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ABSTRACT

We outline a system for automatic analysis of audio recordings
of known musical works, by utilising the musical score to aid
the signal processing algorithms. The proposed system matches
the audio data to the score note by note, predicts the timing of
future notes and then searches in the neighbourhood of the
prediction to estimate the actual onset time. In this paper, we
address possible signal processing approaches for processing
solo piano music, and describe the planned architecture of the
rest of the system. We present results of testing the signal
processing algorithm on a performance of a Mozart piano
sonata. The motivation for this work is the analysis of
expressive performance, that is, measuring the subtle
interpretative choices which distinguish the great masters of
performance.

1. BACKGROUND

Automatic analysis of audio has traditionally focussed on
speech related data processing rather than music, and the
majority of studies related to musical data have used specially
chosen or prepared data, in order to ensure certain restrictions
such as in the range of instruments and pitches or in the degree
of polyphony. On the other hand, performance researchers have
either avoided audio altogether, by using special instruments
such as the recording pianos produced by Bösendorfer and
Yamaha, or they have worked with audio, possibly with the help
of analysis tools, but with final measurements being based
largely on human judgement. Such a process is laborious and
error-prone. Our aim is to produce software which will aid in
this task, and enable large-scale analysis of audio recordings of
professional performances.

Research on the analysis of musical audio falls into several
categories. One of the recurring themes is automatic
transcription, systems that take a recording as input and produce
a musical score as output. Second, there is music information
retrieval, a rapidly growing field specialising in the
classification, indexing and retrieval of musical data, mostly for
internet, database and library applications. A third area of
interest is in real time performance systems, whether for
automatic accompaniment of a soloist or small group playing
traditional music, or for interactive improvisation, or for
synchronisation of devices such as lights, video, animation or
recording equipment with music. Finally, another area of
interest is the analysis of expressive performance, in which the
performer's tempo, dynamic and articulation choices (measured

relative to the score) are studied in order to learn more about the
practice of music interpretation.

We now briefly review work in these areas as it relates to the
present project. Over the last 30 years, many attempts have been
made to develop an automatic transcription system, that is, a
computer program which produces a musical score directly
from audio data, ignoring fine details such as expressive timing
and dynamics (e.g. Moorer, 1975; Piszczalski and Galler, 1977;
Chafe et al., 1985; Kashino et al., 1995; Martin, 1996; Marolt,
2001; Klapuri, 1998; Sterian, 1999; Klapuri et al., 2000; Dixon,
2000a,b; Raphael, 2002a; Griebel, 2002).  Certain features are
common to many of these systems: producing a time-frequency
representation of the signal, finding peaks in the frequency
dimension, tracking these peaks over the time dimension to
produce a set of partials, and combining the partials to produce
a set of notes. The differences between systems are usually
related to the assumptions made about the input signal (for
example the number of simultaneous notes, types of
instruments, fastest notes, or musical style), and the means of
decision making (for example using heuristics, neural nets or
probabilistic reasoning).

Closely related to transcription is the work on audio beat
tracking (e.g. Desain and Honing, 1989; Large and Kolen, 1994;
Goto and Muraoka, 1995, 1999; Scheirer, 1998; Cemgil et al.,
2000; Eck, 2000; Dixon, 2001a).  Particularly relevant is the
onset or event detection parts of these systems, which tend to
have a time resolution that is better than that of transcription
systems.

Other related projects are automatic accompaniment systems
(e.g.  Dannenberg and Mukaino, 1988; Raphael, 2001, 2002b)
and the score following algorithm of (Pardo and Birmingham,
2002).  By aligning the performance with the score at each score
event, these systems are implicitly generating a tempo curve, an
important part of performance expression. However, due to their
real time requirements, it is probable that systems without this
restriction would be capable of better results.

The extraction of performance parameters from an audio
recording is, in a sense, the inverse of the transcription task. The
small asynchronies and variations which are discarded as noise
by a transcription system are the performance data which the
performance researcher seeks to ascertain. Further, performance
analysis usually assumes a known score on which the
performance is based, which is the reference point for all
measurements.
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To our knowledge, the only system to be built which addresses
this issue directly is a prototype described by Scheirer (1995),
which, given a simple score, attempts to measure onset and
offset times and amplitudes of all played notes. Three methods
are presented for finding onsets in a monophonic context, based
respectively on high frequency energy, RMS power and the
output from a comb filter tuned to the partials of the target tone.
For onsets in a polyphonic context, only one method is given,
similar to the comb filter method but restricted to the
fundamental and any partials of the target tone which do not
occur in any other simultaneous tone. The release time is
calculated as the point at which the energy of a tone drops
below 5% of its peak or a new onset (at the same pitch) is
detected, but this method is not at all successful. Amplitude is
calculated from the log of the peak filter output, which is then
scaled linearly to a MIDI value for comparison with the input
data.

2. AIMS

The aim of this work is to develop a tool to assist in the
automatic analysis of performed music. As such, it forms part of
a large project using artificial intelligence techniques to
investigate piano performance (Widmer, 2002; Goebl and
Dixon, 2001; Dixon et al., 2002).  We plan to extend previous
work on onset detection (Dixon, 2001c), beat tracking (Dixon,
2001a,b) and automatic transcription (Dixon, 2000a,b) by taking
advantage of the known score information, in order to develop a
robust performance analysis system for solo piano music.  This
paper describes the signal processing techniques being
considered, shows results for a typical concert work, and
concludes with an outline of the planned architecture of the
complete system.

3. METHOD

Various filtering techniques were developed and tested on a
range of data extending from single piano tones to complete
performances. The data was obtained from a Bösendorfer
SE290 computer monitored grand piano. This enabled precise
evaluation of the results, since it provides precise measurements
of timing and velocity for all notes. A filtering technique based
on the chirp z-transform was used to compute the response of a
bank of filters tuned to the fundamental and harmonics of the
target tone. The signal was windowed with a 20ms Hanning
window, zero-padded to 23.2ms (1024 samples at 44.1kHz
sampling rate), with a hop size of 5ms (i.e. 75% overlap).

To detect onsets, the log amplitude of each of the harmonics
was measured in a 600ms window around the expected time of
the note, and the time of sharpest attack before the peak value is
found. This gives a set of onset times for each partial up to the
50th partial or the Nyquist frequency. It was found that the
onset time is best estimated by the mean of the onsets of the
partials, as opposed to the median and mode values. Results

were evaluated by comparison with the known onset times from
the Bösendorfer measurements.

4. RESULTS AND DISCUSSION

Although the system is still in an early stage of development,
results appear to be quite promising. The results in this section
are based on testing with Mozart's piano sonata K.332,
performed by the Viennese pianist Roland Batik on a
Bösendorfer SE290 computer monitored grand piano. Figure 1
shows a histogram of the error in onset detection: of the 9012
notes, 41% are within 20ms of the measured onset and 69%
within 40ms, with a mean absolute error of 34ms. The
systematic error (bias) is 2ms.

There are many areas in which the results can be improved. One
fundamental problem is that the known score information is not
as yet being used to guide the system. The information from the
score about simultaneous notes is extremely valuable in
determining which partials are unique to any note at a particular
time. For example, we consider the first two notes of the 2nd
movement, which are an octave apart and notated as
simultaneous. In the performance, the higher note precedes the
lower one by 36ms, so there is no problem finding the onset of
the higher tone (see Figure 2). But since the notes share many
partials, the system incorrectly finds the onset of the lower note
to be about the same as the higher one (see Figure 3, where only
the fundamental and 5th partial of the lower tone are clearly
seen as coming later). To correct for this, the system should
distinguish between the two notes by using the partials which
are not common to both tones (i.e. the odd partials of the lower
tone).

As well as the problem of interference from simultaneous notes,
repeated notes will also cause errors in the current version of the
system if they occur within the search window (300ms either
side of the target tone). There are numerous cases in the test
piece where this occurs (e.g. trills), and the current system
makes no attempt to correct for this situation, which could be
easily done, for example by reducing the window size in these
situations.

The accuracy of signal analysis is strongly dependent on the
suitability of the data model. For a restricted class of signals, a
more accurate model can be specified, resulting in the
possibility of developing more accurate analysis methods. In
this work we noted a frequency dependence of measured attack
times, specifically that the lower partials have a longer time
response than higher frequencies, resulting in a frequency-
dependent error in onset detection. Given that we have a large
database of single piano tones, it will not be difficult to analyse
this data and calculate a proper compensation for this effect.
Other features, such as the tuning of the specific piano and the
inharmonicity (stretching) of partials, should also be accounted
for to achieve more accurate results from the filterbank.
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Figure 1: Histogram of error in onset detection
for Mozart sonata K.332.

Figure 2: Filter output of first 8 partials of the first note
of the second movement of sonata K.332.

Figure 3: Filter output for the first 8 partials of the 2nd
note of the 2nd movement of sonata K.332 (see text).
The onset of the 2nd note is at 0.3s.

5. CONCLUSIONS

We have briefly described the signal processing part of a system
for analysing audio recordings of musical performances. The
complete system will contain a score tracker, using a hidden
Markov model or dynamic programming, which tracks the
position of the audio signal relative to the score, in order to
estimate the expected onset times of notes. This will allow a
much narrower search window for finding target tones, and
therefore less interference from repeated and harmonically
related tones. Removing shared harmonics from the average
onset times, and possibly also weighting the harmonics by a
certainty factor, is also expected to improve the results
considerably.
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