Tutorial: Music Signal Processing

Mark Plumbley and Simon Dixon

{mark.plumbley, simon.dixon}@eecs.qmul.ac.uk
www.elec.qmul.ac.uk/digitalmusic

Centre for Digital Music Queen Mary University of London

IMA Conference Mathematics in Signal Processing

17 December 2012

Overview

- Introduction and Music fundamentals
- Pitch estimation and Music Transcription
- Temporal analysis: Onset Detection and Beat Tracking
- Conclusions

Acknowledgements:

This includes the work of many others, including Samer Abdallah, Juan Bello, Matthew Davies, Anssi Klapuri, Matthias Mauch, Andrew Robertson, ...

Plumbley is supported by an EPSRC Leadership Fellowship

Introduction: Music Fundamentals

Pitch and Melody

- Pitch: the perceived (fundamental) frequency *f*₀ of a musical note
 - related to the frequency spacing of a harmonic series in the frequency-domain representation of the signal
 - perceived logarithmically
 - one octave corresponds to a doubling of frequency
 - octaves are divided into 12 semitones
 - semitones are divided into 100 cents
- Melody: a sequence of pitches, usually the "tune" of a piece of music
 - when notes are structured in succession so as to make a unified and coherent whole
 - melody is perceived without knowing the actual notes involved, using the *intervals* between successive notes
 - melody is translation (transposition) invariant (in log domain)

Harmony

- Harmony: refers to relationships between simultaneous pitches (chords) and sequences of chords
- Harmony is also perceived relatively (i.e. as intervals)
- Chord: two or more notes played simultaneously
- Common intervals in western music:
 - octave (12 semitones, f₀ ratio of 2)
 - perfect fifth (7 semitones, f_0 ratio approximately $\frac{3}{2}$)
 - major third (4 semitones, f_0 ratio approximately $\frac{5}{4}$)
 - minor third (3 semitones, f_0 ratio approximately $\frac{6}{5}$)
- Consonance: fundamental frequency ratio $\frac{f_A}{f_B} = \frac{m}{n}$, where *m* and *n* are small positive integers:
 - Every *n*th partial of sound A overlaps every *m*th partial of sound B

Timbre / Texture

- Timbre: the properties distinguishing two notes of the same pitch, duration and intensity (e.g. on different instruments)
- "Colour" or tonal quality of a sound
- Determined by the following factors:
 - instrument
 - register (pitch)
 - dynamic level
 - articulation / playing technique
 - room acoustics, recording conditions and postprocessing
- In signal processing terms:
 - distribution of amplitudes of the composing sinusoids, and their changes over time
 - i.e. the time-varying spectral envelope (independent of pitch)

Rhythm: Meter and Metrical Structure

- A pulse is a regularly spaced sequence of accents (beats)
- Metrical structure: hierarchical set of pulses
- Each pulse defines a metrical level

- Time signature: indicates relationships between metrical levels
 - the number of beats per measure
 - sometimes also an intermediate level (grouping of beats)
- Performed music only fits this structure approximately
- *Beat tracking* is concerned with finding this metrical structure

Expression

- Music is performed expressively by employing small variations in one or more attributes of the music, relative to an expressed or implied basic form (e.g. the score)
- Rhythm: tempo changes, timing changes, articulation, embellishment
- Melody: ornaments, embellishment, vibrato
- Harmony: chord extensions, substitutions
- Timbre: special playing styles (e.g. sul ponto, pizzicato)
- Dynamics: crescendo, sforzando, tremolo
- Audio effects: distortion, delays, reverberation
- Production: compression, equalisation
- ... mostly beyond the scope of current automatic signal analysis

High-level (Musical) Knowledge

- Human perception of music is strongly influenced by knowledge and experience of the musical piece, style and instruments, and of music in general
- Likewise the complexity of a musical task is related to the level of knowledge and experience, e.g.:
 - Beat following: we can all tap to the beat ...
 - Melody recognition: ... and recognise a tune ...
 - Genre classification: ... or jazz, rock, or country ...
 - Instrument recognition: ... or a trumpet, piano or violin ...
 - Music transcription: for expert musicians often cited as the "holy grail" of music signal analysis
- Signal processing systems also benefit from encoded musical knowledge

Pitch Estimation and Automatic Music Transcription

Music Transcription

- Aim: describe music signals at the note level, e.g.
 - Find what notes were played in terms of discrete pitch, onset time and duration (wav-to-midi)
 - Cluster the notes into instrumental sources (streaming)
 - Describe each note with precise parameters so that it can be resynthesised *(object coding)*
- The difficulty of music transcription depends mainly on the number of simultaneous notes
 - monophonic (one instrument playing one note at a time)
 - *polyphonic* (one or several instruments playing multiple simultaneous notes)
- Here we limit transcription to multiple pitch detection
- A full transcription system would also include:
 - recognition of instruments
 - rhythmic parsing
 - key estimation and pitch spelling
 - layout of notation

Pitch and Harmonicity

- Pitch is usually expressed on the *semitone* scale, where the range of a standard piano is from A0 (27.5 Hz, MIDI note 21) to C8 (4186 Hz, MIDI note 108)
- Non-percussive instruments usually produce notes with *harmonic* sinusoidal partials, i.e. with frequencies:

$$f_k = k f_0$$

where $k \ge 1$ and f_0 is the fundamental frequency

• Partials produced by struck or plucked string instruments are slightly *inharmonic*:

$$f_k = k f_0 \sqrt{1 + Bk^2}$$
 with $B = \frac{\pi^3 E d^4}{64 T L^2}$

for a string with Young's modulus E (inverse elasticity), diameter d, tension T and length L

Harmonicity

 Magnitude spectra for 3 acoustic instruments playing the note A4 (f₀ = 440 Hz)

Note: the frequency axis should be in kHz

Autocorrelation-Based Pitch Estimation

Autocorrelation

The Auto-Correlation Function (ACF) of a signal frame x(t) is

$$r(\tau) = \frac{1}{T} \sum_{t=0}^{T-\tau-1} x(t) x(t+\tau)$$

Autocorrelation

- Generally, for a monophonic signal, the highest peak of the ACF for positive lags τ corresponds to the fundamental period $\tau_0 = \frac{1}{f_0}$
- However other peaks always appear:
 - peaks of similar amplitude at integer multiples of the fundamental period
 - peaks of lower amplitude at simple rational multiples of the fundamental period

YIN Pitch Estimator

- The ACF decreases for large values of *τ*, leading to inverse octave errors when the target period *τ*₀ is not much smaller than frame length *T*
- An alternative approach called YIN is to consider the difference function:

$$d(\tau) = \sum_{t=0}^{T-\tau-1} (x(t) - x(t+\tau))^2$$

which measures the amount of energy in the signal which cannot be explained by a periodic signal of period τ (de Cheveigné & Kawahara, JASA 2002)

• The normalised difference function is then derived as

$${oldsymbol d}'(au) = rac{{oldsymbol d}(au)}{rac{1}{ au}\sum_{t=1}^{ au}{oldsymbol d}(t)}$$

YIN

- The first minimum of d' below a fixed non-periodicity threshold corresponds to $\tau_0 = \frac{1}{t_0}$
- τ_0 is estimated precisely by parabolic interpolation
- The value d'(τ₀) gives a measure of how periodic the signal is: d'(τ₀) = 0 if the signal is periodic with period τ₀

YIN: Example

- YIN performs well on monophonic signals and runs in real-time
- Post-processing is needed to segment the output into discrete note events and remove erroneous pitches (mostly at note transitions)

Polyphonic Pitch Estimation

Plumbley & Dixon (2012)

Tutorial: Music Signal Processing

Polyphonic Pitch Estimation: Problem

IMA Conference on Mathematics in Signal Processing 17 December 2012 — Slide 21

Nonnegative Matrix Factorisation (NMF)

- NMF popularized by Lee & Seung (2001)
- NMF models the observed short-term power spectrum $X_{n,f}$ as a sum of components with a fixed *basis spectrum* $U_{c,f}$ and a time-varying gain $A_{c,n}$ plus a residual or error term $E_{n,f}$ (Smaragdis 2003)

$$X_{n,f} = \sum_{c=1}^{C} A_{c,n} U_{c,f} + E_{n,f},$$

or in matrix notation X = UA + E

- The only constraints on the basis spectra and gains are (respectively) statistical independence and positivity
- Residual assumed e.g. Gaussian (Euclidean distance)

NMF

- The independence assumption tends to group parts of the input spectrum showing similar amplitude variations
- The aim is to find the basis spectra and the associated gains according to the *Maximum A Posteriori* (MAP) criterion

$$(\widehat{U},\widehat{A}) = \arg\max_{U,A} P(U,A|X)$$

The solution is found iteratively using the multiplicative update rules

$$A_{c,n} := A_{c,n} \frac{(U^t X)_{c,n}}{(U^t U A)_{c,n}}$$
$$U_{c,f} := U_{c,f} \frac{(XA^t)_{c,f}}{(UAA^t)_{c,f}}$$

 Update rules ensure convergence to a local, not necessarily global, minimum

NMF

- The basis spectra are not constrained to be harmonic, nor to have a particular spectral envelope
- This approach is valid for any instruments, provided the note frequencies are fixed
- However the components are not even constrained to represent notes: some components may represent chords or background noise
- Basis spectra must be processed to infer pitch one pitch might be represented by a combination of several basis spectra
- Variants of NMF add more prior information, e.g. e.g. sparsity, temporal continuity, or initial harmonic spectra, alternative distortion measures, e.g. Itakura-Saito NMF (Fevotte et al, 2009)

Plumbley & Dixon (2012)

Tutorial: Music Signal Processing

NMF + Sparsity: Nonnegative Sparse Decomp

Plumbley & Dixon (2012) Tutorial: Music Signal Processing

Groups instead of individual spectra

Modelling real instruments needs spectrum groups

University of Long

Probabilistic Latent Component Analysis (PLCA)

- PLCA: probabilistic variant of NMF (Smaragdis et al, 2006)
- Using constant-Q (log-frequency) spectra, it is possible to share templates across multiple pitches by a simple shift in frequency
- Pitch templates can be pre-learnt from recordings of single notes
- e.g. (Benetos & Dixon, SMC 2011)

$$P(\omega, t) = P(t) \sum_{p,s} P(\omega|s, p) *_{\omega} P(f|p, t) P(s|p, t) P(p|t)$$

 $P(\omega, t)$ is the input log-frequency spectrogram,

P(t) the signal energy,

 $P(\omega|s, p)$ spectral templates for instrument s and pitch p,

P(f|p, t) the pitch impulse distribution,

P(s|p, t) the instrument contribution for each pitch, and P(p|t) the piano-roll transcription.

Example: PLCA-based Transcription

Transcription of a Cretan lyra excerpt Original: • Transcription: • •

Chord Transcription

A Probabilistic Model for Chord Transcription

- Motivation: intelligent chord transcription
 - Modern popular music
- Front end (low-level) processing
 - Approximate transcription (Mauch & Dixon ISMIR 2010)
- Dynamic Bayesian network (IEEE TSALP 2010)
 - Integrates musical context (key, metrical position) into estimation
- Utilising musical structure (ISMIR 2009)
 - Clues from repetition
- Full details in Matthias Mauch's PhD thesis (2010): Automatic Chord Transcription from Audio Using Computational Models of Musical Context

The Problem: Chord Transcription

- Different to polyphonic note transcription
- Abstractions
 - Notes are integrated across time
 - Non-harmony notes are disregarded
 - Pitch height is disregarded (except for bass notes)
- Aim: output suitable for musicians

Signal Processing Front End

- Preprocessing steps
 - Map spectrum to log frequency scale
 - Find reference tuning pitch
 - Perform noise reduction and normalisation
 - Beat tracking for beat-synchronous features
- Usual approach: chromagram
 - Frequency bins of STFT mapped onto musical pitch classes (A,B♭,B,C,C♯, etc)
 - One 12-dimensional feature per time frame
 - Advantage: data reduction
 - Disadvantage: frequency \neq pitch
- Approximate transcription using non-negative least squares
 - Consider spectrum X as a weighted sum of note profiles
 - Dictionary T: fixed spectral shape for all notes
 - $X \approx Tz$
 - Solve for note activation pattern z subject to constraints,
 - NNLS: minimise ||X Tz|| for $z \ge 0$

Plumbley & Dixon (2012)

Musical Context in a Dynamic Bayesian Network

- Key, chord, metrical position and bass note are estimated simultaneously
 - Chords are estimated in context
 - Useful details for *lead sheets*
- Graphical model with two temporal slices: initial and recursive slice
 - Nodes represent random variables
 - Directed edges represent dependencies
 - Observed nodes are shaded

Queen Mary

Mary

Evaluation Results

MIREX-style evaluation results

Model	RCO
Plain	65.5
Add metric position	65.9
Best MIREX'09 (pretrained)	71.0
Add bass note	72.0
Add key	73.0
Best MIREX'09 (test-train)	74.2
Add structure	75.2
Use NNLS front end	80.7

Conclusions

- Modelling musical context and structure is beneficial
- Further work: separation of high-level (note-given-chord) and low-level (features-given-notes) models

Onset Detection and Beat Tracking

Time Domain Onset Detection

- The occurrence of an onset is usually accompanied by an amplitude increase
- Thus using a simple envelope follower (rectifying + smoothing) is an obvious choice:

$$E_0(n) = \frac{1}{N+1} \sum_{m=-N/2}^{N/2} |x(n+m)| w(m)$$

where w(m) is a smoothing window and x(n) is the signal

 Alternatively we can square the signal rather than rectify it to obtain the local energy:

$$E(n) = \frac{1}{N+1} \sum_{m=-N/2}^{N/2} (x(n+m))^2 w(m)$$

Time Domain Onset Detection

- A further refinement is to use the time derivative of energy, so that sudden rises in energy appear as narrow peaks in the derivative
- Research in psychoacoustics indicates that loudness is perceived logarithmically, and that the smallest detectable change in loudness is approximately proportional to the overall loudness of the signal, thus:

$$\frac{\partial E/\partial t}{E} = \frac{\partial (\log E)}{\partial t}$$

 Calculating the first time difference of log(*E*(*n*)) simulates the ear's perception of changes in loudness, and thus is a psychoacoustically-motivated approach to onset detection Plumbley & Dixon (2012) Tutorial: Music Signal Processing

Frequency Domain Onset Detection

 If X(n, k) is the STFT of the signal x(t) for t = nR_a, then the local energy in the frequency domain is defined as:

$$E(n) = \frac{1}{N} \sum_{k=-N/2}^{N/2} |X(n,k)|^2$$

- In the spectral domain, energy increases related to transients tend to appear as wide-band noise, which is more noticeable at high frequencies
- The high frequency content (HFC) of a signal is computed by applying a linear weighting to the local energy:

HFC(n) =
$$\frac{1}{N} \sum_{k=-N/2}^{N/2} |k| \cdot |X(n,k)|^2$$

Frequency Domain Onset Detection

- Changes in the spectrum are better indicators of onsets than instantaneous measures such as HFC
- For example, the spectral flux (SF) onset detection function is given by:

$$SF(n) = \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} H(|X(n,k)| - |X(n-1,k)|)$$

where H(x) is the half-wave rectifier:

$$H(x)=\frac{x+|x|}{2}$$

so that only the increases in energy are taken into account

• An alternative version squares the summands

Phase-Based Onset Detection

- An alternative is to use phase information
- If $X(n,k) = |X(n,k)| e^{j\phi(n,k)}$, then the phase deviation onset detection function PD is given by the mean absolute phase deviation:

$$PD(n) = \frac{1}{N} \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} |\text{princarg}(\phi''(n,k))|$$

$$PD(n) = \frac{1}{N} \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} |\text{princarg}(\phi(n,k)-2\phi(n-1,k)+\phi(n-2,k))|$$

 The PD function is sensitive to noise: frequency bins containing low energy are weighted equally with bins containing high energy, but bins containing low-level noise have random phase Plumbley & Dixon (2012) Tutorial: Music Signal Processing

Phase-Based Onset Detection

Complex Domain Onset Detection

- Another alternative approach is to consider the STFT bin values as vectors in the complex domain
- In the steady-state, the magnitude of bin k at time n is equal to its magnitude at time (n − 1)
- Also, the phase is the sum of the phase at (n − 1) and the rate of phase change φ' at (n − 1)
- Thus the target value is:

$$X_T(n,k) = |X(n-1,k)| e^{j(\phi(n-1,k)+\phi'(n-1,k))}$$

Complex Domain Onset Detection

Sum of absolute deviations of observed values from the target values:

$$CD(n) = \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} |X(n,k) - X_T(n,k)|$$

• To distinguish between onsets and offsets, the sum can be restricted to bins with increasing magnitude:

$$RCD(n) = \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} \begin{cases} |X(n,k) - X_{T}(n,k)|, \\ & \text{if } |X(n,k)| \ge |X(n-1,k)| \\ 0, & \text{otherwise} \end{cases}$$

 Onset Detection Tutorial: Bello et al (IEEE Trans SAP, 2005)

Tempo

- Tempo is the rate of a pulse (e.g. the nominal beat level)
- Usually expressed in beats per minute (BPM)
- Problems with measuring tempo:
 - Variations in tempo: people do not play at a constant rate, so tempo must be expressed as an average over some time window
 - Not all deviations from metrical timing are tempo changes
 - Choice of metrical level: people tap to music at different rates; the "beat level" is ambiguous (problem for development and evaluation)
 - Strictly speaking, tempo is a perceptual value, so it should be determined empirically

Timing

Not all deviations from metrical timing are tempo changes

- Nominally on-the-beat notes don't occur on the beat
 - difference between notation and perception
 - "groove", "on top of the beat", "behind the beat", etc.
 - systematic deviations (e.g. swing)
 - expressive timing
 - see (Dixon et al., Music Perception, 2006)

Tempo Induction and Beat Tracking

- *Tempo induction* is finding the tempo of a musical excerpt at some (usually unspecified) metrical level
 - Assumes tempo is constant over the excerpt
- *Beat tracking* is finding the times of each beat at some metrical level
 - Usually does not assume constant tempo
- Many approaches have been proposed
 - e.g. Goto 97, Scheirer 98, Dixon 01, Klapuri 03, Davies & P. 05
 - reviewed by Gouyon and Dixon (CMJ 2005)
 - see also MIREX evaluations (Gouyon et al., IEEE TSAP 2006; McKinney et al., JNMR 2007)

Tempo Induction

- The basic idea is to find periodicities in the audio data
- Usually this is reduced to finding periodicities in some feature(s) derived from the audio data
- Features can be calculated on events:
 - E.g. onset time, duration, amplitude, pitch, chords, percussive instrument class
 - To use all of these features would require reliable onset detection, offset detection, polyphonic transcription, instrument recognition, etc
 - Not all information is necessary:

Original $\bullet \Rightarrow$ Onsets $\bullet \bullet$

- Features can be calculated on frames (5–20ms):
 - Lower abstraction level models perception better
 - E.g. energy, energy in various frequency bands, energy variations, onset detection features, spectral features of Queen Mary

Periodicity Functions

- A *periodicity function* is a continuous function representing the strength of each periodicity (or tempo)
- Calculated from feature list(s)
- Many methods exist, such as autocorrelation, comb filterbanks, IOI histograms, Fourier transform, periodicity transform, tempogram, beat histogram, fluctuation patterns
- Assumes tempo is constant
- Diverse pre- and post-processing:
 - scaling with tempo preference distribution
 - using aspects of metrical hierarchy (e.g. favouring rationally-related periodicities)
 - emphasising most recent samples (e.g. sliding window) for on-line analysis

Example 1: Autocorrelation

- Most commonly used
- Measures feature list x(n) self-similarity vs time lag τ:

$$r(\tau) = \sum_{n=0}^{N-\tau-1} x(n) x(n+\tau) \qquad \forall \tau \in \{0 \cdots U\}$$

where *N* is the number of samples, *U* the upper limit of lag, and $N - \tau$ is the integration time

Autocorrelation

 ACF using normalised variation in low frequency energy as the feature:

- Variants of the ACF:
 - Narrowed ACF (Brown 1989)
 - "Phase-Preserving" Narrowed ACF (Vercoe 1997)
 - Sum or correlation over similarity matrix (Foote 2001)
 - Autocorrelation Phase Matrix (Eck 2006)

Example 2: Comb Filterbank

- Bank of resonators, each tuned to one tempo
- Output of a comb filter with delay τ :

$$\mathbf{y}_{\tau}(t) = \alpha_{\tau} \mathbf{y}_{\tau}(t-\tau) + (\mathbf{1} - \alpha_{\tau}) \mathbf{x}(t)$$

where α_{τ} is the gain, $\alpha_{\tau} = 0.5^{\tau/t_0}$, and t_0 is the half-time

• Strength of periodicity is given by the instantaneous energy in each comb filter, normalised and integrated over time

Beat Tracking

- Complementary process to tempo induction
- Fit a grid to the events (respectively features)
 - basic assumption: co-occurence of events and beats
 - e.g. by correlation with a pulse train
- Constant tempo and metrical timing are not assumed
 - the "grid" must be flexible
 - short term deviations from periodicity
 - moderate changes in tempo
- Reconciliation of predictions and observations
- Balance:
 - reactiveness (responsiveness to change)
 - inertia (stability, importance attached to past context)

Beat Tracking Approaches

- Top down and bottom up approaches
- On-line and off-line approaches
- High-level (style-specific) knowledge vs generality
- Rule-based methods
- Oscillators
- Multiple hypotheses / agents
- Filter-bank
- Repeated induction
- Dynamical systems
- Bayesian statistics
- Particle filtering

Example: Comb Filterbank

- Schierer 1998
- Causal analysis
- Audio is split into 6 octave-wide frequency bands, low-pass filtered, differentiated and half-wave rectified
- Each band is passed through a comb filterbank (150 filters from 60–180 BPM)
- Filter outputs are summed across bands
- Filter with maximum output corresponds to tempo
- Filter states are examined to determine phase (beat times)
- Tempo evolution determined by change of maximal filter
- Problem with continuity when tempo changes

Example: BeatRoot

- Dixon, JNMR 2001, 2007
- Analysis of expression in musical performance
- Automate processing of large-scale data sets
- Tempo and beat times are estimated automatically
- Annotation of audio data with beat times at various metrical levels
- Interactive correction of errors with graphical user interface

IMA Conference on Mathematics in Signal Processing

17 December 2012 — Slide 55

BeatRoot Architecture

Tutorial: Music Signal Processing

Onset Detection

- Fast time domain onset detection (2001)
 - Surfboard method (Schloss '85)
 - Peaks in slope of amplitude envelope

• Onset detection with spectral flux (2006)

Tempo Induction

- Clustering of inter-onset intervals
- Reinforcement and competition between clusters

Marv

Beat Tracking: Agent Architecture

- Estimate beat times (phase) based on tempo (rate) hypotheses
- State: current beat rate and time
- History: previous beat times
- Evaluation: regularity, continuity & salience of on-beat events

Results

- Tested on pop, soul, country, jazz, ...
 - Only using onsets: $\bullet \Rightarrow \bullet \bullet$
 - Results: ranged from 77% to 100%
- Tested on classical piano (Mozart sonatas, MIDI data)
 - Agents guided by event salience calculated from duration, dynamics and pitch
 - Results: 75% without salience; 91% with salience

Rhythm Transformation

- Extend Beat Tracking to Bar level: Rhythm Tracking
- Rhythm Tracking on model (top) and original (bottom)
- Time-scale segments of original to rhythm of model

Queen Mary

Live Beat Tracking

Plumbley & Dixon (2012)

Tutorial: Music Signal Processing

Live Beat Tracking System: B-Keeper

Robertson & P. (2008, 2012)

[Video: http://www.youtube.com/watch?v=iyU61cG-j0X]

Conclusions

Conclusions

- Introduction and Music fundamentals
- Pitch estimation and Music Transcription
 - Pitch Tracking: Autocorrelation
 - Nonnegative Matrix Factorization (NMF)
 - Chord Analysis
- Temporal analysis
 - Onset Detection
 - Beat Tracking
 - Rhythm Analysis
- Many other tasks & methods not covered here:
 - Music audio coding, Phase vocoder, Sound synthesis, ...

Further Reading ...

- Sound to Sense Sense to Sound: A state of the art in Sound and Music Computing, ed. P Polotti, D Rocchesso (Logos, 2008) Available at http://smcnetwork.org/node/884 (PDF)
- DAFX Digital Audio Effects, ed. U Zölzer (Wiley, 2002)
- The Computer Music Tutorial, C Roads (MIT Press, 1996)
- The Csound Book: Perspectives in Software Synthesis, Sound Design, Signal Processing and Programming, ed. R Boulanger
- Signal Processing Methods for Music Transcription, ed. A Klapuri and M Davy (Springer 2006)
- Musical Signal Processing, ed. C Roads, S Pope, A Piccialli and G de Poli (Swets and Zeitlinger 1997)
- Elements of Computer Music, F R Moore (Prentice Hall 1990)
- The Science of Musical Sounds, J Sundberg (Academic Press 1991)