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ABSTRACT

Dynamic Time Warping (DTW) is used to find alignments
between two related streams of information and can be
used to link data, recognise patterns or find similarities.
Typically, DTW requires the complete series of both in-
put streams in advance and has quadratic time and space
requirements. As such DTW is unsuitable for real-time
applications and is inefficient for aligning long sequences.
We present Windowed Time Warping (WTW), a variation
on DTW that, by dividing the path into a series of DTW
windows and making use of path cost estimation, achieves
alignments with an accuracy and efficiency superior to other
leading modifications and with the capability of synchro-
nising in real-time. We demonstrate this method in a score
following application. Evaluation of the WTW score fol-
lowing system found 97.0% of audio note onsets were cor-
rectly aligned within 2000 ms of the known time. Results
also show reductions in execution times over state-of-the-
art efficient DTW modifications.

1. INTRODUCTION

Dynamic Time Warping (DTW) is used to synchronise two
related streams of information by finding the lowest cost
path linking feature sequences of the two streams together.
It has been used for audio synchronisation [3], cover song
identification [13], automatic transcription [14], speech pro-
cessing [10], gesture recognition [7], face recognition [1],
lip-reading [8], data-mining [5], medicine [15], analytical
chemistry [2], and genetics [6], as well as other areas. In
DTW, dynamic programming is used to find the minimal
cost path through an accumulated cost matrix of the ele-
ments of two sequences. As each element from one se-
quence has to be compared with each element of the other
sequence, the calculation of the matrix scales inefficiently
with longer sequences. This, combined with the require-
ment of knowing the start and end points of the sequences,
makes DTW unsuitable for real-time synchronisation. A
real-time variant would make DTW viable at larger scales
and capable of driving applications such as score follow-
ing, automatic accompaniment and live gesture recogni-
tion.
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Local constraints such as those by Sakoe and Chiba [10]
improve the efficiency of DTW to linear time and space
complexity by limiting the potential area of the accumu-
lated cost matrix to within a set distance of the diagonal.
However, not all alignments necessarily fit within these
bounds. Salvador and Chan proposed, in FastDTW [11],
a multi-resolution DTW where increasingly higher resolu-
tion DTW paths are bounded by a band around the previous
lower resolution path, leading to large reductions in the ex-
ecution time. On-Line Time Warping by Dixon [3] made
real-time synchronisation with DTW possible by calculat-
ing the accumulated cost in a forward manner and bound-
ing the path by a forward path estimation.

While the efficiency of DTW has been addressed in
FastDTW [11] and the real-time aspect has been made pos-
sible with On-Line Time Warping [3], WTW contributes
to synchronisation by offering steps to further improve the
efficiency whilst working in a progressive (real-time ap-
plicable) manner and preserving the accuracy of standard
DTW. This method consists of breaking down the align-
ment into a series of separate bounded sub-paths and using
a cost estimation to limit the area of the accumulated cost
matrix calculated to small regions covering the alignment.

In Section 2 we explain conventional DTW before de-
scribing how WTW works in Section 3. In Section 4 we
evaluate the accuracy and efficiency of WTW in a score
following application. Finally, in Section 5, we draw con-
clusions from this work and discuss future improvements.

2. DYNAMIC TIME WARPING

DTW requires two sets of features to be extracted from the
two input pieces being aligned and a function for calcu-
lating the similarity between any two frames of these fea-
ture sets. One such measurement of the similarity is the
inner product. As the inner product returns a high value
for similar frames, we subtract the inner product from one
so that the optimal path cost is the path with the minimal
cost. Equation 1 shows how to calculate this similarity
measurement between frames Am and Bn from feature se-
quences A = (a1, a2, ..., aM ) and B = (b1, b2, ..., bN )
respectively:

dA,B(m, n) = 1− < am, bn >

‖am‖‖bn‖
(1)

Dynamic programming is used to find the optimum path,
P = (p1, p2, ..., pW ), through the similarity matrix C(m, n)
with m ∈ [1 : M ] and n ∈ [1 : N ] where each pk =
(mk, nk) indicates that frames amk

and bnk
are part of the



Figure 1. Dynamic Time Warping aligning audio with a
musical score. The audio is divided into chroma frames
(bottom) which are then compared against the score’s
chroma frames (left). The similarity matrix (centre) shows
a path where the sequences have the lowest cost (highest
similarity). Any point on this path indicates where in the
score the corresponding audio relates to.

aligned path at position k. An example of this similar-
ity matrix, including the features used and the lowest cost
path, can be seen in Figure 1. The final path is guaranteed
to have the minimal overall cost D(P ) =

∑W
k=1 dA,B(mk, nk),

within the limits of the features used, whilst satisfying the
following conditions:

Bounds: p1 = (1, 1)
pW = (M, N)

Monotonicity: mk+1 ≥ mk for all k ∈ [1, W − 1]
nk+1 ≥ nk for all k ∈ [1, W − 1]

Continuity: mk+1 ≤ mk + 1 for all k ∈ [1, W − 1]
nk+1 ≤ nk + 1 for all k ∈ [1, W − 1]

3. WINDOWED TIME WARPING

WTW consists of calculating small sub-alignments and com-
bining these to form an overall path. Subsequent sub-paths
are started from points along the previous sub-paths. Real-
time path positions can then be extrapolated from these
sub-paths. The end points of these sub-alignments are ei-
ther undirected, by assuming they lie on the diagonal, or
directed, by using a forward path estimate. As such WTW
can be seen as a two-pass system similar to FastDTW and
OTW. The sub-alignments make use of an optimisation
that avoids calculating points with costs that are over the
cost estimate (provided by the initial direction path), re-
ferred to as the A-Star Cost Matrix. WTW also requires
the use of Features, Window Dimensions, and Local Con-
straints that all affect how the alignments are made. The
overall process is outlined in Algorithm 1. In order to

Figure 2. The regions of the similarity matrix computed
for various values of the window size (top row) and hop
size (bottom row).

demonstrate WTW we implemented a score following ap-
plication using this method to synchronise audio and mu-
sical scores.

Input: Feature Sequence A and Feature Sequence B
Output: Alignment Path
Path = new Path.starting(1,1);
while Path.length < min (A.length,B.length) do

Start = Path.end;
End = Start;
while (End - Start).length < Window Size do

End =
argmin(Inner Product(End.next points));

end
Cost Estimate = End.cost;
A-Star Matrix =
A Star Fill Rect(Start,End,Cost Estimate);
Path.add(A Star Matrix.getPath(1,Hop Size));

end
return Path;

Algorithm 1: The Windowed Time Warping algorithm.

3.1 Features

The feature vector describes how the sequence data is rep-
resented and segmented. The sequence is divided up into
feature frames in order to differentiate the changes in the
sequence over time. The frame size and spacing are re-
ferred to as the window size and hop size respectively. The
implementation of WTW for score following requires a
musically based feature vector. In this case, we use chroma
features, a 12 dimensional vector corresponding to the unique
pitch classes in standard Western music. The intensities of
the chroma vectors can be seen as a representation of the
harmonic and melodic content of the music. In our imple-
mentation we use a window size of 200ms and a hop size
of 50ms.



Figure 3. Some example local constraints as defined by
Rabiner and Juang [9].

3.2 Window Dimensions

Similar to how the sequence data is segmented, the win-
dows of standard DTW in WTW have a window size and
hop size to describe their size and spacing respectively. A
larger window size and/or smaller hop size will increase
the accuracy of the alignment, as more of the cost matrix
is calculated, however will this will be less efficient. Ex-
amples of different window and hop sizes can be seen in
Figure 2 and a comparison of Window and Hop sizes is
made in Section 4.

3.3 Local Constraints

We refer to two types of local constraints in Dynamic Pro-
gramming. The first, henceforth known as the cost con-
straint, indicates the possible predecessors of a point pk

on a path. The predecessor pk−1 with lowest path cost
D(pk−1) is chosen when calculating the accumulated cost
matrix. The second, referred to as the movement constraint,
indicates the possible successors of a point pk. Standard
DTW doesn’t make use of a movement constraint as all the
frames in the cost matrix are calculated. Examples of local
constraints by Rabiner and Juang [9] are show in Figure 3.
These constraints define the characteristics of the dynamic
programming. For example, Type I allows for horizon-
tal and vertical movement which corresponds to a single
frame of one sequence being linked to multiple frames of
the other. All the other Types allow high cost frames to be
skipped and Type III and II show how the paths can skip
these frames directly or add in the single steps, respec-
tively. The two path finding algorithms, described next,
make use of the Type I and a modified version of the Type
VII (where the steps are taken directly as in Type III) local
constraints.

3.4 Window Guidance

The sequential windows that make up the alignment of
WTW can be either directed or undirected. Whilst it can
help to direct the end point of the windows of DTW (partic-
ularly for alignments between disproportional sequences
where the expected path angle will be far from 45◦), the
sub-paths calculated within these windows can make up
for an error in the estimation. A low hop size should en-
sure the point taken from the sub-path as the starting point
for the next window is likely to be on the correct path.

For the windows to be directed, a forward estimation is
required. The Forward Greedy Path (FGP) is an algorithm
which makes steps through the similarity matrix based on
whichever subsequent step has the highest similarity (min-
imal cost) using a movement constraint to decide which
frames are considered. In this manner the path can work in
an efficient forward progressive manner, however, will be
more likely to be thrown off the correct path by any periods
of dissimilarity within the alignment. The first FGP path
F = (f1, f2, ..., fW ) where fk = (mk, nk) starts from po-
sition f1 = (m1, n1) and from then on each subsequent
frame is determined by whichever of the available frames,
as determined by the local constraint, has the lowest cost.
Therefore the total cost D(m, n) to any point (m, n) on
the FGP path F is D(fk) =

∑k
l=1 d(fl) and any point is

dependent on the previous point: fk+1 = argmin(d(i, j))
where the range of possible values for i and j are deter-
mined by fk and the local constraints.

The FGP path only needs to calculate similarities be-
tween frames considered within the local constraints and
so at this stage a vast majority of the similarity matrix does
not need to be calculated. When the FGP reaches fW , the
window size, the final point fW = (mW , nW ) is selected
as the end point for the accumulated cost-matrix.

Note that some combinations of constraints that skip
points (i.e. where i or j are greater than 1) will require that
jumps in the FGP are filled in order to compute a complete
cost estimate, like in the Type V local constraint, so that
the cost estimation of the FGP is complete. A comparison
of guidance measures is made in Section 4.

3.5 A-Star Cost Matrix

The windowed area selected is calculated as an accumu-
lated cost matrix between the beginning and end points
of the FGP i.e. C(m, n) of m ∈ [mf1 : mfL

] and n ∈
[nf1 : nfL

]. This accumulated cost matrix can be calcu-
lated in either a forward or reverse manner, linking the start
to the end point or vice versa. This uses the standard Type
I cost constraint to determine a frame’s accumulated cost
as shown by Equation 2:

D(m, n) = d(m, n) + min


D(m− 1, n− 1)

D(m− 1, n)
D(m, n− 1)

 (2)

The sub-path S = (s1, s2, ..., sV ) is given by the accu-
mulated cost constraints by following the cost progression
from the beginning point in this window until the hop size
is reached. When the sub-path reaches sV , the final point
fV = (mv, nv) is then taken as the starting point for the
next window and so on until the end of either sequence is
reached. The sub-paths are concatenated to construct the
global WTW path. This process can also be seen in Figure
4.

Either of the undirected and directed window end point
estimations provide an estimate cost D(F ) for each sub-
path. This estimate can be used to disregard any points
within the accumulated cost matrix that are above this cost



Figure 4. The complete Windowed Time Warping path.

as it is known there is a potential sub-path that is cheaper.
The calculation of the similarity for most of these ineffi-
cient points can be avoided by calculating the accumulated
cost matrix in rows and columns from the end point fL

to the start f1. When each possible preceding point for
the next step of the current row/column has a total cost
above the estimated cost i.e. min(D(m−1, n−1), D(m−
1, n), D(m, n− 1)) >= D(F ) the rest of the row/column
is then set as more than the cost estimate, thus avoiding cal-
culating the accumulated cost for a portion of the matrix.
This procedure can be seen in Figure 5.

4. EXPERIMENTAL EVALUATION

To evaluate WTW we used the score following system with
ground truth MIDI, audio and path reference files and com-
pared the accuracy of the found alignments with the known
alignments. MATCH, the implementation of On-Line Time
Warping [4], was also used to align the test pieces for com-
parison purposes. In both cases the MIDI was converted to
audio using Timidity.

4.1 Mazurka Test Data

The CHARM Mazurka Project by the Centre for the His-
tory and Analysis of Recorded Music led by Nick Cook
at Royal Holloway, University of London has published a
large number of linked metadata files for Mazurka record-
ings in the form of reverse conducted data, 1 produced by
Craig Sapp [12]. We then used template matching to com-
bine this data with MIDI files, establishing links between
MIDI notes and reverse conducted notes at the ms level.
This provided a set of ground truth files linking the MIDI
score to the audio recordings. These ground truths were
compared with an off-line DTW alignment and manually
supervised to correct any differences found. Overall, 217

1 http://mazurka.org.uk/info/revcond/

Figure 5. The calculation of the accumulated cost ma-
trix. The numbering shows the order in which rows and
columns are calculated and the progression of the path
finding algorithm is shown by arrows. Dark squares repre-
sent a total cost greater than the estimated path cost whilst
black squares indicate points in the accumulated cost ma-
trix that do not need to be calculated.

sets of audio recordings, MIDI scores and reference files
were produced.

4.2 Evaluation Metrics

For each path produced by WTW, each estimated audio
note time was compared with the reference and the dif-
ference was recorded. For differing levels of accuracy re-
quirements (100 ms, 200 ms, 500 ms and 2000 ms), the
percentages of notes that were estimated correctly within
this requirement for each piece were recorded. These piece-
wise accuracies are then averaged for an overall rating. The
2000 ms accuracy requirement is used as the MIREX score
following accuracy requirement for notes hit.

4.3 Window Dimensions

The effect of the window size and hop size in WTW is
examined in Table 1. The accuracy tests (shown in the top
half) show a trend that suggests larger window sizes and
smaller hop sizes lead to greater accuracy, as is similar to
feature frame dimensions. However, larger window sizes
and smaller hop sizes also lead to slower execution times
as more points on the similarity matrix were calculated.

4.4 Window Guidance

A comparison of guidance methods for WTW is shown
in Table 2. This comparison shows that for the test data
used, there was not much difference between directed and
undirected WTW and directed only offered an improve-
ment when a large local constraint was used.



Alignment Accuracy at 2000 ms
Window Size

Hop Size 100 200 300 400
100 76.0% 83.1% 81.8% 81.9%
200 63.7% 82.2% 82.0% 82.0%
300 57.7% 77.7% 81.2% 82.5%
400 57.4% 66.1% 81.1% 82.0%

Table 1. Accuracy test results comparing different window
and hop sizes for WTW. For this test there was a guidance
FGP that used a Type VII +6 movement constraint (see
Table 2) and the accumulated cost matrix used a Type I
cost constraint and Type I movement constraint.

Alignment Accuracy
Acc. Req. 100 ms 200 ms 500 ms 2000 ms

None 63.8% 75.9% 82.0% 86.9%
Type I 56.2% 68.7% 74.2% 78.1%

Type IV 63.3% 74.8% 80.7% 86.0%
Type VII 64.0% 76.9% 82.6% 86.6%

Type IV +4 58.0% 70.3% 75.8% 79.5%
Type VII +6 59.4% 72.2% 78.0% 81.2%

Type II 63.9% 75.8% 81.8% 87.3%
Type V 64.9% 78.0% 83.9% 88.1%

Table 2. Accuracy test results comparing different meth-
ods for guiding the windows in WTW. The name of the
guidance method refers to the movement constraint used
in the Forward Greedy Path. The ‘Type 4 +4’ and ‘Type
7 +6’ constraints include additional horizontal and verti-
cal frames to complete the block. For this test the window
and hop size were set at 300ms and the accumulated cost
matrix used a Type I cost constraint and Type I movement
constraint.

4.5 Accuracy Results

The results of the accuracy test can be seen in Table 3.
From this test we can see WTW produces an accuracy
rate comparable with that of OTW. What separates the two
methods is that the OTW method took on average 7.38
seconds to align a Mazurka audio and score file where
as WTW took 0.09 seconds, (approximately one 80th of
the time of OTW). The average length of the Mazurka
recordings is 141.3 seconds, therefore, in addition to hav-
ing the ability to calculate the alignment path sequentially,
both methods achieve greater than real-time performance
by some margin.

4.6 Efficiency Results

The efficiency tests consisted of aligning sequences of dif-
ferent lengths and recording the execution time. The re-
sults of this test can be seen in Table 4. These results show
that WTW has linear time costs in relation to the length
of the input sequence, unlike standard DTW. The optimi-
sations suggested in this work are shown to decrease the
time cost in aligning larger sequences over FastDTW.

Alignment Accuracy
Acc. Req. 100 ms 200 ms 500 ms 2000 ms

WTW 73.6% 88.8% 94.9% 97.0%
OTW 70.9% 86.7% 94.8% 97.3%

Table 3. Accuracy test results comparing WTW and OTW
estimated audio note onset times against references for 217
Mazurka recordings at 4 levels of accuracy requirements.
For this test the window and hop size were set at 300ms and
the accumulated cost matrix used a Type I cost constraint
and Type VII movement constraint.

Execution time (seconds)
Sequence length 100 1000 10000 100000

DTW 0.02 0.92 57.45 7969.59
FastDTW (r100) 0.02 0.06 8.42 207.19

WTW 0.002 0.06 0.90 9.52

Table 4. Efficiency test results showing the execution time
(in seconds) for 4 different lengths of input sequences (in
frames). Results for FastDTW and DTW are from [11].
The r value for FastDTW relates to the radius factor.

5. DISCUSSION AND CONCLUSION

This paper has introduced WTW, a linear cost variation on
DTW for real-time synchronisations. WTW breaks down
the regular task of creating an accumulated cost matrix be-
tween the complete series of input sequence vectors, into
small, sequential, cost matrices. Additional optimisations
include local constraints in the dynamic programming and
cut-off limits for the accumulated cost matrices.

Evaluation of WTW has shown it to be more efficient
than state of the art DTW based off-line alignment tech-
niques. WTW has also been shown to match the accu-
racy of OTW whilst improving on the time taken to process
files. Whilst this difference has little effect when synchro-
nising live sequences on standard computers, the greater
efficiency of WTW could be useful in running real-time
synchronisation methods on less powerful processors, such
as those in mobile phones, or when data-mining large data-
sets for tasks such as cover song identification.

Future work will involve evaluating WTW on a wider
variety of test data-sets, including non-audio related tasks
and features. Possible improvements may be found in novel
local constraints and/or the dynamic programming used to
estimate the start and end points of the accumulated cost
matrices. Presently, WTW assumes the alignment is con-
tinuous from the start to the end. A more flexible approach
will be required to handle alignments made of partial se-
quence matches. Also, the modifications of WTW could
potentially be combined with other modifications of DTW,
such as those in FastDTW in order to pool efficiencies.
Lastly, WTW, like DTW, is applicable to a number of tasks
that involve data-mining, recognition systems or similarity
measures. It is hoped WTW makes DTW viable for appli-
cations on large data sets in a wide range of fields.
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