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The inharmonicity of vibrating strings can easily be estimated from recordings of isolated tones.

Likewise, the tuning system (temperament) of a keyboard instrument can be ascertained from iso-

lated tones by estimating the fundamental frequencies corresponding to each key of the instrument.

This paper addresses a more difficult problem: the automatic estimation of the inharmonicity and

temperament of a harpsichord given only a recording of an unknown musical work. An initial

conservative transcription is used to generate a list of note candidates, and high-precision frequency

estimation techniques and robust statistics are employed to estimate the inharmonicity and funda-

mental frequency of each note. These estimates are then matched to a set of known keyboard

temperaments, allowing for variation in the tuning reference frequency, in order to obtain the

temperament used in the recording. Results indicate that it is possible to obtain inharmonicity

estimates and to classify keyboard temperament automatically from audio recordings of standard

musical works, to the extent of accurately (96%) distinguishing between six different temperaments

commonly used in harpsichord recordings. Although there is an interaction between inharmonicity

and temperament, this is shown to be minor relative to the tuning accuracy.
VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3651238]
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I. INTRODUCTION

Recent advances in music signal processing and the

speed of desktop computers have facilitated the automation

of many aspects of the analysis of music recordings. For

example, the extraction of semantic metadata such as genre

(Tzanetakis and Cook, 2002), key (Noland and Sandler,

2006), chord (Mauch and Dixon, 2010), and beat (Dixon,

2001) has been a major focus of the music informatics

research community. Such work has applications in the areas

of classification (e.g., organisation and navigation of music

collections), recommendation (e.g., discovery and marketing

of new music), and annotation (e.g., automatic transcription

for education, musicological research, and music practice),

and it complements traditional research methods in musicol-

ogy, enabling more quantitative and larger scale analyses to

be performed. For example, researchers and practictioners of

early Western music debate the virtues of various tuning sys-

tems (temperaments) in terms of their theoretical properties

(e.g., Di Veroli, 2009), but are unable to substantiate (or

refute) claims about performance practice with empirical

data, having no means of measuring temperaments from mu-

sical recordings.

In recent work on keyboard temperament estimation

(Tidhar et al., 2010b), we presented an automatic system for

recognizing temperament directly from audio recordings of

unknown works. Our classifier is capable of distinguishing,

with high accuracy, between six different temperaments

commonly used in harpsichord recordings. The system did

not take proper account of inharmonicity, and thus it was

only possible to use a small number of partials in the funda-

mental frequency estimation step. In this paper we extend

our previous work to estimate the inharmonicity of each

tone, and to propose an approach for robust estimation of

frequency and inharmonicity from note mixtures as they

occur in standard musical works.

Building a system to estimate inharmonicity and classify

musical recordings by temperament presents particular sig-

nal processing challenges. First, a high frequency resolution

is required, as the differences between temperaments are

small, of the order of a few cents (hundredths of a semitone).

For example, if A¼ 415 Hz is used as the reference pitch

(typical in Baroque Period music), then middle C might have

a frequency of 246.76, 247.46, 247.60, 247.93, 248.23, or

248.99 Hz, based on the six representative temperaments

described in Sec. III A. To resolve these frequencies in a

spectrum, a window of several seconds duration would be

required, but this introduces other problems, since musical

notes are not stationary and generally do not last this long.

Likewise, the frequency differences due to inharmonicity are

even smaller for the low order partials of harpsichord tones.

The second problem is that in musical recordings, notes

rarely occur in isolation. There are almost always multiple

notes sounding simultaneously, and this has the potential to

bias any frequency estimates. To make matters worse, the

intervals which are favored in music are those where many

partials coincide. In particular, it can be difficult to discern
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whether a spectral peak is a fundamental frequency or a par-

tial of another fundamental. The ability to distinguish

between these cases is crucial to accurate pitch estimation

and thus also to successful inharmonicity determination and

temperament classification.

For example, suppose the two notes A1 and E3 are

played together (an interval of an octave and a perfect fifth;

a very common interval). Then each partial of E3 will coin-

cide (almost or exactly, depending on the temperament and

inharmonicity) with every third partial of A1. If the tone A1

has a fundamental frequency of 110 Hz, the spectrum will

also have a peak at 330 Hz, the third harmonic of the note

A1, but also (if the fifth is pure) the fundamental frequency

of an E. In many temperaments however, the actual note E

will have a frequency different from 330 Hz (e.g., 329.6 Hz

in equal temperament), so the estimation of this partial might

be biased either by not being able to resolve the two partials,

or if they are resolved, by assigning the partial to the wrong

tone. Inharmonicity further complicates the situation, as the

partials will not be precise integer multiples of the funda-

mental, making correct assignment of partials more difficult.

We therefore require a method for distinguishing peaks

corresponding to fundamental frequencies from those which

are caused by higher harmonics. This would not be the case

if we assumed knowledge of the score, but this is deliber-

ately avoided in our formulation of the problem, in order to

increase the generality of our algorithms, which is important

for practical applications such as the web service TempEst

(Tidhar et al., 2010a). To avoid the bias caused by overlap-

ping partials, while circumventing the problem of full poly-

phonic transcription, which is still considered an unsolved

problem (Klapuri, 2009), we introduced the concept of

“conservative transcription,” which entails estimating the

“safe” subset of the played notes, i.e., those whose funda-

mental frequencies are not harmonics of lower co-occurring

frequencies. We have shown that conservative transcription

is applicable in practical situations, and that it can improve

temperament estimation in recordings of typical harpsichord

music (Tidhar et al., 2010b).

The remainder of the paper is structured as follows. In

the following section we review relevant literature on tem-

perament, inharmonicity and fundamental frequency estima-

tion. Then, in Sec. III, we describe the preparation of test

data and the methods used in this work, consisting of signal

and data processing algorithms for estimating: (1) a conserv-

ative transcription of the music; (2) the frequency of each

partial of the transcribed notes; (3) the inharmonicity and

fundamental frequency of each transcribed note; (4) the tun-

ing of each pitch class relative to equal temperament; and

(5) the temperament that best matches this pitch class tuning

profile. In the final two sections we present and discuss the

experimental results and the conclusions that can be drawn

from them.

II. BACKGROUND

A. Temperament

During the past two centuries, equal temperament has been

the dominant paradigm for building and describing musical

scales in Western music, but since the latter part of the twenti-

eth century there has been a revival of interest in historical per-

formance practice of early music on period instruments, leading

to increased attention to historical, unequal temperaments. The-

oretical and practical aspects of temperament are covered thor-

oughly elsewhere (Barbour, 2004; Rasch, 2002; Di Veroli,

2009), so we address them only briefly here.

The study of musical consonance has a history extend-

ing back at least as far as Pythagoras in the sixth century

BC, with numerous theoretical frameworks being proposed

(von Helmholtz, 1863; Lundin, 1947; Terhardt, 1977;

Sethares, 1999; Palisca and Moore, 2010; McDermott et al.,
2010). Common to most of these frameworks is the recogni-

tion that listeners prefer sounds with harmonic spectra and

without beats. For combinations of musical sounds with har-

monic spectra, the sensation of consonance correlates to

small integer frequency ratios between fundamental frequen-

cies, and specifically superparticular ratios of the form

nþ 1Þ=nð where n� 5 (corresponding to the following pure

intervals: octave, perfect fifth, perfect fourth, major third,

and minor third, for successive values of n). Continuous-

pitch instruments and singers can dynamically adapt their

intonation to form perfectly consonant intervals if required,

but fixed-pitch instruments such as keyboard, some fretted,

and some percussion instruments, need to commit to a tuning

scheme for the duration of a piece, if not an entire concert.

In the Western musical tradition at least, this gives rise to

the need for temperament, because it is not possible to

accommodate all pure intervals within the small set of pitch

classes available.

The two most consonant intervals are the octave (fre-

quency ratio 2:1) and perfect fifth (frequency ratio 3:2). In

Western music these correspond to intervals of 12 and 7

semitones, respectively. From a given starting note, either a

succession of 7 octave steps or a succession of 12 perfect

fifth steps will lead to the same note, despite the fact that

ð3
2
Þ12 6¼ 27. The ratio of the two sides of this inequality

(approximately 1.0136) is called the Pythagorean comma,

and one way of considering temperament is according to the

distribution of this comma around the cycle of fifths. For

example, in equal temperament, all fifths are diminished by
1

12
of a comma relative to the pure ratio 3:2.

Determining a temperament can thus be regarded as an

optimization problem, whereby keeping the octaves pure is a

constraint, and various considerations lead to different com-

promises between pureness of fifths and pureness of major

thirds. Among these considerations are the key, or set of

keys, which should “work well” in the given temperament; a

temperament is considered to work well for a given key if

the most frequent harmonic intervals in the key (major thirds

and to some extent fifths, most notably in tonic and dominant

positions) are close to their pure underlying frequency ratios,

and are therefore perceived as consonant. Temperaments

which work well for most keys, and are bearable in all keys,

are referred to as “well” temperaments. Temperaments in

which all fifths but one or two are equal to each other, are

called “regular” temperaments. Equal temperament is the

only temperament which is both regular and well.
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B. Inharmonicity

There are two main strands of research regarding inhar-

monicity in string instruments: investigation of the physical

and acoustical properties of vibrating strings and psycho-

acoustic studies relating to the perceptibility or otherwise of

inharmonicity. Perceptual studies involving inharmonicity

are important for understanding and developing models of

pitch perception, and they bear relevance for the implemen-

tation of synthesis algorithms which aim to artificially recre-

ate the natural sound of string instruments.

Early work on acoustics investigated the phenomenon

that vibrating strings have partials at frequencies which are

slightly greater than integer multiples of the fundamental fre-

quency (Shankland and Coltman, 1939; Young, 1952). The

inharmonicity of metal strings is due to two main factors:

stiffness of the string and the amplitude of vibration (Shank-

land and Coltman, 1939); in the case of musical instruments,

stiffness accounts for most of the inharmonicity. For a string

with (ideal) fundamental frequency f0 and inharmonicity

constant B, the frequency fk of the kth partial is given by

(Fletcher, 1964):

fk ¼ kf0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bk2

p
; (1)

where the constants f0 and B are determined by the physical

properties of the string. This inharmonicity contributes to the

characteristic sound of the piano (Fletcher et al., 1962), but

is significantly less pronounced on the harpsichord (Fletcher,

1977) so that it has been described as “nearly negligible”

(Fletcher and Rossing, 1998, p. 343). Välimäki et al. (2004)

cite measured values of B ranging from 10�5 to 10�4 and

show that modeling of inharmonicity is essential for realistic

synthesis of harpsichord tones. Earis et al. (2007) report sim-

ilar results for measurements of inharmonicity constants,

giving a slightly higher upper limit of 1.2� 10�4. Rauhala

et al. (2007) present an efficient iterative algorithm for esti-

mating B given a recorded tone and its approximate funda-

mental frequency.

Various studies have investigated the effects of inharmo-

nicity on pitch perception. Moore et al. (1985) found that in

artificial mixtures, even a single inharmonic partial in an oth-

erwise harmonic tone influenced the overall perception of

pitch, lending support to a model in which residue pitch is a

weighted average of the pitch cues provided by each partial.

The experimentally determined weights of each partial varied

between subjects, but in all cases were significant for only the

first six partials. Anderson and Strong (2005) synthesized

inharmonic complex tones based on parameters obtained from

the analysis of piano tones, and asked listeners to match their

pitch to synthesized harmonic tones having the same spectral

and temporal envelopes. Their results showed a correlation

between the inharmonicity coefficient B (obtained using a

weighted least squares fit) and the perceived pitch shift rela-

tive to the fundamental. Järveläinen et al. (2001) investigated

the threshold of audibility of inharmonicity for synthetic

piano-like tones and found that the threshold increased with

fundamental frequency in a linear relationship when B and f0
are both expressed on a logarithmic scale. They concluded

that the inharmonicity normally present in piano tones is audi-

ble, particularly at lower pitches, but that it nears the threshold

at higher pitches.

C. Fundamental frequency estimation

In the vast literature on estimation of fundamental fre-

quency and pitch, there is no single algorithm which is suita-

ble for all signals and applications. Methods are reviewed

elsewhere (de Cheveigné, 2006; Klapuri and Davy, 2006,

Chaps. 7 and 8), but we summarize here the limitations of

many current systems for music signal processing applica-

tions (Gerhard, 2003). First, assumptions are made about the

signal which do not hold for most music signals, such as:

that the input signal at any point in time consists of a single

pitched tone (monophonicity); that the properties of the sig-

nal are stable over the duration of analysis (stationarity); and

that the properties of the input signal (e.g., the instrument or

class of instrument) are known or match a small set of

allowed instruments. Second, fundamental frequency estima-

tion is often equated to pitch estimation, ignoring the influ-

ences of inharmonicity and human perception, although

some recent multi-pitch analysis methods do take inharmo-

nicity into account (Klapuri, 2003; Emiya et al., 2010; Bene-

tos and Dixon, 2010). Finally, even for music analysis

systems, frequency resolution is rarely much finer than one

semitone, and few papers discuss the issues related to deter-

mining frequency at the resolution required for measuring

temperament or inharmonicity, where differences of a few

cents are decisive.

For our purposes, time-domain pitch estimation methods

such as ACF and YIN (de Cheveigné and Kawahara, 2002)

are unsuitable due to the bias caused by the presence of mul-

tiple simultaneous tones. Thus we choose a frequency do-

main technique which gives sufficient frequency resolution:

the FFT with quadratic interpolation (Smith and Serra, 1987)

and correction of the bias due to the window function (Abe

and Smith, 2004). These techniques are described in more

detail in Secs. III B and III C, respectively. In previous work

we showed that this combination of methods is suitable for

estimating temperament and that it outperforms instantane-

ous frequency estimation using phase information (Tidhar

et al., 2010b). More advanced estimation algorithms which

admit frequency and/or amplitude modulation (Wen and

Sandler, 2009) were deemed unnecessary.

III. METHOD

A. Data

Obtaining ground-truth data for the evaluation of tem-

perament and inharmonicity estimation algorithms presents

several difficulties. Most commercially available recordings

do not specify the harpsichord temperament, and even those

that do might not be completely reliable because of a possi-

ble discrepancy between tuning as a practical matter and tun-

ing as a theoretical construct. In practice, the tuner’s main

concern is to facilitate playing, and time limitations very of-

ten compromise precision. We therefore chose to produce

our own test dataset consisting of both real and synthesized
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harpsichord music. The synthesized data ensures that the

temperament is precise, but might not replicate the timbre of

a harpsichord (e.g., coupling between strings) and typical re-

cording conditions (e.g., reverberation and noise).

The real harpsichord recordings were played by Dan

Tidhar on a Rubio double-manual harpsichord in a small

hall. The synthesized recordings were performed on a digital

keyboard by Dan Tidhar and rendered from MIDI files using

the physical modeling synthesis software Pianoteq (Pianoteq,

2010). For each of the six temperaments (see below) and two

rendering alternatives (real vs synthesized), four musical

excerpts were recorded (i.e., a total of 48): a slow ascending

chromatic scale, chosen as a baseline for comparison; J.S.

Bach’s Prelude 1 in C Major from the Well-tempered Cla-
vier; F. Couperin’s La Ménetou from Pièces de Clavecin,
Septième Ordre; and J.S. Bach’s Variation 21 from the Gold-
berg Variations. The choice of pieces encompasses various

degrees of polyphony, various degrees of chromaticism, as

well as various speeds. The tuning reference frequency for

all recordings was approximately A¼ 415 Hz.

The following six temperaments were used: equal tem-

perament (ET), Vallotti (V), fifth-comma (FC), quarter-

comma meantone (QCMT), sixth-comma meantone (SCMT),

and just intonation (JI). The properties of these temperaments

are shown graphically in Fig. 1 and described briefly below.

In equal temperament, each of the fifths is diminished by 1
12

of

a comma, so that the frequency ratio between successive

semitones is always 21/12. In a Vallotti temperament, 6 of the

fifths are diminished by 1
6

of a comma each, and the other 6

fifths are left pure. In the fifth-comma temperament we used,

five of the fifths are diminished by a 1
5

comma each, and the

remaining 7 are pure. In a quarter-comma meantone tempera-

ment, 11 of the fifths are shrunk by 1
4

of a comma, and the one

remaining fifth is 7
4

of a comma larger than pure. In sixth-

comma meantone, 11 fifths are shrunk by 1
6

of a comma, and

the one remaining fifth is 5
6

comma larger than pure. The just-

intonation tuning we used is based on the reference tone A,

and all other tones are calculated as simple integer fundamen-

tal frequency ratios. The ratios are given by the following vec-

tor, representing the twelve chromatic tones above the

reference A:
�

16
15
; 9

8
; 6

5
; 5

4
; 4

3
; 45

32
; 3

2
; 8

5
; 5

3
; 9

5
; 15

8
; 2

1

�
. The deviations (in

cents) from equal temperament of the five other temperaments

we use are given in Table I. Apart from being relatively com-

mon, this set of six temperaments represents different catego-

ries: Equal temperament is both well and regular, just

intonation is neither well nor regular, Vallotti and fifth-

comma are well and irregular, and the two variants of mean-

tone (quarter and sixth comma) are regular but not well.

B. Conservative transcription

The ideal solution for estimating the fundamental fre-

quencies of each of the notes played in a piece would require

a transcription step to identify the existence and timing of

each note. However, no reliable automatic transcription

algorithm exists. Therefore we developed a two-stage

approach in order to obtain accurate estimates of fundamen-

tal frequency and inharmonicity of unknown notes in the

presence of multiple simultaneous tones. The first stage is a

conservative transcription, which identifies the subset of

notes which are easily detected, omitting any unsure candi-

dates. In other words, it obtains a high precision (fraction of

transcribed notes that are correct) at the cost of low recall
(the fraction of played notes that are transcribed). The sec-

ond stage is an accurate frequency domain f0-estimation step

FIG. 1. Cycle of fifths representations for each of the temperaments used in

this paper. The distance of the dark segments from the center of the circle

represents the deviation from pure fifths (the light circle). The fractions

specify the distribution of the comma between the fifths.

TABLE I. Deviations (in cents) from equal temperament for the five

unequal temperaments (V: Vallotti; FC: Fifth Comma; QCMT: Quarter

Comma Meantone; SCMT: Sixth Comma Meantone; JI: Just Intonation)

used in this work.

Note V FC QCMT SCMT JI

C 5.9 8.2 10.3 4.9 15.6

C#/D[ 0.0 �1.6 27.4 13.0 �13.7

D 2.0 2.7 3.4 1.6 �2.0

D#/E[ 3.9 2.3 20.5 9.8 �9.8

E �2.0 2.0 �3.4 �1.6 2.0

F 7.8 6.3 13.7 6.5 13.7

F#/G[ �2.0 �3.5 �10.3 �4.9 �15.6

G 3.9 5.5 6.8 3.3 17.6

G#/A[ 2.0 0.4 24.0 11.4 �11.7

A 0.0 0.0 0.0 0.0 0.0

A#/B[ 5.9 4.3 17.1 8.1 11.7

B �3.9 �0.8 �6.8 �3.3 3.9
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for the notes determined in the first stage. We take advantage

of the fact that we do not need to estimate the pitch of each

and every performed note, since the tuning of the harpsi-

chord is assumed not to change during a piece, and there are

usually multiple instances of each pitch from which fre-

quency estimates can be computed.

Conservative transcription consists of three main parts:

computation of frame-wise amplitude spectra with a standard

STFT; sinusoid detection through peak-picking, which yields

a set of initial frequency estimates; and finally the deletion of

sinusoids that have a low confidence, either because they are

below an amplitude or duration threshold, or because they

could be overtones of a different sinusoid. We describe the

deletion of candidate sinusoids as “conservative” since not

only overtone sinusoids, but also some of the sinusoids that

correspond to fundamental frequencies could be deleted in

this step.

The sinusoid detection is a simple spectrum-based

method. From the time-domain signal, downsampled from

fs¼ 44 100 Hz to fs
0 ¼ 11 025 Hz, we compute the STFT X(n,

i), where n is the frame index and i the frequency bin index,

using a Hamming window, a frame length of 4096 samples

(370 ms), a hop size of 256 samples (23 ms, i.e., 15
16

overlap),

and a zero padding factor of 2 (i.e., FFT size N¼ 8192). In

fast passages, the window will contain multiple sequential

notes, but the negative effect of this is balanced by the

greater frequency resolution. The use of a Hamming window

rather than the Blackman-Harris window used in Sec. III C

is not critical.

In order to detect each of the partials we first identify

peaks in the amplitude spectrum jXðn; iÞj using two adaptive

thresholding techniques. To find locally significant bins of

frame n, we calculate the moving weighted mean m(n, i) and

the moving weighted standard deviation r(n, i) of jXðn; iÞj
using a window of length 200 bins. If a spectral bin jXðn; iÞj
exceeds the moving mean plus half a moving standard devia-

tion we consider it a locally salient bin:

jXðn; iÞj > lðn; iÞ þ 0:5 � rðn; iÞ: (2)

To eliminate noise peaks at low amplitudes we consider as

globally salient only those bins which have an amplitude not

more than 25dB below that of the global maximum bin

amplitude:

jXðn; iÞj > 10�2:5 max
u;v
fjXðu; vÞjg: (3)

We consider only those bins that are both locally and glob-

ally salient, i.e., both inequalities (2) and (3) hold. From

each region of consecutive peaks we pick the bin that has the

maximum amplitude and estimate the true frequency by

quadratic interpolation of the log magnitude of the peak bin

and its two surrounding bins (Smith and Serra, 1987; Smith,

2010), as follows. Suppose ap ¼ log jXðn; pÞj is a local peak

in the log magnitude spectrum, that is, ap� 1< ap and

ap> apþ 1 (where we drop the time index n for conven-

ience). Then the three points (�1, ap-1), (0, ap), and (1,

apþ 1) uniquely define a parabola with maximum at

d ¼ ap�1 � apþ1

2ðap�1 � 2ap þ apþ1Þ
; (4)

where �0.5� d� 0.5 is the offset from the integer bin loca-

tion p, so that the quadratically interpolated peak frequency

is given by ðpþ dÞf 0s=N.

The next step is the “conservative” processing, in which

we delete many potential fundamental frequencies. For each

peak frequency f0, any other peak whose frequency is within

50 cents of a multiple of f0 is deleted. Peaks in the same fre-

quency bins as those deleted, in a neighborhood of 62

frames, are also deleted. For testing the efficacy of this

approach, we compare it with an otherwise identical method

which treats all spectral peaks as if they were fundamentals

(see Sec. IV).

In order to sort the remaining frequency estimates into

semitone bins we determine the standard pitch fst by taking

the median difference (in cents) of those peaks that are

within half a semitone of the nominal standard pitch (415

Hz). Based on the new standard pitch fst each peak frequency

is assigned to one of 45 pitches ranging from MIDI note 36

(C2) to 80 (G#5). Any frequency peaks outside of this range

are deleted.

In order to discard spurious data we delete any peaks

which lack continuity in time, i.e., where the continuous du-

ration of the peak is less than a threshold T. Results for vari-

ous values of T were compared in previous work (Tidhar

et al., 2010b); in this paper we use T¼ 0.3 s. Remaining con-

secutive peaks are grouped as notes, specified by onset time,

duration, and MIDI pitch number.

C. Partial frequency estimation

For each note object w given by the conservative tran-

scription, an initial estimate of the frequency fk
w of partial

k is computed using Eq. (1), the fundamental frequency

found in the conservative transcription stage and an estimate

of the inharmonicity factor B. Initially B is set to 2� 10�5,

but after the first run of the algorithm, this is replaced by a

frequency-dependent estimate of B (see Sec. III D below).

We then perform STFT analysis using the following parame-

ters: fs¼ 44 100 Hz, no downsampling, Blackman-Harris

window with support size of 4096 samples, zero padding

factor z¼ 4 (N¼ 16 384), and hop size of 1024 samples. For

each partial frequency, a spectral peak in a window of 630

cents around fk
w is found and the peak location is refined

using quadratic interpolation (see Sec. III B). After quadratic

interpolation, a bias correction is applied based on the win-

dow shape and zero padding factor [Abe and Smith, 2004,

Eqs. (1) and (3)]:

d0 ¼ dþ nzdðd� 0:5Þðdþ 0:5Þ; (5)

where d’ is the bias-corrected offset in bin location, d is the

quadratically interpolated offset [Eq. (4)], z is the zero-

padding factor, nz ¼ c0z�2 þ c1z�4 is the bias correction fac-

tor and the constants c0¼ 0.124188 and c1¼ 0.013752 were

determined empirically for the Blackman–Harris window by

Abe and Smith (2004, Table I). If no peak is found in the
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search window, that partial and frame combination is

ignored. For each note and frame of the note’s duration (as

estimated by the conservative transcription step), the fre-

quency of the first 40 partials f1, …, f40 is estimated. From

these values the fundamental frequency and inharmonicity

can be determined.

D. Inharmonicity estimation

Given the frequencies fj and fk of any two partials j and

k, Eq. (1) can be rearranged to obtain an estimate of B:

Bj;k ¼
j2f 2

k � k2f 2
j

k4f 2
j � j4f 2

k

: (6)

The frequency estimates obtained above are only accurate if

there is no interference from partials of other tones. Although

we avoid some cases of interference using conservative tran-

scription, it does not cover all cases, and the prevalence of

musical intervals involving coincident or overlapping partials

makes it impossible to avoid interference entirely. To mitigate

the effects of these errors we use robust statistics to discard

outliers and obtain our final estimate of the inharmonicity of

each note. The median is a suitably robust measure of central

tendency in the presence of measurement noise, unlike the

mean which is prone to bias from outliers. B is therefore esti-

mated as the median of all Bj,k values, where values from suc-

cessive frames of a single note are included in the median

computation. We also compute a measure of the reliability of

this estimate using the interquartile range (IQR), defined as

the difference between the third and first quartiles. The IQR is

chosen because it is a robust measure of the statistical disper-

sion of the data, as it is less susceptible to outliers than meas-

ures such as the standard deviation. Having obtained a single

value of B for each note, we iterate the partial frequency and

inharmonicity estimation stage using the newly estimated B to

guide the search for spectral peaks (see Sec. III C above) until

they converge, or if they fail to converge the iteration is termi-

nated after ten steps. Approximately 40% of note estimates

converge immediately, 20% require a further one or two steps,

and 25% are terminated after ten steps.

E. Integration of partial frequency estimates

Once the inharmonicity of a string has been estimated,

each partial frequency provides an independent estimate

f̂0ðkÞ of the theoretical fundamental, by substitution in Eq.

(1). (The theoretical fundamental would be the fundamental

frequency of the string if it had no stiffness; the first partial

is sharper by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ B
p

.) To obtain a robust value,

we take a single median over all frames and partials, and

compute the inter-quartile range as an inverse measure of

confidence in the estimate. The output of this stage is a list

of frequency and inharmonicity estimates, together with their

inter-quartile ranges, for each note identified by the conserv-

ative transcription algorithm, where the transcribed notes are

described by a MIDI note number, onset time and duration di

(where i is the index of the note). By ignoring the octave, the

MIDI note number can be converted to a pitch class

pi 2 P ¼ fC;C#;D;…;Bg. The corresponding frequency

estimates are also converted to deviation ci from equal tem-

perament, measured in cents.

F. Classification

To test the fundamental frequency estimation we use the

deviations ci to classify the 48 recordings by the tempera-

ment from which they differ least in terms of the theoretical

profiles shown in Table I. For each pitch class k the estimate

ĉk of the deviation in cents is obtained by taking the

weighted mean of the deviations over all the notes belonging

to that pitch class:

ĉk ¼

X
i:pi¼k

ciwi

uk
; k 2 P; (7)

FIG. 2. (Color online) Inharmonicity factor B as a function of pitch in MIDI (semitone) units for a real harpsichord (left) and the Pianoteq synthesiser (right).

The data was extracted fully automatically from recordings of Bach’s Goldberg Variation 21. Each circle represents a note, where the size represents the confi-

dence, computed from the inter-quartile range (larger sizes represent smaller IQRs).
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where the note weight wi ¼ di=qi is the quotient of the note

duration di and the inter-quartile range qi of the fundamental

frequency estimates for note i, and the pitch class weight uk

for pitch class k is given by uk ¼ i:pi¼k wi. Given this estimate

ĉ ¼ ðĉ1;…; ĉ12Þ and a temperament profile c0 ¼ ðc0
1;…; c0

12Þ,
we calculate the divergence

dðĉ; c0Þ ¼
X
k2P

vkðĉk � c0
k � rÞ2 (8)

between estimate and profile, where vk ¼ uk

P
i2P uið Þ2 is

the squared relative weight of the kth pitch class in the note

list, and r ¼
P

i2P viðĉi � c0
i Þ=
P

i2P vi is the offset in cents

which minimizes the divergence and thus compensates for

deviations in the reference tuning frequency (pitch A4) from

the 415 Hz reference assumed in previous calculations. A pi-

ece is classified as having the temperament whose profile c0

differs least from it in terms of dðĉ; c0Þ.

The weight vi favors pitch classes that have longer cumu-

lative durations and lower interquartile ranges. In particular,

any pitch classes that are not in the note list are discarded. For

the four pieces selected, all pitch classes are present, but the

distribution is uneven. For example, in the score of the Bach

Prelude, the frequencies of occurrence of each pitch class

range from 4 notes (C# and A[) to 113 notes (G).

IV. RESULTS

A. Inharmonicity

Figure 2 shows the inharmonicity factor B for each tone

detected for a real (left) and a synthesized (right) recording

of Goldberg Variation 21 (using Vallotti temperament). The

two graphs show similar trends in inharmonicity, which

increases with decreasing string length (B is inversely pro-

portional to the fourth power of string length). The synthe-

sized harpsichord exhibits a slightly steeper curve, with the

difference visible on the manually fitted curves. The range of

values (10�5–10�4) agrees with those published elsewhere

(Välimäki et al., 2004). Most of the outliers are notes for

which the intra-note agreement is low (represented by the

size of the circles).

B. Fundamental frequency estimation

Using the known temperament for each recording, we

compare the measured deviations from equal temperament

with the corresponding expected values from Table I, and

report the errors as the mean absolute differences (in cents)

across various data sets in Table II. First, we show the errors

across all recordings with and without conservative tran-

scription. Using spectral peaks (SP) as fundamentals, the

mean absolute error is 2.1 cents, compared to 1.5 cents using

conservative transcription (CT). As in previous work, con-

servative transcription has a positive impact on results. The

remaining results are based on the conservative transcription

TABLE II. Comparison of the influence of four factors on the mean abso-

lute difference between measured pitch and the corresponding temperament

profiles. All values are in cents (hundredths of a semitone). The four factors

are: transcription (SP: using all spectral peaks; CT: using only peaks identi-

fied by the conservative transcription algorithm); instrumental source (RH:

recordings of a real harpsichord; PT: recordings from the Pianoteq synthes-

iser); temperament (ET: equal temperament; V: Vallotti; FC: fifth comma;

QCMT: quarter comma meantone; SCMT: sixth comma meantone; JI: just

intonation); and musical piece (Chrom: one-octave chromatic scale; Prel:

J.S. Bach’s Prelude 1 in C Major; Mén: F. Couperin’s La Ménetou; Var21:

J.S. Bach’s Goldberg Variation 21).

Transcription SP 2.1 CT 1.5

Instrumental Source RH 2.4 PT 0.6

Temperament ET 1.2 FC 1.6

JI 4.2 QCMT 3.6

SCMT 1.2 V 2.8

Piece Chrom 2.2 Prel 2.5

Mén 2.8 Var21 2.1

FIG. 3. (Color online) Pitch difference in cents relative to equal temperament, as measured from two recordings of Variation 21 from the Goldberg Variations

using Vallotti temperament (left: harpsichord; right: synthesized). Each circle represents a note, where the size represents the confidence. The staircase plot

shows the expected values for the Vallotti temperament.
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results only. The second section shows the effect of audio

source: real and synthesized harpsichord. For the real harpsi-

chord (RH), the mean absolute error is 2.4 cents, as com-

pared with 0.6 cents for synthesized (PT) recordings. It is

not possible to say whether this reflects inaccuracies in the

tuning (either due to the limits of tuning ability or the instru-

ment going out of tune after tuning), or the greater difficulty

of signal processing due to the more complex timbres, room

reverberation and noise inherent in any acoustic recording.

The greater spread of deviations (see below) does not neces-

sarily imply the latter interpretation, as each pitch class con-

sists of a set of notes from different octaves, which could

vary in their deviation values due to tuning imprecision. The

third set of results, by temperament (for the real harpsichord

recordings), shows some differences which suggest some

variability in the accuracy of tuning across the different tem-

peraments, with just intonation, quarter comma meantone,

and Vallotti tunings being less accurate than the other

tunings.

The final set of results (by piece, for the real harpsichord

recordings) reveals some unexpected differences. The slow

chromatic scale, selected as a baseline since it consists only

of individual notes, yielded results slightly worse than those

of the Bach Goldberg Variation 21, a polyphonic piece.

Likewise the error for the Bach Prelude, where only one

note at a time is played (although the notes do overlap) was

higher than both of these, while the more complex and

highly ornamented Couperin piece had the highest average

error, as expected. Two known factors contribute to the

unexpected ranking: the conservative transcription algorithm

selects suitable notes for the frequencies of partials to be

measured, compensating at least in part for the complexity

of the piece; and the chromatic scale has only one instance

of each pitch class (except the initial and final C), whereas

the other pieces have many instances of each pitch class,

allowing more robust estimates to be made, despite the inter-

fering notes.

To indicate the spread of errors in pitch deviation esti-

mation on a per-note basis, Fig. 3 shows the results for the

Vallotti temperament recordings of the Goldberg Variation

21. The fundamental frequency difference of each measured

note relative to the same note in equal temperament is

shown, compared with the expected values for the Vallotti

temperament in the staircase plots. Fundamental frequencies

appear on the horizontal axis, mapped to their pitch class,

and the frequency difference from equal temperament is

shown in cents on the vertical axis.

C. Classification results

Table III shows classification results for various ver-

sions of the algorithm. The first row shows previous results

(Tidhar et al., 2010b, method M-CQIFFT), where inharmo-

nicity was ignored, and the median of fk=k values for the

first 12 harmonics was used as an estimate of the funda-

mental frequency. The second row contains results for esti-

mation of B using Eq. (1) without any iteration, while up to

ten iterations of the fundamental frequency and inharmo-

nicity estimation algorithm were performed to obtain the

results in the third row. The final row shows the additional

effect of early deletion of any partials whose inharmonicity

estimates are more than half the inter-quartile range from

the median. For all cases, short note deletion was

employed, so that notes with a transcribed length less than

0.3 s were not used.

TABLE III. Percentage of recordings automatically classified with the cor-

rect temperament. The columns correspond to the use of the 24 recordings

of real harpsichord (RH) and the 24 recordings synthesized with Pianoteq

(PT), preprocessed with spectral peak detection (SP) or conservative tran-

scription (CT), respectively. The rows correspond to four different

approaches to inharmonicity estimation: none (ICASSP’10); using one (sin-

gle iteration) or up to ten (multiple iterations) iterations of the fundamental

frequency and inharmonicity algorithm; and multiple iterations with prefil-

tering of the data by outlier deletion.

Data Type RH PT

Overtone removal SP CT SP CT

ICASSP’10 79 92 88 96

Single iteration 75 88 96 100

Multiple iterations 79 92 96 100

Outlier deletion 79 83 100 100

FIG. 4. (Color online) Divergence dðĉ; c0Þ between measured and theoretical temperaments for the real harpsichord (left) and synthesized (right) recordings

of Couperin’s La Ménetou [see Eq. (8)]. The actual temperament is shown on the horizontal axis, and the divergence on the vertical axis. Horizontal lines

mark the divergence of the correct temperament in each case.
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The classification results confirm that automatic tem-

perament recognition can be performed with a high level of

accuracy for the chosen set of temperaments. The individual

differences between methods are less informative, as they

involve the reclassification of a very small number of items.

Figure 4 shows this more clearly, where the divergence

dðĉ; c0Þ is shown for all six temperaments for the real harpsi-

chord (left) and synthesized (right) recordings of Couperin’s

La Ménetou. In the cases where misclassification occurs, the

divergence of the correct temperament is very close to that

of the winning temperament.

V. DISCUSSION AND CONCLUSION

In matching the measured frequencies to theoretical def-

initions of temperaments, we have used a model of tempera-

ment which ignores inharmonicity. That is, a pure fifth is

defined as a frequency ratio of 3
2

between fundamental fre-

quencies, rather than the fundamental frequency ratio for

which the third harmonic of the lower tone corresponds to

the second harmonic of the higher tone. The latter definition

would correspond better to tuning practice (where a beat-

free fifth would be considered pure). Likewise, by grouping

all notes within a pitch class, we assume that octaves are not

stretched.

It is straightforward to compute the effect of making

this assumption, given the values of B for each note, as esti-

mated in this work. For two tones i and j with inharmonicity

coefficients Bi and Bj respectively, tuned to a frequency ratio

q:p (so that the frequency of the pth partial of i is equal to

the frequency of the qth partial of j), the deviation D in cents

of the fundamental frequency ratio from the ratio q:p is

given by

Dði; j; p; qÞ ¼ 1200 log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2Bi

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2Bj

p
 !

: (9)

Using our estimates of B, this deviation is less than 0.1 cent

for octave intervals (ratio 1:2), 0.25 cent for fifths (ratio

2:3), and 0.5 cent for major thirds (ratio 4:5), across the

whole range of the harpsichord. If the top octave is not

used, the maximum deviations are smaller by a factor of 5.

These deviations are small compared to our precision in

frequency estimation, and thus do not adversely affect our

results.

We have shown that given a standard recording of a mu-

sical work for solo harpsichord, it is possible to estimate the

inharmonicity of each key and ascertain the tuning of each

pitch class with a precision of 1–2 cents, which appears to be

no worse than the precision of tuning the instrument. One of

the difficulties in this work is the lack of ground truth data

against which more extensive testing could be performed. In

future work, we plan to expand our data set to include more

pieces and temperaments, and to use our system in a large-

scale analysis of historical harpsichord recordings. This will

extend existing knowledge of inharmonicity by gathering

measurements from many instruments, and inform the study

of historical music performance by analysis of the tempera-

ments employed in the recordings.
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