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ABSTRACT 
In this study, we investigate whether timbre descriptors 
commonly used for instrument recognition can serve as 
discriminators between different players performing on the same 
instrument. To address the problem we compare timbre features 
extracted from monophonic recordings of six cellists playing an 
excerpt from Bach's 1st Cello Suite on two different cellos. We 
test each descriptor's ability to reflect timbre differences between 
players and evaluate its adequacy for classification using standard 
analysis of variance. 
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1. INTRODUCTION 
A classical music performer interprets a musical piece using 
parameters such as dynamics, tempo, articulation, timing and 
timbre, which are essential to enliven and shape an objective 
musical score into an emotionally expressive performance. They 
form an individual playing style that is heard in any musical 
interpretation. To trace and capture performer stylistic features by 
measuring performance aspects in musical recordings is still an 
open problem [17, 20]. 

1.1 Recognising performers from their 
playing style 
Several previous works have demonstrated the possibility of 
distinguishing music performers by measuring variations in 
tempo, dynamics, articulation and timing [3, 12, 18, 19, 22]. 
Different methods for feature extraction were proposed as well 
various approaches to the task of modelling “expressivity” 
patterns, starting with statistical analysis and machine learning 
techniques. 

For example Widmer et al. [16, 21, 23] explored statistical data 

derived from dynamics (loudness) and tempo changes, extracted 
using the BeatRoot [4] system, to retrieve expressive features. For 
performance measuring and analysis, twelve fragments from 
Mozart's Piano Sonatas recorded by six famous artists were 
chosen. In the first two studies they tested six different machine 
learning algorithms for a classification task in a pair-wise 
discrimination setting. The obtained overall identification 
accuracies varied between 60 and 70%. 

Using segmentation and clustering techniques, Saunders et al. 
[16] analysed the same Mozart sonata recordings mentioned 
above, and obtained a set of prototypes from “performance 
worms” [5]. Each prototype was then associated with a letter to 
create a “general performance alphabet”. Subsequently, 
performance trajectories were represented by strings of letters. To 
identify performers in pairs, they exploited String Kernels and 
Support Vector Machine methods with accuracy between 75 and 
81%. 

Ramirez et al. [14] used symbolic descriptions extracted from 
monophonic recordings to recognise three jazz saxophonists from 
their playing style. Several jazz standards were performed by 
each player and then represented by sets of note-level descriptors. 
Every individual note was described by its intra-note features 
corresponding to the perceptual (timbre) characteristics (based on 
instantaneous energy and fundamental frequency) and inter-note 
features representing the melodic context. Machine learning 
algorithms were applied to cluster similar (in terms of timbre) 
individual notes into performance alphabets and link them with 
the players. The average classification accuracy reported was 
97.03% for short phrase comparisons and 96.77% for long 
phrases. In his next experiments Ramirez et al. [15] employed a 
very similar approach for identification of music performers from 
violin recordings. They analysed nine Celtic jigs performed by 
two violinists and obtained 100% classification accuracy. 

Despite promising outcomes, these studies revealed that 
“expressivity” patterns are difficult to generalize, since all 
expressive parameters, including timbre, can vary from one 
performance to another and may depend on an interpreted 
musical piece, e.g. being determined by different composers' 
styles or musical genres. However, among the stylistic features, 
timbre predominates as the feature most dependent on a 
performer's unique physical and perceptual abilities. On each 
instrument, a performer creates an individual set of timbre 
colours, a timbral “fingerprint”. If individual timbre features are 
able to characterize a performer, then timbral dissimilarities can 
be used for performer discrimination. This concept of 
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distinguishing performers has one serious drawback. Timbre 
features extracted from digital recordings are influenced by the 
acoustical conditions of a recording session which affect the 
quality and spectral content of the music signal. Consequently, 
the results of timbre analysis will be biased by recording artefacts. 

Music performer timbre-based recognition was proposed in [2]. 
The study focused on a performer's timbre created on an 
instrument which is unique to every musician. Linear Prediction 
Cepstral Coefficients (LPCCs) were exploited to capture 
performers' unique timbre characteristics. LPCC parameters, 
capable of modelling the overall spectral envelope, were 
extracted from experimental studio recordings made by six cello 
players on two different cellos. Vector quantization was 
employed for building performers' models and classification. The 
total recognition accuracy, obtained from experiments performed 
on each cello separately and two instruments combined together, 
was above 88% in all cases. This preliminary study confirmed 
that performer timbre characteristics cannot be easily separated 
from timbre characteristics of an instrument, and therefore 
additional investigation is necessary to explain which spectral, 
temporal or spectrotemporal features depend specifically on the 
performer's manner of playing. 

1.2 Describing timbre 
Searching for a comprehensive model of timbre describing 
different instrument sounds, a variety of acoustic descriptors were 
developed based on spectral, temporal and spectro-temporal 
sound characteristics. The majority of timbre descriptors were 
found in correlation with human perception of sound thanks to 
extensive perceptual studies [7, 9, 11]. Their standardised 
definitions are incorporated into the MPEG-7 standard for audio 
data representation [8]. For instrument description and 
classification purposes, a feature extraction stage often includes 
calculating temporal descriptors e.g. attack time, decay time or 
temporal centroid; spectral descriptors e.g. spectral centroid, 
spectral deviation, spectral spread, irregularity, tristimuli, 
odd/even ratio, amplitude envelope; and spectrotemporal 
descriptors e.g. spectral flux, roughness. Various combination of 
these features were used with success for instrument sound 
discrimination. 

In this study, we aim to find out which descriptors can be 
correlated with the performer's manner of playing affecting 
perceived timbre of an instrument, and to test whether these 
descriptors can help to discern various players.  

2. METHOD 
In order to examine if there are salient differences of timbre 
between different performers playing the same instrument, we 
analysed monophonic recordings and extracted a set of timbre 
descriptors chosen amongst those mentioned in the previous 
section. The subsequent steps of audio data processing and timbre 
descriptor computation are presented in detail in the following 
sections. 

2.1 Sound corpus 
If timbre descriptors are able to show systematic dissimilarities 
between performers, to obtain statistically significant results, it 
would be ideal to use the same music excerpts played multiple 

times by each performer on a few instruments belonging to the 
same class. As such a database was not available at the time of 
this study, we exploited instead a set of studio recordings made 
by six cello players on two different cellos, as used in the author's 
previous experiments [2]. An excerpt of the Gigue from Bach's 1st 
Cello Suite was recorded twice by each player on each instrument 
(i.e. 24 recordings in total). All recordings were taken from the 
near-field, at a distance of approximately 1m, but the exact 
settings and detailed specification of recording equipment were 
not provided. The music signals were captured in mono channel 
.wav format at a sampling rate of 44.1 kHz and 16 bits per 
sample. 

2.2 Note extraction 
Instead of analysing the entire music sequence we concentrated 
on timbre descriptors at the note-level. From the first two motives 
of the Gigue we extracted six notes of the same pitch D3 
(fundamental frequency = 146.83 Hz) occurring in different 
positions within a musical phrase (see Figure 1). The positions 
were defined as anacrusis1 (A), transitional (T), upbeat2 (U) and 
downbeat3 (D). This was intended to ensure timbre variations 
between notes even if performed with similar articulation. 

 

Figure 1. Gigue from Bach's 1st Cello Suite, bars 1-4. Curly 
brackets indicate the musical phrase structure. Annotations 
above selected notes denote their position in a melody and/or 
measure (A – anacrusis, T – transitional, U – upbeat, D – 

downbeat) 

We used a note onset detector proposed by [6] with some manual 
corrections of the results. We repeated the procedure across 
recordings to obtain audio data consisting of 24 notes for each 
cello player (12 notes on each cello). The length of audio signals 
varied between 139-417 ms. 

2.3 Sound representation 
For audio data analysis we applied the sinusoidal plus residual 
model of sound proposed by Serra [24] as a part of the spectral 
modelling synthesis (SMS) framework. The audio signal is 
decomposed here into a sum of sinusoids with time-varying 
amplitudes and frequencies (corresponding to the stable partials 
of a sound) and a residual component (representing the noise 
part). The definition of the sound )(ts is given by: 
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1 anacrusis – the initial note/notes of a melody that precede the 

first full bar 
2 upbeat – the last beat of a measure, a weak beat, which 

anticipates the downbeat 
3 downbeat – the first beat of a measure 
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where )(tAk and )(tkθ are the instantaneous amplitude and phase 

of the thk sinusoid, N is the number of sinusoids, and )(te is the 
noise component at time t (in seconds). This representation 
method reflects the additive nature of musical sounds composed 
of the fundamental frequency and its harmonics, and enables to 
track short time fluctuations of the amplitude of each harmonic. 

We chose to analyse 50 tracks of harmonics including the 
fundamental. We used STFT frame-based analysis with a 
Blackman-Harris window of 2048-sample size and 87.5% 
overlap which gave us a 5.8 ms time resolution. The length of the 
FFT was set to 4096 points (2048 plus zero-padding) resulting in 
a 10.76 Hz frequency resolution. The minimum amplitude value 
was set at a level of -100 dB. 

2.4 Timbre descriptors 
After the audio processing stage each note in our dataset was 
represented by a matrix of 50 harmonics with their instantaneous 
amplitudes (in dB) captured at time instants t . For the following 
calculations we did not consider the residual parts of sounds, 
which we leave for the next round of experiments. From this data, 
at each time point t , we computed seven timbre descriptors 
chosen to capture timbre differences between players: the 
harmonic spectral centroid, the harmonic spectral irregularity, the 
odd/even harmonic ratio, the first, second and third tristimulus, 
and the harmonic RMS energy. The next paragraph provides 
definitions and formulas for each descriptor. In the following 
equations )(tAk  denotes the amplitude of the thk harmonic 

and N is the number of harmonics. 

The Harmonic Spectral Centroid (HSC) can be defined as the 
amplitude weighted mean of the harmonic peaks of the spectrum, 
and is correlated with the perceptual brightness of a sound: 

∑∑
==

=
N

k
k

N

k
k tAtkAtHSC

1

2

1

2 )()()( ,   (2) 

The Harmonic Spectral Irregularity (HSI) measure proposed by 
Jensen [10] calculates amplitude differences between subsequent 
odd and even harmonics: 
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The Odd/Even Harmonic Ratio (OEHR) describes the relation 
between the energy content of odd and even harmonics: 
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Tristimulus (TRI) descriptors indicate the energy content in 
groups of harmonics and are defined as follows: 
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The Harmonic RMS (HRMS) corresponds to the amplitude 
envelope of harmonics and is often used to show fluctuations in 
spectral energy over time: 

NtAtHRMS
N

k
k∑

=

=
1

2)()( ,    (8)  

In addition to spectral descriptors we calculated the Attack Time 
(AT) of each note. Multiple perceptual studies of timbre have 
found this parameter to be one of the most important dimensions 
in timbre space, and it has been shown to be applicable for 
instrument classification [10, 11]. We used the RMS energy of 
each signal frame to obtain the amplitude envelope and set 
amplitude thresholds at 10% and 90% of the maximum value to 
find the time points of the start and the end of each attack. A 
similar approach was applied in [1]. 

2.5 Time averaging of timbre descriptors 
As the recorded cellists were allowed to interpret music without 
any constraints regarding tempo and timing, the durations of 
extracted notes varied across players. There were also duration 
differences occurring in connection with the note positions in a 
phrase. To be able to compare the descriptors at the note-level we 
divided each note into two parts according to the attack/rest 
envelope model proposed by Peeters [13]. We used time instants 
previously obtained for the Attack Time parameter as limiters for 
the attack part of a note and conceded the remaining frames as the 
rest, namely the steady state part. For every note in the dataset we 
calculated the mean of each descriptor, having it represented by 
two values derived from the attack and steady state part 
respectively. In addition, to characterise the descriptors' variations 
within the duration of the attack and steady state we computed 
their standard deviation and range values. Table 1 presents the 
labels of all parameters computed for each single note in the 
dataset. 

3. RESULTS 
3.1. Player factor 
In order to test for each descriptor whether any differences exist 
between players, and whether these differences are consistent 
when an instrument changes, we employed a two-way analysis of 
variance (two-way ANOVA). We set the player and the cello as 

Table 1. Timbre descriptors and their parameters 
Descriptor Attack time Steady state 
HSC HSC_at_mean HSC_at_std HSC_at_range HSC_st_mean HSC_st_std HSC_st_range 
HSI HSI_at_mean HSI_at_std HSI_at_range HSI_st_mean HSI_st_std HSI_st_range 
OEHR OEHR_at_mean OEHR_at_std OEHR_at_range OEHR_st_mean OEHR_st_std OEHR_st_range 
TRI1 TRI1_at_mean TRI1_at_std TRI1_at_range TRI1_st_mean TRI1_st_std TRI1_st_range 
TRI2 TRI2_at_mean TRI2_at_std TRI2_at_range TRI2_st_mean TRI2_st_std TRI2_st_range 
TRI3 TRI3_at_mean TRI3_at_std TRI3_at_range TRI3_st_mean TRI3_st_std TRI3_st_range 
HRMS HRMS_at_mean HRMS_at_std HRMS_at_range HRMS_st_mean HRMS_st_std HRMS_st_range 
AT  
 



Proceedings of the 3rd International Conference of Students of Systematic Musicology, Cambridge, UK, September13-15, 2010 

 

independent factors and examined their influence on each 
parameter defined in Table 1. If a player-effect on a descriptor 
was observed, i.e. a critical p-value was below 0.05, it meant that 
a significant difference in means over all 24 notes occurred at 
least in one pair of players. In that case we applied a multiple 
comparison test to determine which pairs of means were 
significantly different. Descriptors affected by a player factor are 
listed in Table 2 and the results of comparison tests for the four 
parameters with the lowest p-values are shown in Figure 2. 

To confirm whether our results are similar considering only one 
instrument, we performed one-way ANOVA experiments using 
notes from the first cello dataset. This analysis yielded the 
identical set of parameters dependent on a player factor as 
presented in Table 2. 

Figure 2a and 2b shows the mean values of the harmonic RMS 
energy computed for each player across 24 notes at their attack 
and steady parts respectively. With the assumption that dynamic 
levels during the recording session were exactly the same, this 
parameter should reflect the intensity patterns of the players. 
Indeed, for all players the values of HRMS are lower during the 
attack time (from approx. 66 up to 74 dB) and much higher 
during the steady state (from approx. 75 up to 80 dB). This is due 
to the fact that the steady part contains the maximum energy 
value of the note. One can notice that Player 4 has in general the 
lowest energy values in both cases. The individual differences 
between the two time points vary from 5.5 dB for Player 2 up to 

12 dB for Player 5. This may imply that in terms of musical 
expressiveness notes performed by Player 2 are less dynamically 
shaped and developed over time in comparison to Player 5. 

When testing means for differences between pairs of players, one 
should consider the size of confidence intervals for each mean 
value. As shown in Figure 2, two means are significantly different 
if their intervals are disjoint, and are not significantly different if 
their intervals overlap. Therefore, based on the spectral energy at 
the attack time, we can distinguish Player 4 from Player 2, 3 and 
6, or Player 5 from Player 2 and 3, but Player 1 is 
indistinguishable from the others. 

Analysing the Odd/Even Ratio descriptor (Figure 2c) one can see 
that Player 5 has slightly lower content of odd harmonics in the 
attack portions of tones. The rest of the players have this 
parameter values practically at the same level and cannot be 
distinguish from each other. It is worth noticing that for this 
parameter we observed the strong interaction of the two 
independent factors (p-value = 0.007). This can be explained by 
the fact that the odd/even harmonic proportions in the spectrum 
are highly determined by the individual characteristics of each 
cello and the player can control them only to some extent. 

The mean values of the first Tristimulus computed for each 
player across 24 notes at their steady parts are presented in Figure 
2d. This descriptor corresponds to the energy content of the first 
harmonic, i.e. the fundamental, measured in proportion to the 
overall spectral energy. It is evident that even though the means 

(a)  (b)  

(c)  (d)  

Figure 2. The comparison of means between players (circles) for the four parameters with the lowest p-values. Horizontal lines 
denote 95% confidence intervals 

 

Table 2. Parameters with a significant player-effect 
Descriptor OEHR_at_mean HRMS_at_mean HRMS_st_mean HRMS_st_std HRMS_st_range TRI1_st_mean 

p-value 0.0184 0.0000 0.0041 0.0212 0.0195 0.0102 
 

Table 3. Parameters with a significant instrument-effect 
Descriptor HSC_at_mean HSC_st_mean OEHR_st_std OEHR_st_range TRI1_st_std TRI2_at_mean TRI2_st_mean TRI3_st_mean 

p-value 0.0000 0.0000 0.0068 0.0025 0.0411 0.0287 0.0054 0.0333 
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vary between players the wide confidence intervals overlap. This 
implies that we can not easily discern players based on this 
parameter. 

3.2. Instrument factor 
In addition to the parameters with a significant player-effect, the 
two-way ANOVA analysis also indicated descriptors dependent 
on the instrument factor. Table 3 presents the parameters and the 
obtained p-values. The results of comparison tests for the four 
parameters with the lowest p-values are shown in Figure 3. 

The mean values of the Harmonic Spectral Centroid calculated 
for each cello at the attack and steady parts of notes (Figure 3a 
and 3b respectively) are well separated from each other. Cello 1 
has the spectral centroid located close to the 32nd harmonic 
(associated frequency in Hz depends on the fundamental 
frequency), while for Cello 2, the spectral centroid varies between 
the 30th harmonic at the attack time and the 31st harmonic at the 
steady state. These results confirm the correlation existing 
between the spectral centroid and timbre characteristics of 
instruments. The player performing on each cello had no effect on 
the descriptor values. Since the spectral centroid depends on the 
fundamental frequency, in order to differentiate between the two 
instruments the descriptor must be normalised by the fundamental 
frequency of each compared tone to avoid biased results.  

Comparing the results from Table 2 and Table 3 for the 
Tristimulus descriptors, we observed that the first Tristimulus 
derived from the steady portions of tones showed to be influenced 
by a player, with some variations depending on a cello 
(TRI1_st_std p-value = 0.0411), while the second Tristimulus 
was found to be affected by an instrument over the whole 
durations of tones. It can be explained by the fact that a player has 
more impact on the energy content of the fundamental, while the 
content of 2nd, 3rd and 4th harmonics in the spectrum is strongly 
determined by an instrument. Also the third Tristimulus that 

corresponds to the content of higher harmonics in the spectrum 
(from 5th to 50th in our case), measured during the steady parts of 
notes, showed to be dependent, to some extent, on an instrument 
(p-value = 0.0333). Looking at Figure 3d, one can see that the 
mean values of the second Tristimulus for each cello are well 
separated, thus easy to discriminate.  

Surprisingly, the mean values of Odd/Even Harmonic Ratio 
obtained from the steady parts of tones showed no dependency on 
instrument. Instead, its standard deviation occurred affected by 
the factor (p-value = 0.0068 for std and p-value = 0.0025 for 
range) indicating that Cello 1 has more stable proportions of odd 
and even harmonics during the steady portions of notes then 
Cello 2 (see Figure 3c), and this can be used to differentiate 
between the two instruments. 

4. DISCUSSION 
We have to admit that these preliminary results are somewhat 
surprising. In fact, amongst all spectral descriptors we chose for 
the experiments, the harmonic amplitude envelope (HRMS) 
proved to be the most sensitive to the player factor. The rest of 
descriptors demonstrated some player-effect (the Odd/Even Ratio 
and the first Tristimulus, but not very significant) or no player 
influence at all (the Irregularity, the Spectral Centroid, and the 
second and third Tristimulus). The first explanation that comes up 
is that we intentionally explored only sinusoidal parts of audio 
signals and did not consider the noise components and this might 
cause the lack of important spectral information about individual 
timbres. This led us to the conclusion that in the next experiments 
we need to subsume the residual parts of signals into descriptor 
calculation process. 

Detailed collation of the HRMS values at the attack and steady 
parts of notes in pairs of players showed that differences may not 
appear necessarily at the same time points but between them, 
hence indicating how the parameter evolves over time. Such a 

(a)  (b)  

(c)  (d)  

Figure 3. The comparison of means between cellos (circles) for the four parameters with the lowest p-values. Horizontal lines 
denote 95% confidence intervals 
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significant dissimilarity was observed between Player 2 whose 
mean dynamic range of tones amounted to 5.5 dB and Player 5 
whose mean dynamic range of tones amounted to 12 dB. This 
type of comparison can be applied to the rest of parameters and 
may yield interesting results. 

Worth noticing was that the Attack Time, the parameter reported 
as an important coordinate of timbre spaces, showed to be useless 
in our experiments. This may be due to the simple method of 
computation (the alternative adaptive threshold method can be 
used [13]) or the scale we used to capture it (linear instead of 
logarithmic), or to the fact that this parameter is not adequate for 
our purpose. 

The ANOVA analysis of the cello factor produced more 
promising outcomes. It proved the ability of the descriptors to 
discern between the two cellos with the exceptional emphasis on 
the Harmonic Spectral Centroid performance. This is not a 
surprise as they were developed to characterise various 
instrument sounds and their initial application was to distinguish 
instrument timbres. 

5. CONCLUSIONS 
In our first round of experiments, we analysed and compared a set 
of timbre descriptors using the two-way ANOVA procedure. We 
focused on testing each timbre descriptor separately for its ability 
to discern cello players. The obtained results showed that three of 
the descriptors are correlated with the player factor and amongst 
them only HRMS demonstrated stronger dependency. They also 
pointed out parameters related to the instrument factor, already 
reported as good discriminators between instruments. 

It must be highlighted here that differences in timbre observed 
between players on separate parameters were not sufficient to 
enable player discrimination based on a single descriptor. This 
was obviously due to the complex and multidimensional nature of 
musical timbre which could not be explained by the simple linear 
model of data analysis employed here. If our aim is to effectively 
capture timbre dissimilarities between players we need to apply a 
large set of timbre descriptors in combination with non-linear 
multivariate methods of data modelling, such as multidimensional 
scaling and principal component analysis, in our next 
experiments. 
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