are produced when the pitches of all active instru-
ments agree between the selected instrument-pitch combinations. As an example,
consider a 2-instrument mixture with the following two candidate instrument-
pitch combinations at time t: (φ1,t,1 = x, φ1,t,2 = y) and (φ2,t,1 = x, φ2,t,2 = z).
The activity hypothesis in which a1,t,1 = a2,t,1 = a and a1,t,2 = a2,t,2 = a pro-
duce identical Viterbi states, that both assume that instrument 1 is responsible
for pitch x and that instrument 2 is inactive. For all identical Viterbi states, we
only consider the one with the lowest reconstruction error ej,t.

For the transition probability from state Sk,t−1 at the previous frame to state
Sj,t at the current frame, we consider 3 different criteria:

1. States with lower reconstruction errors ej,t should be favoured over those
with higher reconstruction errors. We therefore model the reconstruction
error by a one-sided normal distribution with zero mean: pe(e) = N (0, σ2

e)
(Fig. 1a), where σe is set to a value of 10−3.

2. We employ a pitch continuity criterion in the same way as [11]:
pd(φj,t,i|φk,t−1,i) = N (0, σ2

d), with σd = 10 semitones (see Fig. 1b). Large
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Fig. 1. Components of the transition probability for the Viterbi algorithm.

jumps in pitch are thereby discouraged while continuous pitch values in the
same range in successive frames are favoured. This probability accounts for
both the within-note continuity as well as the continuity of the melodic
phrase.

3. An explicit activity model is employed that expresses the probability of an
instrument being active at frame t given its gain at frame t and its activity
at the previous frame. With Bayes rule, this probability can be expressed as

pa(aj,t,i|gj,t,i, ak,t−1,i) =
p(gj,t,i|aj,t,i, ak,t−1,i) · p(aj,t,i|ak,t−1,i)

p(gj,t,i|ak,t−1,i)
. (2)

We furthermore assume that the gain only depends on the activity status at
the same time frame and obtain the simpler form

pa(aj,t,i|gj,t,i, ak,t−1,i) =
p(gj,t,i|aj,t,i) · p(aj,t,i|ak,t−1,i)

p(gj,t,i)
. (3)

We model the probability p(gj,t,i|aj,t,i) by two Gamma distributions with
shape and scale parameters (2.02, 0.08) for active frames and (0.52, 0.07)
for inactive frames. These distributions are illustrated in Fig. 1c. The prob-
ability p(aj,t,i|ak,t−1,i) for transitions between active and inactive states is
illustrated in Fig. 1d. In this model, p(a|a) was set to 0.986 and p(a|a) was
set to 0.976 at the given hopsize of 4 ms. The term p(gj,t,i) can be discarded
in the likelihood function as it takes on the same value for all state transi-
tions to state j at time t.
All parameter values above were obtained from analyses of the test set. Even
though the parameters could have been obtained from other data sources,
we believe that the parameter values and distributions and are reasonably
generic to obtain similar results on other datasets.
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Based on these criteria the overall log transition probability from state Sk,t−1
at time t− 1 to state Sj,t at time t can be formulated as

ln(p(Sj,t|Sk,t−1)) =

I∑
i=1

ln[p(gj,t,i|aj,t,i)] + ln[p(aj,t,i|ak,t−1,i)]+∑
{i|aj,t,i=
{ak,t−1,i=a}

ln[pd(φj,t,i|φk,t−1,i)] + ln[pe(ej,t)] (4)

3 Evaluation

3.1 Dataset

The multi-instrument note tracking algorithm described above was evaluated
on the development dataset for the MIREX Multiple fundamental frequency &
estimation task3, which consists of a 54 s excerpt of a Beethoven string quartet
arranged for wind quintet. We created all mixtures of 2 to 5 instruments from the
separate instrument tracks, which resulted in 10 mixtures of 2 and 3 instruments,
5 mixtures with 4 instruments and a single mixture containing all 5 instruments.
A MIDI file associated with each individual instrument provides the ground truth
note data, that is, the pitch, onset time and offset time of each note.

3.2 Metrics

For the evaluation we did not use the common multiple-f0 estimation metrics
because these do not take into account the instrument label of a detected pitch.
Instead, we employed the same metrics as in the MIREX Audio Melody Extrac-
tion task, which evaluates the transcription of individual voices4.

The metrics are frame-based measures and contain a voicing detection com-
ponent and a pitch detection component. The voicing detection component com-
pares the voice labels of the ground truth to those of the algorithmic results.
Frames that are labelled as voiced or unvoiced in both the ground truth and the
estimate are denoted as true positives (TP) and true negatives (TN ), respec-
tively. If labels differ between ground truth and estimate, they are denoted as
false positives (FP) or false negatives (FN ). The pitch detection component only
looks at the true positives and measures how many of the pitches were correctly
detected. Correctly detected pitches are denoted by TPC , incorrect pitches by
TPI , with TP = TPC + TPI .

3 available from: http://www.music-ir.org/evaluation/MIREX/data/2007/

multiF0/index.htm
4 MIREX 2012 Audio melody extraction task, http://www.music-ir.org/mirex/

wiki/2012:Audio_Melody_Extraction#Evaluation_Procedures
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Fig. 2. Experimental results of the Viterbi note tracking method for different combi-
nations of the transition probability components.

From these numbers, precision, recall and f-measure are computed in the
following ways:

precision =

∑I
i=1

∑T
t=1 TPC i,t∑I

i=1

∑T
t=1 TP i,t + FP i,t

(5)

recall =

∑I
i=1

∑T
t=1 TPC i,t∑I

i=1

∑T
t=1 TP i,t + FN i,t

(6)

f-measure =
2 · precision · recall

precision + recall
, (7)

The precision measure indicates what percentage of the detected pitches were
correct whereas the recall measure specifies the number of correctly detected
pitches in relation to the overall number of correct pitches in the ground truth.

3.3 Results

The results were computed for each file in the test set individually and are
here reported for each polyphony individually. We were also interested in the
contributions of the different parts of the transition probability (Eq. 4) on the
results, that is, the reconstruction error, the activity detection part as well as
the pitch continuity criterion. To that end we first computed the results by using
only the probability of the reconstruction error pe, then we added the activity
detection part pa and finally we also considered the pitch continuity part pd.
Figure 2 shows the results as boxplots. Each boxplot summarises the results for
all the instrument mixtures at a specific polyphony level.

When we successively combine the different parts of the transition probabil-
ity, an increase in performance is apparent. Adding the activity detection part
pa (see middle plot in each panel) consistently improves the f-measure and like-
wise adding the pitch continuity criterion pd (right plot in each panel) leads to
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another leap in performance. Both parts roughly contribute the same amount
of performance improvement. The activity detection part mainly improves the
precision measure because it considerably reduces the false positives (FP ) rate.
The pitch continuity part on the other hand improves the correct true positives
(TPC) and thus affects both precision and recall. The median f-measure goes
up to 0.78 for the 2-instrument-mixture, to 0.58 for mixtures of 3 instruments
and up to 0.48 and 0.39 for 4 and 5 instrument mixtures, respectively.

In terms of the absolute performance of the tracking method, we compared
our results to the results reported in [10] and [11]. These methods likewise apply
their algorithms to the wind quintet dataset. The results in [10] were computed
on the same dataset, however, ground truth data was only available for the first
22 seconds of the recording. The authors in [11] reported their results on other
excerpts from the wind quintet recording that are not publicly available, and
five 30s excerpts were used in the evaluation. A comparison of the results can
be found in table 1. Both algorithms use the same metrics as the ones described
above, and report the mean of the results for the different instrument mixtures.
To enable a comparison, we likewise compute the mean values of our results
in table 1. Note that these values differ slightly from the median values in the
boxplots in Fig. 2.

Table 1. Comparison of average f-measure with other multi-instrument tracking meth-
ods on similar datasets.

2 instr. 3 instr. 4 instr. 5 instr.

Grindlay et al. [10] 0.63 0.50 0.43 0.33

Bay et al. [11] 0.67 0.60 0.46 0.38

Viterbi tracking 0.72 0.60 0.48 0.39

The comparison shows that the proposed algorithm outperforms the previ-
ous methods at almost all polyphony levels. While the results are only slightly
better than the results reported in [11], the difference compared to the method
proposed [10] is significantly larger. In [10], pitch activations were thresholded
and no temporal dependencies between pitch activations were taken into account
which underlines the fact that both an explicit activity model as well as a pitch
continuity criterion are useful improvements for instrument tracking methods.

4 Conclusion

In this paper we presented an algorithm that tracks the individual voices of a
multiple instrument mixture over time. After computing a pitch activation func-
tion, the algorithm identifies the most prominent pitches in each time frame
and considers assignments of these pitches to the instruments in the mixture.
The reconstruction error is computed for all candidate pitch-instrument combi-
nations. Those combination with the lowest reconstruction errors are combined
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with instrument activity hypotheses to form the states of a Viterbi framework
in order to find the most likely sequence of pitch-instrument combinations over
time. The transition probabilities for the Viterbi algorithm are defined based on
three different criteria: the reconstruction error, pitch continuity across frames
and an explicit model of active and inactive instruments.

The evaluation results showed that the algorithm outperforms other multi-
instrument tracking methods which indicates that the activity model as well as
the pitch continuity objective are useful improvements over systems which are
based solely on the reconstruction error of the spectrum combinations.

Although in this paper we restricted the instruments to be monophonic, the
method could be extended to incorporate polyphonic instruments. In this case a
maximum number of N simultaneous notes would have to be specified for each
polyphonic instrument. Instead of assigning each peak of the pitch activation
function to a single instrument, we would allow up to N peaks of the pitch ac-
tivation function to be assigned to the polyphonic instrument. If the number of
simultaneously played notes of the polyphonic instrument remains constant over
time, the Viterbi algorithm would combine the notes closest in pitch into indi-
vidual note streams associated with the polyphonic instrument. If the polyphony
increases, one or more of the inactive note streams would transition from a rest
state to an active state. In the same way, if the polyphony decreases, one or
more of the active streams would transition to a rest state.

A potential improvement could address the complexity of the method, that
is, reducing the number of peak-to-instrument assignments which leads to a high
computational cost for larger polyphonies. Instead of allowing each peak to be
assigned to each instrument, peaks could be assigned to a subset of instruments
only based on the highest per-instrument pitch activations in the initial NMF
analysis.
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