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Introduction: Music Fundamentals
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Pitch and Melody

Pitch: the perceived (fundamental) frequency f0 of a
musical note

related to the frequency spacing of a harmonic series in the
frequency-domain representation of the signal
perceived logarithmically
one octave corresponds to a doubling of frequency
octaves are divided into 12 semitones
semitones are divided into 100 cents

Melody: a sequence of pitches, usually the "tune" of a
piece of music

when notes are structured in succession so as to make a
unified and coherent whole
melody is perceived without knowing the actual notes
involved, using the intervals between successive notes
melody is translation (transposition) invariant (in log
domain)
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Harmony

Harmony: refers to relationships between simultaneous
pitches (chords) and sequences of chords
Harmony is also perceived relatively (i.e. as intervals)
Chord: two or more notes played simultaneously
Common intervals in western music:

octave (12 semitones, f0 ratio of 2)
perfect fifth (7 semitones, f0 ratio approximately 3

2 )
major third (4 semitones, f0 ratio approximately 5

4 )
minor third (3 semitones, f0 ratio approximately 6

5 )

Consonance: fundamental frequency ratio fA
fB

= m
n , where

m and n are small positive integers:
Every nth partial of sound A overlaps every mth partial of
sound B
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Timbre / Texture

Timbre: the properties distinguishing two notes of the
same pitch, duration and intensity (e.g. on different
instruments)
“Colour” or tonal quality of a sound
Determined by the following factors:

instrument
register (pitch)
dynamic level
articulation / playing technique
room acoustics, recording conditions and postprocessing

In signal processing terms:
distribution of amplitudes of the composing sinusoids, and
their changes over time
i.e. the time-varying spectral envelope (independent of
pitch)
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Rhythm: Meter and Metrical Structure

A pulse is a regularly spaced sequence of accents (beats)
Metrical structure: hierarchical set of pulses
Each pulse defines a metrical level

Time signature: indicates relationships between metrical
levels

the number of beats per measure
sometimes also an intermediate level (grouping of beats)

Performed music only fits this structure approximately
Beat tracking is concerned with finding this metrical
structure
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Expression

Music is performed expressively by employing small
variations in one or more attributes of the music, relative to
an expressed or implied basic form (e.g. the score)
Rhythm: tempo changes, timing changes, articulation,
embellishment
Melody: ornaments, embellishment, vibrato
Harmony: chord extensions, substitutions
Timbre: special playing styles (e.g. sul ponto, pizzicato)
Dynamics: crescendo, sforzando, tremolo
Audio effects: distortion, delays, reverberation
Production: compression, equalisation
... mostly beyond the scope of current automatic signal
analysis
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High-level (Musical) Knowledge

Human perception of music is strongly influenced by
knowledge and experience of the musical piece, style and
instruments, and of music in general
Likewise the complexity of a musical task is related to the
level of knowledge and experience, e.g.:

Beat following: we can all tap to the beat ...
Melody recognition: ... and recognise a tune ...
Genre classification: ... or jazz, rock, or country ...
Instrument recognition: ... or a trumpet, piano or violin ...
Music transcription: for expert musicians — often cited as
the "holy grail" of music signal analysis

Signal processing systems also benefit from encoded
musical knowledge
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Pitch Estimation and
Automatic Music Transcription
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Music Transcription

Aim: describe music signals at the note level, e.g.
Find what notes were played in terms of discrete pitch,
onset time and duration (wav-to-midi)
Cluster the notes into instrumental sources (streaming)
Describe each note with precise parameters so that it can
be resynthesised (object coding)

The difficulty of music transcription depends mainly on the
number of simultaneous notes

monophonic (one instrument playing one note at a time)
polyphonic (one or several instruments playing multiple
simultaneous notes)

Here we limit transcription to multiple pitch detection
A full transcription system would also include:

recognition of instruments
rhythmic parsing
key estimation and pitch spelling
layout of notation
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Pitch and Harmonicity

Pitch is usually expressed on the semitone scale, where
the range of a standard piano is from A0 (27.5 Hz, MIDI
note 21) to C8 (4186 Hz, MIDI note 108)
Non-percussive instruments usually produce notes with
harmonic sinusoidal partials, i.e. with frequencies:

fk = kf0

where k ≥ 1 and f0 is the fundamental frequency
Partials produced by struck or plucked string instruments
are slightly inharmonic:

fk = kf0
√

1 + Bk2 with B =
π3Ed4

64TL2

for a string with Young’s modulus E (inverse elasticity),
diameter d , tension T and length L
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Harmonicity

Magnitude spectra for 3 acoustic instruments playing the
note A4 (f0 = 440 Hz)

0 2 4

−80

−60

−40

−20

0

violin

f (Hz)

dB

0 2 4

−80

−60

−40

−20

0

piano

f (Hz)

dB

0 2 4

−80

−60

−40

−20

0

vibraphone

f (Hz)

dB
Note: the frequency axis should be in kHz

IMA Conference on Mathematics in Signal Processing 17 December 2012 — Slide 13



Plumbley & Dixon (2012) Tutorial: Music Signal Processing

Autocorrelation-Based Pitch
Estimation
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Autocorrelation

The Auto-Correlation Function (ACF) of a signal frame x(t) is

r(τ) =
1
T

T−τ−1∑
t=0

x(t)x(t + τ)
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Autocorrelation

Generally, for a monophonic signal, the highest peak of the
ACF for positive lags τ corresponds to the fundamental
period τ0 = 1

f0
However other peaks always appear:

peaks of similar amplitude at integer multiples of the
fundamental period
peaks of lower amplitude at simple rational multiples of the
fundamental period
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YIN Pitch Estimator

The ACF decreases for large values of τ , leading to
inverse octave errors when the target period τ0 is not much
smaller than frame length T
An alternative approach called YIN is to consider the
difference function:

d(τ) =
T−τ−1∑

t=0

(x(t)− x(t + τ))2

which measures the amount of energy in the signal which
cannot be explained by a periodic signal of period τ
(de Cheveigné & Kawahara, JASA 2002)
The normalised difference function is then derived as

d ′(τ) =
d(τ)

1
τ

∑τ
t=1 d(t)
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YIN

The first minimum of d ′ below a fixed non-periodicity
threshold corresponds to τ0 = 1

f0
τ0 is estimated precisely by parabolic interpolation
The value d ′(τ0) gives a measure of how periodic the
signal is: d ′(τ0) = 0 if the signal is periodic with period τ0
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YIN: Example

0 1 2 3 4 5 6 7 8 9 10
60

65

70

75

80

time (s)

pi
tc

h 
(M

ID
I)

YIN performs well on monophonic signals and runs in

real-time
Post-processing is needed to segment the output into
discrete note events and remove erroneous pitches (mostly
at note transitions)
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Polyphonic Pitch Estimation
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Polyphonic Pitch Estimation: Problem
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Nonnegative Matrix Factorisation (NMF)

NMF popularized by Lee & Seung (2001)
NMF models the observed short-term power spectrum Xn,f
as a sum of components with a fixed basis spectrum Uc,f
and a time-varying gain Ac,n plus a residual or error term
En,f (Smaragdis 2003)

Xn,f =
C∑

c=1

Ac,nUc,f + En,f ,

or in matrix notation X = UA + E
The only constraints on the basis spectra and gains are
(respectively) statistical independence and positivity
Residual assumed e.g. Gaussian (Euclidean distance)
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NMF

The independence assumption tends to group parts of the
input spectrum showing similar amplitude variations
The aim is to find the basis spectra and the associated
gains according to the Maximum A Posteriori (MAP)
criterion

(Û, Â) = arg max
U,A

P(U,A|X )

The solution is found iteratively using the multiplicative
update rules

Ac,n := Ac,n
(U t X)c,n
(U t UA)c,n

Uc,f := Uc,f
(XAt )c,f
(UAAt )c,f

Update rules ensure convergence to a local, not
necessarily global, minimum
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NMF

The basis spectra are not constrained to be harmonic, nor
to have a particular spectral envelope
This approach is valid for any instruments, provided the
note frequencies are fixed
However the components are not even constrained to
represent notes: some components may represent chords
or background noise
Basis spectra must be processed to infer pitch — one pitch
might be represented by a combination of several basis
spectra
Variants of NMF add more prior information, e.g. e.g.
sparsity, temporal continuity, or initial harmonic spectra,
alternative distortion measures, e.g. Itakura-Saito NMF
(Fevotte et al, 2009)
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NMF + Sparsity: Nonnegative Sparse Decomp

Abdallah & P. (2001). Original: Resynth:
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Groups instead of individual spectra

Modelling real instruments needs spectrum groups
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Probabilistic Latent Component Analysis (PLCA)

PLCA: probabilistic variant of NMF (Smaragdis et al, 2006)
Using constant-Q (log-frequency) spectra, it is possible to
share templates across multiple pitches by a simple shift in
frequency
Pitch templates can be pre-learnt from recordings of single
notes
e.g. (Benetos & Dixon, SMC 2011)

P(ω, t) = P(t)
∑
p,s

P(ω|s,p) ∗ω P(f |p, t)P(s|p, t)P(p|t)

P(ω, t) is the input log-frequency spectrogram,
P(t) the signal energy,
P(ω|s, p) spectral templates for instrument s and pitch p,
P(f |p, t) the pitch impulse distribution,
P(s|p, t) the instrument contribution for each pitch, and
P(p|t) the piano-roll transcription.
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Example: PLCA-based Transcription

Transcription of a Cretan lyra excerpt

Original: Transcription:
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Chord Transcription
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A Probabilistic Model for Chord Transcription

Motivation: intelligent chord transcription
Modern popular music

Front end (low-level) processing
Approximate transcription (Mauch & Dixon ISMIR 2010)

Dynamic Bayesian network (IEEE TSALP 2010)
Integrates musical context (key, metrical position) into
estimation

Utilising musical structure (ISMIR 2009)
Clues from repetition

Full details in Matthias Mauch’s PhD thesis (2010):
Automatic Chord Transcription from Audio Using
Computational Models of Musical Context
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The Problem: Chord Transcription

Different to polyphonic note transcription
Abstractions

Notes are integrated across time
Non-harmony notes are disregarded
Pitch height is disregarded (except for bass notes)

Aim: output suitable for musicians
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Signal Processing Front End

Preprocessing steps
Map spectrum to log frequency scale
Find reference tuning pitch
Perform noise reduction and normalisation
Beat tracking for beat-synchronous features

Usual approach: chromagram
Frequency bins of STFT mapped onto musical pitch
classes (A,B[,B,C,C], etc)
One 12-dimensional feature per time frame
Advantage: data reduction
Disadvantage: frequency 6= pitch

Approximate transcription using non-negative least
squares

Consider spectrum X as a weighted sum of note profiles
Dictionary T : fixed spectral shape for all notes
X ≈ Tz
Solve for note activation pattern z subject to constraints
NNLS: minimise ||X − Tz|| for z ≥ 0
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Musical Context in a Dynamic Bayesian Network

Key, chord, metrical
position and bass note are
estimated simultaneously

Chords are estimated in
context
Useful details for lead
sheets

Graphical model with two
temporal slices: initial and
recursive slice

Nodes represent
random variables
Directed edges
represent dependencies
Observed nodes are
shaded
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Evaluation Results

MIREX-style evaluation results

Model RCO
Plain 65.5
Add metric position 65.9
Best MIREX’09 (pretrained) 71.0
Add bass note 72.0
Add key 73.0
Best MIREX’09 (test-train) 74.2
Add structure 75.2
Use NNLS front end 80.7

Conclusions
Modelling musical context and structure is beneficial
Further work: separation of high-level (note-given-chord)
and low-level (features-given-notes) models
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Onset Detection and Beat Tracking

IMA Conference on Mathematics in Signal Processing 17 December 2012 — Slide 35



Plumbley & Dixon (2012) Tutorial: Music Signal Processing

Time Domain Onset Detection

The occurrence of an onset is usually accompanied by an
amplitude increase
Thus using a simple envelope follower (rectifying +
smoothing) is an obvious choice:

E0(n) =
1

N + 1

N/2∑
m=−N/2

|x(n + m)| w(m)

where w(m) is a smoothing window and x(n) is the signal
Alternatively we can square the signal rather than rectify it
to obtain the local energy:

E(n) =
1

N + 1

N/2∑
m=−N/2

(x(n + m))2 w(m)
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Time Domain Onset Detection

A further refinement is to use the time derivative of energy,
so that sudden rises in energy appear as narrow peaks in
the derivative
Research in psychoacoustics indicates that loudness is
perceived logarithmically, and that the smallest detectable
change in loudness is approximately proportional to the
overall loudness of the signal, thus:

∂E/∂t
E

=
∂(log E)

∂t

Calculating the first time difference of log(E(n)) simulates
the ear’s perception of changes in loudness, and thus is a
psychoacoustically-motivated approach to onset detection
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Frequency Domain Onset Detection

If X (n, k) is the STFT of the signal x(t) for t = nRa, then
the local energy in the frequency domain is defined as:

E(n) =
1
N

N/2∑
k=−N/2

|X (n, k)|2

In the spectral domain, energy increases related to
transients tend to appear as wide-band noise, which is
more noticeable at high frequencies
The high frequency content (HFC) of a signal is computed
by applying a linear weighting to the local energy:

HFC(n) =
1
N

N/2∑
k=−N/2

|k |.|X (n, k)|2
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Frequency Domain Onset Detection

Changes in the spectrum are better indicators of onsets
than instantaneous measures such as HFC
For example, the spectral flux (SF) onset detection function
is given by:

SF(n) =

N
2−1∑

k=−N
2

H(|X (n, k)| − |X (n − 1, k)|)

where H(x) is the half-wave rectifier:

H(x) =
x + |x |

2

so that only the increases in energy are taken into account
An alternative version squares the summands
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Phase-Based Onset Detection

An alternative is to use phase information
If X (n, k) = |X (n, k)| e jφ(n,k), then the phase deviation
onset detection function PD is given by the mean absolute
phase deviation:

PD(n) =
1
N

N
2−1∑

k=−N
2

|princarg(φ′′(n, k))|

PD(n) =
1
N

N
2−1∑

k=−N
2

|princarg(φ(n, k)−2φ(n−1, k)+φ(n−2, k))|

The PD function is sensitive to noise: frequency bins
containing low energy are weighted equally with bins
containing high energy, but bins containing low-level noise
have random phase
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Phase-Based Onset Detection
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Complex Domain Onset Detection

Another alternative approach is to consider the STFT bin
values as vectors in the complex domain
In the steady-state, the magnitude of bin k at time n is
equal to its magnitude at time (n − 1)
Also, the phase is the sum of the phase at (n − 1) and the
rate of phase change φ′ at (n − 1)
Thus the target value is:

XT (n, k) = |X (n − 1, k)| e j(φ(n−1,k)+φ′(n−1,k))
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Complex Domain Onset Detection

Sum of absolute deviations of observed values from the
target values:

CD(n) =

N
2−1∑

k=−N
2

|X (n, k)− XT (n, k)|

To distinguish between onsets and offsets, the sum can be
restricted to bins with increasing magnitude:

RCD(n) =

N
2−1∑

k=−N
2


|X (n, k)− XT (n, k)|,

if |X (n, k)| ≥ |X (n − 1, k)|
0, otherwise

Onset Detection Tutorial:
Bello et al (IEEE Trans SAP, 2005)

IMA Conference on Mathematics in Signal Processing 17 December 2012 — Slide 43



Plumbley & Dixon (2012) Tutorial: Music Signal Processing

Tempo

Tempo is the rate of a pulse (e.g. the nominal beat level)
Usually expressed in beats per minute (BPM)
Problems with measuring tempo:

Variations in tempo: people do not play at a constant rate,
so tempo must be expressed as an average over some time
window
Not all deviations from metrical timing are tempo changes
Choice of metrical level: people tap to music at different
rates; the “beat level” is ambiguous (problem for
development and evaluation)
Strictly speaking, tempo is a perceptual value, so it should
be determined empirically
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Timing

Not all deviations from metrical timing are tempo changes

A

B

C

D

Nominally on-the-beat notes don’t occur on the beat
difference between notation and perception
“groove”, “on top of the beat”, “behind the beat”, etc.
systematic deviations (e.g. swing)
expressive timing
see (Dixon et al., Music Perception, 2006)
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Tempo Induction and Beat Tracking

Tempo induction is finding the tempo of a musical excerpt
at some (usually unspecified) metrical level

Assumes tempo is constant over the excerpt
Beat tracking is finding the times of each beat at some
metrical level

Usually does not assume constant tempo
Many approaches have been proposed

e.g. Goto 97, Scheirer 98, Dixon 01, Klapuri 03, Davies & P.
05
reviewed by Gouyon and Dixon (CMJ 2005)
see also MIREX evaluations (Gouyon et al., IEEE TSAP
2006; McKinney et al., JNMR 2007)
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Tempo Induction

The basic idea is to find periodicities in the audio data
Usually this is reduced to finding periodicities in some
feature(s) derived from the audio data
Features can be calculated on events:

E.g. onset time, duration, amplitude, pitch, chords,
percussive instrument class
To use all of these features would require reliable onset
detection, offset detection, polyphonic transcription,
instrument recognition, etc
Not all information is necessary:

Original ⇒ Onsets
Features can be calculated on frames (5–20ms):

Lower abstraction level models perception better
E.g. energy, energy in various frequency bands, energy
variations, onset detection features, spectral features
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Periodicity Functions

A periodicity function is a continuous function representing
the strength of each periodicity (or tempo)
Calculated from feature list(s)
Many methods exist, such as autocorrelation, comb
filterbanks, IOI histograms, Fourier transform, periodicity
transform, tempogram, beat histogram, fluctuation patterns
Assumes tempo is constant
Diverse pre- and post-processing:

scaling with tempo preference distribution
using aspects of metrical hierarchy (e.g. favouring
rationally-related periodicities)
emphasising most recent samples (e.g. sliding window) for
on-line analysis
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Example 1: Autocorrelation

Most commonly used
Measures feature list x(n) self-similarity vs time lag τ :

r(τ) =
N−τ−1∑

n=0

x(n)x(n + τ) ∀τ ∈ {0 · · ·U}

where N is the number of samples, U the upper limit of lag,
and N − τ is the integration time
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Autocorrelation

ACF using normalised variation in low frequency energy as
the feature:
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Variants of the ACF:
Narrowed ACF (Brown 1989)
“Phase-Preserving” Narrowed ACF (Vercoe 1997)
Sum or correlation over similarity matrix (Foote 2001)
Autocorrelation Phase Matrix (Eck 2006)
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Example 2: Comb Filterbank

Bank of resonators, each tuned to one tempo
Output of a comb filter with delay τ :

yτ (t) = ατyτ (t − τ) + (1− ατ )x(t)

where ατ is the gain, ατ = 0.5τ/t0 , and t0 is the half-time
Strength of periodicity is given by the instantaneous energy
in each comb filter, normalised and integrated over time
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Beat Tracking

Complementary process to tempo induction
Fit a grid to the events (respectively features)

basic assumption: co-occurence of events and beats
e.g. by correlation with a pulse train

Constant tempo and metrical timing are not assumed
the “grid” must be flexible
short term deviations from periodicity
moderate changes in tempo

Reconciliation of predictions and observations
Balance:

reactiveness (responsiveness to change)
inertia (stability, importance attached to past context)
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Beat Tracking Approaches

Top down and bottom up approaches
On-line and off-line approaches
High-level (style-specific) knowledge vs generality
Rule-based methods
Oscillators
Multiple hypotheses / agents
Filter-bank
Repeated induction
Dynamical systems
Bayesian statistics
Particle filtering
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Example: Comb Filterbank

Schierer 1998
Causal analysis
Audio is split into 6 octave-wide frequency bands, low-pass
filtered, differentiated and half-wave rectified
Each band is passed through a comb filterbank (150 filters
from 60–180 BPM)
Filter outputs are summed across bands
Filter with maximum output corresponds to tempo
Filter states are examined to determine phase (beat times)
Tempo evolution determined by change of maximal filter
Problem with continuity when tempo changes
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Example: BeatRoot

Dixon, JNMR 2001, 2007
Analysis of expression in musical performance
Automate processing of large-scale data sets
Tempo and beat times are estimated automatically
Annotation of audio data with beat times at various
metrical levels
Interactive correction of errors with graphical user interface
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BeatRoot Architecture

Audio Input

Onset Detection

Tempo Induction Subsystem

IOI Clustering

Cluster Grouping

Beat Tracking Subsystem

Beat Tracking Agents

Agent Selection

Beat Track
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Onset Detection

Fast time domain onset detection (2001)
Surfboard method (Schloss ’85)
Peaks in slope of amplitude envelope
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Onset detection with spectral flux (2006)
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Tempo Induction

Clustering of inter-onset intervals
Reinforcement and competition between clusters
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Beat Tracking: Agent Architecture

Estimate beat times (phase) based on
tempo (rate) hypotheses
State: current beat rate and time
History: previous beat times
Evaluation: regularity, continuity & salience of on–beat
events
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Results

Tested on pop, soul, country, jazz, ...

Only using onsets: ⇒
Results: ranged from 77% to 100%

Tested on classical piano (Mozart sonatas, MIDI data)
Agents guided by event salience calculated from duration,
dynamics and pitch
Results: 75% without salience; 91% with salience
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Rhythm Transformation

Extend Beat Tracking to Bar level: Rhythm Tracking
Rhythm Tracking on model (top) and original (bottom)
Time-scale segments of original to rhythm of model

Original: Model: Result:
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Live Beat Tracking
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Live Beat Tracking System: B-Keeper

Robertson & P. (2008, 2012)

[Video: http://www.youtube.com/watch?v=iyU61cG-j0Y]
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Conclusions
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Conclusions

Introduction and Music fundamentals
Pitch estimation and Music Transcription

Pitch Tracking: Autocorrelation
Nonnegative Matrix Factorization (NMF)
Chord Analysis

Temporal analysis
Onset Detection
Beat Tracking
Rhythm Analysis

Many other tasks & methods not covered here:
Music audio coding, Phase vocoder, Sound synthesis, ...
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Further Reading ...

Sound to Sense – Sense to Sound: A state of the art in Sound
and Music Computing, ed. P Polotti, D Rocchesso (Logos, 2008)
Available at http://smcnetwork.org/node/884 (PDF)

DAFX - Digital Audio Effects, ed. U Zölzer (Wiley, 2002)

The Computer Music Tutorial, C Roads (MIT Press, 1996)

The Csound Book: Perspectives in Software Synthesis, Sound
Design, Signal Processing and Programming, ed. R Boulanger

Signal Processing Methods for Music Transcription, ed. A
Klapuri and M Davy (Springer 2006)

Musical Signal Processing, ed. C Roads, S Pope, A Piccialli and
G de Poli (Swets and Zeitlinger 1997)

Elements of Computer Music, F R Moore (Prentice Hall 1990)

The Science of Musical Sounds, J Sundberg (Academic Press
1991)
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