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Outline of the Tutorial

Introductory Concepts: Rhythm, Meter, Tempo and Timing

Functional Framework

Coffee Break

Evaluation of Rhythm Description Systems

MIR Applications of Rhythm Description

Some ideas
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Part I

Introductory Concepts: Rhythm, Meter, Tempo
and Timing
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Introduction
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Tempo
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The Big Picture

Music = Organised Sound
Traditional analysis looks at 4 main components of music:

melody
rhythm
harmony
timbre

Gouyon and Dixon Computational Rhythm Description



O F A I

Introduction
Rhythm

Music Representation

Score
Discrete
High level of abstraction (e.g. timing not specified)
Structure is explicit (bars, phrases)
Not suitable for detailed performance information

MIDI
Discrete
Medium level of abstraction
Timing is explicit, structure can be partly specified
Suitable for keyboard performance representation

Audio
Continuous (for our purposes)
Low level of abstraction
Timing and structure are implicit
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Event-Based Representation of Music

Simple and efficient
e.g. MIDI

Events are durationless (i.e. occur at a point in time)
Musical notes consist of a start event (onset or note-on
event) and an end event (offset, note-off event)
Notes have scalar attributes
e.g. for pitch, dynamics (velocity)
Difficult to represent intra-note expression
e.g. vibrato, dynamics

Extracting an event representation from an audio file is
difficult

e.g. onset detection, melody extraction, transcription

Gouyon and Dixon Computational Rhythm Description
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Meter
Tempo
Timing

What is Rhythm?

Music is a temporal phenomenon
Rhythm refers to medium and large-scale temporal
phenomena

i.e. at the event level

Rhythm has the follow components:
Timing: when events occur
Tempo: how often events occur
Meter: what structure best describes the event occurrences
Grouping: phrase structure (not discussed)

References: Cooper and Meyer (1960); Lerdahl and
Jackendoff (1983); Honing (2001)
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Meter
Tempo
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Meter: Beat and Pulse

Pulse: regularly spaced sequence of accents
can also refer to an element of such a sequence
beat and pulse are often used interchangeably, but ...
pulse→ a sequence
beat→ an element

Explicit in score (time signature, bar lines)

Implicit in audio

Multiple pulses can exist simultaneously

Gouyon and Dixon Computational Rhythm Description



O F A I

Introduction
Rhythm

Meter
Tempo
Timing

Metrical Structure

Hierarchical set of pulses

Each pulse defines a metrical level

Higher metrical levels correspond to longer time divisions
Well-formedness rules (Lerdahl and Jackendoff, 1983)

The beats at each metrical level are equally spaced
There is a beat at some metrical level for every musical note
Each beat at one metrical level is an element of the pulses
at all lower metrical levels
A beat at one metrical level which is also a beat at the next
highest level is called a downbeat; other beats are called
upbeats

Different from grouping (phrase) structure

Doesn’t describe performed music
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Metrical Structure

Gouyon and Dixon Computational Rhythm Description



O F A I

Introduction
Rhythm

Meter
Tempo
Timing

Meter: Notation

all notes are fractions of an arbitrary duration

whole note:

half note:

quarter note:

eighth notes:

sixteenth notes:

a dot after the note adds 50% to the duration

a curve joining two note symbols sums their duration
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Notation: Time Signature

The time signature describes part of the metrical structure

It consists of 2 integers arranged vertically, e.g. 4
4 or 6

8
these determine the relationships between metrical levels
the lower number is the units of the nominal beat level (e.g.
4 for a quarter note)
the upper number is the count of how many units per bar
(measure)
compound time: if the upper number is divisible by 3, an
intermediate metrical level is implied (grouping the nominal
beats in 3’s)

It is specified in the score, but can’t be determined
unambiguously from audio
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Tempo

Tempo is the rate of a pulse (e.g. the nominal beat level)

Usually expressed in beats per minute (BPM), but the
inter-beat interval (IBI) can also be used (e.g. milliseconds
per beat)
Problems with measuring tempo:

Variations in tempo
Choice of metrical level
Tempo is a perceptual value (strictly speaking), so it can
only be determined empirically (cf pitch)
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Tempo Variations

Humans do not play at a constant rate

Instantaneous tempo doesn’t really exist
Tempo can at best be expressed as a central tendency

Basic tempo: mean, mode (Repp, 1994)
Local tempo: calculated with moving window
Instantaneous tempo: limit as window size approaches 0

Not all deviations from metrical timing are tempo changes
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Tempo: Choice of Metrical Level

Tapping experiments
people prefer moderate tempos (Parncutt, 1994; van
Noorden and Moelants, 1999)
people tap at different metrical levels
results are not restricted to tapping (Dixon et al., 2006)

The nominal beat level (defined by the time signature)
might not correspond to the perceptual tempo

but it might be the best approximation we have

Affected by factors such as note density, musical training
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Timing

Not all deviations from metrical timing are tempo changes

A

B

C

D

Nominally on-the-beat notes don’t occur on the beat
difference between notation and perception
“groove”, “on top of the beat”, “behind the beat”, etc.
systematic deviations (e.g. swing)
expressive timing
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Problems with Representation of Performance Timing

Most representations and approaches ignore performance
timing

Mathematically underspecified — too many degrees of
freedom

e.g. Tempo curve (Desain and Honing, 1991a)

Causal analysis is not possible

References: Desain and Honing (1991b); Honing (2001);
Dixon et al. (2006)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Part II

Functional Framework
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Automatic Rhythm Description

Raw data (audio)

Feature lists (e.g.,

onsets, frame energy)

Metrical structure

and timing features

(e.g. gradually

decreasing tempo)

(A)

(A’)

(B)

time
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Beat Tracking

High Level Features

Functional Units of Rhythm Description Framework

Pulse induction

Event-shift

handling

Pulse selection

Periodicity
function

computation

Quantisation -

Rhythm parsing

Audio

Systematic

deviation

estimation

Time signature

determination

Feature list

creation

Pulse

tracking

Rhythmic pattern

determination

Symbolic

discrete data

(e.g. MIDI)

Tempo curve

(Beat times)
Tempo

(Beat rate)

Quantised

durations

Rhythmic

patterns

Time

signatureSwing (e.g.)

Parameterization

Periodicity

features

Parsing

Integration

Extension of (Gouyon and Dixon, 2005b)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Outline

Input Data

Rhythm periodicity functions

Pulse induction

Beat Tracking

Extraction of Higher Level Rhythmic Features
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Processing discrete data
Processing continuous audio data

Input Data

Different type of inputs:
discrete data, e.g.:

parsed score (Longuet-Higgins and Lee, 1982; Brown, 1993)
MIDI data (Cemgil et al., 2000a)

continuous audio data (Schloss, 1985)

First step: Parsing data into a feature list conveying
(hopefully) most relevant information to rhythmic analysis
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Processing discrete data
Processing continuous audio data

Event-wise features

Onset time (Longuet-Higgins and Lee, 1982; Desain and
Honing, 1989)

Duration (Brown, 1993; Parncutt, 1994)

Relative amplitude (Smith, 1996; Meudic, 2002)

Pitch (Chowning et al., 1984; Dixon and Cambouropoulos,
2000)

Chords (Rosenthal, 1992b)

Percussive instrument classes (Goto and Muraoka, 1995;
Gouyon, 2000)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Processing discrete data
Processing continuous audio data

Event-wise features

When processing continuous audio data
⇒ Transcription audio-to-MIDI (Klapuri, 2004; Bello, 2003)

Onset detection literature (Klapuri, 1999; Dixon, 2006)

⇒
Pitch and chord estimation (Gómez, 2006)
Monophonic audio data

−→ Monophonic MIDI file

Polyphonic audio data
−→ Stream segregation and transcription
−→ “Summary events”

Very challenging task
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Input Data
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Pulse induction
Beat Tracking

High Level Features

Processing discrete data
Processing continuous audio data

Frame-wise features

Lower level of abstraction might be more relevant
perceptually (Honing, 1993), criticism of the “transcriptive
metaphor” (Scheirer, 2000)
Frame size = 10-20 ms, hop size = 0-50%

energy, energy in low freq. band (low drum, bass) (Wold
et al., 1999; Alghoniemy and Tewfik, 1999)
energy in different freq. bands (Sethares and Staley, 2001;
Dixon et al., 2003)
energy variations in freq. bands (Scheirer, 1998)
spectral flux (Foote and Uchihashi, 2001; Laroche, 2003)
reassigned spectral flux (Peeters, in press)
onset detection features (Davies and Plumbley, 2005)
spectral features (Sethares et al., 2005; Gouyon et al., in
press)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Processing discrete data
Processing continuous audio data

Frame-wise features

⇒

Figure: Normalised energy variation in low-pass filter
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Processing discrete data
Processing continuous audio data

Beat-wise features

Compute features over the time-span defined by 2
consecutive beats.
Requires knowledge of a lower metrical level, e.g. Tatum
for Beat, Beat for Measure.

chord changes at the 1/4 note level (Goto and Muraoka,
1999)
spectral features at the Tatum level (Seppänen, 2001a;
Gouyon and Herrera, 2003a; Uhle et al., 2004)
temporal features, e.g. IBI temporal centroid (Gouyon and
Herrera, 2003b)

Gouyon and Dixon Computational Rhythm Description



O F A I

Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Examples
Periodicity features

Rhythm periodicity functions

Representation of periodicities in feature list(s)

Continuous function representing magnitude –or salience
(Parncutt, 1994)– vs. period –or frequency–
Diverse pre- and post-processing:

scaling with tempo preference distribution (Parncutt, 1994;
Todd et al., 2002; Moelants, 2002)
encoding aspects of metrical hierarchy (e.g. influence of
some periodicities on others)

favoring rationally-related periodicities
seeking periodicities in Periodicity Function

emphasising most recent samples
use of a window (Desain and de Vos, 1990)
intrinsic behavior of comb filter, Tempogram
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Examples
Periodicity features

Examples: Autocorrelation

Most commonly used, e.g. Desain and de Vos (1990); Brown
(1993); Scheirer (1997); Dixon et al. (2003)
Measures feature list self-similarity vs time lag

r(τ) =
N−τ−1∑

n=0

x(n)x(n + τ) ∀τ ∈ {0 · · ·U}

x(n): feature list, N: number of samples
τ : lag
U: upper limit
N − τ : integration time
Normalisation⇒ r(0) = 1
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Examples
Periodicity features

Examples: Autocorrelation
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Autocorrelation Lag (seconds)

Tempo

(Feature: normalised energy variation in low-pass filter)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Examples
Periodicity features

Examples: Autocorrelation

Variants:

Autocorrelation Phase Matrix (Eck, in press)

Narrowed ACF (Brown and Puckette, 1989)

“Phase-Preserving” Narrowed ACF (Vercoe, 1997)

Sum or correlation over similarity matrix (Foote and
Uchihashi, 2001)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Examples
Periodicity features

Examples: Time interval histogram

Seppänen (2001b); Gouyon et al. (2002)

Compute onsets

Compute IOIs

Build IOI histogram

Smoothing with e.g. Gaussian window

See IOI clustering scheme by Dixon (2001a)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Examples
Periodicity features

Examples: Time interval histogram
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(Feature: Onset time+Dynamics)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Examples
Periodicity features

Examples: Pulse Matching

Gouyon et al. (2002)
With onset list

generate pulse grids (enumerating a set of possible pulse
periods and phases)
compute two error functions, e.g. Two-Way Mismatch error
(Maher and Beauchamp, 1993)

1 how well do onsets explain pulses? (Positive evidence)
2 how well do pulses explain onsets? (Negative evidence)

linear combination
seek global minimum

With continuous feature list
compute inner product (Laroche, 2003)
comparable to Tempogram (Cemgil et al., 2001)
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Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Examples
Periodicity features

Examples: Others

Comb filterbank (Scheirer, 1998; Klapuri et al., 2006)

Fourier transform (Blum et al., 1999)

Combined Fourier transform and Autocorrelation (Peeters,
in press)

Wavelets (Smith, 1996)

Periodicity transform (Sethares and Staley, 2001)

Tempogram (Cemgil et al., 2001)

Beat histogram (Tzanetakis and Cook, 2002; Pampalk
et al., 2003)

Fluctuation patterns (Pampalk et al., 2002; Pampalk, 2006;
Lidy and Rauber, 2005)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Examples
Periodicity features

“Best” periodicity function?

Is there a best way to emphasise periodicities?

Does it depend on the input feature?

Does it depend on the purpose?
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Examples
Periodicity features

Periodicity features

Low-level descriptors of rhythm periodicity functions

Whole function (Foote et al., 2002)

Sum (Tzanetakis and Cook, 2002; Pampalk, 2006)

Peak positions (Dixon et al., 2003; Tzanetakis and Cook,
2002)

Peak amplitudes, ratios (Tzanetakis and Cook, 2002;
Gouyon et al., 2004)

Selected statistics (higher-order moments, flatness,
centroid, etc.) (Gouyon et al., 2004; Pampalk, 2006)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Examples
Periodicity features

Periodicity features

Applications:

Genre classification

Rhythm similarity

Speech/Music Discrimination (Scheirer and Slaney, 1997)

etc.

Gouyon and Dixon Computational Rhythm Description



O F A I

Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Rhythm periodicity function processing
Pulse selection

Pulse induction

Select a pulse period, e.g. tempo, tatum⇒ 1 number

Provide input to beat tracker (Desain and Honing, 1999)
Assumption: pulse period and phase are stable

on the whole data (tempo almost constant all over, suitable
to off-line applications)
on part of the data (e.g. 5 s, suitable for streaming
applications)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Rhythm periodicity function processing
Pulse selection

Rhythm periodicity function processing

Handling short-time deviations

Combining multiple information sources

Parsing
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Rhythm periodicity function processing
Pulse selection

Handling short-time deviations

Feature periodicities are always approximate
Problem especially with discrete data (e.g. onset lists)

smooth out deviations, consider “tolerance interval”
rectangular window (Longuet-Higgins, 1987; Dixon, 2001a)
Gaussian window (Schloss, 1985)
window length may depend on IOI (Dixon et al., 2003;
Chung, 1989)

handle deviations to derive systematic patterns
swing
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Rhythm periodicity function processing
Pulse selection

Combining multiple information sources

Low-level

feature

extraction

Combination

Feature 1

Feature N

Feature

normalization

Periodicity

function

computation

Periodicity

function

evaluation

Parsing

Low-level

feature

extraction

Combination

Feature 1

Feature N

Feature

evaluation

Periodicity

function

computation

Parsing

Feature

normalization
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Rhythm periodicity function processing
Pulse selection

Combining multiple information sources

If multiple features are used (e.g. energy in diverse freq.
bands)

first compute rhythm periodicity functions (RPFs), then
combine
first combine, then compute RPF

Evaluate worth of each feature
e.g. periodic⇔ good

evaluate “peakiness” of RPFs
evaluate variance of RPFs
evaluate periodicity of RPFs

Normalize features
“Combination”

(weighted) sum or product
considered jointly with Parsing...
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Rhythm periodicity function processing
Pulse selection

Parsing

Continuous RPF
⇒ Pulse period, 1 number

Max peak: Tactus (Schloss, 1985)

Max peak in one-octave region, e.g. 61-120 BPM

Peak > all previous peaks & all subsequent peaks up to
twice its period (Brown, 1993)
Consider constraints posed by metrical hierarchy

consider only periodic peaks (Gouyon and Herrera, 2003a)
collect peaks from several RPFs, score all Tactus/Measure
hypotheses (Dixon et al., 2003)
beat track several salient peaks, keep most regular track
(Dixon, 2001a)
probabilistic framework (Klapuri et al., 2006)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Rhythm periodicity function processing
Pulse selection

Parsing - Future Work

Difficulty to compute, but also to define the “right” pulse
⇒ Problem for evaluations when no reference score is
available

Design rhythm periodicity function whose peak amplitude
would correspond to perceptual salience (McKinney and
Moelants, 2004)

New algorithms for combining and parsing features or
periodicity functions
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Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Rhythm periodicity function processing
Pulse selection

Pulse selection

Evaluating the salience of a restricted number of
periodicities

Suitable only to discrete data
Instance-based approach

first two events (Longuet-Higgins and Lee, 1982)
first two agreeing IOIs (Dannenberg and Mont-Reynaud,
1987)

Pulse-matching
positive evidence: number events that coincide with beats
negative evidence: number of beats with no corresponding
event

Usually not efficient, difficulty translated to subsequent
tracking process
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Overview
State Model Framework
Examples

Beat Tracking

Complementary process to tempo induction
Fit a grid to the events (resp. features)

basic assumption: co-occurence of events and beats
e.g. by correlation with a pulse train

Constant tempo and metrical timing are not assumed
grid must be flexible
short term deviations from periodicity
moderate changes in tempo

Reconciliation of predictions and observations
Balance:

reactiveness (responsiveness to change)
inertia (stability, importance attached to past context)
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Input Data
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Pulse induction
Beat Tracking

High Level Features

Overview
State Model Framework
Examples

Beat Tracking Approaches

Top down and bottom up approaches
On-line and off-line approaches
High-level (style-specific) knowledge vs generality
Rule-based (Longuet-Higgins and Lee, 1982, 1984;
Lerdahl and Jackendoff, 1983; Desain and Honing, 1999)
Oscillators (Povel and Essens, 1985; Large and Kolen,
1994; McAuley, 1995; Gasser et al., 1999; Eck, 2000)
Multiple hypotheses / agents (Allen and Dannenberg,
1990; Rosenthal, 1992a; Rowe, 1992; Goto and Muraoka,
1995, 1999; Dixon, 2001a)
Filter-bank (Scheirer, 1998)
Repeated induction (Chung, 1989; Scheirer, 1998)
Dynamical systems (Cemgil and Kappen, 2001)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Overview
State Model Framework
Examples

State Model Framework for Beat Tracking

set of state variables

initial situation (initial values of variables)

observations (data)

goal situation (the best explanation for the observations)

set of actions (adapting the state variables to reach the
goal situation)

methods to evaluate actions
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Pulse induction
Beat Tracking

High Level Features

Overview
State Model Framework
Examples

State Model: State Variables

pulse period (tempo)
pulse phase (beat times)

expressed as time of first beat (constant tempo) or current
beat (variable tempo)

current metrical position (models of complete metrical
structure)

confidence measure (multiple hypothesis models)
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Pulse induction
Beat Tracking

High Level Features

Overview
State Model Framework
Examples

State Model: Observations

All events or events near predicted beats
Onset times, durations, inter-onset intervals (IOIs)

equivalent only for monophonic data without rests
longer notes are more indicative of beats than shorter notes

Dynamics
louder notes are more indicative of beats than quieter notes
difficult to measure (combination/separation)

Pitch and other features
lower notes are more indicative of beats than higher notes
particular instruments are good indicators of beats (e.g.
snare drum)
harmonic change can indicate a high level metrical
boundary
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Pulse induction
Beat Tracking

High Level Features

Overview
State Model Framework
Examples

State Models: Actions and Evaluation

A simple beat tracker:

Predict the next beat location based on current beat and
beat period

Choose closest event and update state variables
accordingly

Evaluate actions on the basis of agreement with prediction
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Pulse induction
Beat Tracking

High Level Features

Overview
State Model Framework
Examples

Example 1: Rule-based Approach

Longuet-Higgins and Lee (1982)
Meter is regarded as a generative grammar

A rhythmic pattern is a parse tree
Parsing rules, based on musical intuitions:

CONFLATE: when an expectation is fulfilled, find a higher
metrical level by doubling the period
STRETCH: when a note is found that is longer than the
note on the last beat, increase the beat period so that the
longer note is on the beat
UPDATE: when a long note occurs near the beginning,
adjust the phase so that the long note occurs on the beat
LONGNOTE: when a note is longer than the beat period,
update the beat period to the duration of the note
An upper limit is placed on the beat period

Biased towards reactiveness
Gouyon and Dixon Computational Rhythm Description
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Overview
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Example 2: Metrical Parsing

Dannenberg and Mont-Reynaud (1987)
On-line algorithm
All incoming events are assigned to a metrical position
Deviations serve to update period
Update weight determined by position in metrical structure
Reactiveness/inertia adjusted with decay parameter
Extended to track multiple hypotheses (Allen and
Dannenberg, 1990)

delay commitment to a particular metrical interpretation
greater robustness against errors
less reactive

Evaluate each hypothesis (credibility)
Heuristic pruning based on musical knowledge
Dynamic programming (Temperley and Sleator, 1999)
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Overview
State Model Framework
Examples

Example 3: Coupled Oscillators

Large and Kolen (1994)

Entrainment: the period and phase of the driven oscillator
are adjusted according to the driving signal (a pattern of
onsets) so that the oscillator synchronises with its beat

Oscillators are only affected at certain points in their cycle
(near expected beats)

Multiple oscillators entrain simultaneously

Adaptation of period and phase depends on coupling
strength (determines reactiveness/inertia balance)

Networks of connected oscillators could model metrical
structure
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Pulse induction
Beat Tracking

High Level Features

Overview
State Model Framework
Examples

Example 4: Multiple Agents

Goto and Muraoka (1995)
Real-time beat tracking of audio signals
Finds beats at quarter and half note levels
Detects onsets, specifically labelling bass and snare drums
Matches drum patterns with templates to avoid doubling
errors and phase errors
14 pairs of agents receive different onset information
Beat times are predicted using auto-correlation (tempo)
and cross-correlation (phase)
Agents evaluate their reliability based on fulfilment of
predictions
Limited to pop music with drums, 4

4 time, 65–185 BPM,
almost constant tempo
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Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Overview
State Model Framework
Examples

Example 5: Comb Filterbank

Scheirer (1998)
Causal analysis
Audio is split into 6 octave-wide frequency bands, low-pass
filtered, differentiated and half-wave rectified
Each band is passed through a comb filterbank (150 filters
from 60–180 BPM)
Filter outputs are summed across bands
Maximum filter output determines tempo
Filter states are examined to determine phase (beat times)
Problem with continuity when tempo changes
Tempo evolution determined by change of maximal filter
Multiple hypotheses: best path (Laroche, 2003)
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Pulse induction
Beat Tracking

High Level Features

Time Signature Determination
Rhythm Parsing and Quantisation
Systematic Deviations
Rhythm Patterns

Time Signature Determination

Parsing the periodicity function
two largest peaks are the bar and beat levels (Brown, 1993)
evaluate all pairs of peaks as bar/beat hypotheses (Dixon
et al., 2003)

Parsing all events into a metrical structure (Temperley and
Sleator, 1999)

Obtain metrical levels separately (Gouyon and Herrera,
2003b)
Using style-specific features

chord changes as bar indicators (Goto and Muraoka, 1999)

Probabilistic model (Klapuri et al., 2006)
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Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Time Signature Determination
Rhythm Parsing and Quantisation
Systematic Deviations
Rhythm Patterns

Rhythm Parsing and Quantisation

Assign a position in the metrical structure for every note

Important for notation (transcription)

By-product of generating complete metrical hierarchy

Discard timing of notes (ahead of / behind the beat)

Should model musical context (e.g. triplets, tempo
changes) (Cemgil et al., 2000b)

Simultaneous tracking and parsing has advantages

e.g. Probabilistic models (Raphael, 2002; Cemgil and
Kappen, 2003)
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Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Time Signature Determination
Rhythm Parsing and Quantisation
Systematic Deviations
Rhythm Patterns

Systematic Deviations

Studies of musical performance reveal systematic
deviations from metrical timing

Implicit understanding concerning interpretation of notation

e.g. swing: alternating long-short pattern in jazz (usually at
8th note level)

Periodicity functions give distribution but not order

Joint estimation of tempo, phase and swing (Laroche,
2001)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Time Signature Determination
Rhythm Parsing and Quantisation
Systematic Deviations
Rhythm Patterns

Rhythm Patterns

Distribution of time intervals (ignoring order):
beat histogram (Tzanetakis and Cook, 2002)
modulation energy (McKinney and Breebaart, 2003)
periodicity distribution (Dixon et al., 2003)

Temporal order defines patterns (musically important!)
Query by tapping (Chen and Chen, 1998)

MIDI data
identity

Comparison of patterns (Paulus and Klapuri, 2002)
patterns extracted from audio data
similarity of patterns measured by dynamic time warping

Characterisation and classification by rhythm patterns
(Dixon et al., 2004)
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Input Data
Rhythm periodicity functions

Pulse induction
Beat Tracking

High Level Features

Time Signature Determination
Rhythm Parsing and Quantisation
Systematic Deviations
Rhythm Patterns

Coffee Break
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Part III

Evaluation of Rhythm Description Systems
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Model improvements on the long term are bounded to
systematic evaluations (see e.g. in text retrieval, speech
recognition, machine learning, video retrieval)

Often through contests, benchmarks

Little attention in Music Technology

Acknowledgment in MIR community (Downie, 2002)
In the rhythm field:

tempo induction
beat tracking
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MIREX
The Future

Outline

Methodology
Annotations
Data
Metrics

ISMIR 2004 Audio Description Contest
Audio Tempo Induction
Rhythm Classification

MIREX
MIREX 2005
MIREX 2006

The Future
More Benchmarks
Better Benchmarks
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Annotations
Data
Metrics

Methodology

Systematic evaluations of competing models are desirable
They require:

an agreement on the manner of representing and
annotating relevant information about data
reference examples of correct analyses, that is, large and
publicly available annotated data sets
agreed evaluation metrics
(infrastructure)

Efforts still needed on of all these points
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Annotations
Data
Metrics

Annotations

Tempo in BPM

Beats

Meter
Annotation tools:

Enhanced Wavesurfer (manual)
BeatRoot (semi-automatic)
QMUL’s Sonic Visualizer (semi-automatic)
Other free or commercial audio or MIDI editors (manual)

Several periodicities with respective saliences

Perceptual tempo categories (“slow”, “fast”, “very fast”,
etc.)

Complete score
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Annotations
Data
Metrics

Annotated Data - MIDI

MIDI performances of Beatles songs (Cemgil et al., 2001),
http://www.nici.kun.nl/mmm/archives/ :
Score-matched MIDI, ˜200 performances of 2 Beatles
songs by 12 pianists, several tempo conditions

“Kostka-Payne” corpus (Temperley, 2004), ftp://ftp.
cs.cmu.edu/usr/ftp/usr/sleator/melisma2003 :
Score-matched MIDI, 46 pieces with metronomical timing
and 16 performed pieces, “common-practice” repertoire
music
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Annotations
Data
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Annotated Data - Audio

RWC Popular Music Database
http://staff.aist.go.jp/m.goto/RWC-MDB/ :
Audio, 100 items, tempo (“rough estimates”)

ISMIR 2004 data (Gouyon et al., 2006), http://www.
ismir2004.ismir.net/ISMIR_Contest.html :
Audio, > 1000 items (+links to > 2000), tempo

MIREX 2005-2006 training data
http://www.music-ir.org/evaluation/MIREX/
data/2006/beat/ : Audio, 20 items, 2 tempi + relative
salience, beats
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Annotations
Data
Metrics

Evaluation Metrics

Multidimensional, depends on
dimension under study, e.g.

tempo
beats
several metrical levels
quantised durations

criteria, e.g.
time precision (e.g. for performance research)
robustness
metrical level precision and stability
computational efficiency
latency
perceptual or cognitive validity

richness (and accuracy) of annotations
depend partly on input data type
hand-labelling effort (and care)
what level of resolution is meaningful?
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Annotations
Data
Metrics

Evaluation Metrics

Comparison annotated and computed beats (Goto and
Muraoka, 1997; Dixon, 2001b; Cemgil et al., 2001; Klapuri
et al., 2006)

cumulated distances in beat pairs, false-positives, missed
longest correctly tracked period
particular treatment to metrical level errors (e.g. 2×)

Matching notes/metrical levels (Temperley, 2004)
requires great annotation effort (complete transcriptions)
unrealistic for audio signals (manual & automatic)

Statistical significance
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Audio Tempo Induction
Rhythm Classification

ISMIR 2004 Audio Description Contest

First large-scale comparison of algorithms
Genre Classification/Artist Identification
Melody Extraction
Tempo Induction
Rhythm Classification

Cano et al. (2006),
http:
//ismir2004.ismir.net/ISMIR_Contest.html
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Audio Tempo Induction
Rhythm Classification

Audio Tempo Induction - Outline

Compare state-of-the-art algorithms in the task of inducing
the basic tempo (i.e. a scalar, in BPM) from audio signals

12 algorithms tested (6 research teams + 1 open-source)

Infrastructure set up at MTG, Barcelona

Data, annotations, scripts and individual results available

http://www.iua.upf.es/mtg/ismir2004/
contest/tempoContest/

Gouyon et al. (2006)
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Audio Tempo Induction
Rhythm Classification

Data

Preparatory data (no training data): 7 instances

Test data: 3199 instances with tempo annotations
(24 <BPM< 242)
Linear PCM format, > 12 hours

Loops: 2036 items, Electronic, Ambient, etc.

Ballroom: 698 items, Cha-Cha, Jive, etc.

Song excerpts: 465 items, Rock, Samba, Greek, etc.
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Audio Tempo Induction
Rhythm Classification

Algorithms

Audio

Feature list

creation

Pulse

induction Pulse

tracking

Back

-end

Tempo

. Onset features

. Signal features

.
.
.


Beats
Tempo

hypotheses

Figure: Tempo induction algorithms functional blocks
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Audio Tempo Induction
Rhythm Classification

Algorithms

Alonso et al. (2004): 2 algos
onsets
induction of 1 level by ACF or spectral product
tracking bypassed

Dixon (2001a): 2 algos
onsets
IOI histogram
induction (+ tracking of 1 level + back-end)

Dixon et al. (2003): 1 algo
energy in 8 freq. bands
induction of 2 levels by ACF
no tracking

Klapuri et al. (2006): 1 algo
energy diff. in 36 freq. bands, combined into 4
comb filterbank
induction + tracking of 3 levels + back-end
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Audio Tempo Induction
Rhythm Classification

Algorithms

Scheirer (1998): 1 algo http://sound.media.mit.
edu/~eds/beat/tapping.tar.gz

energy diff. in 6 freq. bands
comb filterbank
induction + tracking of 1 level + back-end

Tzanetakis and Cook (2002): 3 algos
http://www.sourceforge.net/projects/marsyas

energy in 5 freq. bands
induction of 1 level by ACF
histogramming

Uhle et al. (2004): 1 algo
energy diff. in freq. bands, combined in 1
induction of 3 level by ACF
histogramming
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Audio Tempo Induction
Rhythm Classification

Evaluation Metrics

Accuracy 1: Percentage of tempo estimates within 4% of
ground-truth

Accuracy 2: Percentage of tempo estimates within 4% of
1×, 1

2×, 1
3×, 2× or 3× ground-truth

Width of precision window not crucial

Test robustness against a set of distortions

Statistical significance (i.e. McNemar test: errors on
different instances⇔ significance)
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Audio Tempo Induction
Rhythm Classification

Results

Figure: Accuracies 1 & 2
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Audio Tempo Induction
Rhythm Classification

Results

Klapuri et al. (2006) best on (almost) all data sets and
metrics

Accuracy 1: ˜63%

Accuracy 2: ˜90%

Clear tendency towards metrical level errors
(⇒ Justification of Accuracy 2)

Tempo induction feasible if we do not insist on a specific
metrical level

Worth of explicit moderate tempo tendency?

Robust tempo induction⇐ frame features rather than
onsets

Gouyon and Dixon Computational Rhythm Description



O F A I

Methodology
ISMIR 2004 Audio Description Contest

MIREX
The Future

Audio Tempo Induction
Rhythm Classification

Results
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Results

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Correct tempo

lo
g2

 (
 c

om
pu

te
d 

te
m

po
 / 

co
rr

ec
t t

em
po

 )
Klapuri

algorithm estimates double tempo 

algorithm estimates half the tempo 

algorithm estimates 
the correct tempo   

Gouyon and Dixon Computational Rhythm Description



O F A I

Methodology
ISMIR 2004 Audio Description Contest

MIREX
The Future

Audio Tempo Induction
Rhythm Classification

Results

Figure: Robustness test
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Results

Figure: Errors on different items
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Audio Tempo Induction
Rhythm Classification

Results

Errors on different items
Algorithms show unique performances on specific data

only 41 items correctly solved by all algos
29 items correctly solved by a single algo

Combinations better than single algorithms
median tempo does not work
voting mechanisms among “not too good” algorithms
⇒ improvement
“Redundant approach”: multiple simple redundant
mechanisms instead of a single complex algorithm
(Bregman, 1998)

Accuracy 2 requires knowledge of meter
Ballroom data too “easy”
Precision in annotations, more metadata
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Rhythm Classification - Outline

Compare algorithms for automatic classification of 8
rhythm classes (Samba, Slow Waltz, Viennese Waltz,
Tango, Cha Cha, Rumba, Jive, Quickstep) from audio data

1 algorithm (by Thomas Lidy et al.)

Organisers did not enter the competition

Data and annotations available

http://www.iua.upf.es/mtg/ismir2004/
contest/rhythmContest/
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Audio Tempo Induction
Rhythm Classification

Data, Evaluations and Results

488 training instances

210 test instances

Evaluation metrics: percentage of correctly classified
instances

Accuracy: 82%

(see part on MIR applications)
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MIREX 2005
MIREX 2006

Audio Tempo Extraction

Proposed by Martin McKinney & Dirk Moelants at ISMIR
2005

Task: “Perceptual tempo extraction”
Tackling tempo ambiguity

different listeners may feel different metrical levels as the
most salient

relatively ambiguous (61 or 122 BPM?)
(courtesy of M. McKinney & D. Moelants)

relatively non-ambiguous (220 BPM)
(courtesy of M. McKinney & D. Moelants)

assumption: this ambiguity depends on the signal
can we model this ambiguity?
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MIREX 2005
MIREX 2006

Audio Tempo Extraction

13 algorithms tested (8 research teams)

IMIRSEL infrastructure

Evaluation scripts and training data available

http://www.music-ir.org/mirex2005/index.
php/Audio_Tempo_Extraction
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Audio Tempo Extraction - Data

Training data: 20 instances

Beat annotated (1 level) by several listeners
(24 < N < 50 ?) (Moelants and McKinney, 2004)

Histogramming
Derived metadata:

2 most salient tempi
relative salience
phase first beat of each level

Test data: 140 instances, same metadata
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MIREX 2005
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Audio Tempo Extraction - Algorithms

Alonso et al. (2005): 1 algo

Davies and Brossier (2005): 2 algos

Eck (2005): 1 algo

Gouyon and Dixon (2005a): 4 algos

Peeters (2005): 1 algo

Sethares (2005): 1 algo

Tzanetakis (2005): 1 algo

Uhle (2005): 2 algos
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Audio Tempo Extraction - Evaluation Metrics

Several tasks:
Task α: Identify most salient tempo (T1) within 8%
Task β: Identify 2nd most salient tempo (T2) within 8%
Task γ: Identify integer multiple/fraction of T1 within 8%
(account for meter)
Task δ: Identify integer multiple/fraction of T2 within 8%
Task ε: Compute relative salience of T1
Task ζ: if α OK, identify T1 phase within 15%
Task η: if β OK, identify T2 phase within 15%

∀ tasks (apart ε)←− score 0 or 1

P = 0.25α + 0.25β + 0.10γ + 0.10δ
+0.20(1.0− |ε−εGT |

max(ε,εGT )) + 0.05ζ + 0.05η

Statistical significance (McNemar)
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Audio Tempo Extraction - Results

http://www.music-ir.org/evaluation/
mirex-results/audio-tempo/index.html

Alonso et al. (2005) best P-score

Some secondary metrics (on webpage, e.g. “At Least One
Tempo Correct”, “Both Tempos Correct”)
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Audio Tempo Extraction - Comments

Very high standard deviations in performances

Differences in performances not statistically significant

Ranking from statistical test 6= mean ranking

Results on individual tasks not reported
⇒ Individual results should be made public

Task (modelling tempo ambiguity) is not representative of
what competing algorithms really do (beat tracking or
tempo induction at 1 level)
⇒ Stimulate further research on tempo ambiguity

Too many factors entering final performance

“Tempo ambiguity modeling” contributes only 20% to final
performance
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Audio Tempo Extraction

http://www.music-ir.org/mirex2006/index.
php/Audio_Tempo_Extraction

Simpler performance measure than MIREX 2005 (i.e. no
phase consideration, no consideration of integer
multiple/ratio of tempi)

Thursday...
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Audio Beat Tracking

http://www.music-ir.org/mirex2006/index.
php/Audio_Beat_Tracking

Thursday...
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More Benchmarks
Better Benchmarks

More Benchmarks

Rhythm patterns

Meter

Systematic deviations

Quantisation

etc.
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More Benchmarks
Better Benchmarks

Better Benchmarks

Better data: more (and more accurate) annotations
“Correct metrical level” problem

ISMIR04 data: too simple (no meter), MIREX05-06 data:
too few (time-consuming annotations)
compromise: 1 single annotator per piece, annotations of
two different levels, best match with algorithm output
assumption: two listeners would always agree on (at least)
1 level

Richer metadata⇒ performance niches
e.g. measuring “rhythmic difficulty” (Goto and Muraoka,
1997; Dixon, 2001b)

tempo changes
complexity of rhythmic patterns
timbral characteristics
syncopations
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More Benchmarks
Better Benchmarks

Better Benchmarks

More modular evaluations
specific sub-measures (time precision, computational
efficiency, etc.)
motivate submission of several variants of a system

More open source algorithms

Better robustness tests: e.g. increasing SNR, cropping
Foster further analyses of published data⇒ availability of:

data and annotations
evaluation scripts
individual results

Statistical significance is a must (Flexer, 2006)

Run systems several years (condition to entering contest?)
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Part IV

Applications of Rhythm Description Systems
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Outline

MIR Applications
Interactive Beat Tracking
Audio Alignment
Classification with Rhythm Patterns
Query-by-Rhythm

Rhythm Transformations
Tempo Transformations
Swing Transformations
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Interactive Beat Tracking
Audio Alignment
Classification with Rhythm Patterns
Query-by-Rhythm

BeatRoot: Interactive Beat Tracking System

Dixon (2001a,c)

Annotation of audio data with beat times at various
metrical levels

Tempo and beat times are estimated automatically

Interactive correction of errors with graphical interface
New version available for download at:
http://www.ofai.at/ ∼simon.dixon/beatroot

improved onset detection (Dixon, 2006)
platform independent
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Interactive Beat Tracking
Audio Alignment
Classification with Rhythm Patterns
Query-by-Rhythm

BeatRoot Architecture

Audio Input

Onset Detection

Tempo Induction Subsystem

IOI Clustering

Cluster Grouping

Beat Tracking Subsystem

Beat Tracking Agents

Agent Selection

Beat Track
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Interactive Beat Tracking
Audio Alignment
Classification with Rhythm Patterns
Query-by-Rhythm

BeatRoot Demo
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Interactive Beat Tracking
Audio Alignment
Classification with Rhythm Patterns
Query-by-Rhythm

Audio Alignment

Blind signal analysis is difficult

Manual correction is tedious and error-prone

In many situations, there is knowledge that is being
ignored: e.g. the score, recordings of other performances,
MIDI files
Indirect annotation via audio alignment

Creates a mapping between the time axes of two
performances
Content metadata from one performance can then be
mapped to the other
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Interactive Beat Tracking
Audio Alignment
Classification with Rhythm Patterns
Query-by-Rhythm

Annotation via Audio Alignment
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Interactive Beat Tracking
Audio Alignment
Classification with Rhythm Patterns
Query-by-Rhythm

MATCH: Audio Alignment System

Dixon (2005); Dixon and Widmer (2005)
On-line time warping

linear time and space costs
robust real-time alignment
interactive interface
on-line visualisation of expression in musical performances

How well does it work?
Off-line: average error 23ms on clean data
On-line: average error 59ms
Median error 20ms (1 frame)

Available for download at:
http://www.ofai.at/ ∼simon.dixon/match
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MATCH: Demo

Rubinstein1965_Chopin_op15_1

Richter1968_Chopin_op15_1

Pollini1968_Chopin_op15_1

Pires1996_Chopin_op15_1

Perahia1994_Chopin_op15_1

Maisenberg1995_Chopin_op15_1

Leonskaja1992_Chopin_op15_1

Horowitz1957_Chopin_op15_1

Harasiewicz1961_Chopin_op15_1

Barenboim1981_Chopin_op15_1

Ashkenazy1985_Chopin_op15_1

Arrau1978_Chopin_op15_1

Argerich1965_Chopin_op15_1

Mode: Continue

Status: Ready

MATCH 0.9

/raid1/music/audio/worm/beethoven/Brendel1998_Beethoven_op15_2_1−8.wav
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MIR Applications
Rhythm Transformations

Interactive Beat Tracking
Audio Alignment
Classification with Rhythm Patterns
Query-by-Rhythm

Classification with Rhythm Patterns

Dixon et al. (2004)

Classification of ballroom dance music by rhythm patterns

Patterns: energy in bar-length segments

One-dimensional vector

Temporal order (within each bar) is preserved

Musically meaningful interpretation of patterns (high level)

4
4

4
4
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Interactive Beat Tracking
Audio Alignment
Classification with Rhythm Patterns
Query-by-Rhythm

Pattern Extraction

Tempo: BeatRoot and manual correction (first bar)

Amplitude envelope: LPF & downsample

Segmentation: correlation

Clustering: k-means (k=4)

Selection: largest cluster

Comparison: Euclidean metric
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Rhythm Pattern Examples: Cha Cha

 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8  1 
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Bar by bar energy patterns for track 19: Cha Cha

 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8  1 
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Bar by bar energy patterns for  track 12: Cha Cha

4
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4
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More Rhythm Pattern Examples: Jive and Rumba

 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8  1 
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0.04
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Bar by bar energy patterns for track 151: Jive

 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8  1 
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0.14
Bar by bar energy patterns for track 266: Rumba
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Query-by-Rhythm

Classification

Standard machine learning software: Weka
k-NN, J48, AdaBoost, Classification via Regression

Feature vectors:
Rhythm pattern
Derived features
Periodicity histogram
IOI histogram / “MFCC”
Tempo
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Query-by-Rhythm

Classification Results

Feature sets Without RP With RP (72)
None (0) 15.9% 50.1%
Periodicity histograms (11) 59.9% 68.1%
IOI histograms (64) 80.8% 83.4%
Periodicity & IOI hist. (75) 82.2% 85.7%
Tempo attributes (3) 84.4% 87.1%
All (plus bar length) (79) 95.1% 96.0%
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Query-by-Rhythm

Discussion

Only rhythm
No timbre (instrumentation), harmony, melody, lyrics

One pattern
Sometimes trivial

Short pieces (30 sec)

Up to 96% classification
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Interactive Beat Tracking
Audio Alignment
Classification with Rhythm Patterns
Query-by-Rhythm

Query-by-Tapping

Rhythm similarity computation between 2 symbolic
sequences

Chen and Chen (1998); Peters et al. (2005)
http:
//www.musipedia.org/query_by_tapping.0.html

Retrieving songs with same tempo as tapped query
Kapur et al. (2005)
http://www.songtapper.com/
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Vocal queries (“Beat Boxing”)

Kapur et al. (2004); Nakano et al. (2004); Gillet and
Richard (2005a,b); Hazan (2005)
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Query-by-Example

Query = (computed) tempo

Query = (computed) rhythm pattern (Chen and Chen,
1998; Kostek and Wojcik, 2005)

Query = (computed) pattern + timbre data, e.g. drums
(Paulus and Klapuri, 2002; Gillet and Richard, 2005b)
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Synchronisation

Applications to synchronisation of:
two audio streams

matching two streams in tempo and phase
done manually by DJ’s
can be automated (Yamada et al., 1995; Cliff, 2000;
Andersen, 2005)⇒ automatic sequencing in playlist
generation

lights and music
http:
//staff.aist.go.jp/m.goto/PROJ/bts.html
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MIR Applications
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Tempo Transformations
Swing Transformations

Tempo transformations

Controlling tempo of audio signal (Bonada, 2000)

−→
(courtesy of Jordi Bonada)

driven by gesture, conducting with infra-red baton,
www.hdm.at (Borchers et al., 2002)
driven by tapping; secondary audio stream (Janer et al.,
2006)
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MIR Applications
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Tempo Transformations
Swing Transformations

Swing transformations

Delay of the 2nd, 4th, 6th & 8th eighth-note in a bar
Example

eighth-notes
swinged eighth-notes

Swing ratio
2:1 ternary feel
depends on the tempo (Friberg and Sundström, 2002)

Acknowledgments: Lars Fabig & Jordi Bonada
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MIR Applications
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Tempo Transformations
Swing Transformations

Swing transformation methods

MIDI score matching
MIDI notes control the playback of mono samples
swing is added on MIDI
not suitable to polyphonic samples
sampler required

Audio slicing (e.g. Recycle)
MIDI score controls playback of audio slices
same as above but samples are obtained from audio slices
(can be polyphonic)
preprocessing:

slicing
mapping slices/MIDI notes

artificial tail synthesized on each slice⇒ sound quality ↓

Acknowledgments: Lars Fabig & Jordi Bonada
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MIR Applications
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Tempo Transformations
Swing Transformations

“Swing transformer”

Gouyon et al. (2003)
Similar to audio slicing but

no mapping necessary to MIDI
no artificial tail
use of time stretching algorithm

Rhythmic analysis
onset detection
eighth-notes and quarter-notes period estimation
swing ratio estimation
eighth-notes and quarter-notes phase estimation

Time stretching
odd eighth-notes are expanded
even eighth-notes are compressed

Acknowledgments: Lars Fabig & Jordi Bonada
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“Swing transformer”

Figure: Swing ratio estimation
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MIR Applications
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Tempo Transformations
Swing Transformations

“Swing transformer”

Figure: Expansion and compression of eighth-notes
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MIR Applications
Rhythm Transformations

Tempo Transformations
Swing Transformations

“Swing transformer”

Examples
Add swing

−→
−→

Add or remove swing

←− −→
←− −→
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MIR Applications
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Tempo Transformations
Swing Transformations

Other rhythm transformations

Automatic quantisation of audio

Fit to a rhythm template

Meter transformations: e.g. delete or repeat the last beat
(Janer et al., 2006)

Tempo- and beat-driven processing (Gouyon et al., 2002;
Andersen, 2005)

Concealment of transmission error in streamed audio by
beat-based pattern matching (Wang, 2001)
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Part V

Some ideas
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Where Are We Going?

Tempo induction, beat tracking, automatic transcription,
genre recognition, melody extraction, etc.

all perform at 80± 10% accuracy

The next step
Solve the next problem with 80% accuracy ??
Build better interfaces for interactive correction
Explore limitations of current approaches

Limiting factors?
Computational power
Algorithms
Data
Knowledge: our models are too simple
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Using Musical Knowledge

What knowledge is available?
Data: score, recordings, MIDI files
Knowledge: music theory, performance "rules"

What knowledge is relevant?
Illustration: analysis of expressive timing in performance

Large project (since 1998)
Used beat tracking with manual correction to annotate
recordings of famous pianists
Audio alignment: promises an order of magnitude decrease
in work
What about high-level (musical) knowledge?
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Challenge: Encoding Musical Knowledge

We don’t know how to represent musical knowledge!
Example 1: Machine learning of relationships between
score and performance data

What are the relevant concepts? (Phrase structure,
harmonic structure, etc)
How can these be computed?

Example 2: Symbolic encoding of rhythm patterns for
indexing and retrieval

One-dimensional energy patterns are limited
Multidimensional patterns would be better
e.g. frequency bands, instrumentation, drum sounds
Similarity metrics??
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Challenge: Modelling Low Levels of Perception

Best low-level features for rhythm description?
Different for different purposes (e.g. identifying beats,
determining meter)?
Different for different categories, music pieces?
Consider more (and more high-level) features

auditory nerve cell firing models
pitch
chords
timbre

Combine low-level features and onset features
Deal with large numbers of features
“Online” feature selection
Perceptual validity of most efficient features
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Challenge: Modelling Low Levels of Perception

“Redundant” approach (different simple low-level
processes serve the same purpose)

which commonalities and differences (features, rhythm
periodicity functions, etc.)?
how simple?
optimal voting scheme?
link with Ensemble Learning methods

Tempo preference modelling
often implemented as scaling with curve centered around
120 BPM
evaluations showed artefacts for pieces with extreme tempo
modeling preference curve dependence on signal low-level
attributes? which ones?

Synchronisation in networks of simple rhythmic units, with
acoustic inputs
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Challenge: Observing Rhythm Perception

Behavioral studies (Music Psychology, Neurophysiology of
music)
Different neural areas responsible for the perception of
different rhythmic percepts? (Thaut, 2005)

high-level vs low-level processing

Relations between imagined and perceived rhythm
(Desain, 2004)

Link between rhythm perception and rhythm production
and motor control (Phillips-Silver and Trainor, 2005; Grahn
and Brett, under review)
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Filling In Gaps

Methodological gap: Link observations and models
Ideally computational and behavioral methods should
provide hypotheses and validation tools to each other
discrepancy in level of detail

Semantic gap (lack of coincidence between algorithm
representations and user interpretations): Which
representations are meaningful?
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Filling In Gaps

Processing gap: Suitable processing architecture for
combining top-down and bottom-up information flows?
“Evolutional” gap: What is the purpose of our ability to
perceive rhythm and what does perceiving rhythm share
with e.g. cognition, speech, motor control?

sensory-motor theory of cognition
active rhythm perception. Explore link between rhythm
perception and production by implementing rhythm
perception modules on mobile robots immersed in musical
environments (Brooks, 1991; Bryson, 1992)
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Part VI

Bibliography
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