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Abstract

We present work towards a computer system
for the automatic transcription of piano perfor-
mances. The system takes audio files containing
polyphonic piano music as input, and produces
MIDI output, representing the pitch, timing and
volume of the musical notes. The aim of this
work is not to reduce the performance data to
common music notation, but to extract the per-
formance parameters for a quantitative study of
musical expression in piano performance. Stan-
dard signal processing techniques based on the
short time Fourier transform are used to create a
time-frequency representation of the signal, and
adaptive peak-picking and pattern matching al-
gorithms are employed to find the musical notes.
In order to perform large scale testing, the test
process is automated by synthesizing audio data
from MIDI files using high quality sofware syn-
thesis, and comparing results with the original
MIDI data. The test data used is Mozart piano
sonatas performed by a concert pianist.

1 INTRODUCTION

This paper addresses the problem of extracting
musical content from audio data. More specifi-
cally, we consider the task of ascertaining perfor-
mance parameters from polyphonic piano mu-
sic, that is, calculating which notes were played

(pitch), when they were played (timing), and
how loud they were played (velocity1).

This is closely related to the task of automatic
transcription, whereby musical notation is cre-
ated from audio recordings of music. However,
common music notation is not suitable for ac-
curately representing a musical performance, as
it does not describe the velocities of individual
notes, nor the precise timing of onsets and off-
sets, using instead a more abstract discrete set of
notated durations. In order to study musical ex-
pression, one of the goals of the current project,
such extra details are required. In this sense, the
accuracy required in this project is much greater
than for a transcription system, which filters out
the expressive details as if they were noise. On
the other hand, several tasks necessary for tran-
scription into common music notation are not
addressed in this paper which would be required
for a complete transcription system. Examples
of these tasks are: rhythm understanding, quan-
tization, key finding, note naming and the phys-
ical layout of musical symbols on a page2.

The input to the system is digital audio, taken
from CD’s or synthesised by a high quality soft-
ware synthesizer. Processing begins with time-
frequency analysis based on the windowed short
time Fourier transform, from which peaks in

1MIDI terminology is used throughout this paper.
2see (Dixon and Cambouropoulos, 2000; Cam-

bouropoulos, 2000) for recent work on some of these
tasks.



the time-frequency terrain are extracted, creat-
ing frequency tracks which are then grouped as
partials of musical notes. The output is a sym-
bolic representation of the music, in MIDI for-
mat, representing the musical events detected
from the performance. Thus the system could
function as a front end for an automatic tran-
scription system, for content-based indexing and
retrieval, or for a performance analysis system.

In section 2, we briefly review the previous
work in this field, and then in section 3 describe
the system itself. The following section outlines
the testing methodology, and in section 5 we
present the results obtained to date and an evalu-
ation of the system’s performance. The conclud-
ing section contains a discussion of the results,
and lists possible directions of further work.

2 RELATED WORK

Most related work consists of various attempts
at building an automatic transcription system,
each of which tackles a different subset of the
transcription problem (Moorer, 1975; Piszczal-
ski and Galler, 1977; Chafe et al., 1985; Mont-
Reynaud, 1985; Schloss, 1985; Watson, 1985;
Kashino et al., 1995; Martin, 1996; Klapuri,
1998). The current state of the art is that pitch
and timing for a known instrument playing one
note at a time can be detected quite reliably, and
is commercially available in hardware and soft-
ware realisations. However, rhythm understand-
ing even in this limited case is still quite poor
in these commercial systems, most of which re-
quire a strict metrical performance synchronized
with a pre-specified beat. Polyphonic transcrip-
tion has only been performed successfully with
restrictive conditions placed on the input data.
Space does not permit reference to more than a
small number of the approaches used3.

The pioneering work of Moorer (Moorer,
1975) used comb filters and autocorrelation to
perform transcription of very restricted duets.

3see (Klapuri, 1998) for a more complete review.

The input data was allowed to contain no more
than two notes sounding simultaneously, and
note combinations which shared common fre-
quency components (e.g. octaves) were not al-
lowed, in order that the frequency components
could be interpreted unambiguously. The range
of notes was restricted to two octaves. Schloss
(Schloss, 1985) developed useful time domain
techniques for accurate estimation of onset times
in his work on transcription of untuned percus-
sion, but did not address pitch extraction. Martin
(Martin, 1996) allowed up to 4 voices in the in-
put data, but it was restricted to the chorale style
of J.S. Bach, in which the notes have relatively
long duration and change simultaneously, which
made it possible for him to segment the signal in
the time domain into “musically constant” sec-
tions. Furthermore, octave intervals were not al-
lowed, and the note range was restricted to under
2 octaves (f0 = 123 - 440Hz). Klapuri (Klapuri,
1998) allowed a 5 octave fundamental frequency
range (65 - 2093Hz), but required example notes
covering the complete range of each instrument
in order to train the system. Good results were
achieved for the stated test examples; it is not
clear how the system would perform on more
complex musical examples.

The only work explicitly concerned with ex-
traction of performance parameters is that of
Scheirer (Scheirer, 1995; Scheirer, 1997), who
also dealt with solo piano music, and built a sys-
tem which required that the musical score be
provided to guide the system. Knowing in ad-
vance which notes were played, means that the
system is only required to search for onsets, off-
sets and velocities of notes at known frequen-
cies and within quite small time windows. Fur-
thermore, the interactions between notes (e.g.
shared frequency components) can be predicted
and avoided (as is done in Scheirer’s system).
Thus, although the techniques developed in this
system are relevant to the “blind” transcription
problem, they are not immediately reusable, and
some are not at all.



3 SYSTEM DESCRIPTION
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Figure 1: Data-processing stages

We now briefly describe the stages of process-
ing performed by our system, shown diagram-
matically in Figure 1. The first stage of pro-
cessing consists of down-sampling the signal to
a 12kHz sampling rate, in order to decrease the
processing time of subsequent stages. The use
of a lower bandwidth signal does not appear to
affect results adversely. A time-frequency rep-
resentation is then created using a windowed
short-time Fourier transform. By default, a win-
dow of 4096 samples (341 ms) is used, contain-
ing 230ms of signal shaped by a Hamming win-

dow and zero-padded to fill the window. Com-
mand line parameters can be used to select win-
dows with different sizes and shapes.

The complex frequency domain data is then
converted into a magnitude squared (power)
spectrum and an adaptive peak-picking algo-
rithm finds spectral peaks, which give an ini-
tial estimate of the significant frequency compo-
nents in each window of the signal. These peaks
are represented on a logarithmic frequency scale,
to conform with the musical representation of
pitch in semitones.

Figure 2 shows the resulting power spectrum
and a typical problem in time-frequency analysis
of music: in order to get a sufficiently good fre-
quency resolution to determine pitch accurately,
the time resolution is poor, and a large amount
of overlap is seen between notes in scale pas-
sages. This is not an insurmountable problem for
the transcription of piano music, since the piano
has a very sharp attack, and by using overlap-
ping windows a reasonably accurate estimate of
onset times can be obtained.

A current extension of the system, aimed at
improving the time-frequency resolution trade-
off, uses the rate of change of phase in the FFT
filterbank channels, rather than the centre fre-
quency of the channels, in order to obtain a more
accurate estimate of frequency, and in turn allow
a smaller window size to be used. This idea was
first used in the phase vocoder of (Flanagan and
Golden, 1966), and has since been used in many
computer music applications (Dolson, 1986).

The peaks in the power spectrum are then
isolated by finding at each time point the local
maxima in the frequency dimension which are
above a minimum threshold and which contain
at least 1% of the total power of the signal at that
time, giving a set of atoms of energy localised in
time and frequency. The time-frequency atoms
are then searched in the time dimension, in or-
der to find the peaks in time corresponding to
note onsets, and these onsets are followed until
the power drops below the minimum threshold,
which determines the offset time of the note. Fi-
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Figure 2: Power spectrogram from STFT with Hamming window, showing 7.5 seconds of Mozart’s
Piano Sonata in C major, KV279, 3rd movement.

nally, the velocity is determined from the peak
power, which occurs at the onset time of the
note. The frequency tracks calculated in this
way represent partials (harmonics) of the musi-
cal notes. A few simple rules are employed to
eliminate rogue frequency tracks, such as those
with very short durations, which may be, for ex-
ample, caused by transients at note onsets.

The final step is to interpret the frequency
tracks as musical notes, which is done by finding
a set of fundamental frequencies which provides
the best explanation for the observed frequency
data, relative to an implicit generic model of mu-
sical instrument tones. That is, we combine par-
tials which occur simultaneously, are harmoni-
cally related, and do not fall outside the expected
spectral envelope for piano tones. Due to con-
siderable variability in the individual notes of a
piano, this final condition cannot be particularly
stringent, but is necessary in order to be able to
detect intervals such as octaves. The resulting
output, in MIDI format, is then evaluated as de-
scribed in the following sections.

4 TEST METHODOLOGY

One of the greatest difficulties in building au-
dio analysis systems is the lack of high quality
tagged test data. In the field of speech recog-
nition there are large corpora of tagged audio,
making possible the use of statistical and ma-
chine learning methods such as hidden Markov
models in analysis of audio with speech content.
Music has no similar large corpora of data, so
these methods cannot be used. Similarly, thor-
ough quantitative testing is also made difficult
by the lack of suitable test data. Although it
is becoming easier to generate test data using,
for example, a Bösendorfer SE290 computer-
monitored piano or a Yamaha Disklavier, a fur-
ther hindrance to gathering large data sets is the
legal issues associated with copyright of profes-
sionally performed musical data.

In order to test our system, we require a sym-
bolic representation of the audio content of the
test data, which is more than just the musi-
cal score; we also need the expressive details



of timing and dynamics. These are rarely, if
ever, available in conjunction with audio record-
ings. Manual transcriptions can be performed,
but are extremely time-consuming to produce,
and cannot guarantee a high degree of accuracy
or precision. In the literature to date, testing is
usually performed manually, using simple musi-
cal excerpts, normally no more than 30 seconds
long. However, we have developed and tested
our system using music from the standard classi-
cal repertoire, in this case Mozart piano sonatas,
performed by a professional pianist. These pro-
vide a realistic source of noisy data, and a far
more difficult data set than has been attempted
elsewhere.

In order to ensure that the system was tested
with a wide range of musical situations, a large
data set was obtained, consisting of 13 complete
Mozart piano sonatas (KV 279-284, 330-333,
457, 475 and 533). These were performed on a
Bösendorfer SE290 computer-monitored piano,
and were converted to MIDI format using con-
version software. As the original audio data
from the performances was not available, the au-
dio data was then generated from the MIDI files
using a software synthesis program, Timidity.
A number of different synthesizer voices were
chosen to test the sensitivity of the algorithm to
the instrument timbre. The accuracy of the note
recognition system was tested by comparison of
pairs of MIDI files – the input files from which
the audio data was generated, and the output files
of detected notes.

5 RESULTS

A matching algorithm was developed to pair
events in the input file with corresponding events
in the output file, under the constraints that the
notes must have the same pitch and onset times
differing by no more than a small error mar-
gin (70ms). The results are evaluated in terms
of false positives (FP = the number of notes
reported by the system that were not played)

Voice N FP FN Score
acpiano 95443 32053 11016 68.9%
britepno 87331 18185 19128 70.1%
honky 93777 8227 12682 81.8%
acpiano* 95914 21433 10545 75.0%

Figure 3: Results for 3 different piano sounds

and false negatives (FN = the number of notes
played that were not reported by the system). An
incorrectly identified note (e.g. wrong pitch) is
counted as both a false positive (the wrongly re-
ported note) and a false negative (the note that
should have been reported), which is perhaps an
unnecessarily harsh evaluation metric. The error
figures are combined with the following formula
into a single percentage score (whereN is the
number of correctly identified notes):Sore = NFP + FN +N

In Figure 3 we present results computed for
the complete test data set for three different syn-
thesizer voices. The voices are labelled with
their names from the General MIDI Specifi-
cation, representing a standard acoustic piano
(acpiano), a brighter sounding piano (britepno),
and a honky-tonk piano sound (honky), respec-
tively. These results were generated with a sin-
gle set of parameters, and show a recognition
accuracy of around 70 - 80%. The differences
between these three results demonstrate a weak-
ness of the current system, that it is sensitive
to the amplitude and timbre of the instrumental
sound which is used. To demonstrate this more
clearly, we tuned the parameters to obtain better
values for the acoustic piano sound, as shown in
the last row of the table (acpiano*).

6 DISCUSSION

Although the system is far from complete, the
preliminary results are positive. The stated aim
of this paper is to recognise piano notes, but



as yet, the piano-specific assumptions have not
been built into the system, and the software
framework developed is suitable for a range of
instruments. It is clear that results can be im-
proved by modelling the sound source accu-
rately, as is done by (Klapuri, 1998). One
planned extension of this work is to build a
recognition module that is specific to acoustic
grand pianos.

But before tuning the system to particular in-
strument models, we intend to address the prob-
lem of sensitivity of results to the particular in-
strument by using dynamic modelling (Dixon,
1996) to automatically determine suitable pa-
rameter values from the audio data, rather than
requiring the user to determine these values by
trial and error. This is particularly important
for the more general problem of transcription
of music from unknown instruments, and is a
more elegant approach than hard-wiring instru-
ment parameters into the recognition algorithms.
One way to implement dynamic modelling is the
use of artificial intelligence iterative improve-
ment algorithms, so that the system can learn
automatically to improve its performance, using
feedback from the evaluation part of the system.

At this point in time, the use of synthesised
data was a pragmatic necessity, in order to make
large-scale testing possible. Other authors have
used the same method even for small-scale tests
(Martin, 1996). The performance of the system
on non-synthesized input data (i.e. recordings
from acoustic piano) will be tested as the data
becomes available.

Another area requiring further work is the
evaluation function. Currently, the matching al-
gorithm uses a fixed time tolerance, giving a bi-
nary result, which should be replaced by a more
gracefully degrading accuracy value. Similarly,
the note identification is an all-or-nothing value,
which could be improved by classifying incor-
rectly identified notes into common error types
(e.g. octave errors). Finally, the evaluation func-
tion should also take the perceptual strength of
errors into account, as the input data contains a

number of notes which are neither perceptually
nor physically detectable from the audio signal,
which are currently counted as errors when not
detected by the system. For example, a key ad-
jacent to a played key is sometimes brushed suf-
ficiently hard to be detected by the monitoring
system, even though no audible sound is pro-
duced.

Further development of the system is required
to assess and improve the accuracy of the dy-
namics and offset times reported by the system.
These are much more difficult problems than on-
set detection. For example, the physical release
of a key may occur long after the note is no
longer audible, making the offset time irrelevant.
Similarly, the amplitude of a note, which is rep-
resented by the velocity of the hammer as it hits
the string(s), is dependent on other factors not
represented, such as interactions (coupling) be-
tween the vibrations of different strings and also
of the piano frame and soundboard.

Finally, we plan to extend this work to inves-
tigate expressive timing. One approach would
be to use time domain analysis to identify the
onsets of notes more accurately. We also in-
tend to link this work with recent work on beat
tracking (Dixon and Cambouropoulos, 2000), in
order to separate the different levels of expres-
sive timing in the music, that is to separate lo-
cal changes, such as the displacements of events
from their nominal temporal position, from more
general changes, such as an increase in the aver-
age tempo.
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