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ABSTRACT

In order to reason about the real world, intelligent systems must
have ways of dealing with incomplete and inconsistent information.
This issue is addressed in the study of nonmonotonic reasoning,
truth maintenance and database update. Belief revision is a formal
approach which is central to these areas. This thesis describes a
computational approach to the logic of belief revision developed by
Alchourrón, Gärdenfors and Makinson (AGM), culminating in the
first implementation of an AGM belief revision system. The
implementation is based on classical first-order logic, and for any
finitely representable belief state, it efficiently computes
expansions, contractions and revisions satisfying the AGM
postulates for rational belief change. The epistemic state is
represented by a finite entrenchment base, from which the full
belief set may be derived by logical closure, and the entrenchment
relation can be generated via the construction of a unique most
conservative entrenchment. The entrenchment construction is
motivated by considerations of evidence and by connections with
truth maintenance and nonmonotonic reasoning. A minimal change
policy is presented as the solution to the entrenchment revision
problem. The belief change algorithms and design decisions are
described in detail, with examples of the system’s operation on
some standard problems in the AI literature. Two extensions of the
system are also described: firstly, an entrenchment generation
algorithm which allows the AGM system to simulate the behaviour
of the assumption-based truth maintenance system (ATMS); and
secondly, a modification to the most conservative entrenchment in
order to implement nonmonotonic reasoning using defaults with
exceptions.

iii



ACKNOWLEDGEMENTS

I wish to thank my supervisor, Norman Foo, for getting me started
in belief revision and providing direction and ideas all along the
way; Wayne Wobcke, my associate supervisor, for ironing out
many technical flaws in my work; the rest of the Knowledge
Systems Group, particularly Maryanne Williams and Pavlos Peppas
for their suggestions and criticism, and Maurice Pagnucco for his
library of papers and his proof-reading.

Recreational breaks on campus (squash, bridge and music) were
provided by Dean, Groo, Paul, Morri, Mike, Rex, and Boon Toh.
These either preserved my sanity or impeded my progress. Thanks!
The undergraduates who experienced my tutorials also provided
many hours of distraction from research (mostly enjoyable), as did
the other visitors to the Knowledge Systems Laboratory. Telephone
calls (and occasional visits) were courtesy of Leonie and Nicola.

Off-campus distractions were organised by The White Boys
(blues), Cross Street (a cappella), and The Remnant (rock).
Mudcake was supplied by Exclusive Cheesecakes, kebabs by
Rowda’s, and nachos by Dean’s. Wisdom was supplied by Andrew
Kitchen, Bryen Willems and Mark Maguire. A special mention
must go to Mike Howell, who is my only friend who thought I
should not do a PhD (and had the courage to say so). Other friends
cannot go unmentioned: Adrian, Alvin, Annie, Antony, Ben, Dave,
John, Katrin, M.C., Mick, Ming, Paul, Susan and Tim.

My family were always willing to help in any way they could, and
their love is very much appreciated.

This work was supported financially by an Australian Postgraduate
Research Award, plus other grants, travel allowances, and
scholarships from the Australian Research Council, IJCAI Inc., the
Knowledge Systems Group, Computer Science Department, and the
University of Sydney.

"Of making many books there is no end, and much study wearies
the body." – Ecclesiastes 12:12

iv



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Foundational and Coherence Theories of Justification . . . . . . . . 2
1.2 Introduction to AGM Belief Revision . . . . . . . . . . . . . 4
1.3 Overview of the Thesis . . . . . . . . . . . . . . . . . 6

2. Overview of Belief Revision Models . . . . . . . . . . . . . . 9
2.1 The AGM Belief Revision Paradigm . . . . . . . . . . . . . 9
2.2 Constructive Modellings for AGM Belief Revision . . . . . . . . . . 14
2.3 Theory Base Approaches to Belief Revision . . . . . . . . . . . 20
2.4 Model-Theoretic Approaches to Belief Revision . . . . . . . . . . 29
2.5 Conditional Functions and Iterated Belief Change . . . . . . . . . . 30
2.6 Summary . . . . . . . . . . . . . . . . . . . . . 33

3. A Computational Approach to AGM Belief Revision . . . . . . . . . 34
3.1 The Representation of Belief States . . . . . . . . . . . . . . 36
3.2 Most Conservative Entrenchments . . . . . . . . . . . . . . 37
3.3 Conservatism and Independence of Beliefs . . . . . . . . . . . . 40
3.4 Entrenchment Revision . . . . . . . . . . . . . . . . . 42
3.5 Summary . . . . . . . . . . . . . . . . . . . . . 45

4. Algorithms for AGM Belief Revision . . . . . . . . . . . . . 47
4.1 Determination of Rank . . . . . . . . . . . . . . . . . 48
4.2 Expansion . . . . . . . . . . . . . . . . . . . . . 50
4.3 Contraction . . . . . . . . . . . . . . . . . . . . 56
4.4 Revision . . . . . . . . . . . . . . . . . . . . . 62
4.5 Summary . . . . . . . . . . . . . . . . . . . . . 66

5. A First-Order Logic AGM Belief Revision System . . . . . . . . . . 67
5.1 Internal Data Representation and Code . . . . . . . . . . . . . 67
5.2 The First-Order Logic Proof Procedure . . . . . . . . . . . . . 70
5.3 Equality . . . . . . . . . . . . . . . . . . . . . 72
5.4 Interface to the System . . . . . . . . . . . . . . . . . 75
5.5 Examples: Expansion, Contraction and Revision . . . . . . . . . . 76
5.6 Further Examples: Conditional Queries and Inheritance Networks . . . . . . 78
5.7 Summary . . . . . . . . . . . . . . . . . . . . . 81

6. Belief Revision and Truth Maintenance . . . . . . . . . . . . . 82
6.1 The ATMS . . . . . . . . . . . . . . . . . . . . 83
6.2 ATMS Algorithm 1: Explicit Entrenchment Generation . . . . . . . . 89
6.3 ATMS Algorithm 2: Conservative Entrenchment Generation . . . . . . . 96
6.4 Implementing the Algorithms . . . . . . . . . . . . . . . 100
6.5 Extensions to the ATMS . . . . . . . . . . . . . . . . . 102
6.6 Foundational Reasoning . . . . . . . . . . . . . . . . . 103
6.7 Summary . . . . . . . . . . . . . . . . . . . . . 105

7. Belief Revision and Nonmonotonic Reasoning . . . . . . . . . . . 107
7.1 Theoretical Connections . . . . . . . . . . . . . . . . . 107
7.2 A Belief Revision Approach to Nonmonotonic Reasoning . . . . . . . . 108
7.3 A Revision Operation for Nonmonotonic Reasoning . . . . . . . . . 111
7.4 Examples: Benchmark Problems in Nonmonotonic Reasoning . . . . . . 113
7.5 Discussion and Comparison with Related Work . . . . . . . . . . 118
7.6 Summary . . . . . . . . . . . . . . . . . . . . . 120

8. Conclusion . . . . . . . . . . . . . . . . . . . . . 121
8.1 Further Work . . . . . . . . . . . . . . . . . . . . 123

v



APPENDICES

A. Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . 127

B. The Correctness of the Expansion Algorithm . . . . . . . . . . . 130

C. The Correctness of the Contraction Algorithm . . . . . . . . . . . 134

D. The Correctness of the Revision Algorithm . . . . . . . . . . . . 138

E. The Correctness of ATMS_Algorithm_1 . . . . . . . . . . . . . 140

F. The Correctness of ATMS_Algorithm_2 . . . . . . . . . . . . . 148

G. References . . . . . . . . . . . . . . . . . . . . . . 154

vi



1

1 Introduction

Artificial intelligence (AI) has been defined as "the study of ideas that enable

computers to be intelligent" [Winston 1984] and "the study of intelligent behaviour"

[Genesereth & Nilsson 1987]. These definitions are circular, in that they rely on an

implicit understanding of the nature of intelligence itself. Computer systems have

been built which are supposed to display intelligent behaviour, but how can such

behaviour be categorised or recognised as intelligent?

One definition of intelligence is "the capacity to acquire and apply knowledge", and it

is with this definition in mind that we introduce the topic of this thesis: belief

revision. The study of belief revision is of central concern in artificial intelligence, as

it involves the rational acquisition and application of knowledge in reasoning about

the world. In philosophy, belief revision is part of the topic of epistemology, the

study of the nature and origin of knowledge; although we are concerned with beliefs

and their acceptance rather than knowledge and truth.

For a computer system to acquire knowledge successfully, there must be a suitable

method of representing the knowledge so that it may be stored, retrieved and

manipulated in an efficient manner. Many knowledge representation formalisms have

been proposed, but there are other problems in knowledge acquisition apart from

finding an adequate knowledge representation formalism. Our beliefs about the

world can be incomplete, so that we do not know enough to come to the correct

conclusion, either because we are unaware of certain facts, or else our beliefs are not

sufficiently precise to distinguish between similar alternatives. A second problem,

incorrect beliefs, can be caused by a faulty observation, an error in communication, or

deceit on the part of the information source. Thirdly, beliefs can be inappropriate to a

particular situation when we fail to observe an action or event that alters the world, or

else we are unaware of the ramifications of the action or event, so that beliefs which

were once correct no longer reflect the true state of affairs in the world.

Thus our beliefs about the world must constantly change as we acquire new

information from more or less reliable sources. Hence the need for belief revision.
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2    Belief Revision: A Computational Approach

1.1  The Foundational and Coherence Theories of Justification

Before introducing belief revision, we present a description of the two main

philosophical views of how knowledge may be justified [Pappas & Swain 1978].

These are best illustrated by two metaphors from [Sosa 1980]:

"For the foundationalist every piece of knowledge stands at the apex of a

pyramid that rests on stable and secure foundations whose stability and

security does not derive from the upper stories or sections. For the

coherentist a body of knowledge is a free-floating raft every plank of which

helps directly or indirectly to keep all the others in place, and no plank of

which would retain its status with no help from the others."

1.1.1  Static Epistemic States

In the foundational theory of justification, a proposition α is accepted (i.e. believed)

if and only if:

1) α is self-evident, or

2) α can be derived from a set of accepted propositions.

Sentences fulfilling the first condition are called foundational beliefs. It is assumed

that the acceptance of these beliefs is indisputable, since they form the basis of the

whole epistemic state. Foundational beliefs usually correspond to "hard facts", such

as observations about the physical world. This view (called radical foundationalism)

is criticised in [Pastin 1978], where a weaker condition of self-warrant replaces the

infallibility requirement for foundational beliefs. The assumption-based truth

maintenance system [de Kleer 1986] operates along these lines, with the foundational

beliefs being assumptions which can be added to or retracted from the belief set at

any time.

Assuming a logic-based representation of our beliefs, then the sentences satisfying

the second condition are those which are logical consequences of the foundational

beliefs. Each belief has a justification (for logical representations this is a proof),

using beliefs which are also justified, and their justifications must in turn be based on

further justified beliefs; hence the belief set consists of propositions linked by chains

of justifications. To conform with the above definition, these chains must end in the

1.1



Introduction    3

foundational beliefs; an infinite regression is not allowed, nor is any circular chain of

justifications. Often we distinguish between the explicit (foundational) beliefs and the

implicit (derived) beliefs, attaching a greater degree of importance to the explicit

beliefs [Nebel 1990].

On the other hand, the coherence theory does not require beliefs to have a formal

justification. Instead, propositions are accepted which improve the overall coherence

of the belief set. [Cornman 1978] argues that the only rational non-foundational

theory of justification is the coherence theory, which can be thought of as a

generalisation of the foundational theory which allows cycles in the chains of

justifications. Several types of coherence are identified in [Thagard 1989]: deductive

coherence is based on the logical consistency of the belief set; probabilistic

coherence depends on the propositions having probability assignments which are

consistent with the axioms of probability; semantic coherence exists when

propositions have similar meanings; and explanatory coherence occurs when there

are consistent explanatory relationships between the propositions in the belief set. All

except deductive coherence require some form of extralogical information in order to

measure the coherence of a set of propositions. For this reason, deductive coherence

is also known as weak coherence, whereas the other types are classed as strong

coherence methods.

1.1.2  The Dynamics of Epistemic States

The two theories of justification usually relate to static belief states, but they are

applied to belief revision in [Harman 1986] and [Gärdenfors 1990b]. According to

the foundational theory, belief revision should consist of two steps: retracting beliefs

which no longer have a satisfactory justification, and adding beliefs which now do

have a satisfactory justification. In this sense the foundational theory is

nonconservative, because the fact that a belief was held in the past has no bearing on

its present status. Therefore, in foundationalism, the credibility of a belief is

independent of the history of the belief set.

Conversely, the coherence theory provides a conservative approach to belief revision,

by requiring a minimal change in the belief state that sufficiently increases the overall

coherence of the beliefs. Thus the history of a belief set will determine much of its

future contents.

1.1



4    Belief Revision: A Computational Approach

It is natural to question at this point which approach is preferable. Intuitively, it is

more rational to give up beliefs whose justifications have been discredited, and hence

the foundational theory seems to model how beliefs ought to be revised. But Harman

cites psychological studies which show that the coherence theory is closer in

describing what people actually do when revising their beliefs. Summarising several

such studies, [Ross & Anderson 1982] states: "It is clear that beliefs can survive ...

the total destruction of their original evidential bases." The main reason for this is

that people do not keep track of the justifications for their beliefs. But human

behaviour does not necessarily bear upon a theory of rational belief revision. In

[Dixon & Foo 1992b], we present examples which demonstrate the need for both

styles of reasoning in a rational belief revision system. In particular, the coherence

theory is useful for reasoning about actions or events whose effects persist beyond the

duration of the action or event.

1.2  Introduction to AGM Belief Revision

The problem of belief revision can be simply stated as this: given a consistent belief

state and some new information, how do we assimilate this new data into our belief

set? Some basic requirements on this process are firstly that the new belief state is

consistent; secondly, that the new information is reflected in the resulting state of

belief; and thirdly, that any previous beliefs (unless contradicted) are preserved in the

new belief state.

One formal approach to belief revision which satisfies these requirements has been

developed by Alchourrón, Gärdenfors and Makinson [Alchourrón & Makinson 1982,

1985; Alchourrón et al. 1985; Gärdenfors 1988, 1990b; Gärdenfors & Makinson

1988; Makinson 1985, 1987], which has become known as the AGM approach to

belief revision. In this approach, an idealised mathematical formalism is used for

representing belief states and describing the ways in which these states change in the

light of new information. There are three types of belief change in the AGM

approach: expansion, contraction and revision. Expansion involves the acceptance of

a new belief without giving up any previous beliefs, even if they are contradicted by

the new information. Contraction is the converse of expansion; a belief is removed

from the belief set and no new beliefs are added. The third operation, revision, adds a

new belief to the belief set but also ensures that the resulting belief set is consistent,

1.2



Introduction    5

which may mean that some of the original beliefs must be given up.

Each AGM belief change operation is characterised by a set of rationality postulates;

we shall describe a function which satisfies these postulates as a (fully) rational belief

change operation. The postulates capture the basic requirements of belief change –

the consistency of the resulting state, the acceptance of the new information, and the

preservation of previous beliefs. That is, a rational belief change is defined to be the

minimal change to the belief set which consistently incorporates new information

into the belief set.

The AGM approach assumes a linguistic model of beliefs; each belief is expressed as

a sentence in some (logical) language. Then a belief set is the collection of all the

sentences in this language which we accept, or regard as certain. Also, a belief state

is a belief set together with any metalogical epistemic attitudes, such as a preference

for one belief over another. We shall use the terms belief state and epistemic state

interchangeably. Also, the term belief revision is used in two senses: firstly, as a

generic term equivalent to belief change; and secondly, as a specific belief change

operation, as opposed to other AGM operations such as expansion and contraction.

The appropriate meaning will be clear from the context.

At a first glance, the AGM postulates seem to define a coherence-based approach to

belief revision, as the belief change operations compute the minimal changes to the

belief set which are required to successfully assimilate the new information whilst

retaining the logical consistency of the belief set; this satisfies the definition of weak

coherence. But we show in chapter 6 that the extralogical information provided by the

entrenchment relation is sufficient to obtain foundational behaviour from the AGM

logic. Coherence-based behaviour can also be achieved by a different choice of

entrenchment relation [Dixon & Foo 1992b]. Therefore, the AGM approach is

sufficiently versatile for reasoning according to either the foundational or coherence

theories of justification.

One idealisation of the AGM approach to belief revision is that the belief set is

assumed to be logically closed. That is, the belief set contains all of its logical

consequences. If the belief change functions are interpreted as modelling a rational

agent, then this assumption corresponds to the agent being logically omniscient.

1.2



6    Belief Revision: A Computational Approach

There are several constructive modellings of AGM belief change operations, based on

a preference relation on the belief set (epistemic entrenchment and safety relations), a

preference relation on maximal consistent sets of formulae in the language (systems

of spheres), or a selection function on maximal consistent subsets of the belief set

(transitively relational partial meet contraction and revision functions). All of these

constructive modellings have the same problem that they do not present any finite

algorithmic method of computing belief change operations.

Alternative formalisms using theory bases instead of belief sets have been proposed;

these also use preference relations (comparative retractability, E-bases, most

conservative entrenchments, ensconcements, database priorities, epistemic relevance

and prioritized bases). Although these approaches can be used to define a finite

representation for belief states, none define a computational approach to belief

revision which satisfies the AGM rationality postulates. Similarly, the model-

theoretic approaches to belief revision do not provide a computational account of

belief revision.

1.3  Overview of the Thesis

The primary contribution of this thesis is the development of a complete

computational approach to AGM belief revision, including representation

formalisms, belief change algorithms, a working implementation, and the application

of these algorithms to solve problems in fields outside of belief revision.

In chapter 2, we present a summary of some formal approaches to belief revision. The

AGM belief revision framework is presented, in terms of the representation

formalisms, a set of rationality postulates for belief change, and a number of

constructive modellings for belief change operations which satisfy the AGM

rationality postulates, such as epistemic entrenchment. Then several alternative

approaches are presented which, for the sake of computational or representational

efficiency, do not satisfy all of the AGM postulates. These methods are compared and

contrasted with the AGM approach, identifying the strengths and weaknesses of each

approach. We conclude that one deficiency is the lack of a computational model of

AGM belief revision; the rest of the thesis addresses this issue.

1.3
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In chapter 3, we describe our computational approach to AGM belief revision,

addressing four main theoretical issues. The first issue is finding an efficient and

clear representation of belief states which can be used in a computational setting. The

second issue is defining a method of generating an AGM epistemic entrenchment

relation from a finite representation. Thirdly, we discuss entrenchment revision, that

is, how the entrenchment relation is modified by belief change operations. The policy

adopted for entrenchment revision is based on the coherentist principle of minimal

change, which is a basic tenet of the AGM paradigm. Finally, we discuss the

relationship between coherentism and the (usually tacit) assumption of independence

of beliefs, and describe its influence on the choice of belief revision policy.

The fourth chapter contains a set of algorithms used in computing AGM belief

revision operations, based on the representations developed in chapter 3. We

describe algorithms for determining rank (the finite representation of entrenchment),

the three AGM operations (expansion, contraction and revision), plus some variations

on these operations from the belief revision literature. Each algorithm is discussed in

detail and illustrated with examples. We also develop formal correctness conditions

for the operations which ensure that the minimal change entrenchment revision policy

is followed, and formally prove that the algorithms conform to these specifications.

Complexity considerations for the algorithms are also addressed in this chapter, and

we show that if we choose a logic with a tractable decision procedure for derivability,

then the belief revision operations will also be tractable.

Chapter 5 describes the implementation details of a first-order logic AGM belief

revision system, including design decisions, data structures, the theorem proving

procedure, the user interface, and several examples of its operation. The theorem

prover is based on ordered linear resolution [Chang & Lee 1973], and is extended to

handle the equality predicate by adding a paramodulation step which is equivalent to

two ordered linear resolution steps. We also describe a method which ensures

termination of the theorem proving procedure, but sacrifices the completeness of the

decision procedure for derivability, for an identifiable class of cases. The examples

demonstrate the use of the standard AGM operations (expansion, contraction and

revision), as well as the queries of the belief set and the entrenchment relation, and a

conditional query which is evaluated according to the Ramsey Test for conditionals

[Ramsey 1931].

1.3



8    Belief Revision: A Computational Approach

The next two chapters illustrate the application of belief revision to other forms of

dynamic reasoning. In chapter 6, we discuss the relationship between belief revision

and truth maintenance, showing that it is possible to define an entrenchment

generation and revision algorithm which allows the AGM system to operate as a truth

maintenance system. We give two algorithms for simulating the behaviour of the

assumption-based truth maintenance system (ATMS) [de Kleer 1986], proving them

correct relative to a functional specification of the ATMS. The ATMS was chosen

because it is the most widely used dynamic reasoning system which is based on the

foundational theory of justification, and this result demonstrates that it is possible to

use the epistemic entrenchment relation to encode foundational information. This is

contrary to the usual view of the AGM approach being based on the coherence theory

of justification. The chapter concludes with a theoretical analysis of the general

relationship between belief revision and foundational reasoning, and gives the

conditions under which foundational reasoning can be performed using AGM belief

revision.

The other application, to nonmonotonic reasoning, is presented in chapter 7, where

the implementation of a nonmonotonic reasoning system based on the AGM system

is described. The system reasons about defaults with exceptions, and uses a modified

version of the revision algorithm from chapter 4. After discussing the theoretical

issues and design decisions, we illustrate the use of the system on a number of

benchmark problems from the nonmonotonic reasoning literature [Lifschitz 1989],

and compare the system with other approaches to nonmonotonic reasoning.

The final chapter summarises the results contained in the thesis and outlines some

directions for further research.

Some material in the thesis has been published; parts of chapters 3, 4 and 5 appear in

[Dixon 1993] and [Dixon & Wobcke 1993], the first algorithm of chapter 6 is

presented in [Dixon & Foo 1992a, 1993], and chapter 7 contains some joint work

from [Dixon & Wobcke 1994]. Also, some of the discussion of chapters 2 and 6 first

appeared in [Dixon & Foo 1992b].

1.3
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2 Overview of Belief
Revision Models

In this chapter we present a survey of the theory of belief revision in artificial

intelligence. We will mainly focus on the AGM paradigm, which is defined by a set

of rationality postulates [Alchourrón et al. 1985, Gärdenfors 1988], and is also

characterised by several constructive modellings for expansion, contraction and

revision. The postulates provide a non-constructive approach to belief revision, as

they do not define a unique set of belief change operations. Some constructive

approaches are presented, including epistemic entrenchment [Gärdenfors &

Makinson 1988], systems of spheres [Grove 1988], safe contraction [Alchourrón &

Makinson 1985] and conditional functions [Spohn 1988]. All of these approaches are

non-computational, as they do not provide an algorithmic means of revising finite

representations of belief states. Nevertheless, they provide a theoretical foundation

for idealised rational belief change, to which a computational model should aspire.

We now present a brief outline of AGM belief revision followed by several variants

of the AGM approach to belief revision.

2.1  The AGM Belief Revision Paradigm

2.1.1  Belief Sets

The first issue which must be addressed in developing a theory of belief revision is

the method of representing the beliefs of an agent. The most common method,

particularly in computational settings, is by a set of sentences in a logical language L.

The belief set is intended to represent the set of all sentences accepted by the agent,

that is all sentences which are believed to be true. We shall denote the belief set by

the symbol K.

Assume the logical language L contains the standard logical connectives: negation

(¬), conjunction (∧), disjunction (∨) and material implication (→); plus the two

2.1



10    Belief Revision: A Computational Approach

constants truth (T) and falsity (⊥).

In a consistent belief state, there are three possible epistemic attitudes towards a

sentence α:

(1) α is accepted (α ∈ K)

(2) α is rejected (¬α ∈ K)

(3) α is indetermined (α ∈/  K and ¬α ∈/  K)

A belief set in which α and ¬α are both accepted is inconsistent, and hence it is

disallowed in modelling epistemic states. Also, for an agent to be ideally rational, it

must believe all of the consequences of its beliefs. These criteria may not be suitable

for modelling realistic agents, which do not have this property of logical

omniscience, but they are useful in defining ideally rational belief sets.

Hence the definition of a belief set relies heavily on the logical consequence relation,

which we shall denote by the symbol |− . In the AGM framework, the logic is

assumed to contain classical propositional logic, satisfy the deduction theorem, and

be compact. The set of all consequences of a set K, denoted Cn (K) , is defined by

{α : K  |−  α}. The above two conditions can then be expressed by the following

definition [Gärdenfors 1988]:

A set K of sentences is a (nonabsurd) belief  set if and only if:

(1) K  |−/  ⊥, and

(2) K  = Cn (K) .

The absurd belief set is denoted K ⊥ , and contains all sentences in the language. This

definition of a belief set corresponds to the definition of a theory in logic, and

nonabsurd belief sets correspond to consistent theories.

2.1.2  AGM Belief Change Operations

The AGM framework is characterised by three ways of changing the belief state:

expansion, contraction and revision. Each of these operations models an idealised

rational choice of beliefs in the light of new information which may or may not be

consistent with current beliefs. There are six possible ways the epistemic attitude

towards a sentence may change between the three attitudes accepted, rejected, and

indetermined. Each of the AGM belief change operations captures two of these types.

2.1
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In an expansion, the attitude towards a sentence α is changed from indetermined to

accepted (expansion by α) or rejected (expansion by ¬α). This operation is called

expansion because either α or ¬α is added to the belief set K, and none of the old

beliefs are retracted. Expansion of K by α is denoted Kα
+ . [Gärdenfors 1988] shows

that the minimal change operation which accepts a new belief without removing any

of the old beliefs is given by:

Kα
+   =  Cn (K  ∪ {α}) .

By this definition, the expansion succeeds regardless of whether or not the new belief

α is consistent with K. That is, expansion is defined even when the epistemic attitude

towards the new sentence is already determined. If ¬α ∈ K, then the expansion Kα
+

results in the inconsistent belief set K ⊥; otherwise the expansion is guaranteed to

return a consistent minimal belief set containing K and α.

The second type of epistemic change is contraction, which occurs when the attitude

towards a belief α changes from accepted (contraction by α) or rejected (contraction

by ¬α) to indetermined. No new sentences are added to the belief set, so the

contracted belief set is always a subset of the initial belief set K. The contraction of a

belief set K by α is denoted Kα
− . Unfortunately, there is no definition of a unique

contraction operation in purely logical and set-theoretic terms, since there is a choice

of which belief or beliefs to retract when α is derivable from a combination of other

beliefs. In the next subsection, we describe the postulates for a rational contraction

operation, and then in the following section show how a preference relation can be

used to define a unique contraction operation.

The revision operation covers the final two types of epistemic change, when the

attitude towards α changes from accepted to rejected (revision by ¬α) or from

rejected to accepted (revision by α). The revision operation is defined with respect to

the belief which is newly accepted, so that Kα* denotes the acceptance of the

previously rejected sentence α. In the case where ¬α ∈/  K, the revision collapses to

an expansion operation, and when α ∈ K, it is the trivial expansion, leaving K

unchanged. Like contraction, a unique revision operation cannot be defined without

using a selection function or preference relation, which we shall describe in the

following section.
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2.1.3  Rationality Postulates

The following postulates for contraction and revision [Alchourrón et al. 1985] define

fully  rational contraction and revision functions. The first six postulates for each

operation are known as the basic postulates, and the remaining two as the

supplementary postulates. The postulates for contraction are as follows:

(K-1) Kα
−  = Cn (Kα

− )

(K-2) Kα
−  ⊆ K

(K-3) If α ∈/  K then Kα
−  = K

(K-4) If |−/ α then α ∈/  Kα
−

(K-5) K  ⊆ (Kα
− ) α

+

(K-6) If |−  α ↔ β then Kα
−  = Kβ

−

(K-7) Kα
−  ∩ Kβ

−  ⊆ Kα∧β
−

(K-8) If α ∈/  Kα∧β
− then Kα∧β

−  ⊆ Kα
−

The first postulate requires the contraction operation to preserve logical closure; the

second postulate ensures that no new sentences are added to the belief set; and (K-3)

defines the trivial contraction – the belief set is unchanged by an attempt to retract a

sentence which does not occur in the belief set. Postulate (K-4), the "success

postulate", states that a retracted belief cannot remain in the belief set, unless it is a

logical theorem. (K-5), known as the "recovery postulate", defines a notion of

minimal change, whereby all beliefs removed by the contraction of α can be replaced

by a subsequent expansion by α. This postulate has received some criticism

[Makinson 1987, Fuhrmann 1991, Niederée 1991, Hansson 1991] but it appears to be

suitable for the idealised situation of reasoning with closed theories, if not for their

finite counterparts. The sixth postulate ensures that contractions by logically

equivalent formulae yield the same results. The supplementary postulates define

relationships between Kα∧β
− and Kα

− . (K-7) states that retracting the sentence α ∧ β

from K cannot remove any more sentences than are removed by at least one of the

contractions Kα
− and Kβ

− . In other words, the beliefs remaining in both Kα
− and Kβ

−

must be contained in Kα∧β
− . Finally, (K-8) is a conditional converse of (K-7); if the

removal of α ∧ β forces α to be removed, then the removal of α ∧ β can be no

stronger than the removal of the logically weaker sentence α. The two supplementary

postulates add to the concept of minimal change defined by the basic postulates.
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The following are the postulates for revision:

(K*1) Kα*  = Cn (Kα* )

(K*2) α ∈ Kα*

(K*3) Kα*  ⊆ Kα
+

(K*4) If ¬α ∈/  K then Kα
+  ⊆ Kα*

(K*5) Kα*  = K ⊥ only if |−  ¬α

(K*6) If |−  α ↔ β then Kα*  = Kβ*

(K*7) Kα∧β*  ⊆ (Kα* ) β
+

(K*8) If ¬β ∈/  Kα* then (Kα* ) β
+  ⊆ Kα∧β*

The revision operation also preserves logical closure (K*1); it must also be

successful, that is, the sentence α by which we are revising the belief set K must

always appear in the revised belief set Kα* , by postulate (K*2). Thirdly, no extra

sentences are added to the belief set except those which are logical consequences of

the new sentence α and the belief set K. By (K*4), the converse applies for a revision

by a sentence α which is consistent with K, so that no sentences are removed from the

belief set, in which case the revision is equivalent to an expansion. (K*5) ensures that

revision always results in a consistent belief set, unless the operation specifically

introduces a logically inconsistent sentence into the belief set. Like contraction,

revision respects logical equivalence, by (K*6). Finally, the supplementary postulates

define a relationship between the revisions by the logically dependent formulae α and

α ∧ β. The justification for these postulates is that the minimal change required to

accommodate both α and β in K should be the same as the expansion of Kα* by β, in

the case where the expansion is consistent, that is, ¬β ∈/  Kα* . This relationship is split

into two containment conditions. The consistency check is not necessary in (K*7),

since if ¬β ∈ Kα* , then (Kα* ) β
+  = K ⊥ , which trivially contains all other belief sets.

The rationality postulates for revision bear a very close resemblance to those for

contraction. One reason for this is that the two operations are interdefinable by the

following identities:

Levi identity:      Kα*  = (K¬α
− ) α

+

Harper identity:   Kα
−  = K  ∩ K¬α*

It has been shown [Alchourrón et al. 1985], that if a contraction function satisfies the

first six postulates for contraction, (K-1) – (K-6), then the revision operation defined

2.1
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by the Levi identity satisfies postulates (K*1) – (K*6). Furthermore, if the

contraction function also satisfies (K-7), then the revision satisfies (K*7), and

similarly if all eight contraction postulates are satisfied, then the corresponding

revision function satisfies all eight postulates for revision. The converse also holds

for contraction functions defined by revision functions via the Harper identity – the

first six, seven or eight contraction postulates are satisfied by the resulting

contraction operation when the revision operation satisfies the first six, seven or eight

(respectively) revision postulates.

2.2  Constructive Modellings for AGM Belief Revision

2.2.1  Epistemic Entrenchment

As stated previously, logical and set-theoretic postulates are not sufficient to define

unique contraction or revision operations. The postulates define the class of rational

belief change functions, but do not provide any way of choosing a particular revision

or contraction function. To choose between the various belief change operations, the

AGM model uses extralogical information in the form of an epistemic entrenchment

relation [Gärdenfors & Makinson 1988].

The basis for the concept of epistemic entrenchment is that some propositions in a

belief set are more useful or more important than others for reasoning. We shall say

that such sentences have a higher degree of epistemic entrenchment, and assume that

this will influence our choice of contraction and revision functions. If this

entrenchment relation is to be useful, we must be able to determine the relation

independently of the behaviour of a particular contraction or revision operation. Then

the belief change operation can be defined from the entrenchment relation such that

the sentences in the belief set with lower entrenchments are given up in preference to

sentences with higher entrenchments.

Degrees of entrenchment are not measured quantitatively, but only relative to other

degrees of entrenchment. For any two sentences α and β in L, we define the

following symbols for the relation ≤E : α ≤E  β denotes that β is at least as

epistemically entrenched as α; α <E  β if and only if α ≤E  β and not β ≤E  α; and

α =E  β if and only if α ≤E  β and β ≤E  α. We will sometimes use the term ordering to
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describe the entrenchment relation, although strictly speaking the relation is a total

pre-order on the sentences in L. The entrenchment relation obeys the following

postulates for all α,  β,  γ ∈ L:

(EE1) If α ≤E  β and β ≤E  γ then α ≤E  γ

(EE2) If α |−  β then α ≤E  β

(EE3) For any α and β, α ≤E  α∧β or β ≤E  α∧β

(EE4) When K≠K ⊥ , α ∈/  K iff α ≤E  β for all β

(EE5) If β ≤E  α for all β then |−  α

The first condition is that the relation is transitive; the second, called the "dominance"

postulate, is motivated by considering contracting a belief set K containing α and β

by either of the two sentences, and noting that it is a smaller change to give up α and

retain β than to give up β, in which case α must also be removed if the contraction is

to obey the rationality postulates. For (EE3), we note that the contraction of α∧β

from a belief set containing this sentence forces the removal of at least one of α and

β. Note also that the combination of (EE2) and (EE3) implies that the ordering is

connected, that is, for all α and β, either α ≤E  β or β ≤E  α. (EE4) provides a

minimality condition: all sentences outside K have the least entrenchment, and no

other sentences have this same entrenchment, except in the case where K is

inconsistent, and therefore there are no sentences outside of K. Finally (EE5) is the

upper limit on the entrenchment relation: those sentences which are maximal in the

relation are logical theorems. Conversely, by (EE2), all logical theorems are maximal

in the entrenchment ordering.

For the moment, we shall assume a given entrenchment relation ≤E which satisfies

(EE1) – (EE5). This relation depends on K, since (EE4) implies that different belief

sets have different epistemic entrenchments. It is possible, however, for one belief set

to have different entrenchments on its members at different times.

Now we turn to the issue of constructing contraction and revision functions from the

entrenchment relation. [Gärdenfors & Makinson 1988] shows that contraction

functions and epistemic entrenchment relations are interdefinable via the following

two conditions:

(C–)      β ∈ Kα
−   iff   β ∈ K   and either   |−  α  or   α <E  α ∨ β

(C≤E)    α ≤E  β  iff   α ∈/  Kα∧β
−   or   |−  α∧β
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Two representation theorems are then proved, to show the equivalence of the

different representations. These state that if an ordering ≤E satisfies (EE1) – (EE5),

then the contraction function which is uniquely determined by (C–) satisfies (K-1) –

(K-8) and also condition (C≤E); and, conversely, if a contraction function satisfies

(K-1) – (K-8) then the ordering ≤E that is uniquely determined by (C≤E) satisfies

(EE1) – (EE5) and also condition (C–).

Using the relationships between contraction and revision, the Levi and Harper

identities, a constructive definition of revision based on epistemic entrenchment can

also be derived:

(C*)     β ∈ Kα* iff either |−  ¬α or ¬α <E  α → β

Similarly, if the relation ≤E satisfies (EE1) – (EE5), then the revision function which

is uniquely determined by (C*) satisfies (K*1) – (K*8), and the contraction function

generated by the Harper identity satisfies (C≤E).

With these equivalences in place, the problem of choosing a contraction or revision

function has been replaced by the problem of choosing an epistemic entrenchment

ordering. Epistemologically, it is possible to take either entrenchment or contraction

or revision as the fundamental notion from which the other models are derived. But,

from a computational point of view, it is more promising to use epistemic

entrenchment as the primitive notion, so this is the approach taken within this thesis.

Before describing some of the alternatives to AGM belief revision, we will present

three other constructive models of AGM belief revision.

2.2.2  Maximal Consistent Subsets

The early work on contraction and revision functions [Alchourrón & Makinson 1982;

Alchourrón et al. 1985] characterised contraction functions in terms of maximal

subsets of the belief set which do not imply the sentence being contracted from the

theory. If K is a belief set, then let K⊥α be the set of all maximal subsets of K that do

not imply α. That is, for all M  ∈ K⊥α, M  |−/  α and if M  ⊂ M '  ⊆ K then M '  |−  α.

A contraction function that chooses a member of K⊥α is called a maxichoice

contraction function. It was shown in [Alchourrón & Makinson 1982] that such

contractions are too large. The maxichoice revision defined from a maxichoice

2.2



Overview of Belief Revision Models    17

contraction via the Levi identity has the property that if the new sentence is not

consistent with K, then the revised belief set is a complete theory, even if K was not

complete initially. Also, if α ∈ K, then for all propositions β, either α∨β ∈ Kα
− or

α∨¬β ∈ Kα
− , for a maxichoice contraction operation.

Nevertheless, such contraction functions do satisfy the basic postulates (K-1) – (K-6).

Also, if there is some partial ordering on the power set of K, and if the contraction

function always chooses an element of K⊥α which is maximal with respect to this

ordering, then it will satisfy (K-7) and (K-8).

The most simple alternative to maxichoice contraction is to define the contraction of

K by α to be the intersection of all maximal consistent subsets which do not imply α.

That is, Kα
−  = ∩ K⊥α, where K⊥α is nonempty, otherwise Kα

−  = K. Such a function

is called a full meet contraction function, and yields a set which is too small, since

[Alchourrón & Makinson 1982] shows that Kα
−  = K  ∩ Cn (¬α) . Also, the resulting

revision function defined via the Levi identity has the property that if ¬α ∈ K, then

Kα*  = Cn (α) . That is, all the original contents of the belief set are lost.

Once again, this function satisfies the basic postulates (K-1) – (K-6), but not the

supplementary postulates. It has been shown that the full meet contraction function is

a lower bound for any contraction function satisfying the basic postulates; that is,

∩ K⊥α must be contained in any contraction of K by α.

Finally, suppose there is a selection function S that chooses the "best" elements of

K⊥α. That is, S (K⊥α)  ⊆ K⊥α, for nonempty K⊥α, and S (K⊥α)  = K otherwise.

Then the contraction function defined by Kα
−  = ∩ S (K⊥α) is called a partial meet

contraction function.

Partial meet contraction functions are fully characterised by the basic postulates (K-1)

– (K-6). That is, a contraction function is a partial meet contraction function if and

only if it satisfies (K-1) – (K-6). Furthermore, if the selection function S chooses

subsets of K which are maximal with respect to some relation on subsets in K⊥α,

then the contraction function is called a relational partial meet contraction function,

and satisfies (K-7). Furthermore, if this relation is transitive, then the resulting

function is called a transitively relational partial meet contraction function, and also

satisfies (K-8). In fact, we have another representation theorem: a contraction

function is a transitively relational partial meet contraction function if and only if it
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satisfies (K-1) – (K-8).

Although this gives us an alternative modelling for belief change functions, the

ordering on sentences provided by epistemic entrenchment is a simpler construction

than an ordering on maximal subsets of K which do not imply the sentence being

removed. In the following chapter, we shall show that entrenchment also has an

elegant computational model, and hence is preferable for the purposes of the current

work.

2.2.3  Systems of Spheres

An alternative model of revision functions is found in [Grove 1988]. This work is

based on the set ML of all maximal consistent extensions of L, which may be seen as

the set of possible worlds which can be described in L. If T is a set of sentences, then

let [T] denote the set of maximal consistent extensions of T, defined by

[T] = {m  ∈ ML  : T  ⊆ m}. For a sentence α, we define [α] to be shorthand for [{α}].

Also let t (S) be the set of sentences true in all members of S, that is: t (S)  = ∩ S.

Suppose the belief set K is represented by X  = [K]. Then Grove defines a system of

spheres S, centred on X, such that S is a collection of subsets of ML with the

following properties:

(S1) S is totally ordered by ⊆

(S2) X  ∈ S and for all U  ∈ S,  X  ⊆ U   (X is ⊆-minimal)

(S3) ML  ∈ S    (ML is ⊆-maximal)

(S4) If α is a sentence and there is some sphere in S that intersects [α], then

        there is a smallest sphere in S that intersects [α] (denoted c (α) ) .

Then we may define a function fS(α)  = [α] ∩ c (α) which selects the "closest"

worlds in ML to X in which α holds. Then the revision function defined by

Kα*  = t ( fS(α) ) satisfies the AGM postulates (K*1) – (K*8) and, conversely, for any

revision function satisfying (K*1) – (K*8), there exists a system of spheres S such

that t ( fS(α) )  = Kα* . Hence we have another representation theorem for AGM belief

change.

Grove provides a second modelling using an ordering on sentences, which is similar

to entrenchment, but with the opposite sense. Define ≤S by α ≤S  β if and only if

c (α)  ⊆ c (β) . Then Kα*  = {β∈L :(α∧β)  <S  (α∧¬β) } defines the same revision
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[K] S 1 S 2 S 3 . . .

[α]ML

fS(α)

Figure 2.1: Belief revision using Grove’s system of spheres

function as Grove’s first model. Intuitively, we understand this as β ∈ Kα* if and only

if the closest worlds containing α also contain β, and none of them contain ¬β. This

idea corresponds with the interpretation of the counterfactual conditional α ⇒ β in

[Lewis 1973], and is also used for the ordinal conditional functions of [Spohn 1988].

2.2.4  Safe Contraction

An alternative approach to constructing a contraction operation is the safe contraction

of [Alchourrón & Makinson 1985]. For a belief set K partially ordered by an

irreflexive and transitive relation <S , we say that an element β ∈ K is safe with

respect to α if and only if every minimal subset of K that implies α either does not

contain β, or else contains at least one element γ <S  β. Then the safe contraction of α

from K is the set of consequences of the safe (with respect to α) elements of K. Safe

contraction satisfies the basic postulates for contraction, (K-1) – (K-6), and also

satisfies the two supplementary postulates (K-7) and (K-8) if the safety relation

satisfies the following two conditions for all α,  β,  γ ∈ K:

(1) If α <S  β and β |−  γ then α <S  γ

(2) If α <S  β then either α <S  γ or γ <S  β
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The notion of safety is somewhat different to epistemic entrenchment, yet [Rott 1992]

showed that safe contraction defined as above corresponds exactly to the class of

contraction functions generated from epistemic entrenchment (or equivalently to the

class of partial meet contraction functions). Hence safe contraction is just another

means of constructing AGM contraction operations.

2.3  Theory Base Approaches to Belief Revision

Interest in the area of belief revision amongst the computer science community has

led to a number of different approaches using sets of sentences (theory bases) which

are not closed under logical consequence. These sets are of particular interest when

they are finite (finite bases), so that the belief set can be represented directly on a

computer. Despite the intention of creating implementable models of belief revision,

surprisingly few of these models have been implemented. In this section we

summarise and compare the major contributions to this area.

Theory base approaches usually satisfy the "inclusion postulate", which states that

when a base is contracted by any sentence, the resulting base is a subset of the

original base. This condition is not compatible with the AGM recovery postulate, and

it also makes the contraction operation
�
− syntax-dependent, in the sense that we can

have two bases Γ and ∆ such that Cn (Γ)  = Cn (∆) , but Cn (Γα
�
− )  ≠ Cn (∆α

�
− ) .

2.3.1  Minimal Contraction (Fuhrmann)

[Fuhrmann 1991] presents a theory base contraction operation which is minimal in

the sense that formulae are not removed from the base unnecessarily. Suppose that

the belief set K is represented by the base B, so that K  = Cn (B) , and we wish to

contract the sentence α from K. Firstly, the sentences in B which are essential to the

derivation of α must be identified. A set S of these essential sentences forms an

entailment set for α in B, satisfying:

(1) S  ⊆ B

(2) α ∈ Cn (S)

(3) If S '  ⊂ S then α ∈/  Cn (S ' )
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The set of all such entailment sets is denoted E (α,B) . Clearly, for a contraction

operation to succeed, at least one member of each entailment set for α must be

removed from the base. The choice of which members to remove is determined by a

preference relation <, called the ordering of comparative retractability. This ordering

is only required to be acyclic, which ensures for finite bases that a minimal element

always exists. Then the contraction operation is defined to remove all such minimal

elements, and nothing else, from the base.

Minimal contraction corresponds to safe contraction, as defined in [Alchourrón &

Makinson 1985] – although safe contraction is defined on closed theories and not

theory bases – and thus it satisfies the basic rationality postulates (K-1) – (K-6) when

B is closed. The recovery postulate (K-5) is not satisfied if B is not closed. If some

further conditions on the preference relation are met, then the resulting contraction

function also satisfies the supplementary postulates (K-7) and (K-8).

Fuhrmann argues that theory bases should satisfy the following filtering condition:

If β has been retracted from a base T in order to bar derivations of α from

T, then the contraction of T by α should not contain any sentences which

were in T "just because" β was in T.

This condition captures a notion of foundationalism: when a belief is retracted from a

theory, its consequences should also be removed from the theory. This idea will be

explored further in chapter 6.

2.3.2  Minimal Contraction (Hansson)

[Hansson 1989] generalises the AGM partial meet contraction functions by

considering contraction operations by sets of sentences rather than single sentences.

To achieve this generalisation, he describes an extended set of basic postulates for

contraction, with a constructive definition for composite partial meet contraction

functions, which exactly characterises the functions which satisfy the extended

postulates. Using these definitions, multiple successive belief changes can be

avoided, by combining multiple contractions into a single operation.

Two theory base approaches to contraction are then presented, for which the inclusion

postulate (Tα
−  ⊆ T for any base T and any sentence α) is not required to hold. In these
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approaches, full minimal contraction and partial minimal contraction, disjunctions of

explicit formulae from the base are added to the contracted base if they are contained

in the full or partial meet contraction (respectively), and they are not already

derivable from the base. Formally, if T is a theory base, then ∨nT, with n≥1, is the

set of expressions that are disjunctions of at most n distinct elements of T. Then the

full (respectively partial) minimal contraction of T by α, denoted Tα
�
− , is defined as

follows, where − is a full (respectively partial) meet contraction operation:

Dn  = (∨n  T) α
−

E 1  = D 1

En +1  = En  ∪ (Dn +1  − Cn (En) )

Tα
�
−  = 

i
∪ Ei

For logically closed theories T, this definition is equivalent to full (respectively

partial) meet contraction. For non-closed bases, the extended basic postulates for

contraction hold, but recovery is vacuous, since it is conditional upon the base being

logically closed. Thus the addition of the extra disjunctions does not give recovery,

and hence we see it as an unnecessary inflation of the base, in the general case. In

chapter 4, we describe an approach where no more than one sentence is added to the

base for each sentence removed by the contraction operation, and this procedure

ensures that the recovery postulate holds.

[Hansson 1991] claims that recovery is not a necessary property of a rational

contraction operation, and replaces the recovery postulate with a weaker condition,

core-retainment, which is equivalent to recovery for closed theories, but not for

theory bases. An example is presented which shows that there are cases where a

partial meet contraction on a theory base is not a suitable contraction operation, but a

partial meet contraction operation on the closure of the base, such as an epistemic

entrenchment contraction, can be constructed to give the intuitively desired results.

2.3.3  E-bases, Ensconcements, and Most Conservative Entrenchments

A more general approach to constructing theory base contraction and revision

functions which satisfy the AGM postulates must specify an efficient means of

representing the epistemic entrenchment relation or some equivalent preference

relation. Using this representation, belief change operations can then be defined
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which achieve the same behaviour as the AGM operations. Several very similar

methods have been developed independently, all of which provide the first step

towards a computational approach to AGM belief revision.

[Rott 1991] provides an efficient representation of entrenchment relations for the

purpose of discussing particular examples of entrenchment relations. Hence the

representation is natural and easy to understand. Rott defines an E-base to be a pair

‹B,  ≤R› consisting of a set of sentences B from the language L, and an ordering ≤R on

B which is reflexive, transitive and connected. Then a B −cut is any subset S of B

such that if α ∈ S and α ≤R  β then β ∈ S. The entrenchment relation ≤E generated

from the E-base ‹B,  ≤R› is given by:

α ≤E  β if and only if for all B-cuts S, if α ∈ Cn (S) then β ∈ Cn (S) ,

for all sentences α and β in L. The definition requires that the E-base satisfies the

following condition, known as the entailment condition:

If ∅ ≠ Γ |−  α then β ≤R  α for some β ∈ Γ

This condition, when applied to an entrenchment relation on a belief set satisfying

entrenchment postulate (EE1), is equivalent to the conjunction of postulates (EE2)

and (EE3). The entrenchment relation generated from an E-base satisfying the

entailment condition preserves the ordering of all sentences in B; that is, for all

α,  β ∈ B, α ≤E  β if and only if α ≤R  β.

When B is finite, the relation ≅R  = ≤R  ∩ ≤R
−1 partitions B into finitely many

equivalence classes B 0 ,  B 1 ,   . . . ,  Bn , where the indices are chosen such that if

α ∈ Bi and β ∈ Bj then α ≤R  β if and only if i  ≤ j. The equivalence classes

K 0 ,  K 1 ,   . . . ,  Kn of the entrenchment relation ≤E generated from the E-base ‹B,  ≤R›

are given by Ki  = Cn (
j≥i
∪Bj)  − Cn (

j≥i +1
∪ Bj) , for i  = 0, 1, . . . ,  n −1, and Kn  = Cn (∅) .

Then the entrenchment of any belief may be represented by the integer i

corresponding to the partition of the belief set to which it belongs. This integer will

be called the rank of the belief in chapter 3.

Rott does not go on to define belief change algorithms based on this construction;

instead he addresses some of the issues involved in choosing the most suitable

entrenchment relation for a given problem. We shall discuss this further in chapter 3.
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An equivalent representation of the entrenchment relation is found in [Williams 1992,

1993], under the name of the ensconcement relation. This relation is developed with

a very different purpose: to support a computer-based implementation of belief

revision. The epistemic state is represented by an ordered pair consisting of a set of

sentences Γ and a total pre-order ≤W on Γ satisfying:

For all β ∈ Γ,  {α ∈ Γ : β <W  α} |−/  β

Clearly this condition is just the contraposition of Rott’s entailment condition

described above, and hence the two representations are equivalent. The

representation is used two define two computationally efficient contraction operations

in [Williams 1992], both of which satisfy the inclusion postulate and hence do not

satisfy the AGM recovery postulate. The same applies to the contraction function � −

presented in [Williams 1993] (using the same notation as for E-bases):

β ∈ Bα
�
− if and only if β ∈ B and either

i=rank(α) +1
∪
n

 Bi  ∪{¬α} |−  β or |−  α,

where rank(α) is the index of the partition of the belief set containing α. It is shown

that this contraction operation is as close as possible to the AGM contraction

operation on belief sets, without sacrificing inclusion. That is:

Bα
�
−  = B  ∩ (Cn (B) ) α

−

where − is the contraction function determined uniquely by the entrenchment relation

generated from the ensconcement ≤W . The corresponding revision function, defined

by the Levi identity, satisfies all of the AGM postulates:

(Cn (B) ) α
*  = Cn (B¬α

�
−  ∪ {α})

An implementation of the theory change operations in [Williams 1993] is described

in [Dixon 1993].

The third construction of an entrenchment relation from a partially specified relation

is the most conservative entrenchment developed in [Wobcke 1992a]. Given a theory

base Γ and an ordering ≤Γ on Γ satisfying (EE1) to (EE3), an entrenchment ≤e is

defined to be compatible with ≤Γ if for all α,  β ∈ Γ,  α ≤Γ  β implies α ≤e  β. Then if

≤e and ≤e' are two entrenchments which are compatible with ≤Γ , the entrenchment ≤e

is defined to be more conservative than ≤e' if there is a formula α such that for every
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β, where β ≤e  α and β ≤e'  α, we have {γ : γ ≤e'  β}  ⊆  {γ : γ ≤e  β} and

{γ : γ ≤e'  α}  ≠  {γ : γ ≤e  α}.

Then the most conservative entrenchment compatible with ≤Γ is the unique

entrenchment ≤e compatible with ≤Γ such that for all entrenchments ≤e' compatible

with ≤Γ , ≤e is more conservative than ≤e' . The most conservative entrenchment is

conservative in the sense that it places each formula as low as possible in the

entrenchment ordering.

The three constructions presented in this section unambiguously extend a partial

specification of an entrenchment relation to a complete epistemic entrenchment

relation agreeing with the partial specification. In the case where the partial

specification of the entrenchment is finite, we have an efficient representation of

epistemic entrenchment, useful for a computational construction of AGM belief

revision.

2.3.4  Database Update

In [Fagin et al. 1983, 1986], a theory of database update is developed which closely

resembles belief revision using theory bases. Two operations are defined: insertion

(expansion and revision) and deletion (contraction); a third operation, replacement, is

also mentioned as a topic of further research. The aim of these operations is to

accomplish the update successfully, whilst preserving as much as possible of the

original database.

The minimal change for an update is defined as follows. Suppose our database is

represented by the set T of logical formulae, and T 1 and T 2 both accomplish an

update successfully. (T ' accomplishes the insertion of α into T if α ∈ T ' , and T '

accomplishes the deletion of α from T if α ∈/  Cn (T ' ) .) Then T 1 has fewer insertions

than T 2 if T 1  − T  ⊂ T 2  − T; also T 1 has no more insertions than T 2 if

T 1  − T  ⊆ T 2  − T; and T 1 has the same insertions as T 2 if T 1  − T  = T 2  − T.

Similarly, the deletions can be defined by comparing the sets T  − T 1 and T  − T 2 .

Then T 1 achieves an update u of T with smaller change than T 2 if both T 1 and T 2

achieve u, and either T 1 has fewer deletions than T 2 or T 1 has the same deletions as

T 2 but T 1 has fewer insertions than T 2 . Finally, the notion of minimal change is

defined as expected: a set of formulae S accomplishes an update u of T minimally if
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there is no set S ' that accomplishes u with smaller change than S.

Two representation theorems are then proved for minimal updates. If S and T are sets

of sentences, and α is a sentence, then:

(1) S accomplishes the deletion of α from T minimally if and only if S is a

maximal subset of T that is consistent with ¬α

(2) S  ∪ {α} accomplishes the insertion of α into T minimally if and only if S is

a maximal subset of T that is consistent with α

In general, there will be more than one such minimal update. In fact, for a closed

theory T, the deletion of α from T is accomplished minimally by every member of

T⊥α, which is equivalent to maxichoice contraction. The insertion of T is

accomplished minimally by S∪{α}, for each S  ∈ T⊥¬α, which yields theory bases

for maxichoice revision. Once more, some way of combining these possible

solutions, or selecting a preferable solution, is needed. [Fagin et al. 1983] suggests

two ways of approaching this problem. The first is to take the intersection of the

theories, which is equivalent to full meet contraction and revision. This is too strong,

as the insertion of a sentence that is inconsistent with the current theory causes the

whole theory to be abandoned. They interpret this problem as being caused by the use

of closed theories, and so the rest of the work considers only non-closed sets of

sentences.

The second approach provides a preference relation of database priorities on the

sentences in the database, by tagging each sentence with a natural number. The

sentences with the lowest tags have the highest priority; for example, integrity

constraints would normally be tagged by 0. Then a logical database D is a set of pairs

<i, α> where α is a sentence, and i is its tag. Define D i  = {‹j, α› ∈ D  : j  ≤ i} to be

the set of sentences in D with tags less than or equal to i. If D is a database with

greatest tag n, and E and F accomplish some update u, then E accomplishes u with

smaller change than F if either:

(1) ∃i, 0 ≤ i  ≤ n, such that D i −1−E i −1  = D i −1−F i −1 and D i−E i  ⊂ D i−F i , or

(2) D n−E n  = D n−F n and E−D  ⊂ F−D.

Condition (1) states that E has fewer deletions at the highest priority at which E and F

differ, and condition (2) states that E and F have the same deletions, but E has fewer
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insertions than F. Then a minimal update u of D is achieved by E if E accomplishes u

and there is no logical database F which accomplishes u with smaller change than E.

Finally, the following representation theorem is presented, for logical databases D

and E, with highest tag n, and for any consistent sentence α:

(1) E accomplishes the deletion of α from D minimally if and only if E i is a

maximal subset of D i that is consistent with ¬α, for i  = 1, . . . ,n.

(2) E  ∪ {‹j, α›} accomplishes the insertion of α into D minimally if and only if

E i is a maximal subset of D i that is consistent with α, for i  = 1, . . . ,n.

A third approach, presented in [Fagin et al. 1986], is to keep track of sets of possible

databases generated by updates. These sets of databases are called flocks, and the

update of a flock is the union of the updates of each member of the flock. From a

computational perspective, this approach is much less appealing than alternatives

which only keep track of a single state of belief.

Comparing this work with AGM belief revision, the main differences are that the

results of updates are syntax-dependent and do not satisfy the AGM recovery

postulate (K-5). Although this is common amongst methods using non-closed belief

sets, we show in chapters 3 and 4 that these problems are easily overcome.

2.3.5  Epistemic Relevance and Prioritized Bases

The first theory base contraction operation to satisfy the AGM recovery postulate is

found in [Nebel 1989], where symbol level belief revision operations, such as those

used in reason maintenance and other artificial intelligence applications, are analysed

at the knowledge (i.e. logically closed theory) level. Nebel demonstrates a

relationship between the idealised belief revision processes of the AGM theory and

the computational, "real world" operations, by showing that finite base operations

such as reason maintenance are a special case of the more general AGM operations.

Suppose the beliefs are represented by a finite set of sentences B, where B is also

used to represent the conjunction of these sentences. Then for any sentence α such

that |−/  α, the contraction of B by α is initially defined to be the disjunction of all

maximal subsets of B not implying α, that is, ∨(B  ⊥ α) , which does not satisfy the

recovery postulate. Nebel notes that although full meet contraction is very weak, as it

is logically equivalent to Cn (B)  ∩ Cn (¬α) , it does satisfy recovery, and so recovery
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can be obtained by adding a conjunct to the contracted base, giving the contraction

operation � − , defined by:

Bα
�
−   =  ∨(B  ⊥ α)  ∧ (B  ∨ ¬α)

Nebel shows that if we take the logical closure of the contracted base, � − satisfies all

of the basic postulates for contraction (K-1) – (K-6), as well as supplementary

postulate (K-7), but (K-8) is not always satisfied. In fact, the operation is equivalent

to the partial meet contraction using the following selection function SB (where

K  = Cn (B) ):

SB(K⊥α)   =  {C  ∈ (K⊥α)  : ∀C '  ∈ (K⊥α) ,  C '  ∩ B  ⊃/  C  ∩ B}

In [Nebel 1990], it is argued that the beliefs in the base usually represent

observations, facts, laws or rules, and thus are more relevant than the derived beliefs.

Thus the selection function SB chooses from K⊥α the elements which contain

maximal subsets of these relevant propositions; that is, it minimises the loss of

epistemically relevant information.

Epistemic relevance is a very different notion from epistemic entrenchment. Firstly,

only two degrees of relevance exist (relevant and irrelevant); secondly, entrenchment

is strictly connected to the contraction operation via the (C-) condition, whereas

epistemic relevance only constrains the syntactic form of the resulting belief base;

and, most importantly, contraction and revision based on epistemic relevance do not

satisfy the eighth rationality postulate for each operation.

The notion of epistemic relevance is then extended to a more fine-grained measure,

by assigning natural numbers to all sentences in the logical language. This allows

further distinctions such as assigning a higher degree of relevance to integrity rules

than simple facts in a database, as suggested by [Fagin et al. 1983]. A prioritized set

inclusion is then defined which tests inclusion for two sets of sentences at the highest

level of relevance for which the sets differ. Like the original notion of relevance, this

could also be used to define a selection function for a partial meet contraction

function satisfying (K-1) – (K-7), but not (K-8), as the inclusion relation is not

transitive.

[Nebel 1991] presents a further approach based on epistemic relevance, where a

contraction is constructed by aggregating maximal subsets of the beliefs in the base at
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each level of relevance, working down from the sentences with the highest degree of

relevance. The prioritized base contraction and revision functions generated in this

way correspond exactly to the functions generated from epistemic relevance as

described above.

Although similar to the AGM operations, Nebel’s belief change operations are not

fully rational, in that they are syntax-dependent and thus do not satisfy all of the

AGM postulates.

2.4  Model-Theoretic Approaches to Belief Revision

In order to avoid the problem of syntax-dependence which occurs when computing

belief changes from theory bases, several authors argue that revision operations

should be characterised at the model-theoretic level [Dalal 1988, Katsuno &

Mendelzon 1989]. In this framework, belief sets are viewed as the set of models that

satisfy the given belief base, and belief change operations select sets of models that

satisfy the new information and differ minimally from the models of the original

belief base. [Dalal 1988] measures the difference between two models as the number

of propositional variables that have different values in the two models. [Katsuno &

Mendelzon 1989] presents a more general approach using a preorder over the models.

[Peppas & Williams 1992] describes a constructive modelling of belief revision

functions via a nice preorder on models, and gives explicit translations between the

modelling and two other constructive modellings: epistemic entrenchment and

systems of spheres.

From a computational perspective, model-theoretic belief change functions are not

particularly useful, unless there is an efficient means of manipulating these

representations. [Gärdenfors 1991] describes these approaches as "like putting the

cart in front of the horse, since orderings of models seems epistemologically more

advanced than orderings of sentences".
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2.5  Conditional Functions and Iterated Belief Change

A very different approach to belief revision is found in [Spohn 1988]. In this work,

the epistemic state is not represented directly by a set of formulae with an associated

preference relation, but indirectly, by functions from sets of worlds to sets of worlds.

Firstly let W be a set of possible worlds. Then a proposition is defined to be any

subset of W. The net content of an epistemic state is defined to be the set of worlds

satisfying all current beliefs, which is itself a proposition. (This concept is an

analogue of representing a set of logical sentences by the conjunction of all of the

sentences in the set.) Spohn defines two ways of representing an epistemic state: by a

simple conditional function (SCF) and by an ordinal conditional function (OCF).

An SCF is a function g from non-empty subsets of W to subsets of W such that for all

non-empty A,  B  ⊆ W:

(1) ∅ ≠ g (A)  ⊆ A

(2) If g (A)  ∩ B  ≠ ∅, then g (A  ∩ B)  = g (A)  ∩ B

Then g provides a response scheme to new information – if we receive new

information A then the net content of our new epistemic state will be g (A) . The net

content of the current epistemic state is given by g (W) , since the tautology W leaves

the epistemic state unchanged. Hence g is a revision function, and it is

straightforward to show that g satisfies the AGM postulates for revision (K*1) –

(K*8). (Firstly, postulates 1 and 6 are trivially satisfied by the choice of

representation. (K*2) follows from the second part of condition (1), g (A)  ⊆ A.

(K*3) and (K*4) are special cases of (K*7) and (K*8) respectively, which are

combined in condition (2). This can be seen by translating the condition into AGM

notation: if B  ∈ KA
* , then KA∧B

*  = (KA
*) B

+ . Finally (K*5) comes from the first part of

condition (1), g (A)  ≠ ∅.)

Spohn then proves a representation theorem not unlike [Grove 1988]’s systems of

spheres. In this section, let lower case Greek letters denote ordinal numbers. Then the

sequence (E α) α<ζ is a well-ordered partition (WOP) if and only if for all α,  β < ζ:

E α  ≠ ∅,

E α  ∩ E β  = ∅, for α ≠ β, and

∪α<ζ  E α  = W.
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The connection to Grove’s spheres can be seen by setting S α  = ∪β<α  E β . Then if

(E α) α<ζ is a WOP and g is an SCF, we say that (E α) α<ζ represents g if and only if

for each non-empty A  ⊆ W:

g (A)  = E β  ∩ A, where β = min{α : E α  ∩ A  ≠ ∅}.

The representation theorem proved by Spohn states that there is a one to one

correspondence between SCFs and WOPs. The advantage with WOPs is that they

have an intuitive interpretation as an ordering of disbelief; E 0 contains the worlds

which are not disbelieved at all, E 1 contains the worlds with the lowest level of

disbelief, E 2 the next least disbelieved, and so on. Then the revision by A consists of

the least disbelieved worlds in which A is true, agreeing with Grove’s construction

using systems of spheres.

Like the AGM approach, SCFs and WOPs do not solve the problem of iterated belief

change. That is, the original epistemic state is represented by an SCF or WOP, but the

revised state is only represented by its net content, so there is no way of performing

further belief changes, without constructing a new SCF or WOP.

Suppose the initial epistemic state is given by the WOP:

E 0 ,  E 1 ,  E 2 ,   . . . ,  E ζ .

The last term is placed in the sequence for illustrative reasons only. Suppose also

that we want to accept the new belief A which is currently disbelieved at a level β.

That is, the first A world appears in the partition E β .

Spohn’s first proposal for reconstructing the WOP after a belief change to accept A is

to make all possible worlds in A less disbelieved than the worlds in A
__

(where

A
__

 = W  − A, the complement of A in W). The ordering of worlds within A and A
__

are

preserved, giving the new WOP:

E β ∩ A,   . . . ,  E ζ ∩ A,   E 0 ,   . . . ,  E β−1 ,   E β ∩ A
__

,  . . . ,  E ζ ∩ A
__

.

To ensure that the above sequence is a WOP, all empty terms must be deleted.

Unfortunately, this proposal is too simplistic. Spohn rejects it on three counts:

epistemic changes are not reversible, nor are they commutative, and the proposal is

too strong, as it assigns the highest degree of confidence to the new belief. Therefore,

a subsequent change of belief will not dislodge our confidence in A, unless we accept
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a proposition P which entails the negation of A, that is, P  ⊆ A
__

. In terms of epistemic

entrenchment, this is equivalent to placing A at a level of entrenchment at least as

high as all non-tautological beliefs.

The second proposal is the converse of the first: only the least disbelieved A worlds

are moved to the top of the WOP, giving the sequence:

E β ∩ A,   E 0 ,   . . . ,  E β−1 ,   E β ∩ A
__

,  E β+1 ,   . . . ,  E ζ .

Again, the change is not reversible or commutative, and it is also too weak, as the

new belief is given the least degree of confidence. That is, any further belief change

to accept a proposition which is not consistent with the new state of belief will result

in the belief in A being rejected. This is equivalent to assigning to A the least

entrenchment of any sentence in the belief set.

The failure of these two proposals leads to the obvious conclusion that, for a general

belief change operation, the degree of confidence in the new information which we

are accepting must be specified. To do this, SCFs are generalised to OCFs (ordinal

conditional functions), based on the following definitions. Let A be a complete field

of propositions over W (i.e. closed under complementation, intersection and union),

and let an atom of A be a non-empty set which has no non-empty proper subset in A.

Then κ is an A-OCF if and only if κ is a function from W into the class of ordinals

such that:

(1) κ−1(0)  ≠ ∅, and

(2) for all atoms A of A, and all w,w '  ∈ A, κ(w)  = κ(w ' ) .

Also, for any non-empty proposition A  ∈ A, define:

κ(A)  = min{κ(w)  : w  ∈ A}.

Then κ is a measure of disbelief, and we say that A is believed with firmness α if

κ(A)  = 0 and α = κ(A
__

) , or else κ(A)  > 0 and α = −κ(A) . A is believed (respectively

disbelieved) if its degree of firmness is positive (respectively negative). Also, κ−1(0)

represents the net content of the epistemic state, which is why it must be non-empty,

for a consistent state of belief. Now we may finally define Spohn’s belief change

operation, called A, α−conditionalisation:
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κA, α(w) =

�� �
α − κ(A

__
) + κ(w) ,

−κ(A) + κ(w) ,

if w ∈ A
__

if w ∈ A

If κ is the current epistemic state, then κA, α is the resulting state after revising κ by A

so that A is believed in κA, α with firmness α. Note also that κA
__
,0 implements a

contraction of the epistemic state by A, and that expansion is the special case of

revision where the new proposition is consistent with the current beliefs. Hence, all

of the AGM belief change operations are implemented by A, α-conditionalisation,

and the resulting state is a new OCF, so that iterated changes of belief may be

performed. Spohn also shows that the belief changes are commutative and reversible,

conditions which are not required by the AGM postulates.

2.6  Summary

The AGM approach to belief revision provides an idealised mathematical formalism

for modelling rational change of belief. A non-constructive formulation of belief

change operations is given by sets of rationality postulates, which define the classes

of rational contraction and revision operations. Several constructive modellings of

AGM belief change operations exist, based on selection functions or preference

relations such as epistemic entrenchment, but none of these methods provide a

computational approach to belief change. The model-based approaches, and the

ordinal conditional functions of [Spohn 1988], also provide non-computational

frameworks for belief revision.

The alternative constructions of belief change operations using theory bases rather

than logically closed belief sets to represent the beliefs of an agent do not satisfy all

of the AGM postulates, and thus do not represent ideally rational changes of belief.

An efficient representation of an entrenchment relation has been developed

independently in [Rott 1991], [Williams 1992] and [Wobcke 1992a], but this

representation has not been used to provide a direct construction of AGM belief

change operations. In the following chapters, we shall use this representation to

develop a computational approach to belief change which satisfies all of the AGM

rationality postulates.
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3 A Computational Approach
to AGM Belief Revision

As discussed in chapter 2, current approaches to formalizing belief revision are based

on mathematical methods, using non-computational set-theoretic definitions for

belief sets and belief change operations. The formal properties of the AGM belief

revision functions have been examined in depth, but there have been few attempts to

specify computational versions of belief revision systems, and none which satisfy all

of the AGM postulates for fully rational belief revision.

In this chapter we present a computational model of the AGM approach to belief

revision, suitable for implementation over any logical language with an

implementable decision procedure for derivability. The belief set is represented by a

finite set of formulae, from which the remaining beliefs are derived using a sound and

complete inference procedure. If this procedure is tractable, then the computational

approach using the algorithms described in chapter 4 will also be tractable.

The main theoretical issues addressed in this chapter are: the representation of an

epistemic state, the extension of this representation to a most conservative

entrenchment, the relationship between the principles of conservatism and

independence of beliefs, and the specification of an entrenchment revision policy.

In order to specify belief change functions which satisfy the AGM postulates, we

represent the epistemic state by an indexed set of formulae, called the entrenchment

base, which is a finite representation of an entrenchment relation. The index to each

formula in the entrenchment base is a natural number, which gives rise to a pre-order

on the formulae in the base, creating a structure equivalent to a finite E-base [Rott

1991] or ensconcement [Williams 1992].

The full entrenchment relation is generated from the partially specified relation on the

entrenchment base via a construction which assigns to each formula the lowest

entrenchment consistent with the partial relation and the entrenchment postulates.

Following [Wobcke 1992a], we call the relation generated by this construction the
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most conservative entrenchment. The most conservative entrenchment is equivalent

to the entrenchment generated from an E-base in [Rott 1991] and the entrenchment

obtained as the extension of the ensconcement ordering in [Williams 1992].

Conservative entrenchments are motivated firstly by considerations of entrenchments

as representing evidence for beliefs, so that no sentence is assigned a higher ranking

than that warranted by the explicit evidence for the belief, and secondly by

connections with truth maintenance and nonmonotonic reasoning, which shall be

discussed in chapters 6 and 7.

The next issue discussed is how the most conservative entrenchment induces an

implicit assumption of dependence between the explicit beliefs when performing

AGM belief change operations. This relates to the coherentist style of reasoning on

which the AGM approach is based, but as we show in chapter 6, independence can

easily be encoded into the entrenchment relation to provide foundational reasoning.

The final section describes the specification of an entrenchment revision policy. The

AGM formalism offers no guidelines in this area: AGM belief change operations map

a belief set with an entrenchment to a belief set without an entrenchment. Therefore,

the AGM approach does not specify the result of two successive changes to a belief

state. We propose an entrenchment revision policy based on applying the minimal

change principle to the entrenchment relation. Intuitively, it is not just the beliefs

themselves, but also the degree of evidence for the beliefs, which should be protected

against unnecessary changes. That is, those beliefs which remain in the belief set after

a belief change should retain their entrenchment ranking, unless the belief change

provides new evidence which increases the rank of the belief.

In the following chapter, we specify efficient algorithms for the implementation of

belief revision operations over any logic, and then in chapter 5, we describe a

particular implementation of a first-order logic AGM belief revision system.
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3.1  The Representation of Belief States

In the AGM approach, a belief state consists of a logically closed set of beliefs

together with a set of operations for revising this belief set, which may be

characterised by an epistemic entrenchment relation, an ordering on complete

theories such as a system of spheres, a selection function on maximal consistent

subsets, or by the choice of a particular contraction or revision function. In order to

implement an AGM belief revision system, a representation must be found for both

belief sets and belief change operations. The obvious choice for representing the

belief set is that of a finite set of formulae, a finite base, from which all other beliefs

can be derived using a sound and complete decision procedure for logical

consequence.

The AGM model of belief revision has been criticised for its reliance on logical

closure, which may not be suitable for modelling agents with limited resources, but

we wish to model ideally rational agents which are "logically omniscient" [Williams

1993]. We argue that, for consistent reasoning, it is necessary to be able to query the

beliefs that follow from the representation of the belief set, and therefore rational

agents are always limited by the logic within which they can reason. Various

alternative reasoning methods have been proposed, such as the theory base operations

of [Williams 1993], but these still rely on the consequence operator to some extent.

On a more practical note, if a system is based on first-order logic, for example, there

is no sound and complete decision procedure for logical consequence which is

guaranteed to terminate. There are several possible solutions to this problem: we

may restrict the logical language to a subset with known computational advantages,

such as Datalog [Ullman 1988], propositional logic, or a tractable subset of first-order

logic [Levesque & Brachman 1985]; we may give up completeness of the decision

procedure for derivability; or we may allow the derivations to proceed indefinitely,

relying on the user of the system to ensure that all necessary proofs will terminate.

The implementation supports all three of these approaches, leaving the choice up to

the user of the system. This is not an immediate concern, as the representations and

algorithms developed in chapters 3 and 4 are independent of the base logic.

Particular contraction and revision functions can be specified using an epistemic

entrenchment, and the (C–) and (C*) conditions, but in general it is not possible to
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represent the entrenchment directly, as it is a pre-order on all sentences in the

language. In fact, a particular epistemic entrenchment may have no finite

representation, as some entrenchment orderings allow infinitely many different levels

of entrenchment of the beliefs. Moreover, even with a finite number of degrees of

entrenchment, it is still not possible for the user of a system to enter a degree of

entrenchment for each formula in the language: a more compact representation must

be found.

Clearly what is necessary is a method of specifying an entrenchment partially, by a

finite and intuitively appealing representation, from which any further entrenchment

information can be generated automatically, without consulting the user. A preorder

on the explicit beliefs (the formulae in the finite base) is the obvious candidate for

such a representation, and it satisfies both the size and clarity requirements. To

specify belief revision functions using this finite partially specified entrenchment, we

make use of the most conservative entrenchment construction to extend the given

relation to a total preorder on L. Note that we allow redundancy in the finite base, so

that we can distinguish between differing degrees of evidence for sets of formulae

which are logically dependent.

3.2  Most Conservative Entrenchments

The idea behind most conservative entrenchments is the following: the relative

entrenchment of a formula with respect to other formulae is intended to represent the

degree of evidence possessed by the system for that particular belief in relation to the

other beliefs. A representation of a belief state is therefore a collection of formulae

(those of the base) together with the degrees of evidence for each formula in the base.

The belief set represented is the logical closure of the belief set base. Similarly, the

most conservative entrenchment is the "closure", in some sense, of the "entrenchment

base". To define this sense of closure, we take it that the only evidence possessed by

the system for a belief is that derived from the evidence for formulae in the base: the

evidence for a formula derived from a non-redundant collection of formulae is the

evidence for the conjunction of these formulae, which is just the evidence for the

weakest formulae in the conjunction. In this sense, the generated entrenchment is

conservative in not attributing evidence for a belief other than that warranted by the

evidence for the base beliefs from which that belief is derived.
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There is a strong connection between most conservative entrenchments and

foundational reasoning. In a static epistemic state, the only beliefs accepted are those

which have evidence (a logical proof) which is derived from the explicit belief base

(the foundational beliefs), which corresponds exactly to the foundational notion of

justification. This correspondence also applies to the dynamics of belief. Since the

derived beliefs are given an entrenchment no higher than the explicit beliefs from

which they are derived, when one of these explicit justifying beliefs is removed, the

derived beliefs do not remain in the belief set either. We will discuss this topic further

in chapter 6, where we demonstrate a direct relationship between belief revision

based on the most conservative entrenchment, and truth maintenance systems.

The most conservative entrenchment generated from an entrenchment base can be

formalized as follows. We represent the degree of evidence for a belief as a natural

number known as the rank of the formula, so a belief set is a set of formulae each

with an associated rank. The higher the rank, the more evidence there is for the

belief; and logical theorems have the highest rank of all. The entrenchment base Γ

can then be represented by a partition of the formulae in the base determined by the

subsets of formulae of the base all of which have the same rank. Suppose the logical

theorems have rank n, and let the partitions be Γ1 ,  Γ2 ,   . . . ,  Γn , some of which may

be empty. The rank of a formula in the base is just the index of the partition to which

it belongs. To define the most conservative entrenchment generated from this

partition, we extend the definition of rank to all formulae. First we define:

Γi

__
   =   

j  = i
∪
n

 Γj

Intuitively, Γi

__
is the set of formulae in the base for which there is degree of evidence

at least i. Then Cn (Γi

__
) is the set of all formulae for which there is degree of evidence

at least i. Note that for i  ≤ j,  Γj

__
 ⊆ Γi

__
, and also Cn (Γj

__
)  ⊆ Cn (Γi

__
) . Thus the rank of a

formula α, representing the degree of evidence for α, is defined to be the largest i

such that α is a consequence of Γi

__
. If α is not derivable from the belief base (α is not

believed), then its rank is defined to be 0. Thus the set Γ1

__
is a base for the belief set

K; that is, K   =  Cn (Γ1

__
) . Then the rank of a formula α is defined by (Def_Rank):

rank(Γ,  α)   =  

��
� �

�
  
0

max({i  : Γi

__
 |−  α})    

  
if  Γ1

__
 |−/  α

if  Γ1

__
 |−  α
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The most conservative entrenchment determined by the partition of the base is then

given by (Def_MCE):

α ≤E  β   iff   rank(Γ,  α)  ≤ rank(Γ,  β)

To ensure consistency with the AGM entrenchment postulates (EE1) – (EE5), the

following two conditions on the entrenchment base must hold:

(R1)   ∀ i,   ∀ β ∈ Γi,   Γi +1

____
 |−/  β

(R2)   α ∈ Γn    if and only if   |−  α

The first condition captures the requirement that an explicit belief must not have a

derived rank which is greater than its explicit rank. Otherwise, the explicit evidence

for the belief would be redundant, since higher ranked evidence could be found

elsewhere, and thus the explicit rank would be incorrect. The algorithms in chapter 4

require a stronger notion of nonredundancy, defined by:

An entrenchment base Γ is nonredundant iff for all i, and for all α ∈ Γi ,

Γi

__
 − {α} |−/  α.

Condition (R2) states that only logical theorems are given the maximum rank value,

to satisfy postulate (EE5). Then, for a nonredundant entrenchment base, Γn is always

empty, since all logical theorems can be derived from the empty set.

We can now prove that the ordering generated from a ranked finite base satisfying

conditions (R1) and (R2) is an epistemic entrenchment ordering:

Theorem 3.1: Let Γ be an entrenchment base satisfying (R1) and (R2).

Then the relation ≤E generated from Γ, defined by

α ≤E  β   iff   rank(Γ,  α)  ≤ rank(Γ,  β)   for all α,  β ∈ L, is the most

conservative entrenchment, and satisfies postulates (EE1) - (EE5) for an

epistemic entrenchment relation.

The proof of theorem 3.1 is found in appendix A.

In the rest of this section we describe the conditions under which a given epistemic

entrenchment relation can be represented by a finite entrenchment base. Firstly, we

note two representability conditions from [Williams 1992]:
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(1) A belief set can be represented by a finite base if and only if it is

finitely axiomatizable.

(2) An epistemic entrenchment relation can be represented by a finite

entrenchment base if and only if it has a finite number of natural partitions

each of which is finitely axiomatizable.

If an epistemic state fulfills both of these conditions we say it is finitely

representable. The finite representation of an epistemic state may not be unique,

since it depends on the choice of axiomatization of the partitions. Clearly, for any

finite representation, the partitions of the entrenchment base will contain finite

axiomatizations of the partitions of the underlying entrenchment, and the union of

these bases will be the base of the belief set. The algorithms in the next chapter can

be used to apply the AGM belief change operations to any finitely representable

belief state. Note that by using the minimal change entrenchment revision policy

described in the next section, the application of any AGM operation to a finitely

representable belief state always yields another finitely representable belief state.

Hence we have a solution to the problem of iterated revision [Spohn 1988; Boutillier

1993].

There exist theories which are not finitely axiomatizable, but they never occur as the

result of an AGM operation on a finitely representable belief state, so that if the belief

state is built from an empty belief set using the AGM operations, the resulting state is

always finitely representable, for any finite number of operations.

For example, we show in chapter 6 that the most popular form of foundational

reasoning can be performed using only five distinct levels of entrenchment, including

the minimum and maximum levels for the non-beliefs and theorems respectively.

3.3  Conservatism and Independence of Beliefs

The most conservative entrenchment generated from an entrenchment base carries an

implicit assumption of dependence between beliefs, particularly those which are

equally ranked. For example, consider an entrenchment base Γ containing just two

explicit beliefs, α and β, where rank(Γ,  α)  = rank(Γ,  β) . Then by the most

conservative entrenchment, rank(Γ,  α∨β)  = rank(Γ,  α) , and so, by the (C–)

condition, β ∈/  Kα
− and similarly α ∈/  Kβ

− . Thus α and β are implicitly dependent on
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each other, as evidenced by the behaviour of the contraction operation.

This behaviour cannot be avoided by assigning a unique rank to each belief in the

base. Suppose the base Γ again contains two beliefs, this time with

rank(Γ,  α)  < rank(Γ,  β) . From the (C–) condition we have β ∈ Kα
− , but we still

have α ∈/  Kβ
− , since rank(Γ,  α)  < rank(Γ,  β)  = rank(Γ,  α∨β) . Thus in this case,

the dependence is in only one direction: the lower ranked belief is implicitly

dependent on the belief with the higher rank.

It is important to note that pairs of beliefs are not dependent of necessity; if we wish

to express the fact that α and β are independent beliefs with the same ranks, then we

should ensure that the entrenchment base contains α∨β at a greater rank than either α

or β. So the default behaviour of the most conservative entrenchment with the AGM

operations is that explicit beliefs are dependent on the other explicit beliefs which

have at least the same rank; if this behaviour is not desired, independence must be

stated explicitly. The default behaviour is in accordance with the coherence theory of

justification, which may not be suitable for all purposes, but we show in chapter 6

that it is possible to obtain foundational behaviour by automatically generating an

entrenchment relation which encodes the independence of beliefs explicitly. We also

show that the most conservative entrenchment generated in this way is still highly

efficient with regards to the amount of explicit information needed by the system, in

comparison with the explicit rank generation method of [Dixon & Foo 1993].

An important point to note with regard to dependence is that a minimal change in the

entrenchment ordering does not necessarily correspond to a minimal change in the

belief set. That is, conservatism with respect to the ordering on beliefs produces

different results to conservatism with respect to the beliefs themselves. Consider, for

example, a belief set over a first-order language, which contains the single sentence

∀x  P (x) . Then suppose we wish to retract the belief P (c) , for some particular

constant c. The minimal change to the belief set would still contain all beliefs P (c') ,

where c'≠c, and could be described by the sentence ∀x  (x≠c  → P (x) ) . On the other

hand, the most conservative entrenchment, in the absence of further information,

would retract all instances of P (x) simultaneously, as if the belief in one instance of

the predicate P were dependent on the belief in all other instances of P. In chapter 7,

we explore an alternative to the most conservative entrenchment, for the special case

of default rules with exceptions, and show how the modified system can be used to
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implement nonmonotonic reasoning. For the general case, we justify our approach by

requiring minimal change in the entire epistemic state, and not in the belief set alone.

We show in chapter 4 that the algorithms for expansion, contraction and revision do

provide the minimal change in the belief state which is consistent with the AGM

postulates.

3.4  Entrenchment Revision

The AGM belief change operations are defined as mappings from belief states and

formulae to belief sets. That is, the revision of a belief state by a formula maps the

belief set with its entrenchment ordering to a revised belief set without specifying a

revised entrenchment ordering. There are no constraints placed on the entrenchment

of formulae in the belief sets resulting from revisions, contractions or expansions.

This means that it is not possible to perform two successive contraction or revision

operations without respecifying the entire entrenchment.

From the approaches of [Spohn 1988] (see chapter 2), we learn an important

principle. The two approaches based on simple conditional functions (SCFs) are

incorrect in the general case. The first method always accepts new information with

maximal confidence, so that the new information is given a greater entrenchment than

all other beliefs, and hence in subsequent belief changes, all previous beliefs are

given up more easily than the most recently acquired belief. The assumption that new

information is more reliable than everything that was believed previously is much too

strong. The second method assigns a minimal entrenchment to new information, and

thus any new belief is always believed with less confidence than all other beliefs. In

this case, subsequent revision operations always destroy the information gained by

the previous revision, except in the trivial case where the revision collapses to an

expansion. Once more, this result is generally undesirable, although it was recently

suggested as a means of performing iterated revision, under the name of natural

revision [Boutillier 1993]. The lesson we learn is that an arbitrary assignment of an

entrenchment level to a new belief cannot be suitable for a general theory of

epistemic change.

Spohn’s approach to belief revision based on ordinal conditional functions (OCFs)

solves this problem, by requiring a degree of firmness to be given for any new belief
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when it is added to the belief set. We likewise define expansion and revision as

operations which take an epistemic state, a new belief, and a rank for the new belief,

and return the new epistemic state, where epistemic states are represented by

entrenchment bases. A contraction does not require any rank to be specified, as no

new beliefs are added to the belief set during a contraction operation.

We now describe our approach to specifying the entrenchment of the entire belief set

that results from a belief change operation. Our idea is to interpret the principle of

minimal change, originally formulated as applying to the contents of a belief set, as

also applying to the entrenchment of formulae in the belief set. That is, we desire a

minimal change in the entire belief state, not just in the contents of the belief set. This

is also justified by the interpretation of the rank of a belief in our system as

representing the degree of evidence for that belief. Under this interpretation, if a

belief is not affected by a belief change operation, its degree of evidence should not

be affected either. That is, a formula in the base which remains in the new belief base

retains its rank unless an inconsistency with (R1) or (R2) forces it to be changed. This

can also be viewed as a weak coherence approach to entrenchment revision, since

ranks are only changed to avoid inconsistency.

As there is no way to automatically determine the degree of evidence associated with

newly acquired information, the user must supply the rank of the added formula for

an expansion or revision. But at this point we may face some subtle difficulties if the

new belief is already a member of the belief set, based on whether or not the new

evidence for the belief supercedes previous evidence, or is to be taken in addition to

other evidence.

The AGM postulates imply that expansions and revisions by formulae which are

already members of the belief set result in an unchanged belief set, but this principle

should not be extended to apply to the whole belief state, in which case the ranking of

beliefs would not be affected by the operation. Intuitively, to ignore a revision or

expansion, irrespective of its rank, purely because there already exists some evidence

for the belief, no matter how small, seems to be much too strong. Clearly, if the new

rank for a belief is higher than its previous rank, this can be interpreted as new and

stronger evidence for the belief, and the rank can be increased accordingly. But when

the new rank is lower than the initial rank of the belief, there are two possible

interpretations of the operation. If we interpret the expansion or revision as providing
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additional evidence for the belief, its rank is not changed, but if the operation is taken

as referring to the total evidence for the belief, the operation is interpreted as

discrediting previous evidence for the belief, and its rank ought to be reduced.

In the second case, it is not clear how the rank of a formula should be reduced. If the

formula is explicitly in the base, and cannot be derived from other formulae in the

base, then simply adjusting the rank of that formula is sufficient. But if the formula

can be derived from other formulae in the base, then the ranks of some of these

formulae may also need adjustment. Since the AGM postulates ensure that an

expansion or a revision by a member of the belief set does not alter the belief set, we

may not remove any of these justifying beliefs, but the rank of at least one of them

must be reduced to be no greater than the intended rank of the new belief. Then we

must choose which ones to adjust. To perform a minimal change, we could choose to

reduce the rank of only those formulae which have the least rank for each derivation,

which may be the best solution for this interpretation, but there is no reason for this to

be the correct approach in the general case. Also, any such approach is

computationally expensive, as it will generally require the generation of multiple

derivations.

For these reasons, we interpret revision and expansion as presenting additional

evidence for beliefs. The computational advantage is that the expansion or revision

by an existing belief which already has a rank higher than the rank given in the

operation makes no change to the epistemic state. Also, intuitively, if none of our

beliefs are contradicted by a belief change operation, then we expect that the evidence

for these beliefs, and also the evidence provided by them, should not be discredited

by the operation.

Now we want to ensure that in the general case, after a belief change operation, the

entrenchment base is still consistent with (R1) and (R2). (R2) is easily satisfied by

disallowing operations which place formulae at a rank greater than or equal to the

reserved maximum value. However, the addition of a new formula, or an increase in

the rank of an existing formula, can lead to an entrenchment base which does not

satisfy (R1). For example, if α ∨ β is a belief in the base with rank r 1 and a revision

to accept α with rank r 2>r 1 is performed, the rank of formula α ∨ β must be

adjusted to regain consistency with (R1). Now rank(Γ,  α ∨ β) is (by entrenchment

postulate (EE2)) at least r 2 , since α |−  α ∨ β. To obtain the most conservative
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entrenchment, and since we have no greater evidence for α ∨ β, it is given a rank of

exactly r 2 . Note that this can be derived from the base without α ∨ β being explicitly

included in the base at rank r 2 , and thus α ∨ β may be deleted from the base, as it is

derivable from α and its rank is thus automatically computed to be equal to that of α.

In general, we require that the entrenchment base be kept free from redundancy, so

any belief which can be derived from beliefs of equal or greater rank is removed from

the base. This does not mean that the belief set base is nonredundant, since derived

beliefs may have higher ranks than their derivations in the belief base. For example,

a belief base containing α at rank r 1 and α ∨ β at a greater rank r 2 is redundant as a

belief base, but nonredundant as an entrenchment base.

The exact details of the entrenchment modification procedure are described along

with the belief change algorithms in chapter 4, as the necessary adjustments to the

entrenchment relation are performed within the belief change algorithms.

3.5  Summary

In this chapter we have presented a computational model of belief revision, designed

for implementing a system satisfying the AGM rationality postulates. The belief set

is represented by a finite base, from which all other beliefs can be derived using a

sound and complete inference procedure. The base is partitioned into a finite

entrenchment base, so that each belief in the base is assigned a rank, represented by a

natural number. The complete entrenchment relation, known as the most conservative

entrenchment, is then generated from the entrenchment base.

We argued that the most conservative entrenchment corresponds to our intuition of

evidence, and that in the default case it corresponds to the coherence theory of

justification, where beliefs are dependent on each other. We also showed that a

foundational style of justification, where explicit beliefs are independent, can be

obtained by entrenching the disjunction of pairs of independent beliefs higher than

either of the beliefs themselves.

The final section of this chapter addressed the issue of entrenchment revision.

Surprisingly little has been said in the belief revision literature about this area,

despite the fact that it is a central issue in any computational model of belief revision.

We presented an approach to entrenchment revision, which follows the principle of

3.5



46    Belief Revision: A Computational Approach

minimal change, and ensures that any consistent AGM operation on a finitely

representable epistemic state can be modelled by an operation on an entrenchment

base. We now describe the algorithms which implement these operations.
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4 Algorithms for AGM
Belief Revision

In this chapter, we present specific algorithms for the implementation of the AGM

belief revision operations on a belief state represented by a finite entrenchment base.

For each of the algorithms, expansion, contraction and revision, we explain in detail

the operation of the algorithm, and also define conditions on the resulting belief state

which guarantee the operations produce a minimal change in the belief state

satisfying the AGM postulates. These conditions uniquely define the ranks of all

formulae in the revised belief state. We then show that the algorithms do satisfy these

conditions, and hence the algorithms are correct relative to the AGM postulates and

the minimal change entrenchment revision policy. We also illustrate each algorithm

with examples, and give an analysis of its worst case complexity relative to the given

proof procedure. Finally, we describe some alternative algorithms, the theory base

contraction operation from [Williams 1993] and the revision algorithm from [Dixon

& Wobcke 1993].

The AGM belief change and entrenchment postulates are independent of the logic

over which the belief change functions operate. The logic must satisfy certain

minimal requirements; that it is consistent, compact, contains the Propositional

Calculus and modus ponens, and satisfies the deduction theorem. For generality, the

belief change algorithms described in this chapter may be used with any logic which

satisfies these conditions and has an implementable proof procedure. In the

algorithms we assume that we are given a logic of the user’s choice, together with its

proof procedure, and we analyse the complexity of the algorithms in terms of the

number of calls to this proof procedure. A specific implementation over first-order

logic is described in chapter 5.

The following conventions are used throughout this chapter: lower case Greek letters

(α, β,  . . . ) represent logical formulae; upper case Greek letters without subscripts

(Γ, ∆,  . . . ) are used for partitioned sets of logical formulae (entrenchment bases);

upper case Greek letters with subscripts (Γ1 , Γ2 ,  . . . ) denote the members of the
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partitions (sets of logical formulae); and lower case italic letters (i, j, p,  . . . ) are

integers representing the ranks of beliefs.

For the purposes of this chapter, we shall assume that the entrenchment base, usually

denoted Γ, is stored as a relation in a database, with two fields for the formula and the

rank, and we assume the relation is indexed by the formula. The database can be

modified by the following two operations: update(Γ, α, newrank) either adds the

formula α to the relation Γ with rank newrank if α is not already contained in the

relation, or changes the rank of α to newrank if α is already in the relation; and

delete(Γ, α) deletes α from the relation Γ. The database may be queried by the

operation select(Γ,  α,  field_name), which returns the value of the field field_name of

the record with index α in the relation Γ.

4.1  Determination of Rank

Let the proof procedure associated with the given logic be denoted prove(Γ, α, r),

which, given an entrenchment base Γ = (Γ1 ,  Γ2 ,  . . . ,  Γn) , a formula α, and a rank r,

determines the rank of α in Γ, if it is at least r. If the rank of α is less than r, then

prove returns the value 0, otherwise it returns the value of the rank of α. Recall that

the rank of a formula α in the belief set is given by:

rank(Γ,  α)   =  max {i  : Γi

__
 |−  α },

where Γi

__
   =   

j  = i
∪
n

 Γj . Equivalently, we may say that prove(Γ, α, r) returns the rank

of α in the belief set Γr

__
.

The rank of a finite set Φ of formulae can then be defined as:

rank(Γ,  Φ)   =  min {rank(Γ,  φ)  : φ ∈ Φ },

which, by entrenchment postulates (EE2) and (EE3), is also equal to the rank of the

conjunction of all the formulae in the set Φ.

The rank of a single formula α can be determined by generating all proofs of α in

some arbitrary order. Each proof has an associated rank, equal to the rank of the

lowest ranked formulae involved in the proof, which is a lower bound for the rank of

α. In generating all the proofs of α, successive attempts to prove α are restricted so
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that only formulae of greater rank than the current lower bound are used. When all

proofs of α have been found, the greatest lower bound of the ranks is returned as the

rank of α. If no proof is found, the rank of α is zero, indicating that α is not a current

belief.

Thus the rank r which is supplied to the prove procedure is used to stop the

procedure from attempting every proof of α in Γ. If the highest ranked proof were

guaranteed to be found first, only one proof would need to be generated. By setting r

to 0, prove(Γ,  α,  0) can be used to determine whether or not α is a member of the

belief set.

A request to determine the rank of α is processed by first checking whether α ∈ Γi ,

for some i. If there is some such i, then this is the rank of α, and no further

calculations have to be made. Thus to determine the rank of an explicit belief

requires only a single database lookup. Note that this operation relies on the fact that

an explicit belief cannot be derived from beliefs of strictly higher rank, which is

ensured by condition (R1).

In the other case, when α ∈/  Γi , for all i, the rank of α is the value returned by

prove(Γ,  α,  0) . The complexity of this procedure is dependent on the choice of logic

and inference procedure, and the algorithms in this chapter can be implemented over

any logic with an implementable proof procedure, so it is the responsibility of the

person implementing the algorithms to ensure the correct balance between

expressibility and computability [Levesque & Brachman 1985] in the choice of logic.

The algorithm (in pseudo-code) to find the rank of the formula α in the base Γ is:

rank(Γ, α)

if α is in Γ

return select(Γ, α, rank)

else

return prove(Γ, α, 0)
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4.2  Expansion

The AGM expansion operation is the simplest of the three belief change operations,

as, in the AGM framework, it is calculated without using the entrenchment ordering.

The result of an expansion is simply the set of consequences of the given belief set

together with the new belief. That is, Kα
+  = Cn (K  ∪ {α}) . If Γ1

__
is a belief set base

for K, that is Cn (Γ1

__
)  = K, then clearly Γ1

__
 ∪ {α} is a belief set base for Kα

+ .

Of course the AGM postulates for expansion specify only the resulting belief set, and

not a complete belief state, whereas we wish to specify an algorithm which provides

the entrenchment of the expanded belief set along with the belief set itself. The first

problem is to allocate a rank to the new belief α. As argued in chapter 3, there is no

way to generate ranks for new beliefs automatically for an arbitrary belief set.

Therefore a new belief which is added to the belief set is always accompanied by a

rank assigned by the user of the system. Accordingly, the expansion algorithm takes

three arguments: the original belief state, the new belief, and the intended rank of the

new belief.

Since we want the entrenchment ranking on an expanded belief set to be a minimal

change of the ranks of the initial beliefs, it would be absurd to implement an

expansion operation which is independent of the ordering on the given belief set.

Instead, using the principle of minimal change as applied to entrenchment revision in

section 3.4, we require the expansion operation to keep intact as many as possible of

the ranks of formulae within the base. We must also ensure that the new

entrenchment base satisfies conditions (R1) and (R2). In the rest of section 4.2, we

show that the expansion operation and the minimal change principle can be

implemented elegantly and efficiently, where the ranked base is interpreted as a most

conservative entrenchment.

4.2.1  The Expansion Algorithm

Let expand(Γ, α, newrank) denote the expansion of an entrenchment base Γ by a

belief α, where newrank is the intended rank of α. Then the following algorithm

implements the AGM expansion operation, whilst also preserving the ranks of as

many beliefs as possible, and satisfying conditions (R1) and (R2).
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expand(Γ,α,newrank)

if rank(Γ,  ¬α)  > 0 { α is inconsistent with Γ }

return(Γ)

else

oldrank  := rank(Γ,  α)

if newrank  ≤ oldrank

return(Γ)

else

∆ := update(Γ,  α,  newrank)

for each β ∈ Γ1

__
with oldrank ≤ select(Γ, β, rank) ≤ newrank

if prove(∆ − {β}, β,  select(Γ,  β,  rank) )  > 0

∆ := delete(∆,  β)

return(∆)

Some comments on this algorithm are in order. First, when the base is to be expanded

by a formula, the formula is tested for logical consistency with the current base and

the expansion rejected if it is not consistent. This disagrees with the AGM

definitions, but we justify this on the basis that a user would not wish to have an

inconsistent belief set, even in the case when the new data is inconsistent. If we

allowed inconsistency in the belief set, then all formulae ranked no higher than either

of the two inconsistent formulae would be removed from the base as being redundant.

Thus, even when consistency was restored, much of the belief state would have been

destroyed by the inconsistency. It is sufficient for a system to warn the user that an

operation has been aborted on the grounds that it would have led to an inconsistent

belief state.

Otherwise, if the formula is consistent with the belief set, its rank is checked for

consistency with the rest of the entrenchment. The given rank newrank is taken to

indicate further evidence for α, so if α already has rank at least newrank, no change is

made to Γ. Otherwise, if the rank of α in Γ is less than newrank, then α is explicitly

added to the base with rank newrank if it was not already in the base, and if it was

already in the base, its rank is updated to be newrank.

Then we must ascertain whether any other changes to the base are necessary.

According to the minimal change principle discussed in section 3.4, a change will
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only be necessary when the addition of the new formula α allows a new proof of one

of the formulae β in the database, and the rank of the new proof is greater than the

original rank of β. The rank of the new proof can be no greater than newrank, since α

must be involved in the new proof, and thus formulae of rank higher than newrank

need not be checked. Similarly, the rank of a formula β which is lower than the

original rank of α, oldrank, cannot be affected by the increase in the rank of α. The

reason for this is as follows: since oldrank is greater than the rank of β, it must be

non-zero, and hence α was already believed in Γ before the expansion. Thus any

proof of β which involves α must also use another belief in the proof which has a

rank no greater than the rank of β (or else Γ did not satisfy (R1)), and so the rank of

the proof is not affected by the change in rank of α. Finally, for beliefs β with rank

between oldrank and newrank, if β is derivable from the other formulae in the new

base with the same or higher rank, β is redundant and may be deleted. In fact, if all

the formulae from which β can be derived are of higher rank than β, then condition

(R1) requires that β be removed from the database.

Note that for each iteration of the loop, the test for whether β is derivable uses the

base which may have been reduced after previous iterations of the loop have deleted

some formulae. This does not affect the end result because a formula γ is deleted if

and only if it is derivable from the formulae in the new base of at least the same rank.

So β is derivable from the new base with some rank if and only if it is also derivable

from the new base with the same rank after γ has been deleted. In other words, for

any formula β and rank r, prove(∆,  β,  r) remains constant throughout all iterations

of the loop. This means that the expansion algorithm does not need to make a copy of

the original base Γ but instead can repeatedly update the one database.

4.2.2  Correctness of the Expansion Algorithm

We now prove that the expansion algorithm is correct relative to the AGM postulates

and our minimal change entrenchment policy. Let ∆ = expand(Γ, α, r) be the

entrenchment base produced by the expansion algorithm, where Γ is a consistent and

nonredundant entrenchment base, α is a formula and r is a positive integer less than

the maximum rank n.

For a consistent expansion (that is, Γ1

__
 |−/  ¬α), the AGM postulates require that the

entrenchment base generated by the algorithm is a base for the belief set computed by

4.2



Algorithms for AGM Belief Revision    53

the AGM expansion algorithm. That is:

Cn (∆1

__
)  = Cn (Γ1

__
) α

+

We also want to show that the new entrenchment relation calculated from ∆ is as

close as possible to the entrenchment relation derived from Γ. That is, the rank of

any formula β in the new base ∆ is different from its rank in Γ if and only if α

combined with Γ provides higher ranked evidence for β than Γ alone. This will only

occur when rank(Γ,  α→β)  > rank(Γ,  β) and r  > rank(Γ,  β) . Thus the new

evidence for β in the expanded belief set is given by min(rank(Γ,  α→β) ,  r) . If the

new evidence for β has a higher rank than β had in Γ, this becomes the new rank of β,

otherwise the rank of β remains unchanged. Stated formally, we define the (R+)

condition:

rank(∆,  β)   =  

��
� �

�
  

rank(Γ,  β)

min(rank(Γ,  α→β) ,  r)    

  

otherwise

    rank(Γ,  β)  < min(rank(Γ,  α→β) ,  r)

if  Γ1

__
 |−/  ¬α  and

The expansion algorithm is correct if it satisfies the (R+) condition. In appendix B,

we prove that the expansion algorithm satisfies the (R+) condition, and therefore it

implements the AGM expansion function and computes a new entrenchment base

with minimal change to the entrenchment relation.

The correctness proof is based on the following formal specification of the expansion

algorithm. Let ∆ = expand(Γ, α, r), where Γ is a consistent and nonredundant

entrenchment base, α is a formula and r is a positive integer less than the maximum

rank n. Then if Γ |−  ¬α or rank(Γ,  α)  ≥ r, the base is returned unchanged, and we

have ∆i  = Γi , for all i such that 1 ≤ i  ≤ n. Otherwise the expand algorithm computes,

for all i with 1 ≤ i  ≤ n:

∆i   =  {β∈Γi  : β≠α ∧ (rank(Γ,  β)  > r) }  ∪

{β∈Γi  : β≠α ∧ (rank(Γ,  β)  < rank(Γ,  α) ) }  ∪

{β∈Γi  : β≠α ∧ ((Γi

__
−{β})  ∪ {α} |−/  β)  }  ∪

{α : i=r}
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4.2.3  Examples

In this section we present a series of expansions which illustrate how the algorithm

works. We shall represent the entrenchment base, Γ, by a list of all of the formulae in

Γ, in order of decreasing rank. For each formula, we will write the rank followed by a

colon followed by the formula, for example, 40 : a∨b. Assume that Γ is initially

empty.

The first operation we perform is expand(Γ, a∨b, 40), which results in the following

entrenchment base:

40 : a∨b

Suppose we then perform the expansion expand(Γ, a, 20). Since a∨b has a higher

rank than the new formula, it cannot be affected by the operation. Hence the new base

Γ is:

40 : a∨b

20 : a

The next operation we attempt is expand(Γ, a∨c, 10). This time, oldrank  = 20,

because a  |−  a∨c, so oldrank  ≥ newrank, and Γ is returned unchanged.

Now let us expand Γ with expand(Γ, a∧b, 30). Since a∧b is not derivable from the

formulae in Γ, oldrank is 0. After performing the update, we test all formulae in Γ

with a rank between 0 and 30, which in this case is just the formula a, to see if any of

these formulae are derivable from the rest of the new base with a greater rank than

they originally had. The call to prove(∆ − {a}, 30, a) succeeds, returning 30, since

a∧b  |−  a, and hence a is deleted from the database. The resulting base is:

40 : a∨b

30 : a∧b

Finally, suppose we request the operation expand(Γ, ¬b, 20). Then rank(Γ, b)

returns 30, indicating that ¬b is inconsistent with Γ, and so the operation is aborted

and Γ is left unchanged.
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4.2.4  Complexity of Expansion

Although the expansion of a belief set can be implemented by a single database

update, considerably more computation is required to ensure a nonredundant and

consistent entrenchment base. We assume in this and subsequent discussion of

complexity that arithmetic operations, comparisons, and database operations are

negligible compared to the complexity of the procedure prove. Therefore all

complexity will be analysed with respect to the number of calls to prove.

In the nontrivial case, where α is consistent with K, there are 2 calls to prove outside

the loop, and either one call or no calls to prove for each iteration of the loop. Note

that the condition tested on the head of the loop, that the rank of β is between oldrank

and newrank, does not require any call to prove, because β is in the entrenchment

base, and hence its rank is stored explicitly in the database. In the worst case, where

the added formula is given a rank at least as high all other formulae in the

entrenchment base, and its previous rank was not greater than any other formula in

the entrenchment base, then m +2 calls to the procedure prove are made, where m is

the number of formulae in the entrenchment base. That is, for an expansion, the

number of calls to prove is linear in the size of the base.

As we might expect, it is more difficult to add a new belief with a high rank than with

a low rank, as this represents a more radical alteration of the epistemic state. The

difficulty of accepting new evidence for a belief is related to the increase in the rank

of the belief; in fact, it is proportional to the number of beliefs with ranks between the

old and new values of the rank. Therefore, the difference between these two values

could be taken to be a measure of the degree of epistemic change.

Note that when creating a database from the empty belief set, the efficiency can be

greatly increased by inserting the formulae in descending rank. Then the average case

performance, rather than being quadratic in the size of the created database, can be

linear if we assume a fixed limit on the number of formulae at any one rank.

The expansion algorithm is very efficient with regard to space. In the worst case, the

database increases in size by one formula, as we would expect. By removing

redundancies, it is often the case that the base for the expanded belief set is in fact

smaller than the original base. The working space required is also negligible, apart

from the space used by prove. As noted earlier, we do not need to make a copy of
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the given base Γ, but can perform all operations directly on Γ, so that ∆ and Γ are

aliases for the same database relation.

4.3  Contraction

The second AGM operation we shall specify is contraction. The contraction of a

belief set is calculated from the belief set and the entrenchment via the (C–)

condition:

β ∈ Kα
− iff β ∈ K  and either  |−  α or  α <E  α∨β

The main difficulty in providing an algorithm for contraction on finitely

representable belief sets is that although Kα
−  ⊆ K, for all α and K, it is often the case

that no subset of the base Γ is a base for Kα
− . Alternatives to the AGM contraction

operation, which have the property that the contracted base is a subset of the original

base, do not satisfy the AGM recovery postulate (K–5). An example of this is the

theory base contraction operation of [Williams 1993]. [Nebel 1989] suggested that to

satisfy the recovery postulate, it is sufficient to add the formula α → γ, where γ is a

conjunction of all the formulae in Γ. Although this is true, it effectively doubles the

size of the database each time a contraction is performed, and hence is not desirable

for a computational model of contraction. All that is necessary is that for each

formula β which is removed from the base, the formula α → β must be derivable

from the new base. The simplest way to ensure this condition is to replace each

deleted formula β with the formula α → β at the same rank, unless it is already

derivable from the belief set with at least the same rank, and hence is redundant.

The reason that it is necessary to replace β by α → β is that from the recovery

postulate, K  ⊆ (Kα
− ) α

+ , we can derive that if β ∈ K then Kα
−  |−  α → β. (If β ∈ K,

Kα
−  ∪ {α} |−  β by (K–5), so Kα

−  |−  α → β by the deduction theorem.)

Entrenchment revision is not a difficult issue for contraction, since no new beliefs are

added to the belief set. That is, we can simply insist on a minimal change policy

which states that all remaining beliefs in a contracted belief set must have exactly the

same entrenchment as they had before the contraction was performed.

We will now describe such a contraction algorithm, and then show that it does satisfy

all of the AGM postulates for contraction.

4.3



Algorithms for AGM Belief Revision    57

4.3.1  The Contraction Algorithm

Let contract(Γ, α) denote the contraction of the entrenchment base Γ by the formula

α. Recall that n is the number of elements of the partition Γ, and is also equal to the

rank of the theorems.

contract(Γ, α)

if rank(Γ, α) = n { α is a theorem }

return(Γ)

else

∆ := Γ

oldrank := rank(Γ, α)

for each β ∈ Γ such that select(Γ,  β,  rank)  ≤ oldrank

if prove(∆,  α ∨ β,  oldrank +1) )  = 0 { (C–) condition }

r  := select(∆,  β,  rank)

∆ := delete(∆,  β)

if r < oldrank or prove(∆,  α → β,  oldrank +1) )  = 0

∆ := update(∆, α → β, r)

return(∆)

If an attempt is made to contract a theorem, the attempt is rejected in accordance with

the AGM definitions. Otherwise, a change is made to the base if and only if α is

derivable from the base. In this case, each member β of the base with rank less than

or equal to α is checked to see whether β is to be deleted from the base, and further, if

α → β is to be added to the base. By the (C–) condition, β is removed from the base

if α =E  α ∨ β. (Note that α >E  α ∨ β is impossible because it contradicts

entrenchment postulate (EE2).) In order to satisfy the recovery postulate, the formula

α → β must be in the contracted belief set. Therefore it needs to be added to the base

if it is not already derivable in the new base. By the minimal change principle, it is

given the same rank as that of β in the original base. This is the appropriate rank

because, given that α → β is not provable from the set of formulae ranked higher

than β, its rank in Γ is the same as the rank of β in Γ, since β |−  α → β. Also, if α is

added back to the belief set at its original rank, then the rank of β will also be restored

to its original value.
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As shown in the algorithm, this test for whether α → β is derivable in the new base is

greatly simplified. In the case where β is ranked less than α, given that α =E  α ∨ β,

α → β must be ranked at the same level as β by (EE2) and (EE3), hence α → β

cannot be derivable after β is deleted since the original base Γ is not redundant. The

other case is where α, β and α ∨ β are all ranked the same in Γ. In this case α → β

must be added to the base with that rank if it is not already derivable from the set of

higher ranked formulae. This is the only case in which it is necessary to make the

second call to prove. Note that this algorithm repeatedly tests the ranks of formulae

in ∆ rather than in the original Γ as the (C–) condition requires. Again, as with

expansion, this does not affect the result because of the nature of the tests performed.

The first test is for whether there is a proof of α ∨ β using only formulae ranked

higher than α; the second is for whether there is a proof of α → β using the same set

of formulae. Since none of these formulae are affected by earlier iterations of the

loop, this set of formulae is the same in each ∆ as in the original Γ.

Note that the contraction of α is successful even if α is not contained in the base: in

this case, at least one formula from the base contributing to each proof of α is

removed. This is ensured by the AGM contraction and entrenchment postulates.

4.3.2  Correctness of the Contraction Algorithm

We can now prove that the contraction operation defined by the above algorithm

coincides exactly with the AGM contraction operation, and also performs a minimal

change to the entrenchment ordering. Firstly we must show that the set of all

formulae in the new base ∆ is a base for the theory obtained by applying the AGM

contraction operation to the logical closure of the beliefs in the base Γ. That is:

Cn (∆1

__
)   =  Cn (Γ1

__
) α

−

This guarantees that the algorithm satisfies all of the contraction postulates. We also

require that the new entrenchment base represents a minimal change in the

entrenchment ordering and also satisfies (R1) and (R2). A minimal change in the

entrenchment is obtained if the rank of each formula remaining in the belief set after

the contraction is the same as its rank before the contraction. These requirements are

entailed by the (R–) condition:
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rank(∆, β) =

�� �
0

rank(Γ, β)

otherwise

if |−α or rank(Γ, α) < rank(Γ, α∨β)

The proof that the contraction algorithm satisfies this condition can be found in

appendix C.

We now give a formal specification of the contraction algorithm. If Γ is a consistent

and nonredundant entrenchment base, α a formula, and ∆ = contract(Γ, α) , then for

all i such that 1 ≤ i  ≤ n:

∆i   =  {β∈Γi  : rank(Γ,  α)  < rank(Γ,  α∨β) }  ∪

{α→β : β∈Γi   ∧  rank(Γ,  α)  = rank(Γ,  α∨β)   ∧

(rank(Γ,  β)  < rank(Γ,  α)   ∨  rank(Γ,  α)  = rank(Γ,  α→β) ) }

4.3.3  Examples

We shall now illustrate the operation of the contraction algorithm with several

examples. Assume we have the entrenchment base Γ given by:

30 : a∧b→c

20 : a

10 : b

Suppose first that we wish to remove the explicit belief a, so we call contract(Γ, a).

Then for each of the formulae in the base with rank 20 or less, we test whether that

belief is to remain in the base. The result is that a is removed, and b is replaced by

a→b, giving the entrenchment base:

30 : a∧b→c

10 : a→b

For the second example, let us remove the implicit belief c from the original belief

set, using contract(Γ, c). The most conservative entrenchment gives the rank of c as

10, so only the formula b is affected, giving:

30 : a∧b→c

20 : a

10 : c→b
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Third, we show an example where the implication α→β is redundant. Consider the

following base Γ:

30 : a

20 : b

10 : a∧b→c

Now we apply contract(Γ, c), where the rank of c is 10, and so only the formula

a∧b→c can be affected. Since c→(a∧b→c) is a logical theorem, it is redundant, so

a∧b→c is not replaced in the base. Thus the new base is:

30 : a

20 : b

4.3.4  Complexity of Contraction

Once more, we consider the complexity of the algorithm in terms of the number of

calls to prove. Outside the loop, there is one call to prove, to calculate the rank of α.

This value can be stored in oldrank when it is first calculated, rather than computing

its value twice. Note that the database assignment operation, ∆ := Γ, does not need to

copy the contents of the database, but merely assigns an alias to the database relation.

The loop is iterated once for each member of Γ with a rank less than or equal to

oldrank. This rank needs no calculation, as it is stored explicitly in the database.

Within the loop, there are at most 2 calls to prove, to calculate the ranks of a∨b and

a→b respectively. So in the worst case, the algorithm requires 2m +1 calls to prove,

where there are m formulae in the database. As was true for expansion, the number of

calls to prove is linear in the size of the base.

It is also interesting to note that the complexity is directly proportional to the relative

rank of the formula which is being removed. This is because a contraction cannot

affect formulae with greater rank than the formula being removed, and agrees with

the intuition that it is more difficult to remove highly entrenched beliefs than those

with a relatively low rank. Thus the initial rank of a contracted formula can be used

as a measure of the degree of epistemic change caused by the contraction.

The contraction algorithm is similar to expansion with regard to space efficiency.

After a contraction, the number of formulae in the database is no greater than were
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there previously, although some formulae have been made longer by substituting

α→β for β. The working space required is again constant, not taking into account the

space used by prove, since once more we may perform all operations directly on the

base Γ, without making a copy of it.

4.3.5  Theory Base Contraction

As an alternative to the AGM contraction operation, we describe an algorithm which

implements the theory base contraction function of [Williams 1993]. It is interesting

to note that this algorithm only differs from the AGM algorithm in that it does not

replace the deleted formula β with the formula α → β. Hence the operation is not

fully rational, as it does not satisfy the recovery postulate. Nevertheless, the revision

function derived from this contraction operation via the Levi Identity does satisfy all

of the AGM requirements.

This form of contraction can be described as a syntax-based approach, as the

principle of minimal change in the belief state has been replaced by a principle of

minimal change in the syntactic form of the base.

Let the contraction of a theory base Γ by a formula α be given by

TB_contract(Γ,  α) , defined as:

TB_contract(Γ, α)

if rank(Γ, α) = n { α is a theorem }

return(Γ)

else

oldrank := rank(Γ, α)

for each β ∈ Γ such that select(Γ,  β,  rank)  ≤ oldrank

if prove(Γ,  α ∨ β,  oldrank +1) )  = 0 { (C–) condition }

Γ := delete(Γ, β)

return(Γ)

This approach gains a higher level of efficiency for contraction than its AGM

counterpart, as there are at most m +1 calls to prove using this algorithm, about half

the number required for the full AGM contraction operation.
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4.4  Revision

We now present our specification of an AGM revision algorithm. The revision of a

belief set in the AGM paradigm can be described directly, via the (C*) condition:

β ∈ Kα* iff |−  ¬α or ¬α <E  α→β

It is also possible to define the revision operation in terms of the contraction and

expansion operations, via the Levi identity:

Kα*   =  (K¬α
− ) α

+

It is the latter definition that we shall use. Once more, we shall show that our

algorithm executes an AGM revision with a minimal change in the belief state.

4.4.1  The Revision Algorithm

The algorithm revise(Γ,  α,  newrank) for revising a belief base Γ by a formula α

with rank newrank, is the composition of a contraction and an expansion, as specified

by the Levi identity.

revise(Γ,  α,  newrank)

return(expand(contract(Γ,  ¬α) ,  α,  newrank) )

4.4.2  Correctness of the Revision Algorithm

Now we show that the algorithm defined in this section satisfies the AGM postulates

for rational belief change. Let Γ be a consistent and nonredundant entrenchment base,

α a consistent formula, and r a natural number less than the maximum rank n. Then if

∆ = revise(Γ,  α,  r) , the AGM postulates are satisfied if

Cn (∆1

__
)   =  Cn (Γ1

__
) α*

To define the (R*) condition for minimal change in the belief state, we first note that

for an inconsistent (|−  ¬α) or trivial (|−  α) revision, Γ is returned unchanged.

Otherwise, we combine the (R+), (R–) and (C*) conditions to give the (R*)

condition:
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rank(∆,  β)   =  

���
� ��

�
  

min(rank(Γ,  α→β) ,  r)    

rank(Γ,  β)    

0

  

otherwise

               or  r  ≤ rank(Γ,  β) )

  and (rank(Γ,  α→β)  ≤ rank(Γ,  β)

if  rank(Γ,  ¬α)  < rank(Γ,  α→β)

if  rank(Γ,  ¬α)  ≥ rank(Γ,  α→β)

We do not give a separate formal specification of the revision algorithm, since it is a

composition of the expansion and contraction operations, which have already been

defined precisely. In appendix D, we prove that the revision algorithm satisfies the

(R*) condition, and thus it computes the AGM revision operation with a minimal

change to the epistemic state.

4.4.3  Examples

Consider an initial database Γ containing a→b at rank 30, and suppose it is revised

by revise(Γ, ¬b, 20). Then, since Γ is consistent with ¬b, the operation is equivalent

to an expansion, and results in the following base:

30 : a  → b

20 : ¬b

Now suppose we perform revise(Γ, a, 10). Then the rank of ¬a is 20, and the

formula ¬b is replaced with ¬a  → ¬b, since the rank of ¬a  ∨ ¬b is also 20. The

revised entrenchment base is:

30 : a  → b

20 : ¬a  → ¬b

10 : a

4.4.4  Complexity of Revision

Clearly the revision algorithm can be analysed in terms of the contraction and

expansion operations from which it is made up. The worst case number of calls to

prove is 3m +3, for an entrenchment base containing m formulae, which again is

linear in the size of the entrenchment base. Similarly, the space requirements are the

same as for contraction and expansion; the entrenchment base nevers grows by more

than one formula.
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The difficulty of performing a revision by a formula α is dependent on both the initial

entrenchment of ¬α and the intended entrenchment of α in the revised belief base. In

the first part of the revision, the amount of work performed increases approximately

linearly with the relative entrenchment of ¬α. On the other hand, if ¬α ∈/  K, its rank

is zero, and the revision collapses to an expansion operation. Similarly, the work

required in the second half of the revision is proportional to the requested

entrenchment of α. So for revision, we could use the sum of these two ranks as a

measure of the degree of epistemic change.

4.4.5  Fast AGM Revision

It is possible to find a more efficient algorithm for calculating the revision directly,

rather than via the Levi identity, which uses AGM contraction and expansion

operations. It has been noted several times [Makinson 1987; Nebel 1989; Williams

1993] that many contraction functions that are simpler than AGM contraction may be

substituted into the Levi identity without affecting the resulting revision operation.

Such contraction functions are called revision equivalent to AGM contraction; an

example is the theory base operation of [Williams 1993], which does not satisfy the

AGM recovery postulate, but when used in the Levi identity to implement revision,

satisfies all of the AGM revision postulates.

The reason that supposedly "irrational" contraction functions can produce "rational"

revision functions is explained by considering the difference between the AGM

contraction and the theory base contraction algorithms presented in the previous

section. Recall that for AGM contraction, when a belief β is removed from the base,

it usually has to be replaced by α→β, where α is the sentence being contracted. In the

case of a revision, where the negation of the contracted belief is added to the base, the

implications of the form α→β are derivable from the newly added sentence, so they

do not need to be explicitly included in the base. Apart from this difference, such a

revision algorithm bears a close resemblance to the composition of an AGM

contraction and expansion algorithm. The algorithm fast_revise is an example of

such a function.

Unfortunately, the revision equivalent contraction functions do not satisfy the

minimal change requirement for the entrenchment relation. This is due to the fact the

rank of α→β may be lower in the revised belief state than it was in the given belief
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state, which occurs when newrank is less than rank(Γ,  α → β) , and thus the rank of

other derived beliefs may also be reduced. Hence our AGM revision algorithm makes

the minimal change to the epistemic state consistent with the postulates for revision,

whereas the fast_revise algorithm makes a minimal change to the syntactic form of

the entrenchment base.

We now present the algorithm fast_revise(Γ,  α,  newrank) for revising a belief base

Γ by a formula α with rank newrank. Recall that n is the rank of the theorems.

fast_revise(Γ,  α,  newrank)

if rank(Γ,  α)  = n or rank(Γ,  ¬α)  = n

{ α either a theorem or contradiction }

return(Γ)

else

∆ := Γ

oldrank := rank(Γ, ¬α)

for each β ∈ Γ such that select(∆,  β,  rank)  ≤ oldrank do

if prove(∆,  α → β,  oldrank +1) )  = 0{ (C*) condition }

∆ := delete(∆, β)

∆ := expand(∆, α, newrank)

return(∆)

If α is a theorem, the revision is trivial and no change is made to the base. If α is

inconsistent, the operation is disallowed for the same reasons as those for disallowing

inconsistent expansions. (Note that the AGM postulates imply that the revision by an

inconsistent belief is the same as the expansion by that belief.) Otherwise, by the

(C*) condition, we remove from the base any formula β such that ¬α is of rank equal

to α → β in the original base. It suffices to consider only those β ranked less than or

equal to ¬α because if ¬α <E  β then ¬α <E  α → β (by EE2 and EE1), so β remains

in the revised set. Finally, the set of formulae remaining in the base is expanded by α.

Note that, again, the repeated calls to prove use only the formulae ranked higher than

¬α, and this set does not change with repetitions of the loop, so only one copy of the

database is required to implement the algorithm.
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This revision operation can be analysed in much the same way as the contraction;

there are two calls to prove outside the loop, and one call for each iteration of the

loop. For a database with m formulae, this gives us a worst case of 2m +4 calls to

prove, including those made from the expand algorithm. This is considerably better

than the 3m +3 calls made in the worst case by invoking the Levi identity with the

AGM contraction operation, reducing the time cost of revision by a third.

In terms of space, this revision algorithm is very efficient. No more than one formula

is added to the base, and, unless the revision collapses to an expansion operation, at

least one formula is removed from the base. Once more the only notable temporary

space required is for the prove algorithm.

4.5  Summary

We have presented a complete computational model for AGM belief revision, in the

form of algorithms for the efficient computation of expansion, contraction and

revision operations. These algorithms are based on the interpretation of a partially

specified entrenchment as standing for the most conservative entrenchment, and

satisfy the AGM postulates for rational belief change.

The algorithms also can be implemented easily over a theorem prover for the chosen

logic. We have shown that the algorithms are efficient in terms of space and time; the

entrenchment base never grows by more than one formula per operation, and the

number of calls to the proof procedure is linear in the size of the entrenchment base.

In the following chapter we describe a specific implementation of these algorithms

over first-order logic.
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5 A First-Order Logic AGM
Belief Revision System

In this chapter, we describe the implementation of a belief revision system, built over

classical first-order logic with equality, which satisfies all of the AGM postulates for

rational belief change, for any finitely representable belief state. The internal

representation of the belief set is in conjunctive normal form, and logical

consequence is computed by a resolution theorem prover using ordered linear

resolution (OL-resolution) and paramodulation [Chang & Lee 1973]. The OL-

resolution procedure determines the rank of a formula by generating, in a depth-first

fashion, the highest ranked OL-refutation of the negation of the formula. The

program uses the algorithms described in chapter 4 to implement the AGM belief

revision operations. This is the first implementation of a general AGM belief revision

system.

First, the data structures and other details of the implementation will be described,

followed by a section which outlines the resolution theorem prover and a further

section on the implementation of the equality predicate by adding paramodulation to

the resolution procedure. The interface to the system is then explained, including the

command-line options, and the syntax of commands and formulae. Finally, the

operation of the system is illustrated by several examples.

5.1  Internal Data Representation and Code

As described in chapter 3, a belief set is represented by a finite set of formulae in the

chosen logic which, in this case, is classical first-order logic with equality. The input

to the program is not restricted to any particular representation, as the system accepts

any well-formed formulae, but stores the formulae in the database in conjunctive

normal form (CNF) for use by the resolution theorem prover. Therefore, formulae are

parsed and converted into CNF as they are entered into the system. This is done by

standard techniques; each formula is parsed by a recursive descent parser, creating a
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parse tree which is manipulated to convert the formula into CNF. The conversion into

CNF is achieved by applying the following steps:

Algorithm Convert_to_CNF

remove implications

move negations in

rename variables (each variable name is replaced by a unique identifier)

replace existentially quantified variables by Skolem functions and constants

remove universal quantifiers

recursively apply distributive laws

The resulting formula, in CNF, is stored in the database for use by the resolution

theorem prover.

The database contains a linked list of records representing the formulae, sorted in

descending order of rank. Each of these records contains three different

representations of the formula. First there is the character string, in the same format

as the formula was input, and then the CNF forms of the formula and the negation of

the formula. The clausal form of the negation is needed by the refutation procedure

when querying the formula, and this cannot be calculated directly from the clausal

form of the formula because of information lost in Skolemization. (In particular, after

Skolemization, it is not possible in general to ascertain whether universally quantified

variables appeared within the scope of any existentially quantified variables.)

Each formula is represented by a linked list of records, each of which represents a

clause. The records contain a pointer to the data structure representing the clause, an

integer representing the rank of the clause, an integer which is used to count how

many times the clause has been used in the current proof, a pointer to a data structure

containing the substitutions which have been applied to the formula, and a pointer to

the next clause in the formula.

Clauses are also represented by linked lists of records, where each of these records

represents a literal. The information stored for each literal is the name of the literal, a

flag indicating whether it is a positive or negative literal, a flag indicating whether or

not the literal is framed (by the OL-deduction procedure), a pointer to a list of

arguments, a pointer to a list of previous forms of the literal to increase the efficiency
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of paramodulation, and a pointer to the next literal in the clause.

The occurrence of literals within clauses is recorded by an entry in a hash table,

which is used by the resolution procedure to avoid searching for literals to resolve

against. For small databases, this has not produced a measurable increase in

efficiency, but for larger databases we expect that it would provide much better

performance.

Terms, which occur as arguments to literals and arguments to other terms, have a data

structure containing the name of the term, a pointer to the list of the term’s

arguments, a pointer to the next term in the list in which the current term resides, and

a unique identifying integer, which falls into one of three classes. If this value is 0,

the term is a constant or function symbol; if it is negative, it represents a unique

Skolem constant or function; and if the number is positive, it represents a unique

variable name. These values are always invisible to the user of the system, but they

are necessary to ensure consistent substitutions for variables.

p(a) -> All(X)[q(X)]

formula

negated

clause

rank

count

mgu

next

10

0

-

-

literal

next

negated

args

framed

p_list

p

TRUE

FALSE

-

symbol

var_num

args

next

a

0

-

-

literal

next

negated

args

framed

p_list

q

-

FALSE

FALSE

-

symbol

var_num

args

next

X

1

-

-

clause

rank

count

mgu

next

0

0

-

literal

next

negated

args

framed

p_list

p

-

FALSE

FALSE

-

symbol

var_num

args

next

a

0

-

-

clause

rank

count

mgu

next

0

0

-

-

literal

next

negated

args

framed

p_list

q

-

TRUE

FALSE

-

symbol

var_num

args

next

X

-1

-

-

database

.

.

.

Figure 5.1: The AGM data structure for p (a) →∀x.q (x)

The code itself is written in about 4000 lines of standard C; on a MIPS R4000, it

compiles into about 100K of object code, and all of the examples in this thesis run in
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negligible time (less than one second). Efficiency considerations were taken into

account in the design of the program, but due to the undecidability of first-order

logic, for practical applications a restricted logic should be used, such as Horn clause

logic, Datalog, propositional logic, or any tractable subset of first-order logic,

implemented with a theorem prover that takes advantage of the restrictions in the

logic.

5.2  The First-Order Logic Proof Procedure

It is well known that there is no sound and complete decision procedure for first-

order derivability. OL-refutation guarantees soundness and completeness of the

inference method, but does not guarantee termination. For the system to be useful, we

would like to be able to guarantee not just termination, but termination in a

reasonable time for the size of the database, without necessarily losing the correctness

of our results. Our system provides two different ways of dealing with this problem.

The first option is to allow the search for a refutation to proceed indefinitely. This

ensures that all results obtained are correct, but does not ensure that any result ever

will be obtained, which, for a practical system, is not a satisfactory situation.

The second approach allows the user to place a limit on the number of times each

clause can be used as a side clause in a resolution proof. Once this limit is reached, a

warning message is printed and that clause is not used again in the rest of the proof.

This guarantees termination at the cost of completeness, but note that the user is

always warned when a proof has been cut short in this fashion, and therefore knows

which particular results are not totally reliable. The limit on the number of uses of

each clause is a parameter which can be adjusted dynamically; used in this way, the

theorem prover would then have a depth-first iterative deepening search strategy.

This facility has proved to be adequate for stopping infinite recursion in simple

problems such as a transitive closure query for an ancestor relation. It could also be

used in list processing or arithmetic problems, where the length of the list, or greatest

number of interest, respectively, has a fixed upper bound. For more general problems,

this approach cannot be used.

In chapter 4, we presented the algorithm for determining the rank of a belief. This

algorithm relied on the existence of a procedure called prove(Γ, α, r), which returns
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the value of the highest ranked proof of α from the entrenchment base Γ, ignoring

formulae of rank less than r. That is, the proofs of α only use formulae in Γr

__
as

defined in section 3.2. This procedure is implemented using a modified ordered

linear resolution (OL-resolution) theorem prover.

OL-resolution employs a refutation proof procedure which starts with the negation of

the clause to be proved as the centre clause, and resolves on the first literal in the

clause to produce a resolvent which becomes the new centre clause. This continues

until the empty clause is produced. We implement the OL-resolution procedure with

a depth-first search strategy. If at any time no resolving clause can be found, the

procedure backtracks. This procedure is made as efficient as possible by indexing

clauses by the literals they contain, so that no search is needed to find side clauses for

resolving with the centre clause. OL-refutation employs the standard techniques of

factoring (deleting subsumed literals) and framing literals to create reducible clauses

(avoiding the need for ever using previous centre clauses as side clauses later in the

proof), and has been shown to be a sound and complete inference method [Chang &

Lee 1973].

The following algorithm describes the main features of the OL-resolution procedure:

Resolve(Centre_Clause, Database, Min_Rank_Used, Cut_Off_Rank)

If there exists a factor or reduction CC ' of Centre_Clause

Resolve(CC ' , Database, Min_Rank_Used, Cut_Off_Rank)

If there exists no unframed literal in Centre_Clause

Return Min_Rank_Used

Otherwise take the first unframed literal L  ∈ Centre_Clause

For each clause C  ∈ Database

If rank(C) > Cut_Off _Rank and

C resolves with Centre_Clause on L, giving CC ' and

C.count < Max_Count

Then

Frame(L) in CC '

If rank(C) < Min_Rank_Used

Resolve(CC ' , Database, rank(C), Cut_Off _Rank)

Else

Resolve(CC ' , Database, Min_Rank_Used, Cut_Off_Rank)
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The theorem prover finds proofs of α and associates with each proof a rank, defined

as the rank of the lowest ranked formula involved in the proof. This is a lower bound

for the rank of α. The negation of α, used as the initial centre clause, is assigned rank

n, the rank of the logical theorems, so that it does not affect the rank of the proof.

Subsequent attempts to prove α are not permitted to use any formulae of equal or

lower rank than the previous proof of α, since such a proof cannot provide any further

information about the rank of α.

Suppose prove_1(Γ, α, r) denotes the rank of the first proof of α found by prove(Γ,

α, r). Then, if prove_1(Γ, α, r) returns r 1 , the next value generated by prove is

prove_1(Γ, α, r 1), and the rank of this proof is assigned to r 2 , which is used in the

next proof, prove_1(Γ, α, r 2). This process continues until the call to prove_1(Γ, α,

ri) fails for some i, indicating that all such proofs of α have been found, and the

greatest lower bound of the ranks, ri , is returned as the rank of α. If no proof is found,

the rank of α is zero, indicating that α is not a current belief.

Note that our OL-refutation procedure is based on depth-first search and thus is not

guaranteed to produce the highest ranked proofs first. In fact, in the worst case, it is

possible that it could generate all possible proofs of α. By limiting the proof to

formulae in Γr

__
, and increasing r as successively higher ranked proofs are discovered,

it is hoped that the average case behaviour would be significantly better than the

worst case. To date we have no experimental results to confirm or deny this

assumption.

An alternative to this depth-first approach would be to use an OL-refutation

procedure based on breadth-first search, which is guaranteed to find the highest

ranked proof first, but this would be far less space efficient than our method.

5.3  Equality

In order to implement examples of nonmonotonic reasoning (see chapter 7), it is

necessary to add an equality predicate to the logical language recognised by the belief

revision system. Performing resolution alone on a belief set containing equality

relations does not necessarily yield correct results, unless the meaning of the equality

symbol is encoded into the system in some way. One way of doing this is by adding

extra axioms to the logical database to specify the properties of equality: reflexivity,
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symmetry, transitivity and substitutivity. The disadvantage of this approach is that

many more clauses are needed to represent a belief state, and also many more useless

resolvents are generated by the resolution procedure. A better approach is

paramodulation, which replaces the symmetric, transitive and substitutive properties

of equality with an inference rule which can be used with resolution.

Paramodulation is given the following definition in [Chang & Lee 1973]: Let C 1 and

C 2 be two clauses with no variables in common. If C 1 is L [t ] ∨ C'1 and C 2 is

r=s  ∨ C'2, where L [t ] is a literal containing the term t and C'1 and C'2 are clauses,

and if t and r have most general unifier σ, then infer:

Lσ[sσ] ∪ C'1σ ∪ C'2σ,

where Lσ[sσ] denotes the result obtained by replacing one single occurrence of tσ in

Lσ by sσ. The above inferred clause is called a binary paramodulant of C 1 and C 2 .

We then extended the OL-deduction procedure, in order to allow paramodulation

steps in the inference procedure. Note that each paramodulation step can be treated as

a sequence of the following two OL-resolution steps. Assuming the notation in the

above definition, with C 1 as the centre clause containing the resolving literal L [r ],

resolve against the theorem r≠s  ∨ ¬L [r ] ∨ L [s ], to give the new centre clause Cp , in

which L [r ] is framed. Then Cp is resolved with C 2 , on the literal r=s, to give the

same binary paramodulant as shown in the definition above, with literals in the

following order, and including the following two framed literals:

• the literals in C'2σ, in the same order they appear in C 2

• rσ = sσ (framed)

• Lσ[sσ]

• L [r ] (framed)

• the literals in C'1σ, in the same order they appear in C 1

It was stated earlier that paramodulation replaces the symmetric, transitive and

substitutive properties of equality, but it was not mentioned that it does not account

for the reflexivity of equality. To obtain completeness, [Chang & Lee 1973] states

that it is sufficient to add to the set of clauses the axiom x=x, where x is a variable,
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plus the set of functionally reflexive axioms { f (x 1 ,  . . . ,xn) }, for all n-place function

symbols f occurring in the set of clauses. But paramodulation was chosen to avoid the

need for cumbersome axiomatisations of equality, so this approach is unsatisfactory.

It is often possible to evaluate equality relations directly, using unification and

specific assumptions about the naming of objects in the domain. We use the

following procedure to implement the reflexivity of equality. If a centre clause C

containing an inequality literal is r≠s  ∨ C', for some clause C', and r and s are

unifiable with most general unifier σ, then C is unsatisfiable if C'σ is unsatisfiable, so

we can use C'σ as a new centre clause for resolution.

It is more difficult to deal with positive equality literals. First we note that there are

several ways of naming objects in a domain, which lead to different interpretations of

equality. The unique names assumption is discussed in chapter 7, where the equality

predicate is used in nonmonotonic reasoning. If the unique names assumption is

invoked (via the command-line option "-u") then a  = b is unsatisfiable for any

distinct constants a and b, otherwise a  = b is unsatisfiable only if a  ≠ b is explicitly

derivable from the belief set via resolution.

Likewise, the choice of whether or not to use a domain closure assumption affects the

evaluation of quantified equality predicates. The system is built with the assumption

that the domain of objects is not closed, as there is no reason to believe that when we

revise our belief set with new information, this new information would not mention

any new objects. The result of this assumption is that formulae used to express

domain closure, such as ∀x((x=a 1)  ∨  . . .  ∨ (x=ak) ) are inconsistent in the AGM

system. Conversely, formulae such as ∃x(x≠a) are always satisfiable.

We now complete the description of the equality evaluation procedure. If the centre

clause C contains a positive equality literal r=s, then unless the terms r and s are

identical (so that C is satisfiable), we defer the evaluation of the literal until all

further resolution steps have been completed. In this way, we obtain as many

instantiations of variables as possible. Then, if the unique names assumption has not

been invoked, the remaining clause is assumed to be satisfiable and the refutation

fails. Otherwise, an occurs check is performed, and a unification test, to determine

whether or not each literal is unsatisfiable. If the clause cannot be shown to be

unsatisfiable, the proof fails.
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5.4  Interface to the System

We have yet to design a user-friendly graphical user interface for the AGM belief

revision system. The current system provides a text-based interface. It has the

following command line options:

-a For simulation of ATMS (see chapter 6)

-b Use Theory Base (not AGM) operations (see chapter 4)

-c Print a count of the number of calls to resolve()

-f Use the fast_revise algorithm (see chapter 4)

-n For nonmonotonic reasoning (see chapter 7); implies -u

-p Print formulae in both internal representations and as input

-r Print a trace of resolution and paramodulation steps

-s Silent flag; do not print warning messages

-t Abort program on successful proof (for stack trace)

-u Invoke unique names assumption

Input to the program consists of commands to perform AGM operations (expansion,

contraction or revision), queries of the epistemic state (belief set membership,

relative entrenchment of beliefs, the contents of the entrenchment base, or queries of

conditional statements), and a command to set the maximum depth of the theorem

proving procedure. Commands which have well-formed formulae as arguments use

the following symbols, not necessarily in CNF:

˜ negation

| disjunction

& conjunction

-> implication

<- reverse implication

<-> double implication

= equality (infix)

Exists(X)[ f] variable X is existentially quantified in formula f

All(X)[ f] variable X is universally quantified in formula f

Variables begin with upper case letters; predicate and function symbols begin with

lower case. Parentheses may be used to disambiguate formulae; otherwise the usual
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precedences apply. Free variables are implicitly universally quantified in database

formulae and existentially quantified in queries, as is usual with resolution theorem

provers. A comma-separated list of variables may be used instead of a single variable

in a quantified formula.

The following syntax is used for commands:

n: f expansion by formula f with rank n

! f contraction by formula f

n*f revision by formula f with rank n

?f query formula f

?f => g query conditional f  ⇒ g

?f ? g query relative entrenchment of f and g

?? print current entrenchment base

$n set maximum number of times a clause can be

used in a proof to n (set n = 0 for no limit)

The conditional query "?f => g" is true with respect to a belief set K if g  ∈ K f
*; K is

left unchanged.

5.5  Examples: Expansion, Contraction and Revision

This section illustrates the operation of the expansion, contraction and revision

algorithms. We present the input to the system, followed by the system’s responses

indented with ‘>>>’.

100: All(X) [p(X) & q(X) -> r(X)]

10: r(a)

20: p(a)

30: q(a)

>>> Deleting r(a) from base : derived rank = 20

The first three expansions add the new belief at the given rank, with no other changes

to the entrenchment base. The expansion by q(a) results in the deletion of r(a) from

the database, as it is redundant, since it is derivable from p(a) with rank 20, q(a) with

rank 30 and the rule with rank 100. Hence the rank of r(a) is now 20.
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40: p(a) | r(a)

??

>>> Complete database:

>>> 100 : All(X) [p(X) & q(X) -> r(X)]

>>> 40 : p(a) | r(a)

>>> 30 : q(a)

>>> 20 : p(a)

? r(a)

>>> yes : rank = 30

? r(a) ? r(a) | p(a)

>>> r(a) < r(a) | p(a)

We then perform an expansion by p(a) ∨ r(a), and then print the whole database, and

query the rank of r(a). Note that the addition of p(a) ∨ r(a) at rank 40 means that r(a)

now has rank 30 because it is derivable from q(a), p(a) ∨ r(a) and the rule. The

entrenchment relation between r(a) and r(a) ∨ p(a) is then queried, giving

r(a) <E  r(a) ∨ p(a).

! r(a)

??

>>> Complete database:

>>> 100 : All(X) [p(X) & q(X) -> r(X)]

>>> 40 : p(a) | r(a)

>>> 30 : (r(a)) -> (q(a))

>>> 20 : p(a)

Now the database is contracted by r(a). Because r(a) < r(a) ∨ p(a), p(a) remains in the

contracted belief set by the (C–) condition, but the belief q(a) with rank 30 (so that

r(a) has the same rank as r(a) ∨ q(a)) is replaced by r(a) → q(a), as required by AGM

postulate (K-5). The beliefs which have a rank greater than r(a) (that is, greater than

30) are unaffected by the contraction operation, so they remain in the resulting

entrenchment base.
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40* ˜r(a)

>>> Deleting (r(a)) -> (q(a)) from base : derived rank = 40

>>> Deleting p(a) from base : derived rank = 40

??

>>> Complete database:

>>> 100 : All(X) [p(X) & q(X) -> r(X)]

>>> 40 : p(a) | r(a)

>>> 40 : ˜r(a)

Finally the belief set is revised by ¬r(a) with rank 40. The formula ¬r(a) is added

explicitly to the base with rank 40. The rank of r(a)→q(a) is now implicitly increased

to 40, since it is derivable from ¬r(a), so this formula is deleted. Similarly, p(a) is

also deleted because it is derivable with rank 40 from ¬r(a) and p(a) ∨ r(a).

5.6  Further Examples: Conditional Queries and Inheritance Networks

One standard problem in nonmonotonic reasoning is that of reasoning about

inheritance networks [Brewka 1991b], which we use to illustrate one application of

conditional queries. In an inheritance network, objects are described by their place in

a hierarchy of types, where more specific types inherit information from more general

types. The inheritance network must be able to deal with contradictions in the

inherited information, and this is generally done by allowing information from more

specific types to override the information inherited from a more general type. The

classic example is:

Typically birds fly.

Emus are birds.

Typically emus don’t fly.

An inheritance network is often represented by a directed acyclic graph, as shown

opposite. Directed links connect subtypes to their supertypes, so an arrow from X to

Y represents the fact that generally X’s are Y’s. The crossed arrows represent

negative links, so a crossed arrow from X to Y represents the fact that X’s are not

generally Y’s. The above example would be represented as:
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Emu

Bird

Flying thing

_

To encode this example in first-order logic, we write the inheritance rules as

universal generalizations, and use the rank of a formula to encode the relative

strengths of the rules. If more specific information is to override general information,

the more specific rule should have a higher rank than the general rule.

10: All(X) [bird(X) -> flying_thing(X)]

20: All(X) [emu(X) -> bird(X)]

20: All(X) [emu(X) -> ˜flying_thing(X)]

? emu(X) => flying_thing(X)

>>> no

? emu(X) => ˜flying_thing(X)

>>> yes

We then query the database with: "Are emus flying things?", expressed as a

subjunctive conditional query, "If X were an emu, would it be a flying thing?" The

conditional is evaluated by the Ramsey Test [Ramsey 1931], which can be

formulated as:

α ⇒ β  iff  β ∈ Kα*

Note that in the unrevised theory, it is inconsistent for any object to be an emu, since

both flying_thing and ¬flying_thing would be derivable for that object. Thus we

cannot expand the theory with an instance of an emu. If we were to revise the theory

with an instance of an emu, then the defeasible rule, All(X) [bird(X) ->

flying_thing(X)], would be removed as being the cause of the inconsistency.

Obviously we do not want one exception to a rule to invalidate the rule entirely, and

so we use a conditional query, which has the property that the base is not affected by

the query, whereas the revision operation would remove rules which are inconsistent
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with current facts. An alternative solution to this problem is the subject of chapter 7.

Returning to the example, we see that the two queries, "Are emus flying things?", and

"Are emus not flying things?", are answered correctly, and the database is not

affected by the queries.

The next simple example, the Nixon diamond, provides an example where an object

is an instance of two types with conflicting properties. The desired conclusion is that

the system should be agnostic about both properties.

Nixon

Quaker

Pacifist

Republican

/Republicans are not pacifists.

Quakers are pacifists.

Nixon is a Republican.

Nixon is a Quaker.

We then want to know whether or not Nixon is a pacifist. The example as stated

would be encoded as follows:

10: All(X) [quaker(X) -> pacifist(X)]

10: All(X) [republican(X) -> ˜pacifist(X)]

? republican(nixon) & quaker(nixon) => pacifist(nixon)

>>> no

? republican(nixon) & quaker(nixon) => ˜pacifist(nixon)

>>> no

Note that in the absence of additional information to break the conflict, it is

impossible to conclude that Nixon is or is not a pacifist. This time, if we performed a

revision by republican(nixon) ∧ quaker(nixon), both of the rules would be removed

from the database, as they are inconsistent with the new information, and equally

ranked. Now suppose we were given further information, that it is more likely for a

Quaker to be a non-pacifist than a Republican to be a pacifist. Then we encode this

information by giving the more reliable rule a higher rank than the other, and the

example becomes:
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10: All(X) [quaker(X) -> pacifist(X)]

20: All(X) [republican(X) -> ˜pacifist(X)]

? republican(nixon) & quaker(nixon) => pacifist(nixon)

>>> no

? republican(nixon) & quaker(nixon) => ˜pacifist(nixon)

>>> yes

The system correctly derives that Nixon is not a pacifist.

5.7  Summary

In the last three chapters, we have developed a computational model for AGM belief

change operations, presented specific algorithms for implementing the model, and

described our implementation of an AGM belief revision system over first-order logic

with equality. The computational model is based on a partitioned finite base, which

represents both the belief set and the epistemic entrenchment relation over the

language, via the construction of the most conservative entrenchment. The

representation of the entrenchment and the specific belief change algorithms provide

an efficient means of implementing the AGM expansion, contraction and revision

operations. The implementation is unique as a system which computes fully rational

belief change. The algorithms also provide a unique solution to the iterated revision

problem and the more general entrenchment revision problem, by ensuring the belief

change operations invoke a minimal change in the epistemic entrenchment relation.

In chapters 6 and 7, we extend this work to utilise the relationships that belief

revision has with truth maintenance, foundational reasoning, and nonmonotonic

reasoning. We describe an algorithm which extends the system to simulate the

behaviour of the most well-known dynamic reasoning system, the ATMS, and show

that there is a close relationship between foundational reasoning and most

conservative entrenchments. We also use some established relationships with

nonmonotonic reasoning to implement a nonmonotonic reasoning system with

defaults and exceptions.
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6 Belief Revision and
Truth Maintenance

There are a number of operational systems which are classed as truth (or reason)

maintenance systems [Martins 1990], which are derived from the original Truth

Maintenance System (TMS) of [Doyle 1979]. The features which are common to all

such systems are that they perform some form of dynamic reasoning, in which a

consistent set of beliefs is calculated from a changing set of facts or assumptions, and

a (usually static) set of rules or justifications. Truth maintenance systems are the

primary operational example of foundational reasoning, as they require that every

belief either has a well-founded supporting justification, or else is considered to be

self-justifying (foundational). These systems also exhibit temporal nonmonotonicity,

that is, previously held beliefs may be given up as the set of supporting facts changes.

This chapter focusses on the Assumption-Based Truth Maintenance System (ATMS)

[de Kleer 1986], the most popular implementation of a truth maintenance system.

In this chapter, we develop a relationship between belief revision and truth

maintenance. In particular, we present two algorithms for calculating and revising an

epistemic entrenchment relation to simulate the behaviour of the ATMS using the

AGM system. The AGM belief set is used to represent the ATMS context, and the

ATMS context switches are performed by AGM expansion and contraction

operations.

The first approach appeared in [Dixon & Foo 1992a, 1993], and does not rely on

generating the most conservative entrenchment from a given partial entrenchment,

but explicitly generates that part of the entrenchment relation which is needed to be

tested using the (C–) condition for any admissable contraction operation. The

admissable contraction operations are those which retract ATMS assumptions only,

which corresponds with the operations allowed by the ATMS itself. This first

approach is cumbersome, as the computationally expensive ATMS label update

procedure is used in calculating the partial entrenchment.
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The second approach shows that, by using the most conservative entrenchment, there

is a very natural way to perform truth maintenance and foundational reasoning in

general, within the AGM logic. This result is surprising for two reasons: firstly, the

AGM logic is supposedly based on the principle of coherence rather than

foundationalism; and secondly, it has been shown [Fuhrmann 1991] that foundational

reasoning does not in general satisfy the AGM recovery postulate for contraction

(K–5), K  ⊆ (Kα
− ) α

+ . The reasons for these surprising results are described in section

6.6.

The chapter is organised as follows: we first describe the ATMS, including a formal

specification of its operation, which is used later, in the correctness proofs of the two

algorithms. The next two sections describe the algorithms, and we prove that both of

these algorithms provide correct implementations of the ATMS. In section 6.4, we

describe the automation of the algorithms for use with the AGM implementation. It

was necessary to make one change to the expansion algorithm in order to implement

the ATMS simulation; the revised expansion algorithm is presented in this section.

We then discuss extensions to the ATMS made possible by implementing it within

the AGM system, and in the following section we describe the conditions under

which the AGM system can be used to perform foundational reasoning. Finally,

section 6.7 summarises the lessons learnt from this work.

6.1  The ATMS

The ATMS was developed for use in diagnosis and qualitative physics, where an

efficient means of searching a large solution space was required, as well as the ability

to make nonmonotonic inferences whilst keeping the database free of inconsistency.

It consists of two parts: a problem solver and a truth maintenance system (TMS).

The problem solver communicates the justifications for the inferences which it has

made to the TMS, which, in turn, determines the current beliefs and passes this

information back to the problem solver. Whereas the problem solver is often based on

some subset of first-order logic and includes the domain knowledge and inference

procedures, the TMS treats all beliefs as atomic, so that they have no logical structure

and no logical relationships with other beliefs except as provided by the problem

solver in the form of justifications. A justification is communicated by the problem

solver as a set of supporting beliefs (the antecedents) and a supported belief (the
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consequent), interpreted by the TMS as a material implication from the conjunction

of the antecedents to the consequent. Thus the justifications are interpreted as

propositional Horn clauses, and the TMS has only to perform propositional inference.

In this chapter, we shall often use the name ATMS to refer to the TMS part of the

system, rather than the whole of the system.

The ATMS implements a foundational approach to modelling belief by insisting that

each non-foundational belief be justified by a set of supporting beliefs. Any

proposition that does not have such a justification is not accepted as a belief, unless it

is one of the foundational beliefs, which require no justification at all. In the ATMS,

the foundational beliefs are called assumptions, and there is a predetermined set of

possible assumptions.

In the foundational theory, a justification is valid only when all of the beliefs which

make up the justification are either foundational or are justified themselves, so that

chains of justifications are formed. Foundationalism places two restrictions on these

chains: firstly they must be acyclic, so that no proposition can form part of its own

justification, and secondly the chains must be finite, so that ultimately all beliefs are

supported by the foundational beliefs, which require no further justification. The

ATMS removes the restriction that justifications be acyclic, since the "ATMS

mechanism will never mistakenly use it as a basis for support" [de Kleer 1986]

(p.155). The ATMS has no way of representing infinite chains of justifications.

In this work, we place one additional restriction on the ATMS: we do not allow the

assumptions to be justified. Surprisingly, this restriction does not reduce the power

of the ATMS at all, since [de Kleer 1986] provides a technique which "avoids ever

having to justify assumptions" (p.147). Intuitively, too, since the assumptions are

supposed to represent foundational beliefs, if they are given a justification, we cannot

continue to consider them to be foundational.

6.1.1  ATMS Definitions

In the ATMS, each proposition is represented by a node, and is treated as atomic.

Any logical relationship between nodes must be provided by the problem solver, in

the form of justifications which are passed to the TMS. The justifications represent

propositional Horn clauses, with the normal provability relationships, except that
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inconsistency is avoided by the use of nogoods, which have a separate data structure.

Nogoods are sets of assumptions which cannot be held simultaneously, and they are

used to reduce the size of the search space, improving the efficiency of the ATMS. A

nogood can be seen as a justification for the propositional constant false, which is

logically equivalent to the negation of the conjunction of the set of assumptions it

contains.

The system operates with a set of assumptions called the environment, and the set of

facts derivable from this environment is called the context. An atomic proposition p

is believed in an environment E if and only if it is a member of the current context. In

this thesis, ATMS derivability is denoted E  |−ATMS  p, where we assume a fixed set of

justifications and nogoods.

For a proposition to be believed in a particular context, it must be an assumption or

else have a well-founded supporting justification, that is, a collection of justified

justifications starting from sets of assumptions, where each of these assumptions is a

member of the current environment. The only other condition under which a

proposition is believed is when the current environment is inconsistent, in which case

all propositions are believed.

The implementation of the ATMS achieves a high level of efficiency by creating a

static data structure in place of a theorem prover to calculate revisions of belief sets.

The justifications and nogoods are "pre-compiled" into this data structure initially,

and after this they are not consulted again. The ATMS creates a node representing

each proposition supplied by the problem solver, and also associates a label with it,

which stores the justificational information. The label represents the set of

environments in which the proposition is believed. That is, the label is a set of

support sets, each of which are sets of assumptions. The label must be consistent,

sound, complete and minimal. A label is consistent when each of its members is a

consistent environment. That is, a label must not contain an environment which is a

superset of any nogood set. The label for p is sound when p is derivable from each

environment of the label. If every environment from which p can be derived is a

superset of some environment of its label, then the label is complete. A label is

minimal if no environment of the label is a superset of any other.
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Some attempts have been made to formalise the logic of the ATMS, for example

[Reiter & de Kleer 1987; Selman & Levesque 1990; Kean & Tsiknis 1993]. We do

not attempt to formalise the logic of the ATMS, but we have formalised the

functional behaviour of the ATMS in order to prove the correctness of the simulation

algorithm.

6.1.2  An Example

Suppose we are given the following set of assumptions, justifications and nogood

environments (written in their logical form, for clarity):

Assumptions: w,  x,  y,  z

Justifications: w  ∧ x  → a

x  ∧ z  → b

y  → b

a  ∧ b  → c

Nogoods: ¬(x  ∧ y)

Then the ATMS labels are:

Labels: a : {{w,  x}}

b : {{x,  z}, {y}}

c : {{w,  x,  z}}

nogood : {{x,  y}}

The ATMS contexts can then be calculated by simple inclusion tests: a node is in a

context if and only if one of the sets in its label is a subset of the environment. The

environment is inconsistent if the context contains a member of the label for nogood.

For example, the node b is in the context of the consistent environments {x,  z}, {y},

{w,  y}, {y,  z}, {w,  x,  z} and {w,  y,  z}, but it is not in the contexts of {w,  x}, {w,  z},

{}, {w}, {x} or {z}. The environments {x,  y}, {w,  x,  y}, {x,  y,  z} and {w,  x,  y,  z}

are inconsistent.
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6.1.3  ATMS Functional Specification

Let the set of all atoms be denoted Σ. Let E * represent the set of all allowable

assumptions. As described above, no member of E * may appear as the consequent of

any justification. Let x and y represent atoms, and A a set of atoms. The ATMS

operates with a fixed set of justifications J, which are ordered pairs (A,  y) with

A  ⊆ Σ,  y  ∈ Σ−E* , representing the logical formula (
x∈A
∧  x)  → y. There is also a

fixed set of nogood environments N, where for each A  ∈ N, we have A  ⊆ E* ,

representing the logical formula ¬ 
x∈A
∧  x. The environment E  ⊆ E* contains the

assumptions which are currently believed.

Then for p  ∈ Σ, we define E  |−ATMS  p if and only if:

1. p  ∈ E, (p is an assumption), or

2. ∃ C  ∈ N such that C  ⊆ E, (E is inconsistent), or

3. ∃ (A,p)  ∈ J such that ∀ x  ∈ A,  E  |−ATMS  x, (p has a well-founded justification).

Condition 3 may be reformulated in terms of the ATMS label:

3A. ∃ L  ∈ Label (p) such that L  ⊆ E.

6.1.4  ATMS Labels

Using the functional specification of the ATMS, it is possible to work backwards to a

definition of the label of a node. Each environment in the label of a node p is a

support set for p, so the label is a set of support sets, which may be defined as

follows.

A  ∈ Label (p) if and only if:

1. A  ⊆ E *

2. A  |−ATMS  p

3. (∀ A' ⊂ A)   [A' |−/ATMS  p ]

4. (¬ ∃ C  ∈ N)   [C  ⊆ A ]
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The first condition requires that the label contain assumptions only, that is, the

foundational beliefs of the node. The second condition ensures soundness, the third

minimality, and the fourth consistency. Completeness is achieved when the label

contains all sets fulfilling the four conditions.

The above definition uses the ATMS provability relation to extract the internal data

structure from the ATMS. However, an explicit definition is necessary to implement

the algorithm in section 6.2. When the justifications are initially loaded into the

ATMS, for each justification (A,  p)  ∈ J, the algorithm Update_Label(p) is called.

The label update algorithm is performed as follows:

Update_Label(p)

For each justification (B,p)  ∈ J

If the label of any member of B is empty

Continue with next justification

For all choices of one environment from each member of B

Let L be the union of these environments

If L subsumes any nogood environment

Continue with next choice

Else if L is subsumed by any environment in Label (p)

Continue with next choice

Else if L subsumes any environments in Label (p)

Remove those environments from Label (p)

Add L to Label (p)

If Label (p) has changed

For each justification (B,q)  ∈ J such that p  ∈ B

Update_Label(q)

The labels of all assumptions are initialised to the singleton support set containing the

singleton assumption itself. That is, if p is an assumption, Label (p)   =  { {p} }. The

labels of all other nodes are initially empty.

The foundational beliefs of an atom p in the environment E, denoted FB (p,  E) , is the

set of support sets of p which are believed in the environment E. If no such set exists,

then the atom has no well-founded justification. Formally:

FB (p,  E)   =  { A  ∈ Label (p)  :  A  ⊆ E  }
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The essential support set, ES (p,  E) , is defined:

ES (p,  E)   =  ∩ FB (p,  E)

From the functional specification of the ATMS, a proposition is believed if and only

if it is an assumption, or the environment is inconsistent, or it has a well-founded

justification. We can now express this specification in terms of the above definitions.

For p  ∈ Σ,    E  |−ATMS  p  if and only if:

(1) p  ∈ E, or

(2) for some C  ∈ N,   C  ⊆ E, or

(3) FB (p,  E)  ≠ ∅

Using these definitions, we can now describe the algorithms which calculate the

entrenchment relations for the AGM logic to simulate ATMS behaviour.

6.2  ATMS Algorithm 1: Explicit Entrenchment Generation

The algorithms in this and the next section reconstruct the dynamic reasoning of the

ATMS using the AGM system. The entrenchment base Γ contains the logical form of

the ATMS justifications and nogoods, as well as the environment and some

disjunctions of assumptions which encode the independence of the assumptions. The

belief set K derived from this base contains the ATMS context (and all of its logical

consequences).

6.2.1  Constructing an Entrenchment Relation

In previous chapters, the entrenchment relation was generated from a finite

entrenchment base by the most conservative entrenchment construction. In this

section, we do not make use of the most conservative entrenchment, but instead we

specify a partial ordering which contains sufficient information to define uniquely

any admissable contraction function. In doing this, we are not defining an alternative

to the AGM entrenchment postulates, but instead we are allowing many of the

relative entrenchments to remain unknown, since we will never need to consult these

values to implement any AGM contraction operation. That is, any extension of the

partial entrenchment ≤E to an entrenchment relation ≤E'  ⊇ ≤E which is consistent with
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the AGM entrenchment postulates, will not change the behaviour of the algorithm.

The most conservative entrenchment is one such consistent extension.

Looking from a different perspective, we can consider the partial entrenchment to

define the class of all entrenchments which contain the partial entrenchment and are

consistent with the AGM postulates. Then all members of this class behave

identically with respect to the simulation algorithm.

As in previous chapters, the partial entrenchment relation will be specified in terms of

the ranks of various formulae, which, for convenience, are represented by natural

numbers. Since we are modelling ATMS environment changes, the only beliefs to be

added or contracted are ATMS assumptions, which are atomic. We show in section

6.6 that this restriction is crucial to the success of both algorithms. In fact, our

algorithm contracts one atom at a time and, for the comparison with the behaviour of

the ATMS, the only beliefs we need to check for membership in K are also atomic

(ATMS nodes). From the definition of contraction, we only need to know

entrenchment relations between α and α∨β, for each α ∈ E * and β ∈ Σ. For any

atoms α and β, (EE2) constrains the relation between these atoms to be

rank(Γ,  α)   ≤  rank(Γ,  α ∨ β) , so there are only two possibilities: either

rank(Γ,  α)  < rank(Γ,  α ∨ β)   or   rank(Γ,  α)  = rank(Γ,  α ∨ β) .

For this algorithm, it is sufficient to use only 5 distinct values for the ranks of beliefs,

say, 0, 10, 20, 30 and 40. The structure of the entrenchment relation is as follows.

By (EE4), non-beliefs are given rank 0, and by (EE5), rank(Γ,  α)  = 40 only if α is a

theorem. Since ATMS justifications and nogoods cannot be altered once they are

provided by the problem solver, they are entrenched at the next highest rank, 30.

Finally, the atoms in the current environment have rank 10, and the disjunctions of an

assumption and another atom are given a default rank of 20.

To avoid ambiguity, the entrenchment base corresponding to the ATMS environment

E, is denoted ΓE , where necessary, and so the the rank of the proposition α in ΓE is

denoted rank(ΓE ,  α) .

6.2.2  The Explicit Rank Generation Algorithm

The algorithm calculates a partial entrenchment relation which defines an AGM

contraction operation to simulate the ATMS environment changes. The belief set K,

6.2



Belief Revision and Truth Maintenance    91

represented by the entrenchment base Γ, contains all of the current beliefs, and

corresponds to the ATMS context. Obviously, since K is logically closed, it is a much

larger set than the corresponding ATMS context, but in the correctness proof, we

show that for all atoms α ∈ Σ,    E  |−ATMS  α  if and only if  α ∈ K.

ATMS_Algorithm_1

Γ := ∅

For each (A,p)  ∈ J { Enter justifications into Γ }

Γ := expand(Γ,  (
x∈A
∧  x)  → p,  30)

For each C  ∈ N { Enter nogoods into Γ }

Γ := expand(Γ,  ¬
x∈C
∧  x,  30)

EOld  := ∅

For each ENew { Main Loop }

∀ x  ∈ (EOld  − ENew) { Remove ex-assumptions }

Γ := contract(Γ,  x) { 1 }

∀ y  ∈ (EOld  − {x}) { 2 }

Γ := expand(Γ,  x  ∨ y,  0)

∀ c such that x  ∈ ∪FB (c,  EOld) { 3 }

Γ := expand(Γ,  x  ∨ c,  0) { 3a }

∀ y  ∈ (ES (c,  ENew)  − ES (c,  EOld) ) { 3b }

Γ := expand(Γ,  y  ∨ c,  10)

∀ y  ∈ (∪FB (c,  EOld)  − ∪FB (c,  ENew) ) { 3c }

Γ := expand(Γ,  y  ∨ c,  0)

∀ x  ∈ (ENew  − EOld) { Add new assumptions }

Γ := expand(Γ,  x,  10) { 4 }

∀ y  ∈ (ENew  − {x}) { 5 }

Γ := expand(Γ,  x  ∨ y,  20) { Default rank }

∀ c such that x  ∈ ∪FB (c,  ENew) { 6 }

Γ := expand(Γ,  x  ∨ c,  20) { Default rank } { 6a }

∀ y  ∈ (ES (c,  ENew)  − ES (c,  EOld) ) { 6b }

Γ := expand(Γ, y  ∨ c,  10)

∀ y  ∈ (ES (c,  EOld)  − ES (c,  ENew) ) { 6c }

Γ := expand(Γ, y  ∨ c,  20)

EOld   :=  ENew
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The algorithm encodes the support relationships in the entrenchment relation. That is,

for some α and β, if α is an essential support for β, then the removal of α must force

the removal of β, and this, according to the (C–) condition and (EE2), implies

rank(Γ,  α)  = rank(Γ,  α∨β) . Since rank(Γ,  α)  = 10, this is achieved by ensuring

rank(Γ,  α∨β)  = 10. Alternatively, if β is not dependent on α, then we have

rank(Γ,  α)  < rank(Γ,  α∨β) , by ensuring rank(Γ,  α∨β)  = 20.

For each environment change, the algorithm computes the corresponding changes in

the entrenchment relation from the changes in the essential support sets. For each

new assumption α which is an essential support of the proposition β, the rank of

α ∨ β is set to 10, so that rank(Γ,  α)  = rank(Γ,  α∨β) . Conversely, for any α which

was a member of the essential support set of β but is no longer an essential support,

we let rank(Γ,  α∨β)  = 20, so that rank(Γ,  α)  < rank(Γ,  α∨β) .

The algorithm works as follows. Initially, the logical forms of the justifications and

nogoods are placed in Γ at rank 30. Then for each environment, the algorithm has two

parts: removing the assumptions which were in the previous environment but are not

in the current environment (steps 1 to 3), and adding new assumptions which are in

the current environment but were not in the previous environment (steps 4 to 6). The

removals are performed before the additions, to avoid passing through any

inconsistent intermediate states.

To remove an assumption, the algorithm uses the AGM contraction operation (step

1), and then updates the entrenchment relation to reflect the changes in essential

supports (steps 2 and 3). First, all disjunctions of the removed assumption and

another assumption are deleted from the database (step 2), by adjusting their rank to

0. Then the changes in the essential support sets are reflected in the entrenchment

relation by changing the ranks of the disjunctions of each pair of propositions whose

support relationship has changed (step 3). This involves deleting each disjunction of

the removed assumption and the beliefs it was supporting (step 3a), and then for each

new essential support y of c, the disjunction y  ∨ c is given a rank of 10 (step 3b), and

for each c which was supported by some y, but no longer is supported by that y, the

formula y  ∨ c is deleted from the database (step 3c).

The algorithm then adds each new assumption using the AGM expansion operation

(step 4), followed by a series of expansions which add the disjunctions of the new
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assumption and each other atom in the new environment to the database at the default

rank of 20 (step 5). The essential support sets are then updated (step 6), by a series of

expansions for the propositions supported by the new assumption (step 6a), with the

default that the support is not essential. Any exceptions to this default are corrected

by the following steps (6b and 6c), which update the ranks representing the essential

support relationships in a manner similar to steps 3b and 3c. Finally, the current

environment becomes the previous environment for the next iteration of the

algorithm.

Note that the default rank of 20 for a disjunction of two atoms induces the relation

rank(Γ,  α)  < rank(Γ,  α∨β) , for atomic α and β, since rank(Γ,  α) =10 for all

assumptions α in the current environment. This encodes the fact that α and β are

independent, since if α is removed from K, β is unaffected. It is the job of the

problem solver, not the TMS, to point out the logical relationships between the

various atoms, so we may assume all nodes are independent of each other, unless we

are explicitly told otherwise, via a justification or nogood.

Finally we comment on the correctness of the algorithm, relative to the functional

specification of the ATMS given in section 6.1. We show in appendix E that

ATMS_Algorithm_1 maintains a consistent belief set which correctly simulates the

behaviour of the ATMS at all times. Thus we have implemented a foundational

reasoning system using the AGM system, despite the results of [Fuhrmann 1991],

who notes that foundational reasoning in general does not satisfy the AGM recovery

postulate. The ATMS, the most well-known implementation of foundational

reasoning, is an exception, in that its operations do satisfy the recovery postulate, as

we have shown by implementing it using the AGM system.

6.2.3  Example

We now repeat the example from subsection 6.1.2 to demonstrate the operation of

ATMS_Algorithm_1. The output of the algorithm is a series of AGM expansion and

contraction operations. Note that apart from the expansions by atomic formulae (at

rank 10), all other expansions are entrenchment revision commands, which can be

executed as database updates since we do not assume the most conservative

entrenchment construction. The first step performed by the algorithm is to generate

expansion operations to add each of the justifications and nogoods to the belief set:
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30: w & x -> a

30: x & z -> b

30: y -> b

30: a & b -> c

30: ˜(x & y)

Now suppose we want to change environment from E 1  = {} to E 2  = {w,  x} and then

to E 3  = {w,  y}. The change to E 2 invokes the following expansion operations:

10: x

20: x | w

10: w

20: w | x

20: w | a

10: x | a

10: w | a

The first four expansions update the environment, and encode the independence of

the two assumptions (steps 4 and 5). Then since a is now supported by the new

environment, w∨a is given the default entrenchment of 20 (step 6a). The last two

lines encode the fact that both w and x are now essential supports for a, and so the

rank of w∨a is immediately reduced from its default value (step 6b). When these

operations are performed on the AGM system, the belief set contains the context of

E 2 , and any atomic queries to the system return the same answers as the ATMS.

The context switch to environment E 3 is performed as follows. First, the

assumptions which are no longer believed (E 2  − E 3) are removed. This is done by

performing the contraction Kx
− (step 1), then deleting the disjunctions x∨w and x∨a

(step 2), and then revising the entrenchment base to reflect the new supports (step 3).

In this intermediate state, a has no support, so the disjunctions x∨a and w∨a, which

encoded the support relationships for a, are deleted (step 3a). Note the notation we

use for a database deletion is the same as an expansion with rank 0. In the original

AGM system, this was not a legal expansion operation; in section 6.4 we explain the

changes to the expansion algorithm to allow rank-reducing expansions. Note that the

algorithm is not optimal, as it generates redundant operations (such as the repeated

deletion of x∨a), but this is allowed to keep the algorithm as simple as possible.
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! x

0: x | w

0: x | a

0: x | a

0: w | a

Then the new assumption (y) is added to the base with rank 10 (step 4), and the

disjunctions y∨w and y∨b are given the default rank of 20 (steps 5 and 6a). Finally

the new essential support relationship (y supports b) is encoded into the entrenchment

relation by reducing the rank of y∨b to 10 (step 6b).

10: y

20: y | w

20: y | b

10: y | b

At this point we note that the belief state representing any ATMS context is always

finitely representable, and there is a unique most conservative entrenchment

corresponding to the explicitly generated entrenchments. For the present example,

the base for the most conservative entrenchment representing the context of

environment E 3 is:

30 : (x & w) -> a

30 : (z & x) -> b

30 : y -> b

30 : (b & a) -> c

30 : ˜y | ˜x

20 : y | w

10 : w

10 : y

The entrenchment revision process for this algorithm is trivial, as the expansion and

contraction operations never affect explicit formulae apart from those mentioned in

the expansions and contractions themselves. Therefore, the expansion operations can

be implemented as database updates, so that either the formula and its rank are added

to the database if it was not in the database originally, or else the rank of the existing

database record is adjusted to the new rank mentioned in the expansion operation.
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6.3  ATMS Algorithm 2: Conservative Entrenchment Generation

A more natural way to simulate ATMS behaviour is via the most conservative

entrenchment. In chapter 3, one justification given for the most conservative

entrenchment was that the rank of a formula is derived directly from the proofs

(justifications) of the formula. Thus if we take the beliefs in the entrenchment base to

be the foundational beliefs, then the derived beliefs are those which have a well-

founded support in the base. We now give an example of how the most conservative

entrenchment can be used to implement one type of foundational reasoning, via

ATMS_Algorithm_2.

6.3.1  The Conservative Rank Generation Algorithm

The basic structure of the algorithm is similar to ATMS_Algorithm_1. The

algorithm maintains an AGM belief state representing the ATMS justifications,

nogoods and current environment. Rather than explicitly encoding the support

relationships, we encode only the independence of the foundational beliefs. Recall

that the ATMS assumes foundational beliefs (assumptions) to be independent unless

explicitly told otherwise. Then the most conservative entrenchment automatically

generates the correct ranking of formulae to simulate ATMS behaviour.

Note that this algorithm does not need to generate the ATMS labels, but can compute

the entrenchment base directly from the current environment, making it considerably

simpler and more efficient than the previous algorithm. In fact the only entrenchment

information which must be explicitly supplied by the algorithm is that which encodes

the pairwise independence of the assumptions. That is, for each pair of assumptions

in Γ, the algorithm ensures that the rank of their disjunction is strictly greater than the

rank of the assumptions themselves, so that the removal of one assumption will never

force the removal of any other assumption. This property is re-established after each

of the expansion and contraction operations.

The structure of the entrenchment base generated by the algorithm is as follows: the

logical theorems are given a rank of 40, the ATMS justifications and nogoods are

given a rank of 30, the independence disjunctions have a rank of 20, assumptions

have rank 10, and non-beliefs must be given the rank 0.
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ATMS_Algorithm_2

Γ := ∅

For each (A,p)  ∈ J { Enter justifications into Γ }

Γ := expand(Γ,  (
x∈A
∧  x)  → p,  30)

For each C  ∈ N { Enter nogoods into Γ }

Γ := expand(Γ,  ¬
x∈C
∧  x,  30)

EOld  := ∅

For each ENew { Main Loop }

∀ x  ∈ (EOld  − ENew) { Remove ex-assumptions }

Γ := contract(Γ,  x)

∀ y  ∈ (EOld  − {x}) { Remove disjunctions }

Γ := expand(Γ,  x  ∨ y,  0)

∀ x  ∈ (ENew  − EOld) { Add new assumptions }

Γ := expand(Γ,  x,  10)

∀ y  ∈ (ENew  − {x}) { Encode independence }

Γ := expand(Γ,  x  ∨ y,  20)

EOld   :=  ENew

The initialisation procedure is the same as that of ATMS_Algorithm_1; the

justifications and nogoods are added to the base with rank 30. Then for each

environment change, the assumptions α which were in the previous environment but

are not in the new environment are removed from the base via the contraction

operation contract(Γ,  α) . Then the pairwise disjunctions with each other

assumption β are removed, since there is no longer any reason for believing the

disjunction α∨β apart from the truth of the remaining disjunct β. The correct rank of

α∨β is then the same as that of β, which has a rank of 10, unless β has also been

removed from the base; this value is computed using the most conservative

entrenchment after the disjunction is deleted from the entrenchment base.

Then the new assumptions α are added to the entrenchment base, via the expansion

operation expand(Γ,  α,  10) . To encode the fact that the belief in α is independent of

the belief in each other assumption β, the rank of α∨β is increased to 20, again using

an expansion operation. This operation could be achieved by a database update, since

it is always a consistent operation (α∨β is only added to the base when both α and β
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are already members of the base), and it does not cause any redundancy in the base.

This is because the foundational beliefs are not allowed to be justified (see section

6.1), and thus the only clauses containing the assumptions as positive literals are the

unit clauses representing the assumptions themselves, at rank 10. Thus any derivation

of a clause containing only positive literals which are all assumptions must have rank

no greater than 10, so no disjunction which is added by the algorithm can ever be

made redundant. Likewise, the assumptions themselves cannot be made redundant,

since they can never be derived from any subset of the base not containing the

assumption itself, unless the environment is inconsistent.

Comparing this algorithm with the first ATMS simulation algorithm, we note that the

converse of this is also true – all disjunctions added by ATMS_Algorithm_1 which

are not added by ATMS_Algorithm_2 are redundant. This is expected, since both

algorithms exhibit the same behaviour, and therefore they should also give rise to the

same most conservative entrenchment.

We show in appendix F that ATMS_Algorithm_2 maintains a consistent belief set

which correctly represents the ATMS context at all times, and represents the same

most conservative entrenchment corresponding to the base generated by

ATMS_Algorithm_1.

6.3.2  Example

We now repeat the example from subsection 6.1.2 again to demonstrate the operation

of ATMS_Algorithm_2, and highlight its simplicity compared to the previous

algorithm. Note that apart from the expansions by atomic formulae (at rank 10), all

other expansions are entrenchment revision commands, which can be executed as

database updates. The algorithm begins by generating expansion operations to add

each of the justifications and nogoods to the belief set:

30: w & x -> a

30: x & z -> b

30: y -> b

30: a & b -> c

30: ˜(x & y)
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Once more we want to change environment from E 1  = {} to E 2  = {w,  x} and then to

E 3  = {w,  y}. The change to E 2 invokes the following expansion operations:

10: x

20: x | w

10: w

20: w | x

The expansions update the environment, and encode the independence of the two

assumptions x and w. When these operations are performed on the AGM system, the

belief set will contain the context of E 2 , and any atomic queries to the system will

return the same answers as the ATMS.

The context switch to environment E 3 is performed as follows. First, the

assumptions which are no longer believed (E 2  − E 3) are removed. This is done by

performing the contraction Kx
− , and deleting the associated disjunction (x∨w).

! x

0: x | w

Then the new assumption (y) is added to the base with rank 10, and the disjunction

y  ∨ w is given rank 20 to encode the independence of the two assumptions.

10: y

20: y | w

When the algorithm was implemented, the operations described above produced the

following final entrenchment base:

30 : (x & w) -> a

30 : (z & x) -> b

30 : y -> b

30 : (b & a) -> c

30 : ˜y | ˜x

20 : y | w

10 : w

10 : y
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6.4  Implementing the Algorithms

The algorithms described in the previous sections have been implemented in

conjunction with the AGM system. ATMS_Algorithm_1 was incorporated into the

ATMS system developed in [Dixon 1989] to produce the ATMS labels and then

derive the AGM expansion, contraction and database deletion operations to simulate

the context switches. The output of the system was then piped straight into the input

of the AGM implementation. This enabled easy testing of the algorithm and the

underlying AGM system.

It was found that one minor change had to be made to the expansion algorithm of the

AGM system, to obtain the correct entrenchment revision policy. In the original

system, the rank of a formula could not be decreased by an expansion operation. For

example, if a formula α is in Γ with rank 20, and we perform an expansion of Γ by α

with rank 10, the database is returned unchanged. This was justified by considering

the rank as the degree of evidence for a formula, so that when we are given evidence

that is less compelling than the current evidence for a formula, our beliefs do not

change.

For the ATMS implementation, we need to be able to reduce the rank of formulae in

the database, without removing the formula entirely. In the general case, reducing the

rank of a formula is problematic. Suppose a belief α is derived from formulae in the

base with ranks 20 and 30, so that the rank of α is 20. Now if we require the

expansion operation expand(Γ,  α,  10) to reduce the rank of α from 20 to 10, there

are several possible solutions to choose from, which alter the entrenchment relation

successfully, without changing the belief set. We could decrease the rank of all

formulae involved in any proof of α to 10, so that the rank of α is also decreased to

10. One might argue that this is not a minimal change, and so a better solution would

be to reduce the rank of the lowest ranked formula in each proof of α. If there is more

than one lowest ranked formula, we could either reduce all of them or, if that is

objectionable because of the minimal change principle, we could choose one formula

arbitrarily and reduce its rank. Having to make an arbitrary choice among formulae is

exactly the problem which we initially tried to avoid, by placing a preference

ordering on all formulae, so we do not consider this to be a viable solution.
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There is a simpler and much better approach which we adopt for the ATMS

simulation. Returning to the interpretation of the entrenchment base as a set of

formulae accompanied by a measure of the evidence for each formula, we argue that

a request to reduce the rank of a formula, without entirely removing the formula, can

only be interpreted as discrediting a particular piece of evidence itself and not a

derived belief. When there is evidence for the negation of a belief, the belief ought to

be removed completely, but otherwise, the lowering of rank means that we do not

trust the evidence to be as reliable as we previously thought. Thus the lowering of

rank should be applied to the evidence directly, and not to the beliefs which are

derived from the evidence.

Therefore, we only allow explicit formulae in the base to have their rank reduced, and

then, the rank must not be reduced so much that the entrenchment base becomes

inconsistent with condition (R1). That is, if an explicit formula is also derivable

implicitly from other formulae in the base, its rank cannot be reduced to a level lower

than the minimally ranked formula in the derivation.

expand_2(Γ,  α,  newrank)

if rank(Γ,  ¬α)  > 0 { α is inconsistent with Γ }

return(Γ)

else

oldrank  := rank(Γ,  α)

if newrank  ≤ oldrank and newrank  ≤ rank(delete(Γ,  α) ,  α)

return(delete(Γ,  α) )

else

∆ := update(Γ,  α,  newrank)

for each β ∈ Γ1

__
with oldrank  ≤ select(Γ,  β,  rank)  ≤ newrank

if prove(∆ − {β}, β,  select(Γ,  β,  rank) )  > 0

∆ := delete(∆,  β)

return(∆)

So a rank-reducing expansion may be achieved by a simple update operation, as long

as the formula is not derivable from other formulae in the base with a higher rank

than the given new rank of the formula. The modified expansion algorithm checks the

validity of the update by deleting the formula from the database and then calculating

its rank in the new database. A warning message is printed if the rank in the new
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database is still greater than the given rank, and hence the update is not successful.

Note that if the formula is not already in the database with a greater rank than the

requested new rank, then the new expansion operation performs identically with the

previous algorithm.

A special case of this expansion algorithm is if α is given the rank 0. Then the

algorithm is equivalent to the database operation delete(Γ,  α) , leaving the remaining

entrenchment base intact. This explains the choice of notation in the examples in this

chapter, where the deletions were written as expansions with rank 0.

6.5  Extensions to the ATMS

Clearly there is no computational advantage in implementing an ATMS via the AGM

logic and ATMS_Algorithm_1. The original purpose of the ATMS was to avoid the

computational cost of theorem proving, especially the repetitive work involved in

computing derivations of the same formula in different environments.

ATMS_Algorithm_1 uses both the expensive label update procedure and a theorem

prover, making it computationally much worse than the ATMS. The point of

developing the algorithm was to show that some forms of foundational reasoning,

such as that exhibited by the ATMS, can be performed within the AGM system.

The second algorithm provides much more insight into the use of the AGM system.

The algorithm itself is very efficient; the only real loss is in the complexity of query

answering, which is a simple subset test for the ATMS, but requires a satisfiability

computation for the AGM system. This satisfiability test is still tractable, as we are

dealing only with propositional Horn clause logic.

One advantage of the AGM approach is that it generalises the ATMS to allow more

complex formulae involving, for example, disjunction, negation, variables and

quantifiers; in short, it allows us to give a logical structure to nodes, and to use the

added expressive power of first-order logic. At the same time, we can still perform

the same style of reasoning as the ATMS, by explicitly encoding the independence of

foundational beliefs.

Another advantage of this approach is that it enables a mixture of foundational and

non-foundational styles of reasoning, which is not possible with the ATMS. The need
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for a reasoning system to be able to perform non-foundational reasoning is addressed

in [Dixon & Foo 1992b]; one important class of examples is in reasoning about

action, where events may occur whose effects persist beyond the duration of the

event, and thus our belief in the effect should not be given up just because the event

which caused it no longer occurs.

Thirdly, the AGM approach to truth maintenance allows us to put a structure on the

justifications, so that rules may be revised during belief change operations. In the

first-order case, this allows a form of nonmonotonic reasoning using defaults with

exceptions, which shall be discussed at length in chapter 7.

Apart from being an "existence proof" for the implementation of foundational

reasoning or truth maintenance using a belief revision system, a comparison of the

algorithms yields another interesting result. If we consider the second algorithm using

the most conservative entrenchment as an implementation of the first, we see that the

most conservative entrenchment automatically generates the support relationships

between the beliefs. That is, if α is an essential support for β, then we shall have

rank(Γ,  α)  = rank(Γ,  α∨β) . Similarly, if β is supported but α is not an essential

part of the support, then we will have rank(Γ,  α)  < rank(Γ,  α∨β) .

6.6  Foundational Reasoning

The large number of entrenchment revision operations required by

ATMS_Algorithm_1 in order to simulate the ATMS context switches suggests that

the style of dynamic reasoning performed by the ATMS is not well suited to the

AGM logic. On the surface we can explain this by the two fundamentally different

approaches to reasoning that the systems have.

The ATMS is strictly foundational in nature; every belief must have a valid

justification which can be traced back to the foundational beliefs (assumptions). On

the other hand, the AGM logic does not impose any requirements on the members of

its belief sets, except logical consistency, as it is based on a weak coherence

principle.

Foundational reasoning is independent of history. Hence, the ATMS context depends

only on the current environment, and is not affected by any previous environment,
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whereas the AGM logic relies on a principle of minimal change when moving from

one theory to the next. In order to achieve foundational behaviour using the AGM

system, it is not sufficient to apply a principle of minimal change to the entrenchment

relation, as non-minimal revisions of the entrenchment relation may be necessary to

keep the system "effectively independent" of its previous state. Although this seems

to be a complex process for the first algorithm, based on calculating support sets for

each environment, we have shown with the second algorithm that most of this work is

unnecessary if we use a most conservative entrenchment.

Thus we have reconstructed one style of foundational reasoning, using the AGM

belief change operations with the assumptions of a most conservative entrenchment

and the independence of explicit beliefs. The possibility of such a construction was

first postulated in [Nebel 1989], where reason (truth) maintenance, the primary

example of foundational reasoning, was described as a "side-effect" of choosing the

"right" contraction operation, which in our model is equivalent to choosing the

"right" entrenchment relation.

ATMS_Algorithm_2 can be generalised to implement a less restricted style of

foundational reasoning than the ATMS allows. The basic function of the algorithm

would be unchanged: to maintain a database of foundational beliefs, where the

disjunction of each pair of foundational beliefs is entrenched higher than the

foundational beliefs themselves. This encodes the independence of the foundational

beliefs, which, by definition, are the beliefs which are held independently of any

justification. The idea of explicitly encoding the disjunctions of explicit beliefs into

the entrenchment relation appeared in [Williams 1992] under the name of a maximal

ensconcement, but the application to foundational reasoning was not discussed in that

work.

The one requirement which ensures that such a system behaves correctly is that the

expansion and contraction operations only use formulae which are atomic

foundational beliefs. It is because the ATMS satisfies this restriction that it also

satisfies the AGM recovery postulate, and therefore is not an example of the general

incompatibility of foundational and AGM reasoning suggested by [Fuhrmann 1991].

As soon as a contraction of a more complex formula or a non-foundational (derived)

belief is performed, the foundational behaviour breaks down. For example, if the

belief state generated by the ATMS simulation algorithms contains the two
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assumptions α and β, and we perform a contraction by α∨β, it is easy to show that

under the most conservative entrenchment, all assumptions and all explicit

disjunctions of assumptions would be removed from the base, leaving only the

justifications and rules untouched. Alternatively, suppose a situation in which the

foundational belief α is ranked lower than the justification α → β. Then a contraction

by the derived belief β would force the removal of α, and in order that a subsequent

expansion by β would restore α to the belief set (to satisfy the recovery postulate),

the AGM contraction operation would add the formula β → α to the belief set,

contrary to foundationalist intuitions.

Thus we conclude that the AGM belief change postulates do not necessarily induce

coherentist or foundationalist behaviour, as both types of behaviour can be achieved

by the choice of a suitable entrenchment relation. We also note that the information in

the entrenchment relation can be interpreted as encoding the dependence or

independence of formulae in the belief set. This interpretation leads us to the

conclusion that dependence and independence are the primitive notions from which

the entrenchment relation may be derived.

6.7  Summary

We have shown that the ATMS can be simulated in the AGM logic by using a

suitable epistemic entrenchment relation to encode the independence of the

assumptions, and using contraction and expansion operations to perform ATMS

context switches. The first ATMS algorithm does not compute a complete

entrenchment relation, but defines the class of entrenchments for which the behaviour

of the AGM system, with respect to atoms, is equivalent to the ATMS. The second

algorithm maintains an entrenchment base which represents a unique entrenchment

relation via the most conservative entrenchment construction.

These implementations of the ATMS illustrate one advantage of the AGM system

over the purely foundational systems: it is possible to express different types of

justificational information, using epistemic entrenchment to implement foundational

and coherence style reasoning. It also demonstrates that the AGM system is not

necessarily derived from coherentist principles, as foundational behaviour can be

achieved by the use of a most conservative entrenchment with an explicit encoding of
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independence assumptions. Further, we conclude that since the most conservative

entrenchment is suitable for implementing foundational reasoning, conservatism is

also a foundational principle.

An interesting extension of this work is to allow rule revision, which is not allowed

by the ATMS, but can be implemented in the AGM logic by decreasing the

entrenchment of defeasible rules relative to the fixed rules. An application of rule

revision is in modelling default rules with exceptions, a central issue in the field of

nonmonotonic reasoning. In the following chapter, we discuss one way in which this

may be achieved.
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7 Belief Revision and
Nonmonotonic Reasoning

Although belief revision can be regarded as providing a theoretical foundation for

nonmonotonic reasoning, there have been few investigations of the practical use of

belief revision for implementing nonmonotonic reasoning systems. In this chapter,

we describe the design and implementation of a nonmonotonic reasoning system

based on the AGM belief revision system described in previous chapters. The system

uses the language of first-order logic with equality, and operates under the

assumption of uniqueness of names. The entrenchment base is interpreted as a

modified conservative entrenchment, motivated by the intuitions underlying default

reasoning such as the independence of default instances.

The chapter is organized as follows. Firstly, we give a brief background to the area of

nonmonotonic reasoning, showing its relationship to belief revision. Secondly, we

summarize our approach to nonmonotonic reasoning based on the AGM belief

revision system. We then discuss the necessary modifications to the belief revision

algorithms described in chapter 4, in order to implement the nonmonotonic reasoning

system. Following this, we present some examples of the system’s behaviour on

standard problems in nonmonotonic reasoning. Finally, we compare our work with

other approaches to nonmonotonic reasoning.

7.1  Theoretical Connections

Although the formal structure of belief revision and nonmonotonic reasoning have

many similarities, the motivations behind the two fields are quite different. Belief

revision is concerned with how a state of belief is updated as a result of receiving new

information, while nonmonotonic reasoning deals with how we may jump to

conclusions that do not follow from our belief set by classical inference.

Nonmonotonic reasoning often uses default rules or generalisations to define which

nonclassical inferences may be performed.
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This style of reasoning is nonmonotonic in the sense that increasing the set of data

from which we reason may lead to the loss of some conclusions which were drawn

from the smaller data set. That is, if |∼ represents a nonmonotonic inference relation,

then we may have, for some α, β, and γ, that α |∼ γ but α ∧ β |∼/ γ.

[Gärdenfors 1990a] shows that belief revision is also nonmonotonic, in the following

three senses. Firstly, it is possible to have two belief sets A and B such that for some

formula α we have A  ⊆ B but Aα
*  ⊆/  Bα

* . Secondly, for a belief set K and formula α,

it is generally the case that K  ⊆/  Kα* . Finally, for a belief set K and formulae α and β,

it may be the case that α |−  β and yet Kα*  |−/  Kβ* .

The formal connection between nonmonotonic reasoning and belief revision

described in [Makinson & Gärdenfors 1991] is based on the following translations.

For a fixed theory K equipped with a revision operation *, we may define a

nonmonotonic inference relation |∼ by α |∼ β if and only if β ∈ Kα* , for any formulae

α and β. Conversely a belief revision function on some fixed background theory K

may be defined by β ∈ Kα* if and only if α |∼ β.

Using this translation, Makinson and Gärdenfors compare the AGM belief revision

postulates with conditions on various nonmonotonic inference relations, by

translating postulates from one formalism to the other. [Gärdenfors 1990a]

comments that all of the AGM postulates translate into conditions on |∼ which are

valid for some nonmonotonic inference relations in the literature and, conversely, that

every postulate on |∼ in the literature translates into a condition that is a consequence

of the AGM revision postulates (K*1) – (K*8). Thus there is a very strong

correspondence between the two areas.

7.2  A Belief Revision Approach to Nonmonotonic Reasoning

We now describe our nonmonotonic reasoning system, AGM-NMR, which uses a

language of defaults expressed as restricted first-order sentences with equality, and

exceptions expressed as propositional formulae. Each default represents the

collection of all ground instances of the formula, entrenched such that the belief in

each instance of the default is independent of the belief in all other instances of the

default. That is, the discovery of one instance of an exception to a default does not

affect our belief in any other instance of the default.
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We define a default theory ∆ to be a finite, nonredundant, consistent collection of

nontrivial defaults of the form ∀x δ(x) where δ(x) is a clause, each of whose literals

is either ground or of the form [¬]p (x) for some predicate symbol p and variable x or

of the form x  = t for some ground term t. Note that the variable x must be the same in

all literals in the clause, so that we may have an efficient algorithm for revising

defaults.

Thus the language of defaults is highly restrictive, yet adequate for representing many

problems in nonmonotonic reasoning. For example, we allow simple defaults such as

∀x (bird (x)  → feathers (x) ) , as well as more complex defaults with exceptions such

as ∀x ((x  ≠ tweety)  ∧ bird (x)  → fly (x) ) .

If the initial collection of beliefs is to be consistent, there can be no "universal"

defaults such as ∀x (bird (x)  → fly (x) ) if the belief set also contains ground facts

which contradict the universal statement, such as bird (tweety)  ∧ ¬fly (tweety) , an

instance of a bird which does not fly. Under the belief revision approach to

nonmonotonic reasoning, a generic default like "birds fly" is represented as the

formula ∀x (bird (x)  → fly (x) ) , which represents a collection of independent beliefs

bird (t)  → fly (t) , one for each term t in the language. For any exceptional bird, such

as the non-flying tweety, the universal default must be weakened to

∀x ((x  ≠ tweety)  ∧ bird (x)  → fly (x) ) to ensure the consistency of the entrenchment

base.

In addition, we assume that the default theory comes with a total pre-order ≤ on the

defaults satisfying (EE1)–(EE3), which extends in a natural way to a canonical

entrenchment based on the most conservative entrenchment compatible with ≤

modified by the assumption of independence of default instances. Given such a set of

beliefs, the set of conclusions derivable nonmonotonically from a formula α are those

formulae which occur in the revised belief set Kα* , in agreement with the translation

of [Makinson & Gärdenfors 1991].

From the point of view of nonmonotonic reasoning, most conservative entrenchments

give intuitively acceptable conclusions only with propositional default theories, in

other words, if a default theory is a consistent collection of ground instances of

defaults. The AGM-NMR system uses first-order formulae to represent defaults, so

the most conservative entrenchment generated from the ordering on defaults must be
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modified. The unacceptable behaviour resulting from the use of most conservative

entrenchments can be illustrated by the Nixon diamond, formalized as the default

theory consisting of two equally ranked formulae ∀x (quaker (x)  → pacifist (x) ) and

∀x (republican (x)  → ¬pacifist (x) ) . To find out whether or not Nixon is a pacifist,

we revise this theory by the formula α ≡ republican (nixon)  ∧ quaker (nixon) .

According to the most conservative entrenchment, the resulting entrenchment base

contains republican (nixon)  ∧ quaker (nixon) as expected, but nothing else! Each

rule β is removed because in the most conservative entrenchment, ¬α and α → β are

equally entrenched.

We make use of two additional assumptions to overcome this problem: uniqueness

of names and independence of default instances. First, uniqueness of names states

that any two distinct terms in the logical language denote distinct objects in the

domains. This essentially means restricting our attention to Herbrand models of the

belief language. Uniqueness of names has been suggested by [Lifschitz 1989] as

being an intuitively desirable property of default reasoning. Given that the instances

of a default rule all apply to different objects in the domain by uniqueness of names,

the second assumption states the truth of all these beliefs are independent. That is,

there is no epistemic relationship of justification between two instances of the same

default, so that when one instance of a default is removed from a theory by a revision,

all other instances of the default remain in the theory.

Uniqueness of names can be formalized by adopting the standard axioms of equality

and inequality into our logical language, as described in section 5.3. Independence of

default instances can be formalized as follows. The idea is that the most conservative

entrenchment correctly determines the entrenchment of the ground instances of the

defaults, but must be generated from a modified initial ordering on defaults to

incorporate this extra assumption. The modification is to assume that for each pair of

defaults δ,  δ'  ∈ ∆, and for every ground term t, we have the entrenchment relation

δ(t)  <E  δ(t)  ∨ ∀x ((x  ≠ t)  → δ' (x) ) , where δ(t) denotes the instance of δ formed by

replacing all occurrences of the variable in δ with the term t. By the (C*) condition

for revision, this ensures that the weakened defaults ∀x ((x  ≠ t)  → δ' (x) ) , for all

δ'  ∈ ∆, remain in the theory after a revision by ¬δ(t) for any default δ ∈ ∆. Thus an

exceptional instance ¬δ(t) of a default δ(x) does not invalidate any other instance of

δ which held in the unrevised belief set.
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We must also show that this modified conservative entrenchment is consistent with

the entrenchment postulates (EE1) to (EE3), and also agrees with the original

ordering on the entrenchments of the ground instances of the defaults. First we note

that the weakened defaults are implicitly in the unrevised theory, since for all δ'  ∈ ∆,

∀x (δ' (x) )  |−  ∀x ((x  ≠ t)  → δ' (x) ) . Thus the modified conservative entrenchment

does not introduce any new beliefs into the belief set, so the belief set is consistent

whenever ∆ is consistent. Also, the modified conservative entrenchment does not

contradict the entrenchment of any default δ. We show this by considering all proofs

of an instance δ(t) of the default δ.

Suppose there exists a refutation of ¬δ(t) using formulae ranked greater than δ. We

divide these formulae into three sets, ∆1 , ∆2 and ∆3 , where ∆1 contains the initial

defaults ranked higher than δ, ∆2 contains the weakened defaults

δ(t)  ∨ ∀x ((x  ≠ t)  → δ' (x) ) which contain δ(t) , and ∆3 contains any other weakened

defaults δ
_
(t ' )  ∨ ∀x ((x  ≠ t ' )  → δ' (x) ) , where δ

_
 ≠ δ. Let ∆'  = ∆1  ∪ ∆2  ∪ ∆3 .

Now ∆ |−  ∆' , and ∆ |−  δ' (t ' ) for all δ'  ∈ ∆ and any term t ' , so since ∆ is consistent,

we have ∆'  |−/  ¬δ' (t ' ) , for all δ'  ∈ ∆ and any term t ' . Thus any refutation of ¬δ(t)

cannot use clauses from ∆3 , as these can never resolve to the empty clause.

Now suppose a clause from ∆2 is used in the refutation. Then after resolving with

¬δ(t) , there are no other literals ¬δ' (t ' ) to resolve against, so again, it cannot resolve

to the empty clause. Thus no clause in ∆2 can be used in the refutation.

Thus the refutation must use clauses solely from ∆1 , the initial defaults. But this

contradicts the initial ordering on the defaults ∆, which, by (EE2) and (EE3), implied

that ∆1  |−/  δ(t) . Hence we have shown that no such proof exists, and thus the

modified conservative entrenchment agrees with the original ordering on the defaults.

7.3  A Revision Operation for Nonmonotonic Reasoning

We now outline the design of a system implementing these principles. We consider

only two types of belief change: expansion and revision. The expansion operation is

exactly the same as the one developed in chapter 4, but the revision operation has

been modified to implement the independence of default instances.
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An initial default theory is a collection of formulae over first-order logic with

equality, and comes with an ordering respecting (EE1)–(EE3). The system needs to

treat this ordering as standing for the most conservative entrenchment compatible

with this ordering under the assumptions of uniqueness of names and independence

of default instances, which is unique supposing the default theory to be consistent. It

is assumed that the formula to be accepted in a revision is either a new, consistent,

default or else a ground exception to a default, which by our assumptions is

independent of all the other instances of that default.

We now present the algorithm nmr_revise(Γ, α, newrank) for revising a belief base

Γ by a formula α with rank newrank. Assume n is the rank of the theorems.

nmr_revise(Γ, α, newrank)

if rank(Γ, α) = n { α is a theorem }

return(Γ)

else if rank(Γ, ¬α) = n { α is a contradiction }

return(Γ)

else

∆ := Γ

oldrank := rank(Γ, ¬α)

for r := oldrank downto 1 do

Ξ := {} { weakened defaults added at rank r }

for each β ∈ Γ such that rank(∆,  β)  = r  do

let β' (X)  ≡ (X  ≠ t)  → δ(X)

where β ≡ δ(X) and α ≡ ¬δ' (t)

if prove(∆−{β}∪{β'},  β,  r)  = prove(∆,  β' ,  r +1)  = 0

{ β' is weaker than β and β' is not in ∆ }

Ξ := Ξ ∪ {β'}

for each β ∈ Γ such that rank(∆,  β)  = r  do

if prove(∆,  α→β,  oldrank +1)  = 0 { (C*) condition }

∆ := delete(∆, β)

for each β'  ∈ Ξ do

∆ := update(∆, β' , r)

∆ := expand(∆, α, newrank)

return(∆)
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If α is a theorem, the revision is trivial and no change is made to the base. If α is

inconsistent, the operation is disallowed and no change is made to the base.

Otherwise we remove from the base any formula β such that ¬α is of rank equal to

α → β in the original base, as required by the (C*) condition. In addition, formulae β

of the form δ(X) ranked at most the old rank of α are weakened to (X  ≠ t)  → δ(X) if

the new formula really is weaker than β and it is not already contained in the base

with a higher rank. It suffices to consider only those β ranked less than or equal to

¬α because if ¬α < β then ¬α < α → β, so β remains in the revised set. Finally, the

set of formulae remaining in the base is expanded by α.

7.4  Examples: Benchmark Problems in Nonmonotonic Reasoning

The following examples show the operation of the revision algorithm on some

benchmark problems taken from [Lifschitz 1989]. The problems are divided into the

categories of default reasoning, inheritance, uniqueness of names, reasoning about

action and autoepistemic reasoning. We do not consider the problems involving

uniqueness of names, since it is an assumption which is built into our system, nor

those of autoepistemic reasoning, which have trivial solutions if we define an agent’s

knowledge to be the contents of its belief set. We now discuss how the system

handles the three other types of problems.

7.4.1  Default Reasoning

The first example covers basic default reasoning, default reasoning with irrelevant

information and default reasoning in an open domain (Lifschitz’s examples A1, A2

and A5). The problem is stated informally as:

Assumptions: Blocks A and B are heavy.

Heavy blocks are normally located on the table.

A is not on the table.

B is red.

Conclusions: B is on the table.

All heavy blocks other than A are on the table.

For this example, specific facts are given a higher rank than defaults because specific

information about objects is presumed to be more reliable than general defaults. An
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exception δ of a default is input to the system by making a revision to accept δ.

We now show the operation of the system on the three examples.

# Problem A1, Basic Default Reasoning

100: heavy(a) # Facts

100: heavy(b)

50: All(X) [heavy(X) -> table(X)] # Default

100* ˜table(a) # Exception

? table(b) # Query

>>> yes : rank = 50

# Problem A2, irrelevant information

100: red(b) # Fact

? table(b) # Query

>>> yes : rank = 50

# Problem A5, open domain

? All(X)[ (X!=a & heavy(X)) -> table(X)] # Query

>>> yes : rank = 50

??

>>> Complete database:

>>> 100 : heavy(a)

>>> 100 : heavy(b)

>>> 100 : ˜table(a)

>>> 100 : red(b)

>>> 50 : All(X) [(X!=a) -> (heavy(X) -> table(X))]

Note that when a revision is made to accept an exceptional instance of a default, the

default is weakened to cover all but the exceptional case.

The following example involving several defaults (Lifschitz’s problem A3) cannot be

handled by the belief revision approach to nonmonotonic reasoning because the

ordering on defaults which extends to an entrenchment is assumed to be a total

pre–order.
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Assumptions: Blocks A and B are heavy.

Heavy blocks are normally located on the table.

Heavy blocks are normally red.

A is not on the table.

B is not red.

Conclusions: B is on the table.

A is red.

The belief revision approach interprets any exception to a default at rank r as an

exception to all defaults at rank less than or equal to r, unless the contrary is

explicitly stated, for example by placing an instantiation of a default at a higher rank

than the default itself. So if the default that heavy blocks are on the table is placed at

a higher rank than the default that blocks are red, it is concluded that B is on the table,

but not that A is red. If the ranks of the rules are swapped, the opposite results are

obtained. The third possibility is that the defaults are given equal rank, intuitively the

most reasonable choice, yet this yields neither of the desired conclusions, as A and B

become exceptions to both rules.

The last example in this section is Lifschitz’s problem A8 on reasoning about

unknown exceptions.

Assumptions: Block A is heavy.

Heavy blocks are normally located on the table.

At least one heavy block is not on the table.

Conclusion: A is on the table.

This example is outside the scope of our theory, because the theory base contains

heavy (c)  ∧ ¬table (c) where c is a Skolem constant. The question is whether c is

different from A. Since the system does not assume that uniqueness of names applies

to Skolem constants, it does not generate this conclusion. This can be justified on the

grounds that there is no evidence that the unnamed block is not block A.

7.4.2  Inheritance

Reasoning about inheritance networks is a standard problem in nonmonotonic

reasoning, and it is relatively straightforward to solve all of Lifschitz’s problems

B1–B4. We present our solutions to problem set B2, tree-structured inheritance.
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Assumptions: Animals normally don’t fly.

Birds are animals.

Birds normally fly.

Bats are animals.

Bats normally fly.

Emus are birds.

Emus don’t fly.

Conclusions: Animals other than birds and bats do not fly.

Birds other than emus fly.

Bats fly.

Emus don’t fly.

In this example, we use the rank of a formula to encode the relative strengths of the

defaults. The defaults which have no exceptions are given the highest rank. Then the

default rules are ordered such that the more specific defaults (that is, exceptions to

other defaults) override the more general defaults.

100: bird(X) -> animal(X) # Facts

100: bat(X) -> animal(X)

100: emu(X) -> bird(X)

70: emu(X) -> ˜fly(X) # Defaults

60: bird(X) -> fly(X)

60: bat(X) -> fly(X)

50: animal(X) -> ˜fly(X)

? All(X) [animal(X) & ˜bird(X) & ˜bat(X) -> ˜fly(X)]

>>> yes : rank = 50

? All(X) [bird(X) & ˜emu(X) -> fly(X)]

>>> yes : rank = 60

? All(X) [bat(X) -> fly(X)]

>>> yes : rank = 60

? All(X) [emu(X) -> ˜fly(X)]

>>> yes : rank = 70
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For this example and for all of the inheritance problems proposed by Lifschitz, the

answers generated by the system agree with the desired conclusions.

7.4.3  Reasoning about Action

The final type of problem considered in this section concerns reasoning about action.

The approach to modelling these problems is based on the theory of actions

developed in [Peppas et al. 1991], which uses belief revision functions from complete

theories to complete theories to model events, by identifying an action with a revision

to accept its postcondition. In a similar manner, the AGM-NMR system is used to

keep track of the effects of multiple actions by performing successive revisions of the

entrenchment base. Note that for these examples we do not assume that the world is

modelled by complete theories.

The following example is Lifschitz’s problem D3.

Assumptions: After an action is performed, things normally remain as they were.

A block is on the table if and only if it is not on the floor.

When a robot grasps a block, the block will normally be in the hand.

When the robot moves a block onto the table, the block will

    normally be on the table.

Moving a block that is not in the hand is an exception to this rule.

Initially block A is not in the hand.

Initially block A is on the floor.

Conclusion: After the robot grasps block A, waits, and then moves it to the table,

    the block will not be on the floor.

For this example, there are two kinds of facts: those which may change over time (for

example, block A is on the floor), and those which are time invariant (for example, a

block cannot be on the table and on the floor). In contrast to the examples

concerning nonmonotonic reasoning in a static world, the defaults, which are time

invariant, are given a higher rank than the specific facts, because a change in the

world is presumed to affect the facts rather than override a default. The domain

constraints, which are both time invariant and also not subject to exceptions, have the

highest rank of all.
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100: table(X) <-> ˜floor(X) # Domain Constraint

70: All(X)[˜holding(X) & move(X) -> ˜table(X)] # Defaults

50: All(X)[grasp(X) -> holding(X)]

50: All(X)[move(X) -> table(X)]

10: ˜holding(a) # Facts

10: floor(a)

10* grasp(a) # Actions

10* move(a)

? ˜floor(a) # Query

>>> yes : rank = 10

Note that the condition giving an exception to a temporal default "moving a block

that is not in the hand is an exception to the previous rule" cannot be expressed in our

language because it concerns an exception to a normal revision. This must be

captured by a default stating explicitly that the outcome of the exceptional action is

the negation of the expected outcome – we cannot capture chronological ignorance,

only denial. Note also that the waiting action is presumed to have the postcondition

true and so is modelled by a trivial revision.

Because the revision system can be used only in a "forwards" direction, it cannot be

used directly for temporal explanation or reasoning about the unknown order of

actions.

7.5  Discussion and Comparison with Related Work

A number of authors have demonstrated that there is a close relationship between

belief revision and nonmonotonic reasoning. The connection between belief revision

and nonmonotonic consequence operations was explored in [Gärdenfors 1990a] and

[Makinson & Gärdenfors 1991], and extended in [Gärdenfors 1991], where the

entrenchment relation was generalised to allow an ordering on non-beliefs, called an

expectation ordering. These authors showed how belief revision relates to the default

reasoning of [Poole 1988], which is itself a syntactic variant of the default logic of

[Reiter 1980]. Poole’s skeptical inference was shown to be equivalent to full meet
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revision in the case where the default set is logically closed. A generalisation of

Poole’s default reasoning corresponding to partial meet revision was also presented.

[Nebel 1991] also proposed the use of theory change operations for default reasoning,

showing that prioritized base revision corresponds to both the skeptical inference of

[Poole 1988] and the level default theories of [Brewka 1989], in the case of finitary

propositional logic. [Brewka 1991a] developed a belief revision framework from an

approach to default reasoning based on preferred subtheories generated from an

ordering on defaults. This approach does not satisfy the basic AGM rationality

postulates, as it does not even ensure the success of a belief change.

The connection of belief revision to conditional logic approaches to nonmonotonic

reasoning was developed in [Wobcke 1992a,b], where a correspondence was shown

between the extensions of a default theory as expressed in conditional logic and the

class of most conservative entrenchments compatible with the ordering on defaults.

Our approach to nonmonotonic reasoning is closely related to those using orderings

of defaults. Similar to epistemic entrenchment, priority orderings on formulae in a

logical language have been proposed independently as a basis for implementing

nonmonotonic reasoning systems. System Z, [Pearl 1990], uses a total ordering on a

finite collection of defaults to define 0–entailment, the "core" of nonmonotonic

inference, and 1–entailment, an extension of 0–entailment which has close

connections to the rational nonmonotonic consequence operations of [Lehmann &

Magidor 1992]. With a propositional database, the AGM-NMR system corresponds

to the 1-entailment of [Pearl 1990] and the rational consequence of [Lehmann &

Magidor 1992].

One of the weaknesses of this approach is that an exception to a default is propagated

to all other defaults. For example, suppose we have a system with two defaults, which

state that typically birds can fly, and typically birds have feathers. Then an

exceptional bird, such as one that cannot fly, becomes exceptional in all other default

properties of birds, such as having feathers. This was the difficulty encountered in

section 7.3.1, where we attempted to solve Lifschitz’s problem A3, but were unable

to specify the fact that the defaults were unrelated. To state that the two defaults are

unrelated would require a partial order on defaults along the lines proposed by

[Geffner & Pearl 1992] or [Brewka 1989, 1991a], but this cannot be expressed within
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the AGM framework, which requires a total pre-order for epistemic entrenchment.

[Goldszmidt et al. 1990] also addresses some of the weaknesses of 1-entailment with

an approach based on "maximum entropy" total orderings of defaults.

In [Pearl 1990] and its extensions, the ordering on the defaults is generated

automatically from a given collection of defaults. This represents a major difference

between approaches based on orderings and those based on belief revision because

the entrenchment or expectation used by a belief revision system is assumed to be

given. Clearly these approaches are less expressive than the AGM-NMR system, as

they only allow the one arbitrary ordering.

7.6  Summary

We have developed a nonmonotonic reasoning system based on belief revision over

the language of first-order logic with equality. The system accords with the AGM

postulates for any finitely representable belief state, and interprets a partially

specified entrenchment base as standing for a single most conservative entrenchment,

modified to incorporate the assumptions of uniqueness of names and independence of

default instances, which are motivated by the intuitions underlying nonmonotonic

reasoning.
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8 Conclusion

In this thesis, a rational and computational approach to belief revision has been

presented. Firstly, we described the place of belief revision within the field of

artificial intelligence, showing the need for belief change operations in order to

reason about the real world. We then summarised the various approaches to belief

revision, including both the constructive and nonconstructive modellings, and

discussing their theoretical and practical limitations from the point of view of

computational belief revision. The rationality constraints, defined by the AGM

postulates, were supplemented in chapters 3 and 4 by a minimal change entrenchment

revision policy, and the computational analysis was based on standard considerations

of finiteness and tractability.

We then presented a new computational approach to AGM belief revision, beginning

with a finite and efficient representation for a belief state, called an entrenchment

base, which can be extended to an AGM epistemic entrenchment relation using the

most conservative entrenchment construction. This construction was motivated both

on the grounds of evidence, and by the close connection of belief revision with truth

maintenance and nonmonotonic reasoning. Entrenchment revision policies were then

discussed, and a conservative policy based on the coherentist minimal change

principle was adopted.

The algorithms for computing the various belief change operations (expansion,

contraction and revision) were then described. These algorithms were shown to be

correct relative to the AGM postulates and a set of formal criteria defining minimal

change in the epistemic state. The efficiency of the algorithms was discussed,

concluding that the algorithms were all tractable if implemented over a logic with a

tractable decision procedure for derivability. It was also shown that for any finitely

representable belief state, the application of a consistent AGM operation would

successfully end in another finitely representable belief state. Two alternative

algorithms were also presented for comparison with the AGM algorithms.
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We also described an implementation of these algorithms over first-order logic. This

is the first such system which satisfies the AGM rationality postulates. The system

uses a resolution theorem prover together with our algorithms for the efficient

computation of expansion, contraction and revision operations. The theorem prover

provides a method of ensuring termination, whilst sacrificing the completeness of the

inference method, but not without alerting the user to the cases in which

completeness may have been lost. The chapter concluded with a series of examples

which demonstrate the operation of the system performing the standard belief change

operations, as well as some nonstandard operations such as conditional queries.

Despite the fact that the AGM approach to belief revision is based on a coherentist

view of justification, we showed that by using the most conservative entrenchment

and encoding the independence of foundational beliefs, it is possible to perform

foundational reasoning using the AGM operations. Having chosen the ATMS as a

typical example of truth maintenance and foundational reasoning, we presented two

simulation algorithms for achieving the behaviour of the ATMS within the AGM

system. The first algorithm computes ranks of beliefs explicitly, so that no closure

operation such as the most conservative entrenchment construction is needed. The

second algorithm takes advantage of the most conservative entrenchment, and

demonstrates that there is a very natural way of expressing foundational information

in the AGM paradigm. Both algorithms were proved correct relative to the formal

specification of the ATMS, and both were implemented in conjunction with the AGM

system.

Finally, we described an approach to nonmonotonic reasoning based on belief

revision, including an implementation which is built upon the AGM system. The

system reasons with defaults and exceptions, using a modified version of the revision

algorithm in chapter 4. The original algorithm was modified to incorporate the

assumption of independence of default instances, and the theorem prover was

extended to include equality in the logic, under the unique names assumption. The

system was tested upon a number of standard problems in nonmonotonic reasoning,

and the strengths and weaknesses of the system were discussed at length, and

compared with other approaches to nonmonotonic reasoning.
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8.1  Further Work

The implementation of the AGM belief revision system opens a door to the

experimental evaluation of belief revision and nonmonotonic reasoning operations.

There are three obvious directions for further work in this area: firstly, the AGM

algorithms could be implemented with a different theorem prover such as for a

restricted logic; secondly, the existing framework could be used to implement

variations of the AGM belief change operations, such as the theory base operations

described in chapter 2; and thirdly, we could investigate alternative entrenchment

revision policies.

The first suggestion is motivated by the fact that the algorithms in chapter 4 are

defined independently of the underlying logic, so no alteration to the algorithms is

required. For the practical use of the AGM system, the logic would have to be

restricted to a language with a tractable decision procedure for derivability.

The algorithms presented in chapter 4 are simple to understand and implement, so

that the AGM system can be easily modified to incorporate alternative belief change

operations, built upon the existing program. This would allow an automated

experimental comparison of the various operations instead of employing the error-

prone procedure of testing out new ideas on the standard examples by hand.

The minimal change entrenchment revision policy advocated within this thesis is

motivated by the desire to preserve as much as possible of an epistemic state during

belief change operations. Very little work has been done in this area to demonstrate

whether or not this policy is always the most rational approach to generating a new

entrenchment relation. The implementation provides an opportunity to generate and

test new ideas in entrenchment revision.

Apart from extensions to the belief revision system itself, the work with truth

maintenance and nonmonotonic reasoning suggests that the system could be used to

implement other styles of reasoning. We described several possible extensions to the

ATMS in chapter 6, to allow for non-foundational reasoning, and also for a more

general form of foundational reasoning using a more expressive language, and

including the possibility of revising justifications. Theoretical work linking belief

revision with some other reasoning formalisms is outlined in chapter 7; further work

could put some of these relationships into use as the basis for other implementations.
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The obvious application of belief revision to database update has yet to be realised in

a practical way; this is another interesting avenue of further research, which could

have far-reaching effects outside the AI community.
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A Proof of
Theorem 3.1

We prove that the relation computed from an entrenchment base satisfying conditions

(R1) and (R2), via the most conservative entrenchment construction, also satisfies

conditions (EE1) to (EE5) for an epistemic entrenchment.

Assume we are given an entrenchment base Γ = (Γ1 ,  Γ2 ,   . . . ,  Γn) satisfying:

(R1)   ∀ i,   ∀ β ∈ Γi,   Γi +1

____
 |−/  β

(R2)   α ∈ Γn    if and only if   |−  α

a function rank satisfying (Def_Rank):

rank(Γ,  α)   =  

��
� �

�
  
0

max({i  : Γi

__
 |−  α})    

  
if  Γ1

__
 |−/  α

if  Γ1

__
 |−  α

and a relation ≤E given by (Def_MCE):

α ≤E  β   iff   rank(Γ,  α)  ≤ rank(Γ,  β)

The relation ≤E is called the most conservative entrenchment generated from the

entrenchment base Γ. Define α =E  β if and only if α ≤E  β and β ≤E  α; and α <E  β if

and only if α ≤E  β and not β ≤E  α.

(EE1) If α ≤E  β and β ≤E  γ then α ≤E  γ

Proof: Choose any α, β, γ such that α ≤E  β and β ≤E  γ.

Then by (Def_MCE), rank(Γ,  α)  ≤ rank(Γ,  β) , and also rank(Γ,  β)  ≤ rank(Γ,  γ) .

Since the ranks are natural numbers, we conclude rank(Γ,  α)  ≤ rank(Γ,  γ) .

So, by (Def_MCE), α ≤E  γ.

(EE2) If α |−  β then α ≤E  β

Proof: Choose any α, β, such that α |−  β.

A
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Suppose α >E  β.

Then rank(Γ,  α)  > rank(Γ,  β) .

Let i  = rank(Γ,  α) .

From (Def_Rank), Γi

__
 |−  α, and since α |−  β, we conclude that Γi

__
 |−  β.

Now Γi

__
 ⊆ {γ ∈ Γ  :  rank(Γ,  β)  < rank(Γ,  γ) }.

Hence {γ ∈ Γ  :  rank(Γ,  β)  < rank(Γ,  γ) } |−  β, contradicting (R1).

Thus α ≤E  β.

(EE3) For any α and β, α ≤E  α∧β or β ≤E  α∧β

Proof: Suppose that there exists α, β such that α >E  α∧β and β >E  α∧β.

Without loss of generality, assume α ≥E  β.

Let i  = rank(Γ,  α) and j  = rank(Γ,  β) .

Then i  ≥ j, and Γi

__
 ⊆ Γj

__
.

By definition Γi

__
 |−  α, so we have Γj

__
 |−  α.

Combining this with Γj

__
 |−  β gives Γj

__
 |−  α∧β.

Since rank(Γ,  α∧β)  < j, we have Γj

__
 ⊆ {γ ∈ Γ  :  rank(Γ,  α∧β)  < rank(Γ,  γ) }.

Thus {γ ∈ Γ  :  rank(Γ,  α∧β)  < rank(Γ,  γ) } |−  α∧β, contradicting (R1).

Hence no such α and β exist.

(EE4) When K  ≠ K ⊥ , α ∈/  K iff α ≤E  β for all β

Proof: Assume K  ≠ K ⊥ .

Suppose α ∈ K.

Then Γ1

__
 |−  K, and hence rank(Γ,  α)  = max({i  : Γi

__
 |−  α})  ≥ 1.

Also ¬α ∈/  K, since K  ≠ K ⊥ , so by definition, rank(Γ,  ¬α)  = 0.

Then there exists β such that rank(Γ,  α)  > rank(Γ,  β) , that is α >E  β.

So it is not the case that α ≤E  β for all β.

Alternatively, suppose α ∈/  K.

Then rank(Γ,  α)  = 0.

Clearly, from (Def_Rank), rank(Γ,  β)  ≥ 0 for all β.

Thus for all β, rank(Γ,  α)  ≤ rank(Γ,  β) , which gives α ≤E  β for all β.

(EE5) If β ≤E  α for all β then |−  α

Proof: Choose α such that β ≤E  α for all β.

Then rank(Γ,  β)  ≤ rank(Γ,  α) for all β.

A
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When |−  β, rank(Γ,  β)  = n by (R2), so rank(Γ,  α)  ≥ n.

If Γ1

__
 |−/  α then α ∈/  K, and rank(Γ,  α)  = 0, and we have a contradiction.

Otherwise Γ1

__
 |−  α.

Now if |−  α, we are done, so suppose |−/  α.

Then Γn

__
 |−/  α, since |−  Γn

__
, by (R2).

Then there exists a greatest i such that Γi

__
 |−  α and i  < n.

Hence rank(Γ,  α)  < n, and we have a contradiction.

Thus we have shown that the relation generated from a ranked finite base satisfying

conditions (R1) and (R2) is an epistemic entrenchment ordering, which we name the

most conservative entrenchment.

A
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B The Correctness of the
Expansion Algorithm

B.1  Lemma

Let ∆ = expand(Γ,  α,  r) , for any entrenchment base Γ, formula α and rank r. Then

for all formulae β, rank(∆,  β)  ≥ rank(Γ,  β) .

Proof: Let i  = rank(Γ,  β) .

Consider any proof Φ |−  β, where Φ ⊆ Γi

__
and for all Φ'  ⊂ Φ, Φ'  |−/  β.

For each φ ∈ Φ, φ ∈ Γj , for some j  ≥ i.

Also, by inspection of the expansion algorithm, we have either φ ∈ ∆j or ∆j

__
 |−  φ.

i.e., φ is only deleted if it is derivable with at least the same rank as it had previously.

Since i  ≤ j, ∆i

__
 |−  φ.

Hence ∆i

__
 |−  Φ, and since Φ |−  β, ∆i

__
 |−  β.

So rank(∆,  β)  ≥ i; that is, rank(∆,  β)  ≥ rank(Γ,  β) .

B.2  Proof of (R+) Condition

We now prove that any expansion operation ∆ = expand(Γ,  α,  r) satisfies the (R+)

condition,

rank(∆,  β)   =  

��
� �

�
  

rank(Γ,  β)

min(rank(Γ,  α→β) ,  r)    

  

otherwise

    rank(Γ,  β)  < min(rank(Γ,  α→β) ,  r)

if  Γ1

__
 |−/  ¬α  and

Let β be any formula.

Case (1): Γ1

__
 |−  ¬α.

Then ∆ = Γ, and hence rank(∆,  β)  = rank(Γ,  β) , as required.

So we may assume for the remaining cases that Γ1

__
 |−/  ¬α.

B.2
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Case (2): rank(Γ,  α→β)  ≤ rank(Γ,  β) .

Consider any proof Φ |−  β where Φ ⊆ ∆j

__
for some j, and for all Φ'  ⊂ Φ, Φ'  |−/  β.

Now suppose j  > rank(Γ,  β) .

Let Ψ = Φ − {α}.

Then by the definition of expansion, Ψ ⊆ Γj

__
.

Therefore Γj

__
 ∪ {α} |−  β, and by the deduction theorem Γj

__
 |−  α→β.

Thus rank(Γ,  α→β)  ≥ j.

Since j  > rank(Γ,  β) , we deduce rank(Γ,  α→β)  > rank(Γ,  β) .

This contradicts our initial condition.

Thus no such j exists, so we conclude that rank(∆,  β)  ≤ rank(Γ,  β) .

Combining this with Lemma B.1 gives rank(∆,  β)  = rank(Γ,  β) , as required.

Case (3): r  ≤ rank(Γ,  β) .

Consider any proof Φ |−  β, where Φ ⊆ ∆j

__
for some j, and for all Φ'  ⊂ Φ, Φ'  |−/  β.

Now suppose j  > rank(Γ,  β) .

(a) Suppose α ∈ Φ.

Then since j  > r, by the definition of expansion, rank(Γ,  α)  > r, and hence ∆ = Γ.

Therefore Φ ⊆ Γj

__
, and hence Γj

__
 |−  β.

Thus rank(Γ,  β)  ≥ j, contradicting the choice of j.

(b) Assume α ∈/  Φ.

Then Φ ⊆ Γj

__
, and hence Γj

__
 |−  β.

Thus rank(Γ,  β)  ≥ j, contradicting the choice of j.

We conclude that no such j  > rank(Γ,  β) exists.

Hence rank(∆,  β)  ≤ rank(Γ,  β) .

Combining this with Lemma B.1 gives rank(∆,  β)  = rank(Γ,  β) , as required.

Case (4): Otherwise rank(Γ,  α→β)  > rank(Γ,  β) and r  > rank(Γ,  β) .

Let j  = min(rank(Γ,  α→β) ,  r) .

Then j  > rank(Γ,  β) .

Suppose rank(Γ,  α)  ≥ r.

Then since j  ≤ r, Γj

__
 |−  α.

By the choice of j, we also have Γj

__
 |−  α→β.

By modus ponens, Γj

__
 |−  β, and hence rank(Γ,  β)  ≥ j, contradicting the choice of j.

Therefore, rank(Γ,  α)  < r.

Then, by the definition of expansion, α ∈ ∆r , and hence ∆j

__
 |−  α.

B.2
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Also by Lemma B.1, rank(∆,  α→β)  ≥ rank(Γ,  α→β) , so ∆j

__
 |−  α→β.

By modus ponens, ∆j

__
 |−  β, and hence rank(∆,  β)  ≥ j.

Now suppose rank(∆,  β)  > j.

Then there exists some minimal set Φ ⊆ ∆k

__
such that Φ |−  β, for some k  > j.

(a) Suppose α ∈ Φ

Then r  ≥ k  > j, since we have already shown that rank(Γ,  α)  < r.

Let Ψ = Φ − {α}.

Ψ ⊆ Γk

__
, so Γk

__
 ∪ {α} |−  β, and by the deduction theorem Γk

__
 |−  α→β.

So rank(Γ,  α→β)  ≥ k, and hence rank(Γ,  α→β)  > j.

But this gives min(rank(Γ,  α→β) ,  r)  > j, contradicting the choice of j.

(b) Otherwise α ∈/  Φ.

Then Φ ⊆ Γk

__
, and hence Γk

__
 |−  β.

Thus rank(Γ,  β)  ≥ k, and hence rank(Γ,  β)  > j, contradicting the choice of j.

Therefore, no such Φ exists, and we may conclude that rank(∆,  β)  = j.

That is, rank(∆,  β)  = min(rank(Γ,  α→β) ,  r) , as required.

B.3  Satisfaction of AGM Postulates

Finally, we show that any expansion function satisfying the (R+) condition also

satisfies the AGM rationality postulates for consistent expansion. Consider an

expansion ∆ = expand(Γ,  α,  r) , for any consistent entrenchment base Γ, formula α

and integer r  > 0, such that Γ1

__
 |−/  ¬α. The AGM postulates are satisfied if and only

if:

Cn (∆1

__
)  = Cn (Γ1

__
 ∪{α}) .

That is, for any β:

∆1

__
 |−  β   iff   Γ1

__
 ∪{α} |−  β

By the deduction theorem, this is equivalent to:

∆1

__
 |−  β   iff   Γ1

__
 |−  α→β

Expressing this in ranks:

rank(∆,  β)  > 0   iff   rank(Γ,  α→β)  > 0.
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Proof:

Case (1): rank(Γ,  β)  < min(rank(Γ,  α→β) ,  r) .

Then rank(Γ,  α→β)  > rank(Γ,  β)  ≥ 0, so rank(Γ,  α→β)  > 0.

Also, by the (R+) condition, rank(∆,  β)  = min(rank(Γ,  α→β) ,  r)  > 0.

Case (2): Otherwise, suppose that rank(Γ,  β)  > 0.

Then by (EE2), rank(Γ,  α→β)  > 0.

Also, by the (R+) condition, rank(∆,  β)  = rank(Γ,  β)  > 0, as required.

Case (3): Otherwise rank(Γ,  β)  = 0.

Now since r  > 0, and Γ did not satisfy Case (1), we must have rank(Γ,  α→β)  = 0.

So by the (R+) condition, rank(∆,  β)  = rank(Γ,  β)  = 0, and the proof is complete.

B.3
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C The Correctness of the
Contraction Algorithm

C.1  Lemma

Let ∆ = contract(Γ, α) , for any entrenchment base Γ, and formula α. Then for all

formulae β, rank(∆,  β)  ≤ rank(Γ,  β) .

Proof: Let i  = rank(∆,  β) .

Consider any proof Φ |−  β such that Φ ⊆ ∆i

__
, for some i.

For each φ ∈ Φ, φ ∈ ∆j , for some j  ≥ i.

Then either φ ∈ Γj or φ'  ∈ Γj , where φ ≡ α→φ' .

Now φ'  |−  α→φ' , for all α and φ' , so Γj  |−  φ in both cases.

Since i  ≤ j, Γi

__
 |−  φ, for all φ ∈ Φ.

Hence Γi

__
 |−  Φ, and since Φ |−  β, Γi

__
 |−  β.

So rank(Γ,  β)  ≥ i; that is, rank(∆,  β)  ≤ rank(Γ,  β) .

C.2  Lemma

Let ∆ = contract(Γ, α) , for any entrenchment base Γ, and formula α. Then for all

formulae β, if rank(Γ,  β)  > rank(Γ,  α) then rank(∆,  β)  = rank(Γ,  β) .

Proof: Suppose rank(Γ,  β)  > rank(Γ,  α) .

Let i  = rank(Γ,  β) , and let φ ∈ Γi

__
.

Then rank(Γ,  α∨φ)  ≥ rank(Γ,  φ) , by (EE2).

Therefore rank(Γ,  α∨φ)  > rank(Γ,  α) .

Then φ ∈ ∆i

__
, by the definition of contraction.

Hence Γi

__
 = ∆i

__
, so ∆i

__
 |−  β, and rank(∆,  β)  ≥ i.

That is, rank(∆,  β)  ≥ rank(Γ,  β) .

Combining this result with Lemma C.1 gives rank(∆,  β)  = rank(Γ,  β) .

C.2
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C.3  Lemma

Let ∆ = contract(Γ, α) , for any entrenchment base Γ, and formula α. Then for any

formula β, if β ∈ Γi and β ∈/  ∆i and α→β ∈/  ∆i then rank(∆,  α→β)  > i.

Proof: Note that rank(Γ,  β)  = i.

By the contrapositive of Lemma C.2, rank(Γ,  β)  ≤ rank(Γ,  α) .

And by the definition of contraction, rank(Γ,  β)  ≥ rank(Γ,  α) .

Thus rank(Γ,  β)  = rank(Γ,  α) .

Also from the definition of contraction, rank(Γ,  α→β)  ≠ rank(Γ,  α) .

Combining with the previous result implies: rank(Γ,  α→β)  > rank(Γ,  α) .

By Lemma C.2 again, rank(∆,  α→β)  = rank(Γ,  α→β) .

Thus rank(∆,  α→β)  > rank(Γ,  α) .

That is, rank(∆,  α→β)  > rank(Γ,  β) .

Thus we have shown rank(∆,  α→β)  > i.

C.4  Lemma

Let ∆ = contract(Γ, α) , for any entrenchment base Γ, and formula α. Then for any

formula β, rank(∆,  α→β)  ≥ rank(Γ,  β) .

Proof: Let i  = rank(Γ,  β) .

Now if i  = 0 we are done, so suppose i  > 0.

Consider any proof Φ |−  β such that Φ ⊆ Γi

__
.

For each φ ∈ Φ, φ ∈ Γj , for some j  ≥ i.

Then if φ ∈ ∆j , rank(∆,  α→φ)  ≥ j since φ |−  α→φ.

Also, if α→φ ∈ ∆j , then rank(∆,  α→φ)  ≥ j.

Otherwise, Lemma C.3 applies, and we have rank(∆,  α→φ)  ≥ j.

Since i  ≤ j, for any φ ∈ Φ, ∆i

__
 |−  α→φ.

By the deduction theorem, ∆i

__
 ∪ {α} |−  φ.

Thus ∆i

__
 ∪ {α} |−  Φ, and since Φ |−  β, ∆i

__
 ∪ {α} |−  β.

Hence by the deduction theorem again, ∆i

__
 |−  α→β.

Thus rank(∆,  α→β)  ≥ i; that is, rank(∆,  α→β)  ≥ rank(Γ,  β) .

C.5
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C.5  Proof of (R–) Condition

Let ∆ = contract(Γ, α) , for any entrenchment base Γ, and formula α, and let β be

any formula. We now prove that the contraction algorithm satisfies the (R–)

condition,

rank(∆,  β)   =  

�� �
  0

rank(Γ,  β)    
  otherwise

if  |−α  or  rank(Γ,  α)  < rank(Γ,  α∨β)

Case (1): |−  α.

Then ∆ = Γ, and therefore rank(∆,  β)  = rank(Γ,  β) , as required.

Case (2): |−/  α and rank(Γ,  α)  = rank(Γ,  α∨β) .

Consider any proof Φ |−  α∨β such that Φ ⊆ Γ1

__
.

Suppose Φ ⊆ ∆1

__
.

Then for all φ ∈ Φ, rank(Γ,  α)  < rank(Γ,  α∨φ) .

Let j  = min({rank(Γ,  α∨φ)  : φ ∈ Φ}) .

Then j  > rank(Γ,  α) .

Also Γj

__
 |−  α∨φ, for all φ ∈ Φ.

By the deduction theorem, Γj

__
 ∪ {¬α} |−  φ, for all φ ∈ Φ.

Thus Γj

__
 ∪ {¬α} |−  Φ, and since Φ |−  α∨β, we have Γj

__
 ∪ {¬α} |−  α∨β.

Thus Γj

__
 |−  α∨(α∨β) , by the deduction theorem.

That is, Γj

__
 |−  α∨β.

So rank(Γ,  α∨β)  ≥ j.

Hence rank(Γ,  α∨β)  > rank(Γ,  α) , contradicting the initial condition.

Therefore, for any subset Φ ⊆ Γ1

__
such that Φ |−  α∨β, Φ ⊆/  ∆1

__
.

Thus ∆1

__
 |−/  β, and hence rank(∆,  β)  = 0, as required.

Case (3): |−/  α and rank(Γ,  α)  < rank(Γ,  α∨β) .

If rank(Γ,  β)  > rank(Γ,  α) , by Lemma C.2, rank(∆,  β)  = rank(Γ,  β) , as required.

Otherwise rank(Γ,  β)  ≤ rank(Γ,  α) .

Then by Lemma C.2, rank(∆,  α∨β)  > rank(Γ,  α) .

Thus rank(∆,  α∨β)  > rank(Γ,  β) .

Also, by Lemma C.4, rank(∆,  α→β)  ≥ rank(Γ,  β) .

Let j  = rank(Γ,  β) .

Then ∆j

__
 |−  α∨β and ∆j

__
 |−  α→β.
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Therefore, ∆j

__
 |−  β.

Thus rank(∆,  β)  ≥ j.

That is, rank(∆,  β)  ≥ rank(Γ,  β) .

Combining this with Lemma C.1 gives rank(∆,  β)  = rank(Γ,  β) , as required.

C.6  Satisfaction of AGM Postulates

We now show that any contraction function satisfying the (R–) condition also

satisfies the AGM rationality postulates for contraction. Consider a contraction

∆ = contract(Γ, α) , for any consistent entrenchment base Γ and formula α. The

AGM postulates are satisfied if and only if the (C–) condition holds:

β ∈ Kα
− iff β ∈ K  and either  |−  α or  α <E  α∨β

Expressing this in terms of ranks:

rank(∆,  β)  > 0   iff   rank(Γ,  β)  > 0 and either |−  α or rank(Γ,  α)  < rank(Γ,  α∨β)

Proof:

Case (1): |−  α.

Then by the (R–) condition, rank(∆,  β)  = rank(Γ,  β) .

Hence rank(∆,  β)  > 0 iff rank(Γ,  β)  > 0 as required.

Case (2): rank(Γ,  α)  < rank(Γ,  α∨β) .

Then by the (R–) condition, rank(∆,  β)  = rank(Γ,  β) .

Again, rank(∆,  β)  > 0 iff rank(Γ,  β)  > 0 as required.

Case (3): Otherwise, |−/  α and rank(Γ,  α)  = rank(Γ,  α∨β) .

Then by the (R–) condition, rank(∆,  β)  = 0, as required.

Hence the contraction algorithm satisfies the AGM postulates.

C.6



138

D The Correctness of
the Revision Algorithm

D.1  Proof of (R*) Condition

Let ∆ = revise(Γ,  α,  r) , for any entrenchment base Γ, formula α, and rank r, and let

β be any formula. We now prove that revision algorithm satisfies the (R*) condition,

rank(∆,  β)   =  

���
� ��

�
  

min(rank(Γ,  α→β) ,  r)    

rank(Γ,  β)    

0

  

otherwise

               or  r  ≤ rank(Γ,  β) )

  and (rank(Γ,  α→β)  ≤ rank(Γ,  β)

if  rank(Γ,  ¬α)  < rank(Γ,  α→β)

if  rank(Γ,  ¬α)  ≥ rank(Γ,  α→β)

Let ∆'  = contract(Γ,  ¬α) , so that ∆ = expand(∆' ,  α,  r) .

Case (1): |−  α.

Then rank(Γ,  ¬α)  = 0.

If rank(Γ,  β)  > 0 then by Lemma C.2, rank(∆' ,  β)  = rank(Γ,  β) .

Otherwise by Lemma C.1 rank(∆' ,  β)  = 0, and therefore rank(∆' ,  β)  = rank(Γ,  β) .

Then rank(∆' ,  β)  = rank(∆' ,  α→β) , by (R1) and since |−  α.

Then by the (R+) condition, rank(∆,  β)  = rank(∆' ,  β) .

Hence rank(∆,  β)  = rank(Γ,  β) .

Case (2): |−  ¬α.

Then ∆'  = Γ, and ∆ = ∆' , by the definitions of contraction and expansion.

Thus rank(∆,  β)  = rank(Γ,  β) .

We assume for the remaining cases that |−/  α and |−/  ¬α.

Case (3): rank(Γ,  ¬α)  ≥ rank(Γ,  α→β) .

By the (R–) condition, rank(∆' ,  β)  = 0.

Also by the (R–) condition, rank(∆' ,  α→β)  = 0.

So by the (R+) condition, rank(∆,  β)  = rank(∆' ,  β) .

D.1
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That is rank(∆,  β)  = 0, as required.

Case (4): rank(Γ,  ¬α)  < rank(Γ,  α→β) and rank(Γ,  α→β)  ≤ rank(Γ,  β) .

By (EE2), rank(Γ,  β)  ≤ rank(Γ,  α→β) , so rank(Γ,  α→β)  = rank(Γ,  β) .

By the (R–) condition, rank(∆' ,  β)  = rank(Γ,  β) .

Also by the (R–) condition, rank(∆' ,  α→β)  = rank(Γ,  α→β) .

Therefore rank(∆' ,  β)  = rank(∆' ,  α→β) .

So by the (R+) condition, rank(∆,  β)  = rank(∆' ,  β) .

That is rank(∆,  β)  = rank(Γ,  β) , as required.

Case (5): rank(Γ,  ¬α)  < rank(Γ,  α→β) and r  ≤ rank(Γ,  β) .

Again, by (R–), rank(∆' ,  β)  = rank(Γ,  β) and rank(∆' ,  α→β)  = rank(Γ,  α→β) .

Then since r  ≤ rank(∆' ,  β) , rank(∆,  β)  = rank(∆' ,  β) , by the (R+) condition.

Thus rank(∆,  β)  = rank(Γ,  β) , as required.

Case (6): Otherwise.

rank(Γ,  ¬α)  < rank(Γ,  α→β) , rank(Γ,  α→β)  > rank(Γ,  β) and r  > rank(Γ,  β) .

Again, by (R–), rank(∆' ,  β)  = rank(Γ,  β) and rank(∆' ,  α→β)  = rank(Γ,  α→β) .

So rank(∆' ,  β)  < rank(∆' ,  α→β) and rank(∆' ,  β)  < r.

Hence by (R+), rank(∆,  β)  = min(rank(∆' ,  α→β) ,  r) .

That is rank(∆,  β)  = min(rank(Γ,  α→β) ,  r) , as required.

D.2  Satisfaction of AGM Postulates

Since we have implemented the revision operation as the composition of a

contraction and expansion operation, both of which satisfy the AGM postulates, then

by the Levi identity, the resulting revision operation satisfies the AGM postulates for

revision.
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E The Correctness of
ATMS_Algorithm_1

Before proving that the algorithm correctly simulates the behaviour of the ATMS, it

is necessary to prove two lemmas which are used in proving the correctness of

ATMS_Algorithm_1. The first lemma establishes the relationship between

entrenchment and the notion of essential support, and the second lemma relates

essential support to ATMS provability.

E.1  Lemma

In any environment E, for all a∈E, and for all b such that E  |−ATMS  b:

rank(ΓE ,  a)  = rank(ΓE ,  a∨b)    iff   a  ∈ ES (b,E)

Proof:

This lemma will be proved by induction on the number k of expansion and

contraction operations performed by the algorithm. Let E represent the current

environment (EOld partially updated k times), and E' the same environment updated

k +1 times.

Initial case: Initially, E  = ∅, and hence the lemma is trivially satisfied.

Inductive Hypothesis: Assume that after the first k expansions and contractions, we

have rank(ΓE ,  a)  = rank(ΓE ,  a  ∨ b)   iff  a  ∈ ES (b,E) . Then let the (k +1) st

operation expand or contract E by x, giving the new environment E'.

Case (1): Expansion

Part (i): Suppose a  ∈ ES (b,E) .

Then from the inductive hypothesis we have rank(ΓE ,  a)   =  rank(ΓE ,  a∨b) .

Suppose x   ∈/   ∪ Label (b) .

Then FB (b,E)  = FB (b,E') , so ES (b,E)  = ES (b,E') , and a  ∈ ES (b,E') .
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Also, the ranks of a and a∨b are unchanged.

Hence rank(ΓE' ,  a)   =  rank(ΓE' ,  a  ∨ b) .

Otherwise, x   ∈  ∪ Label (b) .

Then we must consider two possibilities:

Firstly, if a   ∈  ES (b,E') then a   ∈/   (ES (b,E)  − ES (b,E') ) .

Also, the ranks of a and a∨b are unchanged.

Hence, from the inductive hypothesis, rank(ΓE' ,  a)   =  rank(ΓE' ,  a  ∨ b) .

Secondly, if a   ∈/   ES (b,E') , then a   ∈  (ES (b,E)  − ES (b,E') ) .

Then the rank of a∨b is changed to 20, giving rank(ΓE' ,  a)  < rank(ΓE' ,  a∨b) .

Part (ii): Now consider the case when a  ∈/  ES (b,E) .

Then from the inductive hypothesis we have rank(ΓE ,  a)   <  rank(ΓE ,  a  ∨ b) .

Suppose x   ∈/   ∪ Label (b) .

Then FB (b,E)  = FB (b,E') , and so ES (b,E)  = ES (b,E') , and a  ∈/  ES (b,E') .

As above, the ranks of a and a  ∨ b are unchanged.

Hence rank(ΓE' ,  a)   <  rank(ΓE' ,  a  ∨ b) .

Otherwise, x   ∈  ∪ Label (b) .

Then once more we must consider two possibilities:

Firstly, if a  ∈ ES (b,E') then a  ∈ (ES (b,E')  − ES (b,E) ) .

Then the rank of a  ∨ b becomes 10, so rank(ΓE' ,  a)   =  rank(ΓE' ,  a  ∨ b) .

Secondly, if a   ∈/   ES (b,E') , then a   ∈/   (ES (b,E)  − ES (b,E') ) .

Therefore the ranks of a and a  ∨ b are unchanged.

Hence, from the inductive hypothesis, rank(ΓE' ,  a)   <  rank(ΓE' ,  a  ∨ b) .

Case (2): Contraction

Part (i): Suppose a  ∈ ES (b,E) .

Then from the inductive hypothesis we have rank(ΓE ,  a)   =  rank(ΓE ,  a  ∨ b) .

Suppose x   ∈/   ∪ FB (b,  E) .

Then FB (b,E)  = FB (b,E') , and so ES (b,E)  = ES (b,E') , and a  ∈ ES (b,E') .

Also, the ranks of a and a  ∨ b are unchanged.

Hence rank(ΓE' ,  a)   =  rank(ΓE' ,  a  ∨ b) .
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Otherwise, x   ∈  ∪ FB (b,  E) .

Then we must consider two possibilities:

Firstly, if a  ∈ ES (b,E') then a   ∈/   (ES (b,E)  − ES (b,E') ) .

Then the ranks of a and a  ∨ b are unchanged.

Hence, from the inductive hypothesis, rank(ΓE' ,  a)   =  rank(ΓE' ,  a  ∨ b) .

Secondly, if a   ∈/   ES (b,E') , then a   ∈  (ES (b,E)  − ES (b,E') ) .

Then a  ∨ b is given rank 20, so that rank(ΓE' ,  a)   <  rank(ΓE' ,  a  ∨ b) .

Part (ii): Now consider the case when a  ∈/  ES (b,E) .

Then from the inductive hypothesis we have rank(ΓE ,  a)   <  rank(ΓE ,  a  ∨ b) .

Suppose x   ∈/   ∪ FB (b,  E) .

Then FB (b,E)  = FB (b,E') , and so ES (b,E)  = ES (b,E') , and a  ∈/  ES (b,E') .

As above, the ranks of a and a  ∨ b are unchanged.

Hence rank(ΓE' ,  a)   <  rank(ΓE' ,  a  ∨ b) .

Otherwise, x   ∈  ∪ FB (b,  E) .

Then we must consider two possibilities:

Firstly, if a   ∈  ES (b,E') then a   ∈  (ES (b,E')  − ES (b,E) )

Then the rank of a  ∨ b is set to 10, giving rank(ΓE' ,  a)   =  rank(ΓE' ,  a  ∨ b) .

Secondly, if a   ∈/   ES (b,E') , then a   ∈/   (ES (b,E)  − ES (b,E') ) .

Once again, the ranks of a and a  ∨ b are unchanged.

Hence, from the inductive hypothesis, rank(ΓE' ,  a)   <  rank(ΓE' ,  a  ∨ b) .

We have shown that rank(ΓE' ,  a)  = rank(ΓE' ,  a  ∨ b)   if and only if   a  ∈ ES (b,E') ,

for all cases, and hence by induction, Lemma E.1 holds for all consistent assumption

sets E.

E.2  Lemma

If E is a consistent environment and a  ≠ b then:

a  ∈ ES (b,E)    iff   (E  |−ATMS  b)  ∧ ((E  − {a})  |−/ATMS  b)

Proof: Let E' = E − {a}

Case (1):   a  ∈ ES (b,E)

Then FB (b,E)  ≠ ∅, and hence E  |−ATMS  b.
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Also, for all A  ∈ FB (b,E) , a  ∈ A.

Hence for all A  ∈ FB (b,E) , A  ∈/  FB (b,E') .

Therefore FB (b,E')  = ∅, and E' |−/ATMS  b.

Case (2):   a  ∈/  ES (b,E)

Suppose E  |−ATMS  b.

Then either b  ∈ E or FB (b,E)  ≠ ∅.

If b  ∈ E then E' |−ATMS  b, since a  ≠ b.

Otherwise, choose A  ∈ FB (b,E) such that a  ∈/  A, since a  ∈/  ∩ FB (b,E) .

Then A  ∈ FB (b,E') , so FB (b,E')  ≠ ∅ and hence E' |−ATMS  b.

We have shown that if a  ∈/  ES (b,E) , then either E' |−ATMS  b, or else E  |−/ATMS  b.

Combining with case (1) completes the result.

E.3  Correctness of ATMS_Algorithm_1

To prove the correctness of the algorithm, we must show that the behaviour of the

AGM system using the algorithm is equivalent to the behaviour of the ATMS. This

will occur if and only if for all consistent environments E, and all α ∈ Σ:

E  |−ATMS  α  iff  Γ1

__
 |−  α

Proof: by induction on the number m of expansion and contraction operations.

Initial case:

Before any operations are performed, E  = ∅.

In this case, E  |−ATMS  a   iff there exists  (B,a)  ∈ J such that E  |−ATMS  b,  ∀b  ∈ B.

Since E  = ∅, the chains of justifications must end in formulae of the form (∅,x) .

Case (1): Suppose E  |−ATMS  a.

We show by induction on the length n of the chain of justifications that Γ1

__
 |−  a.

Initial case: When n  = 1, we have (∅,a)  ∈ J.

Then a  ∈ Γ30 , and hence Γ1

__
 |−  a.

Inductive step: assume that if E  |−ATMS  a then Γ1

__
 |−  a, for all n  ≤ k.

Consider a proof of a with maximum length k +1 justifications.

Then ∃ (B,a)  ∈ J such that ∀ b  ∈ B, E  |−ATMS  b in at most k steps.
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Then by the inductive hypothesis, for each b, Γ1

__
 |−  b.

Therefore, Γ1

__
 |−  (

x∈B
∧  x) .

Also ((
x∈B
∧  x)  → a)   ∈  Γ30 , since (B,a)  ∈ J.

Therefore, by modus ponens, Γ1

__
 |−  a.

We conclude by induction that Γ1

__
 |−  a, for all n.

Case (2): Conversely, suppose Γ1

__
 |−  a.

Initially, Γ1

__
 = Γ30  = J  ∪ N.

Consider a sequence of resolution steps using these clauses which produces a.

No clause in J  ∪ N has more than one positive literal, so, in order to resolve to a

clause containing a positive literal, each pair of resolving clauses must contain a

positive literal.

That is, no clauses from N are used in the proof.

We now show by induction on the number n of resolution steps that E  |−ATMS  a.

Initial case: when n=0, then (∅,a)  ∈ J. Hence E  |−ATMS  a.

Inductive step: assume for all n  ≤ k that E  |−ATMS  a.

Consider a sequence of k  + 1 resolution steps ending with the clause a.

Then there exists in this sequence a clause containing the positive literal a.

This clause corresponds to some justification (B,a)  ∈ J.

Let this clause be ¬b 1  ∨  . . .  ∨ ¬bp ∨ a    (i.e. B  = {b 1 , . . . , bp}).

Then for 1 ≤ i  ≤ p,  Γ1

__
 |−  bi , and the resolution proof for each bi takes ≤ k steps.

So by the inductive hypothesis E  |−ATMS  bi , for 1 ≤ i  ≤ p.

But ({b 1 , . . . , bp},a)  ∈ J, so by the definition of the ATMS, E  |−ATMS  a.

By induction, we have shown that for all n, if Γ1

__
 |−  a then E  |−ATMS  a.

This completes the initial case of the correctness proof.

Inductive step:

Assume that after m expansions and contractions, E  |−ATMS  α  iff  Γ1

__
 |−  α, for all α ∈ Σ.

Consider the (m +1)st operation.

Case (1): Expansion by a

Let E' = E ∪ {a}.
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Let Γ' = expand(Γ,  a,  10) .

Part (i): Suppose E' |−ATMS  b.

Then one of the following 4 cases must hold:

(a) E  |−ATMS  b

(b) E  |−/ATMS  b and ∃ C  ∈ N such that C  ⊆ E'

(c) E  |−/ATMS  b and a  = b

(d) E  |−/ATMS  b and ∃ (A,b)  ∈ J such that ∀ x  ∈ A,  E' |−ATMS  x

Case (a): By the inductive hypothesis, Γ1

__
 |−  b.

Using AGM postulate (K +3) , K  ⊆ Ka
+ , so we have Γ'1

___
 |−  b.

Case (b): Γ1

__
 |−  E, from the inductive hypothesis, since ∀ x  ∈ E,  E  |−ATMS  x.

Also Γ'1
___

 |−  a, by AGM postulate (K +1) .

Since K  ⊆ Ka
+ (AGM postulate (K +3) ) and C  ⊆ E', we have Γ'1

___
 |−  C.

But since C  ∈ N,  Γ'1
___

 |−  (¬ 
x∈C
∧  x) .

Thus expand(Γ,  α,  10) is inconsistent, so we can say that b is in the resulting belief

state, for any b.

Case (c): By AGM postulate (K +1) , Γ'1
___

 |−  b.

Case (d): We show that Γ'1
___

 |−  b by induction on the number n of justifications used

in deriving E' |−ATMS  b.

Initial case: When n  = 0, by cases (a) – (c), we have Γ'1
___

 |−  b.

Inductive step: Assume that for all n  ≤ k we have Γ'1
___

 |−  b.

Consider a proof using k  + 1 justifications, including some (A,b)  ∈ J.

Then for all x  ∈ A,  E' |−ATMS  x.

Now if case (a), (b) or (c) applies, we have shown Γ'1
___

 |−  x.

Alternatively, if case (d) applies, the proof of x contains ≤ k justifications.

Hence by the inductive hypothesis Γ'1
___

 |−  x.

Also, since (A,b)  ∈ J, ((
x∈A
∧  x)  → b)  ∈ Γ'30

____
.

Therefore we have Γ'1
___

 |−  b.

Hence, by induction Γ'1
___

 |−  b, for all n.

E.3



146    Belief Revision: A Computational Approach

Part (ii): Now suppose that Γ'1
___

 |−  b.

That is, Γ1

__
 ∪ {a} |−  b.

We show by induction on the number n of resolution steps used that E' |−ATMS  b.

Initial case: When n  = 0, either Γ1

__
 |−  b or b  = a.

If Γ1

__
 |−  b, then by the inductive hypothesis of the main proof, E  |−ATMS  b.

Also since E  ⊆ E', we have E' |−ATMS  b.

Otherwise, if b  = a, then b  ∈ E' and thus E' |−ATMS  b.

Inductive step: Assume for all n  ≤ k that E' |−ATMS  b.

Now consider a resolution proof of b requiring k  + 1 steps.

This proof contains a clause ¬r 1  ∨  . . .  ∨ ¬rp  ∨ b, where ({r 1 , . . . , rp}, b)   ∈  J.

Also, Γ'1
___

 |−  ri ,  1 ≤ i  ≤ p, where each resolution proof requires ≤ k steps.

Hence by the inductive hypothesis E' |−ATMS  ri , 1 ≤ i  ≤ p.

Also ({r 1 , . . . , rp}, b)   ∈  J, so by the definition of the ATMS, E' |−ATMS  b.

Hence for all n, E' |−ATMS  b, and thus we have shown that E' |−ATMS  b   iff  Γ'1
___

 |−  b.

Case (2): Contraction by a

Let E' = E − {a}.

Let Γ' = contract(Γ, a) .

Suppose E' |−ATMS  b.

Then E  |−ATMS  b, since E' ⊆ E, and hence by the inductive hypothesis, Γ1

__
 |−  b.

Then by Lemma E.2, a  ∈/  ES (b,E) .

From (EE2) we have rank(Γ,  a)   ≤  rank(Γ,  a  ∨ b) .

Using Lemma E.1, this result strengthens to rank(Γ,  a)   <  rank(Γ,  a  ∨ b) .

Finally, from the definition of contraction, we have Γ'1
___

 |−  b.

Conversely, suppose that Γ'1
___

 |−  b.

Then by the definition of contraction, rank(Γ,  a)   <  rank(Γ,  a  ∨ b) .

By Lemma E.1, a  ∈/  ES (b,E) .

We also know that Γ1

__
 |−  b, since Γ1

__
 |−  Γ'1

___
.

So by the inductive hypothesis, E  |−ATMS  b.

Then by Lemma E.2 we conclude that E' |−ATMS  b.
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Thus after the (m +1)st operation, ∀α ∈ Σ, we have E  |−ATMS  α  if and only if  Γ1

__
 |−  α.

Conclusion:

Therefore, we have shown by induction that E  |−ATMS  α  iff   Γ1

__
 |−  α,   ∀α ∈ Σ, and the

algorithm correctly maintains the entrenchment relation so that the behaviour of the

AGM system is equivalent to that of the ATMS.
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F The Correctness of
ATMS_Algorithm_2

We show that this algorithm is correct, by demonstrating that the most conservative

entrenchment generated from the operations produced by the algorithm is identical to

the most conservative entrenchment relation generated by ATMS_Algorithm_1.

Several lemmas will be proved first, from which the most conservative entrenchment

can be computed.

The notation used for these lemmas will be the same for each. Let E represent the

ATMS environment, J the justifications, N the nogoods, and D the disjunctions

defined by: D  = {α∨β : α,  β ∈ E   and  α ≠ β}. In this section we use the notation

for E, J and N very loosely; they refer to both the set-theoretic definitions of the

ATMS environments, justifications and nogoods, as well as the logical form of these

sets. The correct interpretation will be obvious from the context.

F.1  Lemma

For any α ∈ E * , E  ∪ N  |−  α if and only if either α ∈ E or E  ∪ N  |−  ⊥.

Proof:

Suppose E  ∪ N  |−  α.

Suppose also that α ∈/  E and E  ∪ N  |−/  ⊥.

Then the positive literal α does not occur in E  ∪ N, so E  ∪ N  ∪ {¬α} is satisfiable,

contradicting the first assumption.

Therefore either α ∈ E or E  ∪ N  |−  ⊥.

Alternatively, suppose that either α ∈ E or E  ∪ N  |−  ⊥.

Trivially for either case E  ∪ N  |−  α.
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F.2  Lemma

For any α ∈ E * , if E  ∪ N  ∪ J  ∪ D  |−  α and E  ∪ N  |−/  ⊥, then E  ∪ J  |−  α.

Proof:

Firstly, note that since E  |−  D then E  ∪ N  ∪ J  ∪ D  |−  α if and only if

E  ∪ N  ∪ J  |−  α.

Then by the definition of ATMS, if E is consistent (E  ∪ N  |−/  ⊥) then E  ∪ N  ∪ J  |−  α
if and only if E  ∪ J  |−  α.

F.3  Lemma

For any α,  β ∈ Σ, E  ∪ N  ∪ J  |−  α∨β if and only if either E  ∪ N  ∪ J  |−  α or

E  ∪ N  ∪ J  |−  β.

Proof:

Suppose E  ∪ N  ∪ J  |−  α∨β.

Suppose also that E  ∪ N  ∪ J  |−/  α and E  ∪ N  ∪ J  |−/  β.

Let N '  = N  ∪ {¬α}.

Then E  ∪ N '  ∪ J  |−  β and E  ∪ N '  ∪ J  |−/  ⊥.

Thus E  ∪ N '  |−/  ⊥, so by Lemma F.2 we have E  ∪ J  |−  β.

Hence E  ∪ N  ∪ J  |−  β, contradicting the second supposition.

Therefore either E  ∪ N  ∪ J  |−  α or E  ∪ N  ∪ J  |−  β.

Alternatively, if either E  ∪ N  ∪ J  |−  α or E  ∪ N  ∪ J  |−  β, then trivially

E  ∪ N  ∪ J  |−  α∨β.

F.4  Lemma

For any α ∈ E * , E  ∪ N  |−  ¬α if and only if ∃C  ∈ N such that C  ⊆ E  ∪ {α}.

Proof:

Suppose E  ∪ N  |−  ¬α.

Then since E consists entirely of positive literals, and all of the clauses in N contain

entirely negative literals, there exists a clause C  = ¬l 1  ∨ ¬l 2  ∨  . . .  ∨ ¬ln   ∈  N such

that li  = α for some i.

For all j  ≠ i, ¬lj must resolve against a literal in E, that is l j  ∈ E.
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Thus C  ⊂ E  ∪ {α}.

Conversely, suppose for some C  ∈ N, C  ⊆ E  ∪ {α}.

Resolving the clause C against the corresponding literals in E, we are left with either

the empty clause, in which case E  ∪ N  |−  ⊥ and trivially E  ∪ N  |−  ¬α; otherwise ¬α

appears in the clause, and then ¬α is the only literal remaining after resolution, and

thus we have shown that E  ∪ N  |−  ¬α.

F.5  Lemma

For any α ∈ E * , E  ∪ N  ∪ J  ∪ D  |−  ¬α if and only if E  ∪ N  |−  ¬α.

Proof:

Suppose that E  ∪ N  ∪ J  ∪ D  |−  ¬α.

Once again, since E  |−  D, then D is irrelevant to the proof.

Choose any minimal subset of J '  ⊆ J such that E  ∪ N  ∪ J '  |−  ¬α.

Suppose J ' has at least one element, Φ0  → r 0 .

Let J 0  = J '  − {Φ0  → r 0}.

Then E  ∪ N  ∪ J 0  |−/  ¬α.

Also E  ∪ N  ∪ J 0  ∪ {Φ0  → r 0} |−  ¬α.

By the deduction theorem, E  ∪ N  ∪ J 0  |−  (Φ0  → r 0)  → ¬α.

Therefore E  ∪ N  ∪ J 0  |−  α → ¬(Φ0  → r 0) .

Thus E  ∪ N  ∪ J 0  ∪ {α} |−  ¬(Φ0 → r 0) .

That is, E  ∪ N  ∪ J 0  ∪ {α} |−  ¬r 0 .

Let E 1  = E  ∪ {α}.

Repeating the above steps, we have: E 1  ∪ N  ∪ J 1  ∪ {r 0} |−  ¬r 1 , for some J 1  ⊂ J 0 .

After a finite number of steps n (since J is finite), Jn  = ∅.

Then En +1  ∪ N  |−  ¬rn .

By Lemma F.4, there exists some C  ∈ N such that C  ⊆ En +1  ∪ {rn}.

Thus En +1  ∪ {rn} ⊆ E * .

But if (Φi  → ri)  ∈ J then by definition ri  ∈/  E * .

Hence we have a contradiction, so J '  = ∅.

Therefore E  ∪ N  |−  ¬α, as required.
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F.6  Lemma

After any number n of consistent expansion and contraction operations generated by

ATMS_Algorithm_2, the entrenchment base Γ is given by: Γ = {Γ10 ,  Γ20 ,  Γ30},

where Γ10  = E  ,  Γ20  = D  and  Γ30  = J  ∪ N.

Proof:

This proof will be completed by induction on n.

When n  = 0, E  = ∅, Γ30  = J  ∪ N, Γ20  = ∅ and Γ10  = ∅ as required.

Now assume that after m operations, Γ10  = E, Γ20  = D and Γ30  = J  ∪ N.

Suppose the (m +1) st operation is the expansion Γ'  = expand(Γ,  α,  10) .

Then let E '  = E  ∪ {α}.

Now α ∈/  E, and α cannot be justified (since α ∈ E *), so we have rank(Γ,  α)  = 0.

Now if rank(Γ,  ¬α)  > 0 then, by Lemma F.5, E ' is inconsistent, and Γ' will also be

inconsistent.

Otherwise Γ10'  = Γ10  ∪{α}.

Then Γ10'
___

is tested for any redundancy.

No formula with rank 10 is redundant, since assumptions cannot be justified.

Also, formulae with ranks greater than 10 are unaffected.

The following step performs the expansions by α∨φ, where φ ∈ E.

By Lemma F.4,  E  ∪ J  ∪ N  |−  α∨φ iff  E  ∪ J  ∪ N  |−  α or  E  ∪ J  ∪ N  |−  φ.

By Lemma F.2, this gives  E  ∪ J  |−  α or  E  ∪ J  |−  φ.

But assumptions cannot be justified, so we have φ ∈ E, since we know α ∈/  E.

Also  α∨φ ∈/  D, so rank(Γ,  α∨φ)  = 10.

So the expansion operations conclude with:

Γ20'  = Γ20  ∪ {α∨φ : φ ∈ E}

= {φ∨ψ : φ,  ψ ∈ E ' and φ ≠ ψ}

= D '

Also, Γ30'  = Γ30 .

Therefore Γ' represents the correct entrenchment relation after m +1 operations.

Suppose the (m +1) st operation is the contraction Γ'  = contract(Γ,  α) .

Then let E '  = E  − {α}.

Since rank(Γ,  α)  = 10, and by the definition of D, rank(Γ,  α∨β)  = 20 for all

β ∈ Γ10 , we have Γ10'  = Γ10  − {α} = E ' .
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Also Γ20'  = Γ20  − {α∨φ : φ ∈ E '}

= {φ∨ψ : φ,  ψ ∈ E ' and φ ≠ ψ}

= D '

Also, Γ30'  = Γ30 .

Therefore Γ' represents the correct entrenchment relation after m +1 operations.

Hence the induction is complete, and the result holds for all n.

F.7  Correctness of the Algorithm

Now since we have shown the correctness of ATMS_Algorithm_1, it is easiest to

prove the correctness of the second algorithm by showing it is equivalent to the first.

Since for all α ∈ E, we have rank(Γ,  α)  = 10, then the algorithms are equivalent if

and only if the following condition is satisfied (compare with Lemma E.1):

For any environment E, for all α ∈ E, and for all β such that E  |−ATMS  β:

rank(ΓE ,  α∨β)  = 

�� �
  x  ≥ 20,      

10,
  otherwise

if  α ∈ ES (β,  E)

Proof:

Suppose α ∈ ES (β,  E) .

Then Γ10

___
 − {α} |−/  β.

Also Γ10

___
 |−  β.

Therefore Γ10

___
 − {α} ∪ {α} |−  β.

By the deduction theorem, Γ10

___
 − {α} |−  α → β.

Suppose Γ10

___
 − {α} |−  α ∨ β.

Resolving with the previous line gives Γ10

___
 − {α} |−  β, a contradiction.

Hence Γ10

___
 − {α} |−/  α ∨ β.

Thus rank(Γ,  α∨β)  = 10.

Conversely, suppose that α ∈/  ES (β,  E) .

Then Γ10

___
 − {α} |−  β.

Also there exists some Φ ∈ FB (β,  E) such that α ∈/  Φ.

Then Φ ⊆ E, so α∨φ ∈ D for all φ ∈ Φ.

Therefore D  ∪ {¬α} |−  Φ.

F.7
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Since Φ ∪ J  |−  β, we have D  ∪ {¬α} ∪ J  |−  β.

By the deduction theorem, D  ∪ J  |−  α∨β.

Thus rank(Γ,  α∨β)  ≥ 20.

Thus we have shown that the generated entrenchment satisfies Lemma E.1, and hence

by Correctness Proof E.3, we conclude that ATMS_Algorithm_2 is also correct

under the same conditions.
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