
IDENTIFICATION OF COVER SONGS USING INFORMATION THEORETIC MEASURES
OF SIMILARITY

Peter Foster, Simon Dixon

Centre for Digital Music
Queen Mary University of London

London, United Kingdom
{peter.foster,simon.dixon}@eecs.qmul.ac.uk

Anssi Klapuri

Ovelin
Helsinki, Finland

anssi@ovelin.com

ABSTRACT

We consider techniques for cover song detection, based on infor-

mation theoretic notions of compressibility. We propose methods

for computing the normalised compression distance (NCD), while

accounting for correlation between time series. Secondly, we de-

scribe methods based on cross-prediction for estimating compress-

ibility between sequences of continuous-valued features. Using the

latter approach, we view the NCD as a statistic of the prediction er-

ror. We evaluate the proposed approaches using a data set consisting

of 300 Jazz songs. Quantified in terms of mean average precision,

the proposed continuous-valued approach outperforms considered

quantisation-based approaches.

Index Terms— Cover song detection, normalised compression

distance, audio similarity measures, time series prediction

1. INTRODUCTION

We consider the problem of cover song detection, where a cover song

is defined as a rendition of a piece of music [1]. Thus, we do not re-

quire that renditions of a piece of music are produced by the same

artist. Given a piece of musical audio presented as a query, the objec-

tive of cover song detection is to identify tracks in a data set which

may be considered renditions of the query. Potential applications

of cover song detection include automated music recommendation,

copyright infringement detection, and musicological research [1].

An important task in cover song detection involves quantifying

pairwise musical similarity between tracks, to determine whether

said tracks should be considered cover versions of one another. Note

that cover versions may be subject to alterations in instrumentation,

tempo, expressive performance, melody, harmony, lyrics, and musi-

cal form. Quantifying similarity for cover song detection therefore

presents a challenging task. Correspondingly, a variety of methods

have been proposed for representing and modelling music signals

for cover song detection, involving cross-correlation [2], alignment

techniques [3], cross-recurrence analysis [4, 5], and time series pre-

diction [6].

In this work, we propose novel approaches for determining mu-

sical similarity, based on statistical modelling of audio feature time

series. In particular, we adopt an information theoretic approach

to quantifying joint compressibility between time series [7], the lat-

ter of which has recently been applied in the context of cover song

detection [5, 8, 9]. As described in Section 3.1, we propose meth-

ods for jointly aggregating pairs of time series, for subsequent mod-

elling using compressibility as a measure of musical similarity. Fur-

thermore, as described in Section 3.2, we propose a novel approach

based on modelling continuous-valued features directly, without re-

quiring quantisation.

2. BACKGROUND

Let us denote with V = (v1, . . . ,vN ),U = (u1, . . . ,uM ) a pair of

time series, each corresponding to a sequence of continuous-valued

feature vectors extracted from musical audio. In this work, we as-

sume that V,U have been generated by a pair of information sources

X, Y , respectively.

If we assume that both sources X, Y generate sequences of in-

dependent and identically distributed observations with respective

probability densities pX(·), p Y (·), one possible measure of dissim-

ilarity between time series is the Kullback-Leibler (KL) divergence

DKL(pX‖pY ), defined as

DKL(pX‖pY ) =

Z

log

„

pX(x)

pY (x)

«

pX(x) dx. (1)

The KL divergence has been applied widely in music content anal-

ysis [10] as a ‘bag of features’ approach, referring to the notion that

temporal order between features is discarded. Recall that taking the

logarithm in Equation 1 to base 2, DKL(pX‖pY ) quantifies the ex-

pected number of additional bits required to encode observations

from source X, given a code for source Y .

To account for temporal order in musical audio, the normalised

compression distance (NCD) [7] has recently been applied to se-

quences of quantised music features [8, 9]. The NCD between two

strings x = (x1, x2, . . . , xN), y = (y1, y2, . . . , yM ) is defined as

NCD(x, y) =
max{C(xy) − C(x), C(yx) − C(y))}

max{C(x), C(y)}
(2)

where C(·) denotes the compressed size of an input string in bits

and where xy denotes the concatenation of x and y. By applying a

compressor such as the Lempel-Ziv (LZ) algorithm [11], the NCD

may be taken as an approximation of the normalised information

distance (NID) [12], defined as

NID(x, y) =
K(x, y) − min{K(x), K(y))}

max{K(x), K(y)}
(3)

where the uncomputable function K(·) denotes the binary length of

the shortest program which outputs the given string [12]. Similarly,

K(x, y) denotes the binary length of the shortest program which

outputs both x, y, in addition to delimiting and specifying the order

of output strings. Assuming the identity

K(x|y) = K(x, y) − K(y) (4)



where K(x|y) denotes the binary length of the shortest program

which outputs x, given input string y, and assuming that K(x, y) =
K(y, x), Equation 3 may be rewritten as

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
. (5)

As given in Equation 5, the numerator may be interpreted as quanti-

fying the amount of information disparity between x, y, whereas the

denominator ensures that values lie within the unit interval. The NID

is optimal within the class of all metrics, in the sense that it incor-

porates the most relevant feature for comparing strings [12]. Since

the NCD is conceived as a computable approximation to the NID,

the choice of compression approach may be considered to define a

feature space used to quantify similarity [12].

3. METHOD

3.1. Sequence representation and the NCD

Note that the term C(xy) in Equation 2 proscribes that strings are

concatenated, as an approximation to K(x, y). Assuming finite-

order Markov sources X, Y with stationary transition probabilities,

we denote with Hµ(X), Hµ(X, Y ), Hµ(X|Y ) the entropy rate,

joint entropy rate and conditional entropy rate, respectively defined

as

Hµ(X) = lim
n→∞

H(X1, X2, . . . , Xn)

n
(6)

Hµ(X, Y ) = lim
n→∞

H((X1, Y1), (X2, Y2), . . . , (Xn, Yn))

n
(7)

Hµ(X|Y ) = H(X,Y ) − H(Y ). (8)

Following [13], we approximate the quantities K(x), K(xy),

K(x|y) as

K(x) ≈ Hµ(X) |x| (9)

K(xy) ≈ Hµ(X, Y ) |x| (10)

K(x|y) ≈ Hµ(X|Y ) |x| (11)

where |x| denotes the length of x and where we assume that real-

isations of X, Y are given by x, y, respectively. As observed in

[13], Equation 7 accounts for correlation between sources, thus

source coding should be performed on the sequence of pairs

(X1, Y1), (X2, Y2), . . . , (Xn, Yn). Based on this observation,

we propose the normalised compression distance with alignment

(NCDA), defined as

NCDA(x, y) =
C(〈x, y〉) − min{C(x), C(y))}

max{C(x), C(y)}
(12)

where 〈x, y〉 instead of concatenating inputs, aligns x, y as a means

of maximising temporal correlation. In this work, we proceed by

equalising time series lengths, before determining the rotation of y

along the time axis which maximises cross-correlation at zero lag

between time series. As proposed in [13], we then interleave x, y,

generating a string of super-symbols from the cross alphabet X ×Y ,

where X , Y denote the alphabets of strings x, y, respectively.

3.2. Continuous-valued prediction and the NCD

One possible approach to using the NCD involves coding discrete-

valued time series, using general purpose compression techniques.

Applied to audio features, this approach requires addressing the non-

trivial task of determining a suitable quantisation scheme [8, 9].

In this work, we propose an alternative approach based on

coding unquantised audio features. We assume two series of k-

dimensional real-valued feature vectors V,U. For a strongly sta-

tionary source, the entropy rate Hµ(X) is equivalent to

Hµ(X) = lim
m→∞

H(Xm|Xm−1, . . . , X1) (13)

which may be interpreted as the uncertainty about observation Xm,

given preceding observations X1, . . . , Xm−1, in the limit as m →
∞. We consider the aforementioned interpretation in terms of pre-

diction. Thus, we define with ṽn+1 the successor of v1, . . . ,vn, as

forecast by a continuous predictor F using some model of observa-

tions M(V),

ṽn+1 = F (v1, . . . , vn, M(V)) . (14)

We denote with Ṽ = (ṽ1, . . . , ṽN) the sequence of predictions ob-

tained using F under model M(V), and denote with vi,n the ith

component of vn. Furthermore, we denote with ǫn the rescaled er-

ror between ṽn and vn, whose ith component is given by

ǫi,n =
ṽi,n − vi,n

si

(15)

where si corresponds to the biased sample variance of the ith com-

ponent in V. Assuming an independent random variable Z, whose

samples are given as Z1 = ǫ1, . . . , ZN = ǫN , we estimate Hµ(X)
as the entropy of the prediction error, H(Z). We then estimate K(x)
using Equation 9, proceeding analogously for K(y).

Viewed in terms of continuous-valued prediction, we use the

definition of NID given in Equation 5 and estimate Hµ(X|Y ) as the

entropy of the prediction error, with the amendment that prediction

ṽ
′
n+1 is instead forecast by F using the model M(V,U),

ṽ
′
n+1 = F (v1, . . . , vn, M(V,U)) . (16)

Equation 16 corresponds to cross-prediction, where observations V

are predicted causally and where prior observations in both V, U

inform predictions. We then estimate K(x|y) using Equation 11,

proceeding analogously for K(y|x).

3.2.1. Prediction method

To form predictions Ṽ, as proposed in [4, 5], we adopt a dynamical

systems approach and construct a time delay embedding [14], whose

elements s
c

r constructed from a time series C are given by

s
c

r = (c1,r, c1,(r−1)τ , . . . , c1,(r−d+1)τ ,

. . . , ck,r, ck,(r−1)τ , . . . , ck,(r−d+1)τ ). (17)

In Equation 17, the amount of temporal context accounted for in

state vector s
c

r is controlled by the embedding dimension d and

time delay τ , with d ≤ r and τ > 0. Given observation con-

text vn−d+1, . . . , vn, we predict ṽn+h under M(V,U) using a

nearest-neighbour approach,

ṽn+h = wq+h, q = arg max
r∈[d .. M−h]\{n}

corr(swr , s
v

n). (18)

where corr(·, ·) denotes Pearson’s correlation coefficient, where h
specifies the prediction horizon and where w1, . . . ,wN+M repre-

sents the concatenated time series [VU]. Note that we disregard

the trivial prediction ṽn+h = vn+h. We perform prediction un-

der M(V) analogously. Assuming normally distributed prediction

errors Z with covariance Σ, we compute H(Z) as

H(Z) =
1

2
log (2πe)k|Σ| (19)



where we estimate Σ from the sample covariance and where k de-

notes the dimensionality of features. In this approach, the NCD is

a function of statistics of the prediction error sequence. Thus, the

NCD may be contrasted with the cross-prediction mean squared er-

ror (MSE), the latter which may be applied as a measure of dissimi-

larity assuming independent error components [6]. As an alternative

to Equation 5, we compute the distance D+, given as

D+(X, Y ) =
H ′

µ(X|Y ) + H ′
µ(Y |X)

Hµ(X) + Hµ(Y )
(20)

where we estimate H ′
µ(X|Y ) using cross-prediction based on se-

quence V alone, instead of the concatenated time series [VU] used

to estimate Hµ(X|Y ).

4. EVALUATION

We evaluate the proposed approach using L = 300 recordings of

Jazz standards. Tracks are identified as cover songs based on their

title strings. Henceforth, we refer to audio tracks using the set A =
[1 .. L]. Title string identities define a partition P on A. We use

the set-valued map C : A → P to determine the equivalence class

containing tracks deemed to be covers of the jth track, with 1 ≤ j ≤
L. The entire data set has an average equivalence class size of 3.06

tracks, with a minimum equivalence class size of 2 tracks.

4.1. Feature extraction

As a descriptor of musical harmonic content, we extract 12-

component beat averaged chroma features, using the method de-

scribed in [2]. In this approach, chroma extraction is based on

mapping FFT bins to pitch classes in the chromatic scale, assuming

equal-tempered tuning and adjusting for global tuning deviations of

up to 0.5 semitones. Chroma vectors are scaled with respect to the

Euclidean norm. A beat tracking stage first achieves onset detec-

tion by computing first-order differences along the time scale of a

log-magnitude Mel-frequency spectrogram. Next, a global tempo

estimate is computed by determining maxima in the autocorrelated

onset signal, where the autocorrelation signal itself is windowed

as a means of specifying a preferred beat rate B. Finally, beats

are determined by optimising with respect to onset magnitudes and

estimated global tempo, using dynamic programming.

We account for key variation between pairs of tracks by comput-

ing the optimal transposition index (OTI) [3]. In the latter approach,

we represent global harmonic content vectors hU,hV by computing

the averages of chroma sequences U,V. We then rotate feature vec-

tors in V by the amount which maximises the inner product between

hU and hV .

4.2. Quantisation

To quantise feature vectors, we apply k-means clustering, with code-

book sizes in the range [2 .. 48]. To improve stability, we quantise 20

times and select the clustering which minimises the mean squared

error between observations and assigned centroids. Given a pair of

time series (V,U), we proceed by constructing a codebook on the

first time series V before assigning observations in both V,U to

clusters, using the obtained codebook. Since the order of V,U af-

fects the outcome of clustering, we average pairwise distances com-

puted for both possible orderings.

4.3. Distance measures

Since the KL divergence as defined in Equation 1 is non-symmetric,

we apply the additional step of computing the Jensen-Shannon (JS)

divergence DJS(pX‖pY ), defined as

DJS(pX‖pY ) = DKL(pX‖pA) + DKL(pY ‖pA) (21)

where pA is given by the mean of pX , pY ,

pA =
1

2
(pX + pY ) . (22)

We compute the JS divergence between normalised histograms of

symbols, obtained by quantising pairs of time series.

We compute the discrete NCD and NCDA in combination with

the following algorithms: Prediction by partial matching (PPM)

[15], Burrows-Wheeler (BW) compression [16] and LZ compres-

sion [11], implemented respectively as PPMD, BZIP2 and ZLIB in

the CompLearn toolkit1, where we set parameters to favour com-

pression rates over computational cost. In the case of NCDA, we

equalise string lengths by padding the shorter of two strings, using

the mode of observations. For the continuous NCD, we evaluate

using parameters h ∈ {1, 4, 6}, d ∈ {4}, τ ∈ {1, 2}.

For all evaluated approaches, we normalise pairwise distances

between tracks using the method described in [17], as a means of

compensating for cover song candidates consistently deemed similar

to query tracks.

4.4. Performance statistics

Following [5], we evaluate performance using mean average preci-

sion (MAP). For a given query track j, we rank the remaining L− 1
tracks by ascending distance and denote with R(r, j), the track at

rank r. We define with Ω(r, j) an indicator of the relevance of track

R(r, j),

Ω(r, j) =

(

1 if R(r, j) ∈ C(j)

0 otherwise
(23)

and define with Pj(r) the precision at rank r,

Pj(r) =
1

r

r
X

c=1

Ω(c, j). (24)

The average precision APj for the jth query is then defined as

APj =
1

|C(j)|

L
X

r=1

Pj(r)Ω(r, j). (25)

We average APj over all L queries to obtain the MAP. Following

[5], we test for statistical significance using Friedman’s test [18], to

account for non-normally distributed APj . As displayed in Table 1,

the Friedman test is based on ranking each considered approach by

its APj value, for given j. We then average ranks over all L queries,

obtaining the mean rank for a given approach. We apply Tukey’s

range test [19] to facilitate multiple comparisons.

5. RESULTS

Figure 1 displays the effect of preferred beat rate B and codebook

size on MAP, using the LZ compressor with NCDA. As observed,

1http://www.complearn.org/download.html



 0.1

 0.2

 0.3

 2  8  16  24  32  40
M

A
P

Codebook size

  60bpm
  120bpm
  240bpm
  480bpm

Fig. 1. Effect of B on MAP, using LZ compressor and NCDA. See

main text for a description of approaches.
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Fig. 2. Effect of codebook size on mean average precision, using

discrete-valued approaches. Results obtained for B = 240 bpm.

for all considered codebook sizes, the MAP peaks at B = 240 bpm.

We hence report following results using the latter feature resolution.

Figures 2 (a)–(d) display results obtained using discrete-valued

approaches, where we consider the effect of codebook size on MAP,

using both NCD and NCDA approaches in Figures (a)–(c).

In combination with PPM and LZ compressors, with the ex-

ception of codebook size 8 and PPM, NCDA consistently competes

with NCD, in the case of LZ compression by an average margin of

42%. However, for BW compression the relation between NCD and

NCDA is reversed. A possible cause is that BW is not stream based

and thus does not assume Markov sources [20]. Therefore, in the lat-

ter case we expect no improvement using NCDA in place of NCD.

In Table 1, we compare approaches, where MAP performance

has been maximised over respective parameter spaces. At the 95%
level, the proposed continuous approach combined with distance D+

outperforms discrete-valued and continuous-valued NCD. Among

discrete-valued approaches, we find no significant effect of inter-

changing compressors. However, in the case of LZ compression,

utilising NCDA significantly improves performance.

Compared to a baseline using the JS divergence, we obtain sig-

nificantly lower MAP scores using discrete-valued NCD approaches.

In further comparison, we observe that the continuous NCD distance

based on Equation 5 is outperformed by the aforementioned base-

line. However, distance D+ yields competitive performance, both

relative to the cross-correlation approach described in [2], and rela-

tive to cross-prediction using the mean squared error (MSE).

6. CONCLUSIONS AND FURTHER WORK

We have considered the problem of cover song detection, where we

utilise measures based on the NCD to determine similarity between

Method NCDA NCD

MAP Mean rank MAP Mean rank

PPM 0.211 5.75 0.216 6.36
BW 0.161 4.69 0.218 6.26
LZ 0.218 6.00 0.170 4.81

MAP Mean rank
Continuous D+ 0.431 9.12
Continuous NCD 0.228 5.56

JS divergence 0.317 7.66
MSE 0.452 9.43

Ellis and Poliner [2] 0.436 8.92
Random 0.028 3.45

Table 1. Summary of MAP results for evaluated approaches. The

confidence interval obtained during post-hoc analysis with α = .05
is ±.461, with respect to each mean rank value. ‘Random’ denotes

sampling pairwise distances from a normal distribution.

pairs of audio feature time series. To this end, we have proposed

a method for computing the joint compressibility of two quantised

time series, while accounting for correlation between the time series,

which we refer to as NCDA. As an alternative approach, we have

proposed methods based on the NCD applicable to unquantised time

series. Using the latter approach, our information measures may be

interpreted as statistics of the cross-prediction error.

Evaluated against a collection of Jazz songs, results suggest

that NCDA may bear relevance in combination with PPM and LZ

compressors. Furthermore, we observe that the proposed approach

based on continuous cross-prediction outperforms discrete-valued

NCD and NCDA.

Considering that cover song detection performance is signifi-

cantly affected by the choice of distance measure, we aim to ex-

amine in greater detail the performance and properties of alterna-

tive information-based similarity measures. Furthermore, we aim to

evaluate the effect of utilised features and quantisation methods. In

addition, we aim to evaluate combinations of pairwise distance mea-

sures, following the approach described in [17].

7. RELATION TO PRIOR WORK

This work has considered the normalised compression distance as

a measure of musical similarity, for audio based cover song detec-

tion. Whereas existing studies examine the effect of audio features

on performance, in combination with general purpose compression

algorithms [8, 5, 9], this work examines the type of feature repre-

sentation required to compute joint compressibility in the NCD. Our

approach is based on the observation that the NCD does not account

for correlation between sources [13]. To our knowledge, this ap-

proach has to date not been considered in the wider literature, in

which the NCD has been utilised extensively [7, 5]. Furthermore,

whereas cross-predictability measures have been proposed to deter-

mine similarity between continuous-valued time series [6], to our

knowledge an approach based on the NCD has not been considered

to date.
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