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Abstract In this paper, we compare timbre features of various cello performers
playing the same instrument in solo cello recordings. Using an automatic feature
extraction framework, we investigate the differences in sound quality of the play-
ers. The motivation for this study comes from the fact that the performer’s influence
on acoustical characteristics is rarely considered when analysing audio recordings
of various instruments. While even a trained musician cannot entirely change the
way an instrument sounds, he is still able to modulate its sound properties obtaining
a variety of individual sound colours according to his playing skills and musical
expressiveness. This phenomenon, known amongst musicians as “player timbre”,
enables to differentiate one player from another when they perform an identical
piece of music on the same instrument. To address this problem, we analyse sets
of spectral features extracted from cello recordings of five players and model tim-
bre characteristics of each performer. The proposed features include harmonic and
noise (residual) spectra, Mel-frequency spectra and Mel-frequency cepstral coeffi-
cients (MFCCs). Classifiers such as k-Nearest Neighbours (k-NN) and Linear Dis-
crimination Analysis (LDA) trained on these models are able to distinguish the five
performers with high accuracy.
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1 Introduction

Timbre, both as an auditory sensation and a physical property of a sound, although
studied thoroughly for decades, still remains terra incognita in many aspects. Its
complex nature is reflected in the fact that until now no precise definition of the
phenomenon has been formulated, leaving space for numerous attempts at an ex-
haustive and comprehensive description.

The working definition provided by ANSI [2] explains timbre in terms of a sound
perceptual attribute which enables distinguishing between two sounds having the
same loudness, pitch and duration. In other words, timbre is what helps us to differ-
entiate whether a musical tone is played on a piano or violin.

But the notion of timbre is far more capacious than this simple distinction. Called
in psychoacoustics tone quality or tone color, timbre categorises not only a source of
sound (e.g. musical instruments, human voices) but also maps unique sound identity
of instruments/voices belonging to the same family (when comparing two violins or
two dramatic sopranos for example).

The focus of this research is the so-called “player timbre” which can be situ-
ated on the boundary between musical instruments and human voices (see Fig. 1),
being a complex “alloy” of instrument acoustical characteristics and human individ-
uality. What we perceive as a performer-specific sound quality is a combination of
technical skills and perceptual abilities together with musical experience developed
through years of practising and mastering in performance. Player timbre, seen as
a specific skill, when applied to an instrument influences the physical process of
sound production and therefore can be measured via acoustical properties of sound.
It may act as an independent lower-level characteristic of a player. If individual
timbre features are able to characterise a performer, then timbre dissimilarities can
serve for performer discrimination.

2 Modelling timbre

A number of studies has been devoted to the question of which acoustical features
are related to timbre and can serve as timbre descriptors. Schouten [9] introduced
five major physical attributes of timbre: its “tonal/noiselike” character; the spectral
envelope (a smooth curve over the amplitudes of the frequency components); the
time (ADSR) envelope in terms of attack, decay, sustain and release of a sound plus
transients; the fluctuations of spectral envelope and fundamental frequency; and the
onset of a sound. Amongst the above mentioned, the spectral and time envelopes
and the onset seem to be preponderant in affecting our perception of timbre.

In order to find a general timbral profile of a performer, we considered a set
of spectral features successfully used in music instrument recognition and singer
identification applications. In the first instance, we turned our interest toward per-
ceptually derived Mel filters as an important part of a feature extraction framework.
The Mel scale was designed to mimic the entire sequence of pitches perceived by
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Fig. 1 Factors determining timbre

humans as equally spaced on the frequency axis. In reference to the original fre-
quency range, it was found that we hear changes in pitch linearly up to 1 kHz and
logarithmically above it. A converting formula can be expressed as follows:

mel( f [Hz]) = 2595log10

(
1+

f [Hz]
700

)
(1)

Cepstrum transformation of the Mel scaled spectrum results in the Mel-frequency
cepstrum whose coefficients (MFCCs) have become a very popular feature for mod-
elling various instrument timbres (see [5, 6, 7] for example) as well as for charac-
terising singer voices [8, 10].

Apart from perceptually driven features like Mel spectrum and MFCCs, we chose
to investigate discriminant properties of harmonic and residual spectra derived from
the additive model of sound [1]. By decomposing an audio signal into a sum of
sinusoids (harmonics) and a residual component (noise), this representation enables
to track short time fluctuations of the amplitude of each harmonic and model the
noise distribution. The definition of the sound s(t) is given by

s(t) =
N

∑
k=1

Ak(t) cos[θk(t)] + e(t) (2)
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where Ak(t) and θk(t) are the instantaneous amplitude and phase of the kth sinusoid,
N is the number of sinusoids, and e(t) is the noise component at time t (in seconds).

Figure 2 illustrates consecutive stages of the feature extraction process. Each
audio segment was analysed using the frame-based fast Fourier transform (FFT)
with a Blackman-Harris window of 2048-sample length and 87.5% overlap which
gave us 5.8 ms time resolution. The length of the FT was set to 4096 points resulting
in a 10.76 Hz frequency resolution. The minimum amplitude value was set at a level
of -100 dB.

At the first stage, from each FFT frame, the harmonic and residual spectra were
computed using the additive model. Then, all FFT frames, representing the full
spectra at time points t, together with the residual counterparts, were sent to the
Mel filter bank for calculating Mel-frequency spectra and residuals. Finally, MFCCs
and residual MFCCs were obtained by logarithm and discrete cosine transformation
(DCT) operations on Mel-frequency spectra and Mel-frequency residual spectra re-
spectively.

The spectral frames were subsequently averaged over time giving compact fea-
ture instances. Thus, the spectral content of each audio segment was captured by
five variants of spectral characteristics: harmonic, Mel-frequency spectrum and Mel-
frequency cepstral coefficients and their residuals.

Fig. 2 Feature extraction framework
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3 Experiment Description

3.1 Sound Corpus

For the purpose of this study we exploited a set of dedicated solo cello recordings
made by five musicians who performed a chosen repertoire on two different cellos1.
The recorded material consists of two fragments of Bach’s 1stCello Suite: Prélude
(bars 1−22) and Gigue (bars 1−12). Each fragment was recorded twice by each
player on each instrument, thus we collected 40 recordings in total. For further au-
dio analysis the music signals were converted into mono channel .wav files with a
sampling rate of 44.1 kHz and dynamic resolution of 16 bits per sample. To create
a final dataset we divided each music fragment into 6 audio segments. The length
of individual segments varied across performers giving approximately 11-12 s long
excerpts from Prélude and 2-3 s long excerpts from Gigue. We intentionally dif-
ferentiated the length of segments between the analysed music fragments. Our goal
was to examine whether timbre characteristics extracted from shorter segments can
be as representative for a performer as those extracted from the longer ones.

3.2 Feature Extraction

Having all 240 audio segments (24 segments per player performed on each cello) we
used the feature extraction framework described in Sect. 2 to obtain sets of feature
vectors. Each segment was then represented by a 50-point harmonic spectrum, 40-
point Mel-freq spectrum and Mel-freq residual spectrum, 40 MFCCs and 40 MFCCs
on the residual. Feature vectors calculated on the two repetitions of the same seg-
ment on the same cello were subsequently averaged to form a representative (120
segment representatives in total). Figures 3–6 shows examples of feature represen-
tations.

3.3 Performer Modelling

Comparing feature representatives between performers on various music segments
and cellos, we bore in mind that every single vector contains not only the mean spec-
tral characteristics of the entire music segment (the notes played) but also spectral
characteristics of the instrument, and then, on top of that, the spectral shaping due
to the performer. In order to extract this “performer shape” we needed to suppress
the influence of both the music contents and the instrument. The simplest way to do
it was to calculate across all five players the mean feature vector on each audio seg-

1 The same audio database was used in the author’s previous experiments [3, 4]
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Fig. 3 Harmonic spectra
of Perf1 and Perf4 playing
Segment1 of Prélude and
Gigue on Cello1, comparing
the effect of player and piece

0 5 10 15 20 25 30 35 40 45 50
−70

−60

−50

−40

−30

−20

−10

0

Harmonic index

A
m

pl
itu

de
 [d

B
]

 

 

Perf1−Cello01−Prelude−Segm01
Perf1−Cello01−Gigue−Segm01
Perf4−Cello01−Prelude−Segm01
Perf4−Cello01−Gigue−Segm01

Fig. 4 Harmonic spectra
of Perf1 and Perf4 playing
Segment1 of Prélude on
Cello1 and Cello2, comparing
the effect of player and cello
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Fig. 5 Mel-frequency spectra
of Perf1 and Perf4 playing
Segment1 and Segment6 of
Prélude on Cello1, comparing
the effect of player and seg-
ment
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Fig. 6 MFCCs of Perf1 and
Perf4 playing Segment1 of
Prélude on Cello1 and Cello2,
comparing the effect of player
and cello
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ment and subtract it from individual feature vectors of the players. This centering
procedure can be expressed by the following formulas.

Let As
p( f ) be an amplitude vector of a spectral feature f , extracted from a music

segment s of a performer p. The mean feature vector of a segment s is

Ās( f ) =
1
P

P

∑
p=1

As
p( f ) (3)

then a centered feature vector of a performer p on a segment s is calculated as

Ãs
p( f ) = As

p( f )− Ās( f ) (4)

where f = 1, ...,F are feature vector indices and the number of the players p =
1, ...,P.

Figure 7 illustrates the centered spectra of the players from the first segment of
Prélude recorded on Cello1.
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Fig. 7 Mel-frequency spectra of five performers playing Segment1 of Prélude on Cello1, before
and after centering
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When one looks at the spectral shape (whether of a harmonic or Mel-frequency
spectrum) it exhibits a natural descending tendency towards higher frequencies as
they are always weaker in amplitude. The so called spectral slope is related to the
nature of the sound source and can be expressed by a single coefficient (slope) of the
line-of-best-fit. Treating a spectrum as data of any other kind, if a trend is observed
it ought to be removed accordingly for data decorrelation. Therefore subtracting the
mean vector removes this descending trend of the spectrum.

Moreover, the spectral slope is related to the spectral centroid (perceptual bright-
ness of a sound) which in audio analysis indicates the proportion of the higher fre-
quencies in the whole spectrum. Generally, the steeper the spectral slope, the lower
is the spectral centroid and less “bright” is the sound.

We noticed that performers’ spectra have slightly different slopes, depending
also on the cello and music segment. Expecting that it can improve differentiating
capabilities of the features, we extended the centering procedure by removing indi-
vidual trends first, and then subtracting the mean spectrum of a segment from the
performers’ spectra. The operation of detrending is given by

Âs
p( f ) = As

p( f )− [βp f +αp] (5)

where βp and αp are the coefficients of a simple linear regression model of the
vector f . Subsequently the mean feature vector of a segment s is

Ās( f ) =
1
P

P

∑
p=1

Âs
p( f ) (6)

and the Ãs
p( f ) is calculated as defined in Eq. 4. Figures 8–9 illustrate individual

trends and the centered spectra of the players after detrending operation.
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Fig. 8 Individual trends of five performers playing Segment1 of Prélude on Cello1 derived from
Mel-frequency spectra
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Fig. 9 Mel-frequency spectra of five performers playing Segment1 of Prélude on Cello1, after
detrending and centering

As a result, our final performer-adjusted datasets consisted of two variants of fea-
tures: centered and detrended-centered harmonic spectra, centered and detrended-
centered Mel-frequency spectra and the residuals, centered MFCCs and the residu-
als.

3.4 Classification Methods

The next step was to test the obtained performer profiles with a range of classifiers,
which also would be capable to reveal additional patterns within the data if such ex-
ist. We chose k-nearest neighbour algorithm (k-NN) to explore first for its simplicity
and robustness to noise in training data.
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3.4.1 k-Nearest Neighbours

k-Nearest Neighbours is a supervised learning algorithm which maps inputs to de-
sired outputs (labels) based on supervised training data. The general idea of this
method is to calculate the distance from the query vector to the training samples
to determine the k nearest neighbours. Majority voting on the collected neighbours
assigns the unlabelled vector to the class represented by most of its k nearest neigh-
bours. The main parameters of the classifier are the number of neighbours k and
distance measure dist.

We run a classification procedure using exhaustive search for finding the neigh-
bours, with k set from 1 to 10 and dist including the following measures: Cheby-
chev, city block, correlation, cosine, Euclidean, Mahalanobis, Minkowski (with the
exponent p = 3,4,5), standardised Euclidean, Spearman.

Classification performance can be biased if classes are not equally or proportion-
ally represented in both training and testing sets. For each dataset, we ensured that
each performer is represented by a set of 24 vectors calculated on 24 distinct audio
segments (12 per each cello). To identify a performer p of a segment s, we used a
leave-one-out procedure that can be expressed as follows:

class P
{

Ãs
p( f )

}
= maxkP

{
mink

[
dist

(
Ãs

p( f ), ÃZ
p( f )

)]}
(7)

where s ∈ {Z \ Z ̸= s}, Z is the number of segments, k is the number of NN, kP
are the neighbours amongst k-NN voting for class P, indices f and p are defined in
Eq. 4.

3.4.2 Linear Discriminant Analysis

Amongst statistical classifiers Discriminant Analysis (DA) is one of the methods
that build a parametric model to fit training data and interpolate to classify new ob-
jects. It is also a supervised classifier as class labels are a priori defined in a training
phase. Considering many classes of objects and multidimensional feature vectors
characterising the classes, Linear Discriminant Analysis (LDA) finds a linear com-
bination of features which separate them under a strong assumption that all groups
have multivariate normal distribution and the same covariance matrix.

In our case the linear discriminant function of a performer class p is defined as:

Dp = µpC−1{Ãs
p( f )

}T − 1
2

µpC−1µT
p + ln(Prp) (8)

where

µp =
1
S

S

∑
s=1

Ãs
p( f ) (9)

is a mean feature vector of a performer p, s = 1, ...,S is the number of segments
representing each performer p, C is a pooled estimate of within performer covari-
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ance matrix, Prp is the prior probability of a performer p assumed to be equal for all
performers and f = 1, ...,F as defined in Eq. 4. Then, we can identify a performer
p of a segment s looking for the maximum of the function Dp for p = 1, ...,P

class P
{

Ãs
p( f )

}
= maxP

{
Dp

}
(10)

4 Results

In general, all classification methods we examined produced highly positive results
reaching even 100% true positive rate (TP) in several settings, and showed a pre-
dominance of Mel-frequency based features in more accurate representation of the
performers’ timbres. The following sections provide the outcomes’ description in
detail.

4.1 k-Nearest Neighbours

We carried out k-NN based performer classification on all our datasets, i.e. harmonic
spectra, Mel-frequency and Mel-frequency residual spectra, MFCCs and residual
MFCCs, using both the centered and detrended-centered variants of feature vectors
for comparison (with the exclusion of MFCC sets for which the detrending oper-
ation was not required). For all the variants we ran the identification experiments
changing not only parameters k and dist but also the feature vectors’ length F for
Mel-frequency spectra and MFCCs, where F = {10,15,20,40}. This worked as a
primitive feature selection method indicating the capability of particular Mel-bands
to carry comprehensive spectral characteristics. As a rule, the most informative are
the first 13–15 bands.

Table 1 k-NN results on harmonic spectra, vector length = 50

Centered Detr-centered

length # k-NN Distance TP rate FP rate # k-NN Distance TP rate FP rate

50 9 corr 0.833 0.040 4 euc 0.867 0.032
3 corr 0.825 0.041 6 seuc 0.858 0.034
10 corr 0.825 0.042 6,7 cos,corr 0.850 0.036

As one can notice from Tab. 1–3, detrended spectral features slightly outperform
the centered ones in matching the performers’ profiles, attaining 100% identification
recall for 20- and 40-point Mel-frequency spectra. Surprisingly 20-point centered
Mel- and residual spectra give higher TP rates than the 40-point, probably due to
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Table 2 k-NN results on Mel-freq spectra, vector length = 40, 20, 15, 10

Centered Detr-centered

length # k-NN Distance TP rate FP rate # k-NN Distance TP rate FP rate

40 1-4 corr 0.975 0.006 1-4 seuc 1.000 0.000
5 city 0.975 0.006 1,2,6 euc,cos,corr 1.000 0.000
5 corr,euc 0.967 0.008 7-9 euc,cos,corr 1.000 0.000

20 1-10 corr 0.992 0.002 7,8 mink3 1.000 0.000
7 spea 0.992 0.002 9,10 cos 1.000 0.000
8-10 spea 0.983 0.004 3-8 cos,corr 0.992 0.002

15 5,6 corr 0.942 0.014 3,4 cos 0.975 0.006

10 3,4 corr 0.800 0.047 1,2 city 0.867 0.032

Table 3 k-NN results on Mel-freq residual spectra, vector length = 40, 20, 15, 10

Centered Detr-centered

length # k-NN Distance TP rate FP rate # k-NN Distance TP rate FP rate

40 1,2 corr 0.967 0.008 1-3 cos,corr 0.992 0.002

20 3,4 spea 0.975 0.006 3 euc,seuc 0.983 0.004

15 3,4 spea 0.892 0.026 7 seuc 0.925 0.018

10 7 euc 0.775 0.053 6 euc 0.825 0.042

Table 4 k-NN results on MFCCs and residual MFCCs, vector length = 40, 20, 15, 10

MFCCs residual MFCCs

length # k-NN Distance TP rate FP rate # k-NN Distance TP rate FP rate

40 1-4 seuc 1.000 0.000 3-10 spea 1.000 0.000

20 3 seuc 1.000 0.000 5-7 spea 0.992 0.002

15 5-8 maha 0.992 0.002 3-4 seuc 0.983 0.004

10 1-3 maha 0.950 0.012 5 seuc 0.908 0.022

lower within-class variance (which improved the result), while the performance of
detrended features declines along with a vector length.

What clearly emerges from the results is the choice of distance measures and
their distribution between the two variants of features. Correlation and Spearman’s
rank correlation distances predominate within the centered spectra, while Euclidean,
standardised Euclidean, cosine and correlation measures almost equally contribute
to the best classification rates on detrended vectors. In regard to the role of parameter
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k, it seems that the number of nearest neighbours depends locally on a measured
distance and the length of vectors but no specific tendency was observed.

It is worth noticing that the full spectrum features only slightly outperform the
residuals (when comparing Mel-frequency spectra and its residual counterparts),
while MFCCs and residual MFCCs (Tab. 4) in turn perform better than the spectra
especially in classifying shorter feature vectors.

4.2 Linear Discriminant Analysis

For LDA-based experiments we used a standard stratified 10-fold cross validation
procedure to obtain statistically significant estimation of the classifier performance.
As previously, we exploited all five available datasets, also checking identification
accuracy as a function of a feature vector length.

We noticed that for full length detrended-centered vectors of the harmonic, Mel-
frequency and Mel-frequency residual spectra we were not able to obtain a positive
definite covariance matrix. The negative eigenvalues related to the first two spectral
variables (whether of the harmonic or Mel-frequency index) suggested that the de-
trending operation introduced a linear dependence into the data. In these cases, we
carried out the classification discarding the two variables, bearing obviously in mind
that they might contain some important feature characteristics. Tables 5–8 illustrate
the obtained results.

Table 5 LDA results on harmonic spectra,
vector length = 50, 40, 30, 20

Centered Detr-centered

length TP rate FP rate TP rate FP rate

50 (48) 0.900 0.024 (0.867) (0.032)

40 0.858 0.034 0.875 0.030

30 0.842 0.038 0.833 0.040

20 0.758 0.056 0.842 0.038

Table 6 LDA results on Mel-freq spectra,
vector length = 40, 20, 15, 10

Centered Detr-centered

length TP rate FP rate TP rate FP rate

40 (38) 1.000 0.000 (1.000) (0.000)

20 0.958 0.010 0.950 0.012

15 0.892 0.026 0.883 0.028

10 0.750 0.059 0.767 0.055

Similarly to the previous experiments, Mel-frequency spectra gave better TP
rates then harmonic ones and again, MFCCs slightly outperform the rest of fea-
tures in correctly classifying shorter vectors. Detrended variants of spectra did not
improve identification accuracy due to the classifier formulation and statistical de-
pendencies occurred within the data. As previously, the residual Mel spectra and
residual MFCCs produced worse TP rates with the exclusion of the 100% recall for
40 residual MFCCs.
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Table 7 LDA results on Mel-freq residual
spectra, vector length = 40, 20, 15, 10

Centered Detr-centered

length TP rate FP rate TP rate FP rate

40 (38) 1.000 0.000 (1.000) (0.000)

20 0.933 0.016 0.933 0.016

15 0.900 0.024 0.850 0.036

10 0.792 0.049 0.767 0.055

Table 8 LDA results on MFCCs and resid-
ual MFCCs, vector length = 40, 20, 15, 10

MFCCs residual MFCCs

length TP rate FP rate TP rate FP rate

40 0.992 0.002 1.000 0.000

20 0.992 0.002 0.983 0.004

15 0.992 0.002 0.983 0.004

10 0.917 0.020 0.900 0.024

5 Discussion

The most important observation that comes out from the results is that multidi-
mensional spectral characteristics of the music signal are mostly overcomplete and
therefore can be reduced in dimension without losing their discriminative properties.
For example, taking into account only the first twenty bands of the Mel spectrum
or Mel coefficients, the identification recall is still very high reaching even 100%
depending on the feature variant and classifier.

This implied searching for more sophisticated methods of feature subspace selec-
tion and dimensionality reduction. Table 9 shows additional classification results on
attributes selected by the greedy best-first search algorithm. They considerably out-
performed the previous scores showing how sparse the spectral information is. What
is interesting, from the Mel frequencies chosen by the selector, seven were identical
for both feature variants indicating their importance and discriminative power.

Table 9 LDA results on Mel-
freq spectra with selected
Mel-freq subsets

Centered Detr-centered

length TP rate FP rate TP rate FP rate

8 (10) 0.908 0.022 (0.975) (0.006)

13 0.950 0.012 0.983 0.004

As it was already mentioned, Mel spectra and MFCCs revealed their predomi-
nant capability to map the players’ spectral profiles confirmed by highly positive
identification rates. Moreover, simple linear transformation of feature vectors by re-
moving instrument characteristics and music context increased their discriminative
properties. Surprisingly, the residual counterparts appeared as informative as full
spectra, and this revelation is worth highlighting.

Although we achieved very good classification accuracy on proposed features
and classifiers (up to 100%) we should also point out several drawbacks of the pro-
posed approach: (i) working with dedicated recordings and experimenting on lim-
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ited datasets (supervised data) makes the problem hard to generalise and non scal-
able; (ii) use of simplified parameter selection and data dimensionality reduction
instead of other “smart” attribute selection methods such as PCA or factor analysis;
(iii) the proposed timbre model of a player is not able to explain the nature of dif-
ferences in sound quality between analysed performers, but only confirms that they
exist.

While obtaining quite satisfying representations (“timbral fingerprints”) of each
performer in the dataset, there is still a need for exploring temporal characteristics
of sound production which can carry more information about physical actions of a
player resulting in his/her unique tone quality.
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