
1

Neural Networks for Analysing

Music and Environmental Audio

Siddharth Sigtia

School of Electronic Engineering and Computer Science

Queen Mary University of London

A thesis submitted for the degree of

Doctor of Philosophy

2016

“This, I submit, is the freedom of real education, of learning how to be

well-adjusted: You get to consciously decide what has meaning and

what doesn’t.” - David Foster Wallace

Acknowledgements

I would like to begin by saying that I am grateful for the opportunity to

write this thesis. The last 4 years have been undeniably tough, but this

PhD provided the right set of ingredients for my academic, intellectual

and personal development.

First and foremost, I would like to thank my supervisor Simon Dixon.

Simon agreed to supervise me when I was still confused about my re-

search topic. Over the following 4 years, I couldn’t have asked for a more

academically unconstrained environment. Simon let me read and explore

whatever I was interested in, at the same time guiding me towards a prac-

tical topic of general interest. As an international student, I have had

to face many financial difficulties over the last 4 years. In addition to

being supportive and sympathetic, Simon recommended me for a series

of academic research positions. Working as a research assistant allowed

me to support myself and also provided an opportunity to pursue new

research directions, all of which have found their way into this thesis in

some form. His advice and comments about my work and writing have

been invaluable. If it weren’t for Simon’s help and supervision, I would

not have been able to finish this thesis. I feel fortunate and grateful to

have been one of his PhD students for 4 years.

Next, I would like to thank my collaborators who assisted me with ideas

and research over the last 4 years. I’m grateful for the opportunity to

write a paper on evolutionary computation with Chrisantha Fernando and

Alexander Churchill. While working on the paper, I became interested in

the biological and philosophical foundations of artificial intelligence, which

has been a very interesting topic to learn about. I also had the opportunity

to interact with and get to know both Alex and Chrisantha personally,

which I’ve enjoyed over the last 4 years. Special thanks to Emmanouil

Benetos. His expert opinion, guidance and help with many aspects of

automatic music transcription research has been instrumental in some

of the ideas presented in this thesis. Nicolas Boulanger-Lewandowski,

who I’ve met only once, has been a consistent collaborator over the last

2 years. His work on conditional RNN graphs, followed by the many

discussions we had over email helped me refine and improve my ideas.

Mark Plumbley gave me the opportunity to work as an RA on a project

on machine listening for environmental sounds. The project allowed me

to explore some of my work in a different domain and helped broaden

my domain of interest and inquiry, and understanding of audio signals.

Sacha Krstulovic, for his expertise in speech recognition and his exacting

demand for empirical rigour. John Bridle, for being an inspiring mentor

during my internship at Apple Inc. I would also like to thank Adam Stark

and Peter Foster for being great collaborators and sharing their expertise

with me over the last 2 years. And Björn Schuller and Simon Godsill

for examining this thesis, for a very interesting viva and for their helpful

comments and suggestions for the final version of this thesis.

In addition to the people I directly worked with, I feel grateful to have met

many inspiring people who have influenced me in myriad ways. I would

like to thank Laurel, Katerina, Kathleen, Victor, Christian, Sebastian,

Janis, Tian, Siying, Astrid and Bogdan for being great lab-mates and

good friends. Tomack, for introducing me to many features of life in

5

London that I’ve grown to love and for being very welcoming when we

first met. Dan Stowell, for very helpful discussions on machine learning

and music. Matthias, for his useful advice and guidance near the end of

this PhD. Mikhail, for being the best of friends over the last 4 years. I am

grateful for his support and for his company through some difficult times.

Beth, Matty and Lily for keeping me engaged with ideas far beyond my

narrow field of academic research.

Finally, I would like to thank my parents Sanjay and Sarita and my sister,

Shraddha. They were supportive even though they had no idea what this

PhD was about. They were understanding and encouraging when I felt

like the problems before me were intractable. I feel fortunate to have been

able to live in London and relate my experiences to them and hopefully

be a small window to the wider world. They have been ideal role models

and I am continuously inspired by them.

6

Abstract

In this thesis, we consider the analysis of music and environmental au-

dio recordings with neural networks. Recently, neural networks have been

shown to be an effective family of models for speech recognition, computer

vision, natural language processing and a number of other statistical mod-

elling problems. The composite layer-wise structure of neural networks

allows for flexible model design, where prior knowledge about the domain

of application can be used to inform the design and architecture of the

neural network models. Additionally, it has been shown that when trained

on sufficient quantities of data, neural networks can be directly applied to

low-level features to learn mappings to high level concepts like phonemes

in speech and object classes in computer vision. In this thesis we investi-

gate whether neural network models can be usefully applied to processing

music and environmental audio.

With regards to music signal analysis, we investigate 2 different problems.

The first problem, automatic music transcription, aims to identify the

score or the sequence of musical notes that comprise an audio recording.

We also consider the problem of automatic chord transcription, where the

aim is to identify the sequence of chords in a given audio recording. For

both problems, we design neural network acoustic models which are ap-

plied to low-level time-frequency features in order to detect the presence of

notes or chords. Our results demonstrate that the neural network acoustic

models perform similarly to state-of-the-art acoustic models, without the

need for any feature engineering. The networks are able to learn complex

transformations from time-frequency features to the desired outputs, given

sufficient amounts of training data. Additionally, we use recurrent neural

networks to model the temporal structure of sequences of notes or chords,

similar to language modelling in speech. Our results demonstrate that

the combination of the acoustic and language model predictions yields

improved performance over the acoustic models alone. We also observe

that convolutional neural networks yield better performance compared to

other neural network architectures for acoustic modelling.

For the analysis of environmental audio recordings, we consider the prob-

lem of acoustic event detection. Acoustic event detection has a similar

structure to automatic music and chord transcription, where the system

is required to output the correct sequence of semantic labels along with

onset and offset times. We compare the performance of neural network

architectures against Gaussian mixture models and support vector ma-

chines. In order to account for the fact that such systems are typically

deployed on embedded devices, we compare performance as a function of

the computational cost of each model. We evaluate the models on 2 large

datasets of real-world recordings of baby cries and smoke alarms. Our re-

sults demonstrate that the neural networks clearly outperform the other

models and they are able to do so without incurring a heavy computation

cost.

8

Contents

1 Introduction 1

1.1 Aims and Motivations . 1

1.2 Thesis Outline . 4

1.3 Associated Publications . 5

1.4 Contributions . 7

2 Literature Review 10

2.1 Music Information Retrieval . 11

2.1.1 Pitch, Interval and Scales . 11

2.1.2 Chords . 13

2.1.3 MIDI Representation . 14

2.1.4 Automatic Music Transcription 15

2.1.4.1 Signal Processing Methods 16

2.1.4.2 Probabilistic Spectral Peak Modelling 18

2.1.4.3 Full Spectrum Modelling 19

2.1.4.4 Spectrogram Decomposition Methods 20

2.1.4.5 Probabilistic Latent Component Analysis 22

2.1.4.6 Sparse Coding . 22

2.1.4.7 Classification Approaches 23

2.1.5 Automatic Chord Transcription 24

i

2.1.5.1 Early Work . 25

2.1.5.2 Background Subtraction, Harmonics and Smoothing 26

2.1.5.3 Tuning . 27

2.1.5.4 Hidden Markov Models 27

2.1.5.5 Dynamic Bayesian Networks 30

2.1.5.6 Classification Based Approaches 31

2.1.6 Deep Learning in MIR . 32

2.2 Environmental Sound Recognition . 34

2.2.1 Acoustic Event Detection . 36

3 Neural Networks 39

3.1 Background . 39

3.2 Neural Network Architectures . 42

3.2.1 Feedforward Neural Networks 43

3.2.2 Convolutional Networks . 45

3.2.3 Recurrent Networks . 47

3.3 Optimisation . 49

3.3.1 Objective Function . 49

3.3.2 Output Activation Function 51

3.3.3 Numerical Optimisation . 51

3.3.3.1 Stochastic Gradient Descent 53

3.3.3.2 Hessian Free Optimisation 54

3.3.3.3 Optimising RNNs . 55

3.3.4 Long Short Term Memory . 56

3.3.5 Regularisation . 58

3.4 Density Estimation . 61

3.4.1 Restricted Boltzmann Machines 62

3.4.2 Neural Autoregressive Distribution Estimator 63

ii

3.4.3 Distributions Over Sequences 64

3.5 Other Models . 66

3.5.1 Gaussian Mixture Models . 66

3.5.2 Support Vector Machines . 67

3.6 Implementation . 69

3.7 Conclusion . 70

4 Automatic Music Transcription 71

4.1 Polyphonic Piano Music Transcription 72

4.1.1 Preprocessing . 73

4.1.2 Acoustic Models . 74

4.1.2.1 DNNs . 75

4.1.2.2 RNNs . 75

4.1.2.3 ConvNets . 76

4.1.3 Music Language Models . 76

4.1.3.1 Generative RNN . 78

4.1.3.2 RNN-NADE . 79

4.1.4 Proposed Model . 80

4.1.4.1 Hybrid RNN . 80

4.1.4.2 Inference . 82

4.1.5 Evaluation . 88

4.1.5.1 Dataset . 88

4.1.5.2 Metrics . 90

4.1.5.3 Network Training . 91

4.1.5.4 Comparative Approaches 94

4.1.5.5 Results . 95

4.1.6 Discussion . 101

4.2 Multi-Instrument Polyphonic Transcription 104

iii

4.2.1 Acoustic Model . 104

4.2.2 Music Language Models . 107

4.2.3 Proposed Model . 107

4.2.4 Evaluation . 109

4.2.4.1 Dataset . 109

4.2.4.2 Metrics . 110

4.2.4.3 Results . 110

4.2.5 Discussion . 112

4.3 Conclusions . 114

5 Automatic Chord Transcription 116

5.1 Proposed Model . 116

5.1.1 Acoustic Model . 117

5.1.1.1 Input Representation 117

5.1.1.2 Neural Network Architectures 118

5.1.1.3 Feature Learning . 119

5.1.2 Chord Language Model . 119

5.1.3 Hybrid RNN . 120

5.1.4 Inference . 120

5.2 Evaluation . 122

5.2.1 Dataset . 122

5.2.2 Metrics . 123

5.2.3 Preliminary Experiments . 124

5.2.3.1 Acoustic Model Training 124

5.2.3.2 Language Model Training 126

5.2.3.3 HMM Comparison 127

5.2.3.4 Results . 128

5.2.4 Feature Learning . 129

iv

5.2.4.1 System Outline . 130

5.2.4.2 Results . 132

5.3 Discussion . 135

6 Acoustic Event Detection 137

6.1 Context . 138

6.2 Computational Cost . 140

6.2.1 Motivation . 140

6.2.2 Cost Estimates . 143

6.2.2.1 Feature extraction 143

6.2.2.2 Gaussian Mixture Models 144

6.2.2.3 Support Vector Machines 145

6.2.2.4 Neural Networks . 145

6.3 Evaluation . 147

6.3.1 Evaluation Metrics . 147

6.3.2 Datasets . 148

6.3.3 Feature Extraction . 151

6.3.4 Training Methodology . 152

6.3.4.1 Gaussian Mixture Models 152

6.3.4.2 Support Vector Machines 153

6.3.4.3 Neural Networks . 153

6.3.5 Results . 154

6.3.5.1 Baby Cry Dataset 155

6.3.5.2 Smoke Alarm Dataset 158

6.4 Discussion . 159

7 Conclusions 162

7.1 Summary . 162

v

7.1.1 Automatic Music Transcription 162

7.1.2 Automatic Chord Transcription 164

7.1.3 Acoustic Event Detection . 165

7.2 Future Work . 166

7.2.1 Acoustic Modelling . 166

7.2.2 Music Language Models . 169

Bibliography 173

vi

List of Figures

2.1 A musical piece in piano-roll notation. X-axis corresponds to time

(ms), Y-axis represents pitch index 15

2.2 An overview of Automatic Music Transcription. The input recording

is transcribed to a symbolic score-like representation. 16

2.3 An overview of the iterative spectral subtraction method for AMT

(Klapuri, 2003). 17

2.4 Graphical representation of the outputs produced by an ACT system

(McVicar et al., 2014) for a musical excerpt. The 3 columns in the

output represent the onset time, offset time and chord label, respectively. 25

2.5 Graphical Model of an HMM. The observations xt represent acoustic

features, while the hidden variables yt represent chord labels. The ar-

rows denote the conditional independence assumptions from Equation

2.5 and Equation 2.6. 29

2.6 Graphical model of a dynamic Bayesian network for ACT (Mauch and

Dixon, 2010). Compared to the HMM graph from Figure 2.5, the

dynamic Bayesian network contains additional variables that represent

bass (Bt), key (Kt) and metric position (Mt) in addition to the chord

label (Ct). Additionally, the observation vector xt is replaced by the

bass (Xbs
t) and treble chroma (Xtr

t). 31

vii

3.1 Graphical structure of a feedforward DNN. Each layer has parameters

θl = {Wl, bl}. The above network contains L intermediate hidden

layers and a final output layer. The dashed line represents one or more

intermediate layers. 43

3.2 Neural network activation functions. 44

3.3 Graphical structure of a ConvNet with 2 alternating convolutional and

pooling layers, followed by a series of fully connected layers. The con-

volutional filters produce 2-D feature maps. The feature maps are

stacked together to form h0, which is represented by the additional

depth dimension. The filters in the next layer jointly act on receptive

fields from all feature maps, which is represented by the extra depth

dimension of filter w1. 46

3.4 Graphical structure of an RNN for inputs x = {x0, . . . , xT} and out-

puts y = {y0, . . . , yT} and one hidden layer. Similar to DNNs, recur-

rent hidden layers can be stacked to produce deep RNNs. Wf ,Wr,Wo

represent the input, recurrent and output weight matrices, respectively. 48

3.5 A graphical representation of the LSTM. From the figure we note that

all 3 gates (input, forget, cell) receive xt, ht−1 as inputs. The cell values

at t − 1 are multiplied by a forget gate and the result is added to the

gated inputs as opposed to the standard RNN where the updates are

multiplicative. Finally the cell state values are multiplied with the

output gate to give the LSTM outputs ht. 58

3.6 Training and validation cost as a function of the number of training

epochs. 61

viii

3.7 Graphical structure of the RBM. There are no connections between

variables in the same layer, while every variable xi is connected all

variables hi and vice versa. Note that the connection between variables

are undirected. 62

3.8 Graphical structure of the generative RNN for an input sequence y =

{y0, . . . , yT}. At any time t, the RNN yields a distribution over the

outputs at t+1. Wf ,Wr,Wo represent the input, recurrent and output

weight matrices, respectively. 65

4.1 Constant Q Transform plots for examples in the MAPS dataset. . . . 73

4.2 Graphical structure of the RNN-NADE for an input sequence y =

{y0, . . . , yT}. Compared to the generative RNN (Figure 3.8), the pa-

rameters of a NADE at time t are conditioned on the hidden state ht

and the conditional distribution P (yt+1|yt0) is obtained from the NADE

for all t. 78

4.3 Graphical Model of the Hybrid Architecture. The variables yt repre-

sent the output pitches, while the variables xt represent the acoustic

observations. Compared to the HMM graph (Figure 2.5) there are ad-

ditional connections between each state yt and all previous states yτ ,

for τ < t. 81

4.4 Effect of beam width (w) on F-measure. k = 2, K = 4, fh = yt 99

4.5 (a) Pitch-activation (posteriogram) matrix for the first 30 seconds

of track MAPS MUS-chpn op27 2 AkPnStgb produced by a ConvNet

acoustic model. (b) Binary piano-roll transcription obtained from pos-

teriogram in a) after post processing with RNN MLM and beam search.

(c) Corresponding ground truth piano roll representation. 100

4.6 Proposed system diagram. 108

ix

4.7 (a) The spectrogram xω,t for recording “Ach Lieben Christen” from the

Bach10 dataset. (b) The pitch activation P (y, t) using the transcription-

prediction system using the 3rd configuration, with the NADE-HF. . 113

4.8 Transcription example for recording “Ach Lieben Christen” from the

Bach10 dataset. (a) The post-processed output of the transcription-

predicton system using the 3rd configuration, with the NADE-HF. (b)

The pitch ground truth of the recording. 114

5.1 CQT representation of a C-major chord played on a piano. 118

5.2 Acoustic Model Pipeline . 124

5.3 Feature Learning Pipeline . 130

5.4 Effect of varying hashed beam search parameters w, fh, k on %OR. . . 134

6.1 DET curves comparing frame classification performance of the best

performing model of each type. Curves closer to the origin imply better

performance. 155

6.2 Acoustic frame classification performance (EER percentage) as a func-

tion of the number of operations per frame, for each of the tested

models on the Baby Cry dataset. The number of operations and con-

sequently the computational cost increases from left to right. 156

6.3 Acoustic frame classification performance (EER percentage) as a func-

tion of the number of operations per frame, for each of the tested

models on the Smoke Alarm dataset. The number of operations and

consequently the computational cost increases from left to right. . . . 157

x

List of Tables

4.1 Distribution of data over the train, valid and test splits for the MAPS

dataset for Configuration 1. 90

4.2 Model configurations for the best performing architectures. 93

4.3 F-measures for multiple pitch detection on the MAPS dataset, using

evaluation configuration 1. 97

4.4 Precision, Recall and Accuracy for multiple pitch detection on the

MAPS dataset using the hybrid architecture (w = 10, K = 4, k =

2, fh(y
t
0) = yt), using evaluation configuration 1. 97

4.5 F-measures for acoustic models trained on synthesised pianos and tested

on real recordings (evaluation configuration 2). 98

4.6 Validation results for MLMs . 110

4.7 Note-based transcription results using various system configurations. . 111

5.1 Distribution of data over the train, valid and test splits. 123

5.2 Model configurations for the best performing architectures. 126

5.3 4-fold cross-validation results on the MIREX dataset for the major/minor

prediction task. 128

5.4 Model configurations for the best performing architectures. 131

5.5 4-fold cross-validation results on the MIREX dataset for the major/minor

prediction task. 132

xi

6.1 Computational cost per frame of each compared model. D is the di-

mensionality of the feature vector, M is the number of Gaussian mix-

tures for a GMM. λ is the number of support vectors for a SVM, d is

the degree of a polynomial kernel. For the neural networks: H is the

number of hidden units in each layer and L is the number of layers. . 146

6.2 Distribution of train and test data for the Baby Cry, Smoke Alarms

and World datasets. 150

6.3 Performance of the best classifiers on the Baby Cry dataset along with

the optimal parameters and number of operations. 155

6.4 Performance of the best classifiers on the Smoke Alarms dataset along

with the optimal parameters and number of operations. 155

xii

List of Acronyms

ACT Automatic Chord Transcription

AED Acoustic Event Detection

AESR Automatic Environmental Sound Recognition

AMT Automatic Music Transcription

ASC Acoustic Scene Classification

ASR Automatic Speech Recognition

BPTT Backpropagation Through Time

CASA Computational Auditory Scene Analysis

CG Conjugate Gradients

ConvNet Convolutional Neural Network

CQT Constant-Q Transform

DET Detection Error Tradeoff

DFT Discrete Fourier Transform

DNN Deep Neural Network

xiii

EER Equal Error Rate

EM Expectation-Maximisation

ERB Equivalent Rectangular Bandwidth

FN False Negative

FP False Positive

GMM Gaussian Mixture Model

HF Hessian Free

HMM Hidden Markov Model

IoT Internet of Things

LSTM Long Short-Term Memory

LUT Lookup Table

MFCC Mel-Frequency Cepstral Coefficient

MIDI Musical Instrument Digital Interface

MIR Music Information Retrieval

MIREX Music Information Retrieval Exchange

MLE Maximum Likelihood Estimation

MLM Music Language Model

MLP Multi-Layer Perceptron

NADE Neural Autoregressive Distribution Estimator

xiv

NMD Non-negative Matrix Deconvolution

NMF Non-negative Matrix Factorisation

PCP Pitch Class Profile

PLCA Probabilistic Latent Component Analysis

QoS Quality of Service

RBF Radial Basis Function

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

STFT Short-Time Fourier Transform

SVM Support Vector Machine

TP True Positive

UBM Universal Background Model

xv

Chapter 1

Introduction

This thesis deals with the problem of using machine learning to describe the contents

of audio signals. The dramatic proliferation of digital media has engendered the

development of computational systems to automatically describe the contents of and

retrieve information from large databases of digitally stored data like images, speech,

music and videos. Here we consider the analysis of two types of audio signals: music

audio and environmental audio recordings.

1.1 Aims and Motivations

In this thesis, we investigate the problem of analysing (or describing) the contents of

music and environmental audio recordings with neural networks. We follow the com-

putational perception approach, where the relationships between the inputs (audio

recordings) and outputs (high-level semantic labels like chords, notes and acoustic

events) are defined by mathematical (or statistical or computational) models. The

model design is typically informed by prior knowledge about the application domain

and the parameters of the models are estimated given many examples of inputs and

outputs. Although simple in conception, the problem of imitating human perception

with computational models poses several challenges. The relationship between the

1

inputs and the outputs do not necessarily need to be objective. For instance, iden-

tifying a well defined object category like an apple in an image is an easier problem

than identifying the mood of an audio recording. This is due to the fact that the

perceived mood depends on many subjective qualities related to the listener and is

not fully encoded in the audio recording. Similarly, identifying expressive proper-

ties of music audio like tension, excitement and relief is a difficult task since these

quantities are dependent on the listener and various cultural factors and are therefore

subjective. Despite the challenges posed by the subjective nature of perception, in

the last decade computational models have achieved considerable success in several

domains such as computer vision, speech recognition and natural language process-

ing. Machine learning based speech recognition and computer vision systems are

now available as commercial applications and are used by millions of people every

day. These recent advances and developments provide strong motivation for investi-

gating more complex perception problems like analysing the contents of music and

environmental audio recordings.

One of the motivations for building computational models for automatically analysing

the content of digital data is the availability of large corpora of digital images, music,

speech and other types of data. With regards to music, services like Spotify1, Apple

Music2 and Youtube3 provide large databases of music audio. Organisation and stor-

age of large databases requires a large amount of human labelling and annotation to

create accurate metadata. Specific recordings can then be retrieved or recommended

based on the metadata. However, annotating millions of songs by hand can be a very

expensive and time-consuming process. The collection, storage and retrieval from

datasets could be greatly simplified if the process of metadata generation, which in-

volves high-level descriptions of recordings like artist, album and genre, were to be

1https://www.spotify.com/
2www.apple.com/uk/music/
3https://www.youtube.com/

2

automated. These arguments also apply to large datasets of environmental sounds

which are now being collected for applications in remote monitoring for health, secu-

rity and surveillance.

Over the last 2 decades, research on both music audio and environmental audio has

received increasing attention. Although a lot of progress has been made in both fields,

a large number of studies follow a similar methodology: extract audio features from

the recording followed by statistical modelling of the relationship between the audio

features and the high-level descriptors. A lot of time and effort has been dedicated to

discovering the right combination of acoustic features and classifiers. Given the space

of all acoustic features and all classifiers, finding the appropriate combination for a

specific problem by brute force is intractable. The search space is typically constrained

by employing domain knowledge (from either music or environmental sound research)

to design or hand-craft useful acoustic features. In this thesis, we investigate neural

networks for statistical modelling. There are several motivations for applying neural

networks for processing audio signals. Firstly, it has been demonstrated in many other

fields that given sufficient data, neural networks can be directly applied to raw data

or low-level features extracted from the data, to simultaneously learn the features and

the classifier for a given task. Neural networks are compositions of simple non-linear

parametric transformations. Given many examples, the parameters of the network

can be estimated, consequently jointly learning the features and the classifier.

A second motivation for using neural networks is for sequential modelling. Data

like audio, video and natural language (text) are inherently sequential. Neural net-

works offer several flexible architectures for modelling sequences. Typically, sequential

modelling has been performed using state-space models like hidden Markov models.

However, state space models are limited since the output spaces for some problems

can be very large, for instance automatic music transcription. Estimating the param-

eters for a very large number of states becomes intractable with a limited number of

3

examples for training. Recurrent neural networks are flexible models for sequential

data with a continuous state space, similar to linear dynamical systems. Therefore

in addition to classification, we investigate the use of neural networks for modelling

sequences of musical notes and chords.

Finally, in addition to adapting ideas from machine learning towards a specific

domain, the inverse problem is of equal interest, where observations and insights

from a given domain of application can benefit machine learning. For instance, con-

volutional neural networks were inspired by studies on the feline visual cortex. This

thesis aims to discover novel ways of using neural network architectures for processing

music and environmental audio. Both domains of application offer unique challenges

for processing sequential data with neural network models. We hope that the meth-

ods developed and presented in this thesis can be of general interest to the machine

learning community and find application in diverse domains.

Given these motivations, we consider 3 different problems in audio signal analy-

sis. For music audio, we investigate the problem of automatic music transcription,

which aims to identify the score or sequence of notes given a music recording. We

also consider the related problem of chord recognition, which aims to identify the

sequence of chords in a music recording. For both problems, we use neural networks

for processing the audio signal and for modelling the structure in sequences of notes

and chords. Finally, we investigate the problem of audio event detection for environ-

mental sounds. In addition to comparing the performance of various neural network

models for event detection, we study performance as a function of computational cost

in order to determine the viability of commercial deployment of the proposed system.

1.2 Thesis Outline

The rest of the thesis is organised as follows:

4

• Chapter 2 reviews the relevant literature and provides necessary background

for the three problems considered in this work: automatic music transcrip-

tion, automatic chord transcription and audio event detection for environmental

sounds.

• Chapter 3 presents a brief history of neural networks and lists some of the im-

portant advances in the last 2 decades. This is followed by a formal description

of all the neural network architectures used in this thesis along with a discussion

about numerical optimisation.

• Chapter 4 investigates automatic music transcription with neural networks.

The chapter is divided into 2 parts. The first part of the chapter presents a

system for polyphonic piano music transcription. The second half of the chapter

investigates the applicability of music language models on a multi-instrument

polyphonic music transcription task.

• Chapter 5 investigates automatic chord transcription with neural networks.

• Chapter 6 investigates audio event detection for environmental sounds with

neural networks.

• Chapter 7 concludes the thesis by summarising the presented work and con-

sidering potential avenues for future research.

1.3 Associated Publications

Most of the work presented in this thesis has been previously published in journal

articles or peer-reviewed conference proceedings. In this section we enumerate the

publications that are related to the results and analysis presented in this thesis.

5

Journal Articles

[1] Sigtia, S., Stark, S., Krstulovic, S. and Plumbley, M. (2016) “Automatic Envi-

ronmental Sound Recognition: Performance versus Computational Cost.” IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 24 (11), 2096–2107.

[2] Sigtia, S., Benetos, E. and Dixon, S. (2016) “An End-to-End Neural Network

for Polyphonic Piano Music Transcription.” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 24 (5), 927–939.

Peer-Reviewed Conference Papers

[3] Sigtia, S., Boulanger-Lewandowski, N. and Dixon, S. “Audio Chord Recognition

with a Hybrid Recurrent Neural Network.” Proceedings of the 16th International

Society for Music Information Retrieval Conference (ISMIR), Malaga, Spain,

October 2015.

[4] Sigtia, S., Benetos, E., Boulanger-Lewandowski, N., Weyde, T., Garcez, A. and

Dixon, S. “A Hybrid Recurrent Neural Network for Music Transcription.” Pro-

ceedings of the International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), Brisbane, Australia, April 2015.

[5] Sigtia, S., Benetos, E., Cherla, S., Weyde, T., Garcez, A. and Dixon, S. “An

RNN-based Music Language Model for Improving Automatic Music Transcrip-

tion.” Proceedings of the 15th International Society for Music Information Re-

trieval (ISMIR), Taipei, Taiwan, October 2014.

[6] Sigtia, S. and Dixon, S. “Improved Music Feature Learning With Deep Neural

Networks.” Proceedings of the International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Florence, Italy, May 2014.

Other Publications

6

[7] Foster, P., Sigtia, S., Krstulovic, S., Barker, J. and Plumbley, M. “Chime-home:

A Dataset for Sound Source Recognition in a Domestic Environment.” IEEE

Workshop on Applications of Signal Processing to Audio and Acoustics (WAS-

PAA), New York, USA, October 2015.4

All experiments and analysis for the publications listed above and this thesis

were performed by the author. The co-authors provided advice while performing

experiments and helpful comments and reviews for drafts of the above publications

and this thesis. For the work presented in Sigtia et al. (2016), EB provided the output

probabilities from the acoustic models by Benetos and Dixon (2012) and Vincent

et al. (2010). Similarly for the results in Sigtia et al. (2014), EB provided the output

probabilities from the acoustic model by Benetos et al. (2013). Note that Chapter 4

is based on [2,4,5], Chapter 5 is based on [3,6] and Chapter 6 is based on [1]. SK and

the author of this thesis contributed equally to the writing of [1].

1.4 Contributions

In this section we enumerate the novel contributions from each chapter.

Chapter 4

• A hybrid RNN architecture for incorporating the predictions of an RNN music

language model with the predictions of an arbitrary frame-level classifier.

• A beam search based inference procedure for the outputs of the hybrid RNN

model.

• An application of ConvNets for acoustic modelling for automatic music tran-

scription.

4The author assisted with the collection and annotation of the dataset presented in the publica-
tion.

7

• The hashed beam search algorithm, a modification to beam search to encourage

diversity in explored solutions.

• A comparison of neural network acoustic models to state-of-the-art unsupervised

models for piano music transcription.

• A novel method for combining the predictions of a PLCA acoustic model and an

RNN music language model for multi-instrument polyphonic music transcrip-

tion.

8

Chapter 5

• A hybrid RNN model for incorporating the predictions of an RNN chord lan-

guage model with an arbitrary frame-level classifier.

• A comparison of different neural network architectures for automatic chord

transcription.

• An evaluation of the proposed model on an abridged version of the MIREX

automatic chord recognition dataset.

• An evaluation of the hashed beam search algorithm for automatic chord tran-

scription.

Chapter 6

• Neural network acoustic models for acoustic event detection for environmental

sounds.

• Derivations of computational cost estimates for neural network acoustic models,

support vector machines and Gaussian mixture models.

• An evaluation of the proposed models on 2 large datasets of environmental

sounds for industrial applications.

• A comparison of model performance as a function of computational cost.

9

Chapter 2

Literature Review

This chapter provides necessary background and literature review for the ideas pre-

sented in the rest of the thesis. This thesis explores machine learning approaches

for analysing the content of audio signals. Two types of audio signals are consid-

ered: music audio and environmental audio. The problem of identifying properties or

features of music (like notes, chords, rhythm, lyrics) that are encoded in the music

recording is related to the field of Music Information Retrieval (MIR) (Schedl et al.,

2014), while the problem of identifying the sources in a recording of environmental

or ambient sounds is studied in the field of computational auditory scene analysis

(CASA) (Wang and Brown, 2006).

Like the rest of the thesis, this chapter is divided into 2 parts. The first section

provides a review of some basic musical concepts and the literature related to the

problems considered in this thesis, automatic music transcription and automatic chord

transcription. The next section reviews some of the concepts and literature related

to processing audio recordings of environmental sounds.

10

2.1 Music Information Retrieval

In this section, we review some basic musical concepts which are used throughout the

thesis. A music recording has many features like the recording formal (vinyl, cassette,

CD), the lyrics (if any), the instruments used to create the piece, the particular

performance of the piece and so on. The various problems studied in MIR can be

broadly divided into 2 classes: problems that are related to musical properties that can

be inferred from the recording (like notes, chords, beats, rhythm) or problems related

to subjective qualities of music that are interpreted by the listener (user preferences,

mood, social context) (Schedl et al., 2014). In this thesis, we are interested in problems

related to musical content or properties that are encoded in the music audio recording.

2.1.1 Pitch, Interval and Scales

In this thesis, a music signal refers to an audio recording of one or more sources which

may include various musical instruments and singing voices. Musical instruments

can be broadly classified into 2 types: pitched instruments like guitars, pianos and

cellos and unpitched instruments like drums. Pitch is a perceptual attribute that

allows the ordering of sound according to a frequency-related scale (Klapuri, 2006).

Although related to frequency, pitch is not an objective attribute but a perceived

psycho-acoustical attribute of sound (Houtsma, 1995). A pitch is produced by the

combination of a number of harmonically related tones. A tone is a periodic sine wave

at some frequency. A pitch is denoted by a fundamental frequency or f0. In addition

to the fundamental frequency, the pitch constitutes a series of tones at roughly integer

multiples of the fundamental frequency; fn = nf0, where n = {2, 3, 4, . . .}. Pitch is

an important attribute of sound and forms an essential component of features like

melody and harmony in music. In addition to the frequency, attributes like amplitude,

duration and temporal envelope all affect the perception of pitch (Houtsma, 1995).

11

The series of tones that constitute a pitch are also known as partials, where the

fundamental tone is the first partial, the first overtone is the second partial and so

on. Therefore for a given pitch, the energy is concentrated around the f0 and the

remaining partials.

The chroma and height are two important attributes of pitch (Shepard, 1964).

In Western music, the chroma is divided into 12 semitones from A to G, with 5

accidentals (sharp (]) or flat ([)):

{C,C]/D[,D,D]/E[, E, F, F]/G[,G,G]/A[,A,A]/B[,B}. (2.1)

The twelfth semitone above any given note has the same chroma, but greater

height. The height is therefore proportional to the fundamental frequency of the

pitch, while the chroma cyclically repeats itself over octaves. The interval of 12

semitones is known as an octave, while the cyclic repeating property of chroma is

termed octave invariance. This is also know as the 12-Tone Equal Temperament or

12-TET, stemming from the fact that the 12 chroma are equally spaced along the

log-frequency axis within an octave. Although many different tuning systems are

possible, in this thesis we focus only on the 12-TET. In 12-TET, the fundamental

frequency of a pitch is defined as:

f = fref2
n/12, n = {. . . ,−1, 0, 1, . . .}, (2.2)

where fref is a reference frequency usually set to 440 Hz.

The interval is a musical quantity that relates notes. Mathematicians as early

as Pythagoras had demonstrated that strings with identical properties but different

lengths produced consonant sounds if the lengths were in a particular ratio (Terhardt,

1984). Since then the physical attributes of pitches and notes are usually described in

the frequency domain and intervals are defined as ratios of fundamental frequencies

12

(Terhardt, 1984). For instance the octave is defined as the interval between 2 fun-

damental frequencies in the ratio 2 : 1. Similarly, the perfect fifth is defined by the

ratio 3 : 2 and the major third is defined by the ratio 5 : 4 and so on. The concept

of intervals is extended to scale. A scale is defined as an ordered set of intervals. For

example the major diatonic scale is defined as {+2,+2,+1,+2,+2,+2,+1}, where

each entry in the set defines an offset measured in the number of semitones from the

previous note in the scale. The first pitch of the scale is called the tonic and the scale

derives its name from the tonic. For example a major scale starting with the C note

is denoted as the C-major scale. Circular rotations of a scale give rise to different

modes. For example a circular rotation by 1 results in the Dorian mode, a rotation of

2 produces the Phrygian mode and so on. The key of a section of music is the defined

as the scale that best fits the sequence of notes in the section.

2.1.2 Chords

A chord can be defined as any set of three or more notes that are sounding simultane-

ously (Karolyi, 1965; Benward, 2014). Like the definitions of many perceived musical

quantities, the above definition is incomplete and several alternative definitions ex-

ist. This difficulty arises from the fact that there are many instances of chords in

practice that deviate from the above definition. For example, it has been shown that

the notes in a chord do not necessarily need to be played simultaneously (Deutsch,

1969). Humans are able to perceptually integrate notes played sequentially and often

perceive them as a single harmonic object, namely the chord. Another deviation from

the above definition is the fact that some chords can be played with certain notes

omitted, but the listener perceives a chord by filling in the harmonic gaps (Ulrich,

1977).

Although the musical definition of a chord is difficult due to the many perceptual

and subjective qualities associated with it, in the rest of the thesis we refer to the

13

above definition of chords, which defines the chord as a harmonic quantity formed

by the combination of 3 or more notes. It is important to note that the chord is

an abstract quantity that isn’t necessarily encoded in the music signal, for instance

chords with omitted notes. One of the most common chord types in Western music is

the triad. A triad comprises 3 notes, a root or the starting point, followed by the third

and fifth notes in a scale. A chord is defined by the root and relationship between

the root note and other notes in the chord.

2.1.3 MIDI Representation

Representing music symbolically is a challenging problem. Music comprises elements

like pitch, time and tempo that can be represented symbolically. At the same time

it also contains elements like tension and expectation which are much harder to rep-

resent. Consequently, representing music in a computer is in itself a field of study

(Dannenberg, 1993). The most widely used framework for computer music repre-

sentation is the Musical Instrument Digital Interface (MIDI) protocol. The MIDI

protocol provides 16 channels. Each note can is specified by its pitch number, onset

time, offset time and amplitude. Additionally parameters such as instrument type,

pitch-bend, key and tempo can also be specified.

The MIDI protocol assigns an index to each pitch as follows:

n = 12 · log2

f0

440
+ 69, (2.3)

where 440 Hz is fref (Equation 2.2) and n is the MIDI note index. A typical piano

consists of notes from A0 to C8. A0 at 27.5 Hz corresponds to MIDI pitch n = 21

while C8 at 4186 Hz corresponds to MIDI pitch n = 108. Therefore a piano spans

the range of MIDI notes 21-108.

Although useful for computational analysis, the MIDI protocol is limited as it does

14

Figure 2.1: A musical piece in piano-roll notation. X-axis corresponds to time (ms),
Y-axis represents pitch index

not allow for expressive musical features. Regardless, MIDI notation is extensively

used in MIR. A convenient way of graphically representing MIDI is the piano-roll

notation, where the Y-axis corresponds to pitch index and the X-axis corresponds to

time (Figure 2.1).

2.1.4 Automatic Music Transcription

Automatic Music Transcription (AMT) is a fundamental problem in MIR. AMT aims

to generate a symbolic, score-like transcription, given an acoustic signal (Figure 2.2).

Music transcription is considered to be a difficult problem even by human experts

and current music transcription systems fail to match human performance (Benetos,

2012). Polyphonic AMT is a difficult problem because concurrently sounding notes

from one or more instruments cause a complex interaction and overlap of harmonics

in the acoustic signal. The problem is further complicated due to the presence of

more than one instrument source. Additionally, AMT systems with unconstrained

polyphony have a combinatorially large output space, which further complicates the

modelling problem.

The various approaches to AMT can be roughly classified into signal processing

methods and statistical machine learning methods. Here we review previous work for

15

Figure 2.2: An overview of Automatic Music Transcription. The input recording is
transcribed to a symbolic score-like representation.

both types of systems.

2.1.4.1 Signal Processing Methods

Signal processing methods typically utilise prior information about the distribution

of energy over the set of harmonics related to each pitch in order to transcribe a

given music recording. The audio is first transformed into a time-frequency represen-

tation. For each time-frequency frame, spectral peaks are determined. Pitch salience

functions are then generated for each considered pitch and compared with the spec-

trum. The polyphonic pitch content of each frame is then determined iteratively or

jointly for multiple pitches. The transcriptions produced by such methods are prone

16

Figure 2.3: An overview of the iterative spectral subtraction method for AMT (Kla-
puri, 2003).

to harmonic errors. This is due to the fact that the harmonic amplitude for different

pitches can vary greatly depending on the source. Additionally, pitches produced

by different sources have overlapping partials which is hard to incorporate into the

estimation algorithm.

Klapuri (2003) presents a signal processing based method for AMT. The pro-

posed method iteratively estimates the fundamental frequency of the most prominent

sound, subtracts the sound from the mixture and the process is repeated for the

residual signal. The fundamental frequency is estimated using a band-wise pitch

salience function, which accounts for the fact that the harmonic relationships be-

tween spectral components is not necessarily ideal. The spectrum of the detected

sound is first smoothed in order to avoid corrupting overlapping partials and then

subtracted from the mixture (Figure 2.3). A polyphony inference method is applied

to stop iteration. Ryynänen and Klapuri (2005) extend the model in Klapuri (2003),

by incorporating a hidden Markov model (HMM) (Rabiner, 1989). The likelihoods

of different note-combinations are extracted over time. The HMM is used to impose

certain musicological constraints on note transitions. The final transcription is ob-

tained by estimating the sequence of note combinations that maximise the likelihood

17

of the input time-frequency representation.

Argenti et al. (2011) use a constant-Q transform (CQT) (Brown, 1991) time-

frequency representation for the audio signal. A 2-D transform of the third cumulant

of the signal or the bispectrum is computed. This is done in order to account for

the non-linear interactions between partials. This is followed by computing a cross-

correlation between the audio signal and a harmonic template. The highest correlation

is taken as the estimate for a pitch. The pattern corresponding to the detected note

is subtracted from the signal and the process is repeated.

Yeh et al. (2010) propose a rule-based system for estimating multiple pitches

jointly. The system first classifies spectral peaks in the signal into sinusoids and

noise. The peaks are then matched against candidate harmonic patterns. Rather

than iteratively estimating each pitch separately, a combination of pitches is jointly

considered by estimating overlapping partials. The polyphony of the hypotheses is

gradually increased till all considered hypotheses are exhausted. Finally, a polyphony

inference algorithm is used to determine the best combination of pitches.

A review of other signal processing based systems can be found in Benetos (2012).

2.1.4.2 Probabilistic Spectral Peak Modelling

An alternative to purely signal processing methods is to probabilistically model the

occurrence of pitches in a music signal. Duan et al. (2010b) propose a polyphonic

transcription system that probabilistically models spectral peaks. The likelihood

function models the probability of detecting a peak in the spectral frame given a

pitch and the complementary probability of not detecting a peak. The training data is

used to learn prior probabilities of pitch occurrences. A polyphonic inference method

using thresholds is used as a stopping criterion for further iterations. The method

was found to be efficient at balancing harmonic and sub-harmonic errors.

18

Emiya et al. (2010) propose a method that models overlapping partials with a

smooth autoregressive model. The background noise is modelled with a moving aver-

age filter. The resulting model generatively models the input spectrogram given simul-

taneous active piano notes. Badeau et al. (2009) propose an expectation-maximisation

(EM) (Bishop, 2006, Chapter 9) based algorithm which performs successive single-

pitch and spectral envelope estimations in order to maximise the likelihood of ob-

serving the input spectrum. Peeling and Godsill (2011) present an alternative system

where the expected partial density of a given note at some frequency is assumed to

be a homogeneous Poisson process. Concurrent notes are assumed to be independent,

resulting in an independent Poisson process which is a superposition of the Poisson

processes for each note. The resulting Poisson process is modelled with a Gaussian

mixture model (GMM) (Bishop, 2006, Chapter 9) centred at the harmonics of a given

note.

2.1.4.3 Full Spectrum Modelling

Another class of approaches to polyphonic music transcription aim to define a proba-

bilistic distribution over the observed spectrograms. Typically, each note is modelled

by a GMM and each spectral frame is expressed as a mixture of note GMMs. Such

models have the advantage that it is very easy to incorporate note priors into the

model.

Goto (2004) proposes PreFEst, an algorithm for predominant-F0 estimation of

melody and bass lines based on MAP (maximum a posteriori) estimation. The time-

frequency spectra are modelled as a weighted superposition of adapted tone models.

The tone models comprise a Gaussian placed at harmonic positions along the fre-

quency axis. MAP estimation is used to estimate the model parameters and the

melody and bass lines are inferred using a multiple-agent architecture which selects

the most stable trajectory. Miyamoto et al. (2007) propose a method called har-

19

monic temporal structure clustering (HTC) which clusters the spectral energy into

musical notes. The method utilises a structured GMM with harmonic and temporal

smoothness constraints. The parameters of the GMM are estimated using the EM

algorithm. Yoshii and Goto (2012) propose infinite latent harmonic allocation (iLHA)

based on non-parametric Bayesian methods. The model allows for an arbitrary num-

ber of sound sources and an arbitrary number of harmonic partials. Each spectral

frame is modelled as a nested infinite dimensional GMM using Dirichlet processes.

They propose a method to perform inference on the trained model using a modified

variational Bayes algorithm.

2.1.4.4 Spectrogram Decomposition Methods

A majority of recent polyphonic transcription algorithms have been based on non-

negative matrix factorisation (NMF) (Lee and Seung, 2001). Given a 2-dimensional

time-frequency representation, NMF is used to decompose the spectrogram as S ≈

WH. Essentially, the input S is decomposed into a linear combination of basis vectors

in W and a set of weights in H. When applied to music analysis, S is usually the

magnitude spectrogram (or any suitable time-frequency representation), W is the

spectral basis matrix where each entry (row) represents a source spectrogram and H

is the activity or weight matrix over time. Prior information and constrains can be

incorporated into the NMF algorithm by means of regularisation terms or by directly

imposing constraints on the matrix. Consequently there have been many variants

of NMF applied to music transcription. Below, we review some of the important

contributions.

Smaragdis and Brown (2003) propose an NMF based model for music transcrip-

tion. They assume each note has a fixed spectral profile which is estimated based on

the training examples, along with the temporal activity matrix for each note. Cont

(2006) extend the previous approach by incorporating sparsity constraints for the

20

activity matrix. The motivation behind this was to express the magnitude spectro-

gram as the sum of the smallest possible number of bases. The model also included

HMM based post-processing for note-tracking. Vincent et al. (2008) add constraints

on harmonicity in the NMF model. Additionally, they impose smoothness constraints

on the spectrum by expressing each basis spectrum as a sum of narrowband spectra.

They use an equivalent rectangular bandwidth (ERB) scale input time-frequency rep-

resentation. The harmonic constraints along with the post-processing technique were

further improved in Vincent et al. (2010). Bertin et al. (2010) propose a Bayesian

NMF method with harmonicity and temporal continuity constraints. The harmonic-

ity constraints are introduced using superimposed Gaussian components while the

temporal constraints are imposed using an inverse-Gamma Markov chain prior. Des-

sein et al. (2010) include β-divergence into the NMF objective function. Sakaue et al.

(2012) present a Bayesian multi-pitch analyser called Bayesian non-negative harmonic

temporal factorisation (BNHTF), where they model the harmonic and temporal struc-

tures of the wavelet spectrogram of music signals. The BNHTF integrates latent har-

monic allocation (LHA) with the NMF framework for music transcription. Sakaue

et al. (2013) extend the Bayesian NMF framework with the inclusion of a character-

istic prior distribution over the latent variables. Raczynski et al. (2013) present an

AMT model based on NMF, which also incorporates relationships between pitches

over time. Typically, the evolution of pitches over time is modelled independently for

each pitch, since jointly modelling the state space of output pitches is infeasible due

to the combinatorially large space. They test their model on synthesised sounds and

report that their joint model outperforms NMF based models that do not incorpo-

rate structural information related to polyphonic pitch sequences. An extension to

the NMF algorithm is to express the basis spectra as 2-dimensional quantities which

are convolved with the 2-dimensional temporal activity matrix. Smaragdis (2004)

first proposed the non-negative matrix deconvolution (NMD) algorithm. Schmidt

21

and Mørup (2006) extend the NMD algorithm to include sparsity constraints.

2.1.4.5 Probabilistic Latent Component Analysis

Probabilistic Latent Component Analysis (PLCA) is an alternative to NMF meth-

ods. It can be regarded as a probabilistic analogue of the NMF algorithm. PLCA

provides a probabilistic framework that generalises well and also allows for effi-

cient incorporation of priors. In PLCA, the spectrogram distribution is modelled

as P (ω)t =
∑

z Pt(ω|z)Pt(z), where z is the basis index and ω is the log-spectrogram

index. The unknown distributions are estimated using the EM algorithm. The PLCA

model was first introduced in Smaragdis et al. (2006). The method was extended to

allow more than one template for each pitch. This was used to extend the model to

be able to recognise multiple instruments (Grindlay and Ellis, 2011). Benetos and

Dixon (2012) present a shift-invariant PLCA model that can transcribe polyphonic

music from multiple instruments. The shift-invariant properties of the model can

be used to detect frequency modulations and tuning changes, and to visualise pitch

content. A computationally more efficient version of the model is presented in Bene-

tos et al. (2013). Recently, Berg-Kirkpatrick et al. (2014) proposed an unsupervised

model for piano transcription. The method is similar to PLCA, however the model

includes additional random variables that model properties specific to piano sounds

like the amplitude envelope of pitches. The model produced state-of-the-art results

on a piano transcription task.

2.1.4.6 Sparse Coding

Approaches based on sparse coding (Olshausen and Field, 1997) are similar in motiva-

tion to NMF. Sparse coding methods aim to decompose the observed time-frequency

representation into a matrix of basis vectors and another matrix for activations. How-

ever, it is assumed that the activation vector is sparse with respect to the number of

22

active sources.

Blumensath and Davies (2004) propose a sparse coding approach that used it-

erative re-weighted least squares to estimate the bases for polyphonic piano mu-

sic. Abdallah and Plumbley (2006) present a probabilistic model that learns sparse

linear decompositions of the input time-frequency representation. Virtanen (2004)

presents a convolutive variant of a sparse coding model for sound source separation.

Canadas-Quesada et al. (2008) present a method based on a harmonic matching pur-

suit algorithm. They employ an additional processing step where spectral smoothness

constraints are imposed on the learnt bases. O’Hanlon and Plumbley (2011) propose

a structure aware dictionary learning algorithm where prior knowledge about the

number of sources in the spectrogram and the harmonic structure of the bases is

incorporated into NMF and k-singular value decomposition (k-SVD) based systems.

O’Hanlon et al. (2012) use group sparsity to incorporate priors into a sparse coding

based AMT system, while O’Hanlon and Plumbley (2014) incorporate the concept of

group sparsity in a supervised NMF based AMT system.

2.1.4.7 Classification Approaches

Recently, there has been a lot of interest in machine learning based classification ap-

proaches to AMT. The key idea is that the models aim to classify time-frequency

frames or audio features derived from them, into the output pitches. Depending on

the type of model used, the algorithms either try to learn a conditional distribution

P (y|x), where y are the output pitches and x is the input acoustic feature vector

or they directly learn a function f : x → y. Classification based approaches have

the advantage that they can theoretically learn complex input-output relationships

between the input features and output pitches from many pairs x, y of training ex-

amples. However, the application of such methods is limited to the availability of

labelled datasets of sufficient size to be able to learn the many parameters associated

23

with such models.

Marolt (2004) evaluated using neural networks for note transcription and reports

good performance with time-delay neural networks (TDNN). Pertusa and Iñesta

(2005) also use TDNNs to classify pre-processed short-time Fourier transforms (STFTs)

into notes. Poliner and Ellis (2007) use support vector machines (SVMs) (Hearst

et al., 1998) along with an HMM to process the frame-level outputs of the classifiers.

Guibin and Sheng (2007) also use a feed-forward neural network to classify features

derived from adaptive comb filters into notes. Costantini et al. (2009) use SVMs to

classify CQTs into notes. Nam et al. (2011) use a deep belief network to learn au-

dio features which are used as inputs to an SVM for classification. Böck and Schedl

(2012) use bi-directional RNNs to classify multi-channel spectrograms obtained using

2 filter-banks at different temporal resolutions. Boulanger-Lewandowski et al. (2013b)

present an RNN that learns a joint distribution over the output pitches conditioned

on the inputs and previous outputs from the system.

In addition to the literature reviewed here, we direct the reader to Tavares et al.

(2013) for a survey on AMT approaches.

2.1.5 Automatic Chord Transcription

Automatic Chord Transcription (ACT) is one of the fundamental problems in MIR.

Given a music audio recording, the aim of AMT is to produce the sequence of chord

labels that represent the chords and chord changes in the given piece (Figure 2.4).

Chords are considered to be a mid-level representation of the harmonic content of

a musical piece. Although chords are very useful descriptors of a musical piece,

manually annotating musical pieces requires considerable expert musical knowledge

and is time consuming (McVicar et al., 2014).

24

Figure 2.4: Graphical representation of the outputs produced by an ACT system
(McVicar et al., 2014) for a musical excerpt. The 3 columns in the output represent
the onset time, offset time and chord label, respectively.

2.1.5.1 Early Work

The first studies that considered recognising chords from audio recordings were based

on polyphonic AMT (Martin, 1996; Kashino and Hagita, 1996). Fujishima (1999)

is the first study that considers chord transcription as an independent task. Martin

(1996) and Kashino and Hagita (1996) proposed a new feature called the Pitch Class

Profile (PCP), which is a 12-dimensional feature that wraps spectral content in a

frame of audio into one octave. The first step in computing the PCP vector involves

calculating the DFT over a small window of the audio. The PCP entry for each pitch

class is then computed by summing the power spectrum over the frequency bins in

the DFT that are related to a given pitch class, yielding a 12-dimensional vector.

Similarly to the DFT, the PCP is calculated over overlapping windows to yield a 2-D

matrix of PCP vectors, called the chromagram (Wakefield, 1999).

The earliest systems for ACT are based on template matching approaches. Fu-

jishima (1999) uses dot products between the chromagram and pre-defined binary

12-dimensional chord templates in order to estimate chords in a frame. Harte and

Sandler (2005) also estimate the relative strength of different chords in an audio frame

using a similar technique. Bello and Pickens (2005) also use a binary template for

25

each chord class. However, they model each chord as a 12-dimensional Gaussian

where the means for all the notes in a chord are set to 1 and remaining means are

set to 0. Additionally, they define a covariance matrix that encodes the correlations

between notes appearing in a chord. Catteau et al. (2007) use a similar method based

on using Gaussian distributions to model chord templates. Papadopoulos and Peeters

(2008) use Gaussian chord templates and the correlation coefficient as a measure of fit

between chroma vectors and chord templates. Oudre et al. (2009) demonstrate that

the Kullback-Liebler divergence is a good measure for the similarity between chroma

features and templates.

2.1.5.2 Background Subtraction, Harmonics and Smoothing

A musical recording can include sounds from both harmonic and percussive sources.

When analysing the harmonic content of a recording, the non-harmonic parts of

the mixture can be considered to be the background signal (Pauws, 2004). It is

assumed that the recorded spectrum is a sum of the harmonic and percussive spectra.

Background subtraction can then be applied to isolate the harmonic elements in the

signal in order to recognise chords. This is known as harmonic percussive source

separation (HPSS). Reed et al. (2009) and Ueda et al. (2010) demonstrate that HPSS

results in improved chord transcription accuracies.

As discussed for AMT, the harmonic profiles of different instruments combine to

produce a complex overlap of partials in a music signal. The presence of harmonics

is an important consideration when designing features for chord transcription. Pa-

padopoulos and Peeters (2007); Pauws (2004) and Mauch and Dixon (2010) account

for harmonics in their feature extraction stages. Varewyck et al. (2008) propose a

novel chroma representation that accounts for both background subtraction and the

removal of harmonics.

It has been observed (Fujishima, 1999) that using chroma features alone leads

26

to chord estimates that fluctuated rapidly over time. Smoothing is a simple and

effective technique used to overcome this issue. Harte and Sandler (2005) use a low-

pass filter to temporally smooth the chromagram over time, while others have used

median filtering (Khadkevich and Omologo, 2009). Bello and Pickens (2005) use the

fact that chords are stable over a short duration, by averaging frames over a beat

resulting in beat-synchronous chroma features.

2.1.5.3 Tuning

The quantisation of frequencies into pitches is usually performed with respect to a

reference or tuning frequency (Equation 2.2). Typically, the tuning frequency is set

for A over middle C (A4) to 440 Hz. Sheh and Ellis (2003) demonstrate that some

popular music tracks are not tuned to 440 Hz, which results in unreliable estimates for

chord classes. Harte and Sandler (2005) use a chromagram with 3 frequency bins per

semitone and assign the sub-band with most energy as the tuning frequency. Peeters

(2006) define a set of possible tuning frequencies and utilise the frequency that best

represents the chromagram for each track. Mauch (2010) represents tuning as an

angle defined on the interval (−π, π) for each semitone.

2.1.5.4 Hidden Markov Models

The models described so far rely on efficient signal processing and simple template

matching based techniques to estimate the presence of various chords in a frame of

audio. However as discussed before, due to the complex mixture of sources, there

is a large spectral variation present in the acoustic music signal. Additionally, these

methods do not model any structural information about harmony (like the key, chord

progressions) which provides essential prior information about the temporal structure

and progression of chord sequences. A large number of ACT systems employ machine

learning methods to model the variability in the acoustic features and to model the

27

musical and structural relationships in chords and harmonic sequences.

The most common approach to ACT uses HMMs. HMMs have been widely applied

to speech recognition (Rabiner and Juang, 1993). HMMs define a joint distribution

over a sequence of observed variables x = {x0, . . . , xt} and a set of unobserved or

hidden variables y = {y0, . . . , yt}. The joint distribution is defined as:

P (x, y) = P (y0)P (x0|y0)
t∏
t=1

P (yt|yt−1)P (xt|yt). (2.4)

The above factorisation assumes:

P (yt|yt−1
0 , xt−1

0) = P (yt|yt−1), (2.5)

P (xt|yt0, xt−1
0) = P (xt|yt). (2.6)

Equation 2.5 is the Markov property for hidden states, which states that a state at

time t is only dependent on the state at t−1. Equation 2.6 represents the conditional

independence of the observations xt, given the hidden state yt. For chord recogni-

tion, the observed quantities are the acoustic feature vectors, while each hidden state

corresponds to a chord label. The parameters of an HMM are learnt given a training

dataset. At test time, the sequence of chords is inferred by estimating the most-likely

sequence of chord labels given the acoustic observations. An HMM therefore defines

the acoustic model in the form of the observation distribution for each chord class.

Secondly, it models the probability of allowed chord transitions via the transition ma-

trix. Sheh and Ellis (2003) first use an HMM to identify chord boundaries and predict

chord labels. Bello and Pickens (2005) adapt the HMM for real-time analysis and

learn the transition matrix for each song independently. Khadkevich and Omologo

(2009) extend previous work by explicitly modelling chord durations.

In the HMM framework, the probability of observing an acoustic feature vector

given a chord label is defined by an observation distribution. Typically, the observa-

28

Figure 2.5: Graphical Model of an HMM. The observations xt represent acoustic
features, while the hidden variables yt represent chord labels. The arrows denote the
conditional independence assumptions from Equation 2.5 and Equation 2.6.

tion distribution is chosen to be a GMM which is parameterised by a mean vector

µ and a covariance matrix Σ (Sheh and Ellis, 2003; Khadkevich and Omologo, 2009;

Bello and Pickens, 2005; Cho and Bello, 2011; Reed et al., 2009; Sumi et al., 2008).

The parameters of the distribution are then jointly estimated along with the remain-

ing HMM parameters using the EM-algorithm. However, it is theoretically possible

to use more complex observation distributions provided that the parameters can be

estimated with EM. Burgoyne et al. (2007) use a Dirichlet distribution for the obser-

vation probabilities.

The HMM framework described above is limited since the only quantities that

are modelled are the acoustic vectors and the chord labels. There have been several

extensions of the HMM framework where musicological knowledge about chords are

incorporated into the recognition model to improve performance. Simple HMM-based

chord recognition models were extended by including another set of variables that

model the key of the piece. The two-chain HMM jointly models the acoustic feature

vector, chord label and the key for a given song. Raphael (2005) and Catteau et al.

(2007) use a 2-chain HMM for chord recognition that jointly models the chord and

key context in a piece and also allows for key changes within a song. The models

proposed by Lee and Slaney (2008); Yoshioka et al. (2004) and Sumi et al. (2008) also

incorporate key information. However, these models make the simplifying assumption

29

that the key for each song is fixed and therefore learn one HMM per key without

allowing key changes within a song.

A few studies explicitly model information present in the bass frequencies of the

spectrum. Ryynänen and Klapuri (2008) use a chroma representation where the first

12 dimensions correspond to a chroma vector over MIDI notes 26 to 49 (bass chroma)

and 12 more dimensions that represent a chroma over MIDI notes 50-73. Other

approaches model bass information more explicitly. This is done by first estimating

a bass pitch class and then calculating the chord probabilities as a function of the

detected bass note (Sumi et al., 2008; Yoshioka et al., 2004). Chord transcription

systems have also benefited from the inclusions of beat or timing information. The

likelihood of chord transitions is higher at certain metric positions, for instance the

downbeat. Some systems use an iterative algorithm, where a downbeat estimation

stage is followed by a chord estimation stage Shenoy and Wang (2005). Alternatively,

Papadopoulos and Peeters (2008) jointly estimate the downbeat positions and chord

sequence.

2.1.5.5 Dynamic Bayesian Networks

It was generally observed that incorporation of high-level musicological information

into ACT systems helped improve performance. As discussed before, many different

methods were proposed for incorporating prior knowledge into ACT systems. The use

of dynamic Bayesian networks for ACT allowed many different musicological priors to

be included under the same probabilistic recognition framework. Mauch and Dixon

(2010) propose a dynamic Bayesian network for ACT that jointly models chords, key,

metric position and bass notes along with bass and treble chromagrams (Figure 2.6).

The model was shown to outperform existing models for chord recognition. Ni et al.

(2012) include a chroma representation that accounts for loudness perception in the

above framework and report state-of-the-art performance on a chord recognition task.

30

Figure 2.6: Graphical model of a dynamic Bayesian network for ACT (Mauch and
Dixon, 2010). Compared to the HMM graph from Figure 2.5, the dynamic Bayesian
network contains additional variables that represent bass (Bt), key (Kt) and metric
position (Mt) in addition to the chord label (Ct). Additionally, the observation vector
xt is replaced by the bass (Xbs

t) and treble chroma (Xtr
t).

2.1.5.6 Classification Based Approaches

The various models discussed above have a common property. They define generative

distributions P (x, y) over the variables of interest y (the chord labels) and the ob-

served acoustic features x. Similarly to AMT, it can be argued that since we are only

interested in the chords given the feature vectors, it might be more sensible to model

the conditional distribution P (y|x) since the observations are fixed at test time. Es-

timating conditional distributions has the advantage that it relaxes the conditional

independence assumptions made about observations (Equation 2.6). Furthermore, it

allows the outputs y to be conditioned on feature vectors over more than one input

frame. Burgoyne et al. (2007) use a conditional random field (CRF), a discrimi-

native model, instead of an HMM for ACT. Weller et al. (2009) replace the CRF

31

with the SVM-struct algorithm for chord recognition. Recently, neural networks have

been proposed for jointly learning the audio features and the classifier. The neural

networks act on a time-frequency representation of the audio and learn to directly

estimate chord sequences from the low-level acoustic inputs. Boulanger-Lewandowski

et al. (2013a) propose an RNN-based system that simultaneously learns the acoustic

classifier and structural information about chord sequences. Humphrey and Bello

(2012) and Zhou and Lerch (2015) use a ConvNet to estimate chord labels given

several frames of CQT feature inputs.

2.1.6 Deep Learning in MIR

In this section, we review some of the Deep Learning (see Chapter 3) approaches to

various problems in MIR. The main motivation for applying deep learning to MIR

problems is to automate the learning of audio features (Humphrey et al., 2013).

In the last decade, as the popularity of machine learning approaches in MIR has

grown, a large amount of time and effort has been expended in trying to determine

the best combination of audio features and machine learning model. Deep learning

methods provide an alternative solution to this problem by jointly learning feature

transformations and the classifier from input data, given a large dataset of training

examples. Although this research direction is intriguing and there have been some

promising results, the applicability of such systems is limited to cases where large

amounts of labelled training is available, which is a limiting factor for most MIR

problems.

Lee et al. (2009) and Hamel and Eck (2010) were some of the first to apply deep

neural networks to a genre recognition problem. The results demonstrate that the

neural network models are able to classify frames of magnitude spectrograms directly

into genre labels and are able to outperform existing machine learning approaches

to the problem. Since then, there has been considerable interest in deep learning

32

from the MIR community. Deep learning for genre recognition is further explored in

Sigtia and Dixon (2014), where a few changes to the architecture and optimisation

algorithm eliminate the need for pre-training (Hamel and Eck, 2010) the parameters

of the neural network. The idea is further extended by Dieleman and Schrauwen

(2014), where neural networks are directly applied to raw audio data rather than

a 2-D time-frequency representation. The results demonstrate that the network is

independently able to learn frequency decomposition and also phase and translation

invariant features from raw audio.

In Humphrey et al. (2012), a convolutional neural network (ConvNet) is used

to learn a Tonnetz-space representation from training examples for automatic chord

recognition. The results demonstrate that the learnt representation yields better

accuracies than chroma features for classifying frames of audio into chord labels.

Humphrey and Bello (2012) present a ConvNet based classifier that directly classifies

a CQT time-frequency representation into chord labels. The ConvNet is able to

yield accuracies that are competitive with state-of-the-art approaches which involve

a considerable amount of domain knowledge in their design. Boulanger-Lewandowski

et al. (2013a) uses an RNN to classify input features into chord labels. The RNN

architecture is designed such that the predictions at any time-step are conditioned

on all past predictions. This encourages temporal correlation and smoothness in the

label predictions and eliminates the need for an additional post-processing step with

HMMs.

Neural networks have also been applied to the problem of content-based music

recommendation. Van den Oord et al. (2013) use ConvNets to predict latent factors

directly from the spectrogram. Liang et al. (2015) present a method where a neural

network is trained to predict semantic labels from acoustic features. The predictions

are then used as a prior in a collaborative filtering model. Deep learning has been

used to analyse drum patterns (Battenberg and Wessel, 2012), for learning rhythm

33

and melody features (Schmidt and Kim, 2013), for symbolic music modelling (Cherla

et al., 2013), for singing voice detection (Lehner et al., 2015; Schlüter and Grill,

2015) and for music generation (Boulanger-Lewandowski et al., 2012). Deep learning

methods have recently been applied to the problem of boundary detection (between

verse and chorus for instance) in music structure analysis (Ullrich et al., 2014; Grill

and Schlüter, 2015a,b). They have also been applied to onset detection (Schlüter and

Böck, 2014), tempo estimation (Böck et al., 2015) and polyphonic AMT (Böck and

Schedl, 2012).

2.2 Environmental Sound Recognition

The audio signal carries information from a variety of sources like human speech,

music, animal sounds, street sounds, various indoor and outdoor sounds and so on.

Automatic speech recognition (ASR) systems (Rabiner and Juang, 1993) are now

deployed in commercial speech recognition systems that are found on computers,

phones, TVs and a variety of other devices. Similarly, analysing the content of music

signals has been an active area of study in MIR over the last 2 decades (Schedl

et al., 2014). In addition to speech and music, audio signals contain a very variety of

non-speech, non-music sounds which are broadly denoted as environmental sounds.

The task described in this section belongs to the field of computation auditory scene

analysis (CASA) (Wang and Brown, 2006). The problem of automatically analysing

the content of environmental sounds is relatively new compared to ASR and MIR,

though it has been receiving more attention in the last decade.

The ability to automatically recognise and identify environmental sounds has

many applications in the field of audio indexing and retrieval. Such systems can

be used to index large audio archives, be used in home security applications (e.g.

detection of alarms, baby cries) and making smart sensors, to name a few applica-

34

tions. The problem of recognising environmental sounds has been broadly divided

into 2 categories, Acoustic Scene Classification (ASC) and Acoustic Event Detection

(AED). Given an audio recording, ASC aims to assign one or more semantic labels

to the recording as a whole. Therefore, the entire recording is treated as an object

to which a set of labels is assigned. A related problem is AED, where the system

outputs semantic labels in addition to the onset and offset times for each label, sim-

ilar to AMT and ACT. The type of labels that are associated with each track vary

depending on the problem. For example AED systems can be used to detect different

types of alarm sounds, to detect glass breaks and gunshots, to detect bird species or

for various other use cases. The events can either be non-overlapping (monophonic)

or overlapping (polyphonic). Due to the presence of sounds emitted by several active

sources, polyphonic detection of sounds is challenging, similarly to AMT and ACT.

In this thesis, we consider the problem of AED for environmental sounds.

From the literature, we observe that approaches to AED follow a pipeline similar

to ASR, AMT and ACT. The audio excerpt is divided into overlapping frames from

which acoustic features are extracted. A statistical or machine learning model is then

used to assign class membership scores (or probabilities) to the input features. The

model can be either supervised (Aucouturier et al., 2007) or unsupervised (Cauchi,

2011) depending on the type of problem, amount of data available, whether the data

is labelled and other features of the given problem. AED systems usually perform

a frame-level classification which assigns likelihoods of various labels to each frame.

Subsequent post-processing, typically with an HMM, is used to segment the data and

provide an alignment between feature frames and labels (Mesaros et al., 2010).

In the remainder of this section we review existing literature on AED for environ-

mental sounds.

35

2.2.1 Acoustic Event Detection

AED systems aim to segment the recording into sections based on the occurrence of

target labels. Typically, AED systems process short windows of audio and predict

labels over chunks, rather than the entire recording. Kennedy and Ellis (2004) use

SVMs with MFCC features over short windows to detect laughter in recordings. A

similar approach is used to discriminate between laughter and applause by Arias

et al. (2005). Stager et al. (2005) propose a low-resource method for detecting sound

environments (home, office, workshop, outdoors) using k-nearest neighbours (k-NN)

(Altman, 1992) applied to time-frequency features. Andersson (2004) also uses a

k-NN classifier on spectral features to classify audio segments into music or speech.

Ellis (2001) uses a neural network classifier to detect different types of alarm sounds.

Goh et al. (2003) use k-means clustering to segment audio recordings of TV programs

into segments containing commercials. Hoiem et al. (2005) present a system that uses

boosted decision trees to detect events (like car horns, dogs barking) in recordings

obtained from movies.

More recently, studies evaluate AED systems on much larger datasets of real-world

recordings and with more sophisticated machine learning techniques. Mesaros et al.

(2010) use HMMs to detect the presence of 61 classes of sounds in audio recordings.

Cotton and Ellis (2011) use a convolutive NMF model to learn a time-frequency basis

for 16 classes of sounds in a meeting-room setting. Mesaros et al. (2011) use MFCCs

and HMMs as acoustic models to detect up to 10 events. Probabilistic latent semantic

analysis is then used to model the co-occurrence of different sound events. Using this

method to determine the prior probabilities of events yields improved performance

over uniform priors. Heittola et al. (2013) propose a 2-step event detection process.

The audio context is first modelled using GMMs. At test time, the recording is

analysed to identify the audio context. This information is then used to determine

a set of possible event labels associated with the context. The individual events are

36

finally detected using context-dependent HMMs. Amid et al. (2014) use stacked auto-

encoders to learn a representation starting from standard time frequency features like

MFCCs, spectral flux and spectral centroid. The learnt features are then classified

using kernel based classifiers. Cakir et al. (2015) use a neural network to directly

classify time-frequency features into one of 61 event classes. The problem is posed as

a multi-label prediction problem and the neural network outputs are post-processed

to detect the presence of multiple overlapping sound events. The results show that

the neural network model outperforms a state-of-the-art NMF acoustic model on

the given detection task. Mesaros et al. (2015) present an NMF method for AED.

The proposed method detects overlapping events in recordings without constructing

a model for each class. The method can be trained directly on audio recordings in

an unsupervised setting. The method also presents methods for controlling the size

of the learnt dictionary of overlapping sound events. Stowell and Clayton (2015)

present a method which is an interesting deviation from typical AED systems. The

proposed method decomposes the probability of a detected event into a product of

the probability of onset, probability of offset and a prior on the event duration. The

proposed method is compared to a standard HMM event detection system for the task

of detecting 300 different types of birds. The results demonstrate that the proposed

method outperforms the HMM baseline and is more accurate for estimating bird-call

rates.

In addition to the literature presented above, there are 2 more studies worth

mentioning. The CLEAR evaluations (Temko et al., 2006) which were part of the

CHIL project (Waibel et al., 2009), compared 3 different systems for an AED and

ASC task. The evaluations were performed on a database of isolated sounds and an-

other database of recorded interactive seminars. The study presented one of the first

benchmarks for AED/ASC systems. More recently, the Detection and Classification

of Acoustic Scenes and Events (DCASE) challenge (Giannoulis et al., 2013; Stowell

37

et al., 2015) performs public comparisons of state-of-the-art methods for AED and

ASC. The evaluations are performed on 2 different datasets for AED and ASC tasks.

The evaluations included entries from 7 different participants. The data used for the

evaluations is publicly available and the challenge forms an important benchmark for

future research in the area.

38

Chapter 3

Neural Networks

This chapter provides an overview of neural networks. A brief background and his-

tory of neural networks is followed by definitions and descriptions of the models used

in the remainder of this thesis. We describe neural network architectures for acoustic

modelling and recurrent architectures for modelling sequences. We discuss the opti-

misation framework for the network parameters and several practical heuristics that

are used for efficient parameter estimation. Finally, we discuss how neural network

based models can be used for density estimation and present 2 types of neural density

estimators.

3.1 Background

Neural networks are a family of models that express a mathematical function as

a composition of simple, non-linear functions. The overall architecture of a neural

network can be regarded as a hierarchy of layers, where each layer of the neural

network performs a simple transformation of the outputs of the previous layer. This

architecture results in a network that learns a hierarchy of simple transformations of

the input data, which cumulatively result in complex non-linear transformations of

the inputs. The modular, layer-wise architecture is a characteristic feature of neural

39

networks.

The artificial neuron was first proposed by McCulloch and Pitts (1943) and was

inspired by discoveries in neuroscience. The artificial neuron is a parameterised pro-

cessing unit which can be used to simulate logic operations. This discovery was

followed by the Perceptron algorithm (Rosenblatt, 1958), which provided a method

for estimating the parameters of the artificial neuron given a set of training exam-

ples. Minsky and Papert’s seminal work demonstrated the limitations of single-layer

perceptrons (Minsky and Papert, 1969) which led to the proposal of multi-layer per-

ceptrons (MLP). MLPs define an expressive family of parametric functions that were

shown to be capable of approximating arbitrarily complex functions (with some er-

ror tolerance) (Hornik, 1991). Despite their attractive properties, effectively training

MLPs remained an open problem. A major breakthrough in training MLPs came

with the proposal of the backpropagation algorithm (Hinton, 1986; Rumelhart et al.,

1988) that used the chain rule for differentiation to estimate error signals for up-

dating the network parameters. When used to calculate error derivatives over many

examples, the algorithm proved to be very slow and impractical. This posed a chal-

lenging engineering problem, especially as the number of training examples increased.

In addition to the slow training time, there were also instances where the training

algorithm did not converge to useful solutions at all. An efficient stochastic version of

the backpropagation algorithm was proposed (LeCun et al., 1998), called stochastic

gradient descent (SGD). Rather than calculating gradients over the entire training

batch, SGD estimates the gradient over the batch by calculating gradients over a small

set of samples or a minibatch, randomly drawn from the training set. Minibatch SGD

has been shown to be very effective, especially on very large datasets. The noisy

gradient estimates have also been shown to be useful for finding better parameters

for the networks (LeCun et al., 1998).

Despite the many fundamental developments with respect to the neural network

40

architectures, training algorithms and theoretical understanding of their functioning,

neural networks started falling out of favour with the machine learning/AI community

in the 90s. However, in the past decade, there has been a great resurgence of interest in

neural networks. The revival in interest was sparked by research that demonstrated

that neural networks with many hidden layers could be trained effectively if the

weights were properly initialised using unsupervised learning methods (Hinton et al.,

2006). These ideas were then applied to speech recognition, which lead to dramatic

improvements on both small (Mohamed et al., 2009) and large vocabulary systems

(Dahl et al., 2012). Since then similar results have been obtained in object recognition

(Krizhevsky et al., 2012), natural language understanding (Collobert et al., 2011b)

and other areas of natural language processing (see Goldberg (2015) for a summary).

The reader is referred to Schmidhuber (2015) for an extensive overview of the history

and applications of neural networks.

The recent successes of neural networks can be mainly attributed to two factors.

The proliferation of digital information has allowed researchers to experiment with

very large datasets (Deng et al., 2009; Dahl et al., 2012; Mikolov et al., 2013). Neural

networks are prone to the problem of overfitting (Bishop, 2006, Chapter 1), where the

network performs very well on the train set but cannot generalise to new examples.

The availability of large datasets allowed researchers to train networks with many

parameters that were able to generalise well to new data. However, training neural

networks with many parameters on large datasets can take prohibitively long. The

second major contributor to the recent success of neural networks has been efficient

use of modern computing infrastructure. It was observed that network training times

could be drastically reduced if certain computations were performed on GPUs rather

than CPUs. GPU training allowed researchers to effectively train models with many

parameters, leading to advances in many domains. In addition to single GPU training,

neural network training has been implemented on large CPU and GPU clusters to

41

train models efficiently on very large datasets (Dean et al., 2012). The hardware

advances have been complemented by software libraries like Theano (Bergstra et al.,

2010), Torch (Collobert et al., 2011a) and TensorFlow (Abadi et al., 2015), which

allow users to easily design and train neural networks.

3.2 Neural Network Architectures

In this section we describe the neural network architectures used in this thesis. Let

X = RD represent the space of inputs, with x ∈ RD. Let Y = Rk represent the space

of outputs, with y ∈ Rk and let f be some function, f : X → Y . A neural network

defines a function as follows:

f(x; Θ) = fL−1 ◦ fL−2 ◦ . . . ◦ f0(x). (3.1)

Equation 3.1 describes a neural network with L layers. Each component function

fi represents a layer with parameters θi. The set of all network parameters is Θ =

{θ0, θ1 . . . θL−1}.

A neural network architecture is specified by the number of layers L and the type

of each individual function fi. Each layer can be chosen from one of the many possible

architectures (fully connected, recurrent, convolutional, pooling) in order to solve a

given problem (Szegedy et al., 2015; Sainath et al., 2015). The number of layers in

a network is also known as the depth of the network. Typically, networks with 2

or more intermediate layers are called deep networks and the field of study related

to deep networks is loosely known as deep learning (Bengio, 2009; LeCun et al.,

2015; Schmidhuber, 2015). The layer-wise modular architectures learn a hierarchy

of representations of the data. Therefore given sufficient data, neural networks with

many layers can be directly applied to raw data to estimate complex functions end-

to-end.

42

Figure 3.1: Graphical structure of a feedforward DNN. Each layer has parameters
θl = {Wl, bl}. The above network contains L intermediate hidden layers and a final
output layer. The dashed line represents one or more intermediate layers.

We now discuss some of the architectures in more detail.

3.2.1 Feedforward Neural Networks

The simplest type of layer is the feedforward layer. The feedforward layer performs

the following transformation:

fl(hl−1; θl) = g(Wlhl−1 + bl), (3.2)

where hl−1 is the output from the previous layer, Wl is a weight matrix of size M ×N

that transforms an M dimensional input hl−1 to an N dimensional vector, bl is an

N -dimensional bias vector and θl = {Wl, bl} are the layer parameters. A feedforward

layer performs an affine transformation of the input, followed by the application of an

element-wise non-linearity g. A network comprising only feedforward layers is called a

43

Figure 3.2: Neural network activation functions.

feedforward neural network or a deep neural network (DNN). Figure 3.1 is a graphical

representation of a DNN. The non-linearity g is necessary since a composition of linear

transforms is also a linear transform. The non-linearities are essential for learning

complex non-linear mappings between the inputs and the outputs. Popular non-

linearities found in the literature are:

• Sigmoid: g(x) = 1
1+e−x .

• Hyperbolic Tangent (tanh): g(x) = ex−e−x

ex+e−x .

• Rectified Linear Unit (ReLU) (Glorot et al., 2011): g(x) = max(0, x).

From Figure 3.2 we observe that the sigmoid and tanh non-linearities saturate as

|x| increases. More recently, the ReLU non-linearity has become increasingly popular.

Networks with saturating non-linearities need to be carefully initialised, while ReLU

networks are easier to optimise since they allow gradients to flow for arbitrarily deep

networks (Glorot et al., 2011). When the inputs to saturating non-linearities are very

44

large (or very small), the gradient with respect to the inputs becomes very small and

the error signal obtained to modify the network parameters is negligible. However,

for networks with ReLU activations, the gradient with respect to the inputs is always

1 provided the inputs are greater than 0, regardless of their magnitude (Figure 3.2).

This ensures that there is always a path through the network along which the gradient

can be propagated back, except for the unlikely case where all the activations are less

than 0.

3.2.2 Convolutional Networks

A convolutional layer is obtained by replacing the dot product in Equation 3.2 by a

convolution operation:

fl(hl−1, θl) = g(hl−1 ∗Wl + bl), (3.3)

with the convolution operation defined as:

x ∗W =
∑
m

∑
n

x[m,n]W [i−m, j − n]. (3.4)

In practice, the input hl−1 is 2-dimensional and additionally comprises several

channels or bands (RGB bands in an image for instance). The inputs are convolved

with a set of weights or kernels or filters. The convolution layer produces a 2D feature

map as output for each kernel. The resulting parameters are stored as a 4-dimensional

tensor, where the first dimension corresponds to the number of kernels, the second

dimension represents the number of input channels and the final dimensions represent

the shape of the kernels. The bias bl is a vector of dimensionality equal to the number

of kernels and θl = {Wl, bl} are the layer parameters.

Typically, the convolutional layers are followed by a sub-sampling or pooling layer.

The sub-sampling is performed by computing some statistics (for e.g. max, min or

45

Figure 3.3: Graphical structure of a ConvNet with 2 alternating convolutional and
pooling layers, followed by a series of fully connected layers. The convolutional filters
produce 2-D feature maps. The feature maps are stacked together to form h0, which
is represented by the additional depth dimension. The filters in the next layer jointly
act on receptive fields from all feature maps, which is represented by the extra depth
dimension of filter w1.

mean) over small regions of the feature map. Max pooling is the most common type

of pooling used in practice (LeCun et al., 2015). The pooling layers help learn in-

termediate representations that are invariant to small changes in the scale of inputs.

A typical convolutional neural net (ConvNet) consists of alternating layers of convo-

lutional and max-pooling layers, followed by one or more fully connected layers at

the top of the network. Figure 3.3 is a graphical representation of a ConvNet. More

elaborate architectures can be devised by optimising the number, type and order-

ing of layers for a given task (Lin et al., 2013; Szegedy et al., 2015). The structure

of ConvNets was inspired by studies on the feline visual cortex (Hubel and Wiesel,

1959). ConvNets were first applied to handwriting recognition (LeCun et al., 1998)

and have since been used to advance the state-of-the-art in many computer vision

tasks (LeCun et al., 2015). ConvNets are characterised by 3 main properties. The

use of 2-dimensional filters or local receptive fields exploits the spatial correlations

between neighbouring pixels (or neighbouring frequency bands or temporal frames

for audio) and produces 2-D feature map representations that preserve the spatial

46

structure of the inputs. Secondly, convolving receptive fields over the input or weight

sharing results in feature detectors or filters that are invariant to translation of ob-

jects within an image. Weight sharing also reduces the number of parameters in the

network, since the same set of filters is repeated over the entire image to produce a

feature map. This effectively reduces the number of model parameters and therefore

the model complexity. Finally, max-pooling which is the most common pooling op-

eration found in the literature, results in representations that are invariant to small

changes in scale of the inputs and to small rotations. The combination of these 3

properties have resulted in ConvNet architectures being used extensively for vision

and audio processing tasks.

3.2.3 Recurrent Networks

DNNs and ConvNets process inputs of a fixed size and are fundamentally ill-suited

for processing sequences. However naturally occurring information like audio, video

and natural language are all sequential. The recurrent neural network (RNN) archi-

tecture is designed specifically for processing sequences. Given a sequence of inputs

x = {x0, x1 . . . xT} and outputs y = {y0, y1 . . . yT}, an RNN performs the following

computation:

ht(ht−1, xt) = g(W rht−1 +W fxt + b) (3.5)

where xt is the input at step t, ht−1 is the previous state, W r,W f are recurrent and

forward weight matrices, b is the bias and g is an element-wise non-linearity. Figure

3.4 is a graphical representation of the RNN. The sequential nature of the processing

is due to the recurrent connections in the hidden layer. Given a sequence of inputs,

the recurrent hidden layer allows the RNN to maintain a state. Unlike feed-forward

neural networks that learn functions, an RNN can learn a sequence of computations

47

Figure 3.4: Graphical structure of an RNN for inputs x = {x0, . . . , xT} and outputs
y = {y0, . . . , yT} and one hidden layer. Similar to DNNs, recurrent hidden layers can
be stacked to produce deep RNNs. Wf ,Wr,Wo represent the input, recurrent and
output weight matrices, respectively.

like a program. In fact, it has been shown that RNNs can theoretically represent any

non-linear dynamical system (Siegelmann, 1995). The output sequence y is generated

as a function of the sequence of hidden states h = {h0, h1 . . . hT}. For the simplest

case, an output yt is generated for each input xt as follows:

yt = f(Woht + bo), (3.6)

where f is an appropriate activation function, Wo is the output weight matrix and bo is

the bias. In addition to the simple fully connected output layer in Equation 3.6, more

complicated output functions can be designed. For instance, the connectionist tem-

poral classification (CTC) architecture allows the number of outputs to be less than

or equal to the number of inputs (Graves et al., 2006) and the encoder-decoder archi-

tecture can have an arbitrary number of outputs in the output sequence (Sutskever

et al., 2014). Similarly to fully connected and convolutional layers, recurrent layers

can be stacked to produce deep RNNs (Graves, 2012a).

Recently, RNNs have been successfully applied to a wide variety of sequential

modelling problems such as speech recognition (Graves et al., 2006, 2013), music

48

transcription (Böck and Schedl, 2012), language modelling (Mikolov et al., 2011),

machine translation (Sutskever et al., 2014) and image captioning (Karpathy and

Fei-Fei, 2015).

3.3 Optimisation

So far, we have seen how neural networks can be used to define a large class of

parameterised functions. Given many examples of inputs and corresponding outputs,

the next step is to learn the parameters of the neural network in order to estimate an

effective function for a given task. In this section, we describe how the parameters of

a neural network are estimated.

3.3.1 Objective Function

Let us a consider a dataset D = {(x1, y1), . . . , (xN , yN)}, of i.i.d. examples of in-

put/output pairs. D is known as the training set. Let L be a loss function that

computes a scalar penalty or loss when the network outputs f(x,Θ) deviate from the

true outputs y. Ideally, we would like to minimise the loss function L over the set

of test or unseen examples. However, in practice, the set of unseen examples or test

set is not available while constructing the model. Therefore machine learning models

are trained by minimising the loss over the set of examples in the training set (Mohri

et al., 2012). The overall cost function over the training set is:

C(D|Θ) =
1

N

N∑
i=1

L(f(xi,Θ), yi), (3.7)

where f(xi,Θ) represents the network outputs and yi is the ground truth for input xi.

According to convention, we express all the optimisation problems as minimisation of

an objective function with respect to some constraints. Maximisation problems are

equivalent to minimising the negative objective function. Therefore, the model pa-

49

rameters are estimated by minimising the cost with respect to the model parameters.

Θ∗ = arg min
Θ

C(D|Θ) (3.8)

The loss function L can be of several forms depending on the assumptions made

about the distribution of the output variables. The most common function is the

squared error loss:

L(f(x,Θ), y) =
1

2
(f(x,Θ)− y)2. (3.9)

The squared error loss function is a natural choice when modelling real-valued out-

put variables that are assumed to be Gaussian distributed. When using the squared

error loss, the network outputs f(x,Θ) represent the expectation of the conditional

output distribution Ey[y|x] (Bishop, 2006) or the mean of the output Gaussian dis-

tribution. When neural networks are used for classification, the output variables

are typically non-Gaussian. For binary classification problems, the outputs form a

Bernouilli distribution where P (y = 1) = f(x,Θ) and P (y = 0) = 1 − f(x,Θ). The

conditional distribution over the outputs is given by:

P (y|x,Θ) = f(x,Θ)y{1− f(x,Θ)}1−y. (3.10)

The model is then trained by maximising the likelihood over all training examples

xi, yi ∈ D . This is also known as maximum likelihood estimation (MLE) since the

objective of training is to find a set of parameters that maximise the likelihood of the

training examples. In practice, the logarithm of the loss is minimised since products

of probabilities can cause floating point values to underflow very easily. By taking

the log, we obtain the cross-entropy loss function:

L(f(x,Θ), y) = −y log f(x,Θ)− (1− y) log(1− f(x,Θ)) (3.11)

50

Another case of interest is when the output distribution is multinomial. An output

yk ∈ {0, 1} is 1 only if k corresponds to the target class, otherwise it is 0, which leads

to the following cost function:

L(f(x,Θ), y) = −
K∑
k=1

yk log f(x,Θ)k. (3.12)

3.3.2 Output Activation Function

From the previous section we observe that the choice of loss function depends on the

type of output distribution being modelled. Similarly, the output activations of the

neural networks need to be selected in order to define the desired output distribu-

tion. The output activation functions are also known as inverse link functions in

statistics (Bishop, 2006). When modelling real-valued unbounded outputs, the out-

put activation is the identity transform. When modelling K independent Bernouilli

distributions, the output activation function is the sigmoid function (Section 3.2.1),

which ensures every output yk ∈ [0, 1]. A multinomial output distribution over K

outputs, is attained using the softmax activation function (Bridle, 1990):

P(yk = 1|x) =
eak∑
i e
ai
, (3.13)

where ak is the activation of kth output unit.

3.3.3 Numerical Optimisation

We are interested in the set of network parameters that minimise the chosen objective

function over the training set (Equation 3.8). The cost is a function of the network

parameter values and minimisation is performed in this high dimensional space. Deep

neural networks can have millions or even billions of parameters (Szegedy et al., 2015).

Searching by brute force through such a large space is intractable. Similarly, analyt-

51

ically solving ∇C(D|Θ) = 0 is also intractable (Bishop, 2006, Chapter 5). Therefore,

neural network parameters are estimated using numerical optimisation techniques.

At any point Θ, ∇C(D|Θ) is the direction of increase for C. Therefore moving in the

direction opposite to the gradient provides the direction of steepest descent. Formally,

given a cost function C, a set of parameters Θn, the gradient ∇C(D|Θ) at Θn, the

parameters are updated as:

Θn+1 ← Θn − ε∇C(D|Θ), (3.14)

where ε is called the learning rate and is usually a small value that controls the

distance moved along the negative gradient at Θ. This algorithm for numerical opti-

misation is called gradient descent (Bishop, 2006, Chapter 5). The algorithm begins

with a random configuration of parameters Θ0 and iteratively updates the parameters

by calculating the gradients at each step.

In order to estimate the parameters of neural networks with gradient descent, it

must be possible to efficiently compute the gradient of the cost function with respect

to the model parameters. The backpropagation algorithm is an efficient algorithm

for evaluating the derivatives of the cost function (Hinton, 1986; Rumelhart et al.,

1988). The backpropagation algorithm uses the chain rule for partial derivatives to

analytically derive expressions for the gradient. The gradients are first computed with

respect to the parameters of the output layer. The gradients with respect to all other

parameters are calculated by sequentially applying the chain rule. The only constraint

for the backpropagation algorithm is that the cost function should be differentiable

with respect to the model parameters at the points of interest. Therefore, as long as

the intermediate computations are differentiable, we can define a very large family

of neural network models by carefully designing the network architecture, activation

functions and the loss function for a given problem. The generality of backpropagation

allows for construction and training of complex neural network architectures, for

52

example defining cost functions like the connectionist temporal classification objective

(Graves et al., 2006), adding external memory units to RNNs (Grefenstette et al.,

2015) and adding an attention mechanism to RNNs (Bahdanau et al., 2014).

3.3.3.1 Stochastic Gradient Descent

The numerical optimisation algorithm described above can be used to optimise neural

networks given a differentiable cost function. However the computation of the cost

involves calculating the cost for all examples in the training set, also known as batch

training. As mentioned before, one of the reasons for the success of neural networks

has been the use of very large datasets. When using very large datasets, computing

gradients for the entire dataset at every iteration makes training prohibitively slow.

In practice, neural networks are trained with the stochastic gradient descent (SGD)

algorithm (Bottou, 2010; LeCun et al., 2012). Rather than averaging the gradients

over the entire set of training examples, in SGD, gradients are computed for either

a single randomly chosen sample or averaged over a small batch or minibatch of

randomly chosen samples from the dataset. Therefore, SGD replaces the true gradient

or batch gradient by an estimate of the true gradient, based on randomly sampling

single samples or minibatches of samples from the training dataset. Small batches

of data can be processed relatively quickly on GPUs and therefore SGD updates can

drastically help reduce training time. SGD also efficiently tackles the redundancy in

data, while the noisy gradient estimates have empirically been shown to be useful

for finding good minima (LeCun et al., 2012). SGD benefits greatly from careful

initialisation of the model parameters and other optimisation tricks like momentum

(Sutskever et al., 2013). In Equation 3.14, the learning rate ε is a hyperparameter of

the optimisation algorithm that needs to be tuned. Various studies propose different

schedules for updating the learning rate. Recently, several adaptive learning rate

methods like ADAGRAD (Duchi et al., 2011), ADADELTA (Zeiler, 2012) and ADAM

53

(Kingma and Ba, 2014) have been proposed that dynamically adapt the learning rate

for each parameter based on first order gradient information.

3.3.3.2 Hessian Free Optimisation

Hessian Free (HF) optimisation is a second order optimisation algorithm which has

successfully been used to train DNNs and RNNs (Martens, 2010; Martens and Sutskever,

2011). Given a set of parameters Θ, a local quadratic approximation to the cost is:

C(Θ + δ) ≈ C(Θ) +∇C(Θ)T δ +
1

2
δTHδ, (3.15)

Hi,j =
∂2C

∂Θi∂Θj

, (3.16)

where H is called the Hessian matrix. Setting the partial derivative of Equation 3.15

with respect to δ equal to 0 gives:

δ = H−1∇C(Θ). (3.17)

Equation 3.17 is also known as the Newton-Raphson method (Fletcher, 2013) and

involves computing H−1, which is prohibitively computationally expensive for large

neural networks. This is due to the fact that in the worst case, inverting a square

matrix of size N involves computations of O(N3) and for neural networks N can be of

the order of millions. Unlike second order Newton’s method, HF proceeds by partially

optimising Equation 3.15 with the method of Conjugate Gradients (CG) (Fletcher

and Reeves, 1964). The method of CG is used to iteratively minimise functions of

the form:

f(x) =
1

2
xTAx− xT b, (3.18)

where x ∈ Rn and A is positive definite. Therefore at any step the HF optimisation al-

gorithm proceeds as follows: given some set of parameters Θn, first calculate ∇C(Θn).

54

Then calculate a damped approximation to the Hessian matrix H ′ = H(Θn)+λ. The

damping term is introduced to ensure that the resulting matrix is positive definite.

Then use CG to minimise Equation 3.18, with x = δ, A = H ′ and b = −∇C(Θn).

Finally update the parameter estimates Θn+1 ← Θn + δ.

HF has been successfully used to train RNNs to learn dependencies over long

intervals. The CG optimisation step in HF works well when using large batches of

data. This drastically reduces the number of training iterations used for HF, though

each iteration is computationally much more expensive.

3.3.3.3 Optimising RNNs

RNNs are characterised by the recursive update of the hidden state (Equation 3.5).

Consequently, the hidden state ht is a function of all previous hidden states {h0, . . . , ht−1}.

RNNs are trained using a modified backpropagation algorithm called back propaga-

tion through time (BPTT) (Werbos, 1990) which accounts for the error flow due to

the recursive connections. Although RNNs can theoretically learn dependencies over

very long intervals, it was discovered that training them to do so in practice is quite

difficult (Bengio et al., 1994).

Let us consider a sequence of inputs x = {x0, . . . , xT} and outputs y = {y0, . . . , yT}.

The cost for the whole sequence is C =
∑T

t=0 L(f(xt,Θ), yt), where L is some scalar

loss. Let us consider two time-steps in the sequence, ta, tb with ta < tb. The gradient

of the cost at tb is as follows:

∂Ctb
∂θ

=
∑
t≤tb

∂Ctb
∂htb

∂htb
∂ht

∂ht
∂θ

, (3.19)

∂htb
∂hta

=

tb∏
τ=ta+1

∂hτ
∂hτ−1

. (3.20)

From equation 3.19 we observe that the gradient of the cost at any time tb also

includes error terms summed over all sub-sequences, which includes products of Ja-

55

cobian matrices
∂htb
∂ht

(Equation 3.20). As the distance between tb and t increases, the

product of many Jacobian matrices either explodes if the leading eigenvalues are > 1

or vanishes if the leading eigenvalues are < 1. This implies that gradients either ac-

cumulate or vanish over long intervals and therefore learning long-term dependencies

with RNNs is difficult.

3.3.4 Long Short Term Memory

The most popular approach to dealing with exploding/vanishing gradients is the use

of long short-term memory (LSTM) units in an RNN (Hochreiter and Schmidhuber,

1997). In a standard RNN, the previous hidden state ht−1 is multiplied by a weight

matrix before being added to the projected input. Repeated multiplication by the

recurrent weight matrix over several time steps causes information from the past to

be lost, making it hard to learn long-term dependencies (Section 3.3.3.3). The LSTM

architecture circumvents this issue by making the update to the hidden units or cells,

additive rather than multiplicative. In addition to the additive update, LSTM units

employ a gating mechanism for all the inputs and output units. It is worth mentioning

that these gating units are not restricted to LSTMs and have also been found useful

in training very deep feedforward networks (Srivastava et al., 2015; Oord et al., 2016)

Figure 3.5 is a graphical representation of the LSTM architecture. Let xt be

the input vector at time index t, let ct be the value of the internal cell state of the

LSTM and let ht be the outputs from the LSTM at time-step t. The input-to-hidden

transformation is obtained as:

it = σ(Wi.[ht−1, xt] + bi), (3.21)

c̃t = tanh(Wc.[ht−1, xt] + bc), (3.22)

where c̃t represents the same transformation as Equation 3.5. Wi, bi are the input

56

gate weights and biases and Wc, bc are the weights and biases for the inputs to the cell.

The only difference between the computation of it and c̃t is that the outputs of the

input gate are passed through a sigmoid function (as opposed to the tanh function)

and have values between 0 and 1, therefore acting as soft gates. Next, the value of

the LSTM cells is updated as follows:

ft = σ(Wf .[ht−1, xt] + bf), (3.23)

ct = ft � ct−1 + it � c̃t, (3.24)

where ft represent the forget gates, Wf , bf represent the weight matrix and bias for

the forget gate and � is an element-wise multiplication. Therefore the value of the

previous cell state is first passed through a forget gate before being added to the gated

inputs to the cell. Finally the cell outputs the following:

ot = σ(Wo.[ht−1, xt] + bo), (3.25)

ht = ot � tanh(ct), (3.26)

where ot represents the output gate and Wo, bo are the weights and bias for the

output gate. The output of the LSTM is the value of the cell units passed through an

output gate. Therefore the additive update to the cell states coupled with the use of

a gating mechanism allows the LSTM to retain information over long time-periods.

Recently, RNNs have enjoyed success in many domains (Section 3.2.3) and opti-

mising RNNs has been a problem of interest. There have been several insights that

allow more effective training of RNNs. The use of gradient clipping is a simple heuris-

tic for preventing exploding gradients (Bengio et al., 2013). Additionally, there are

studies that investigate how the norm of the recurrent matrix can be constrained in

order to avoid exploding/vanishing gradients (Saxe et al., 2013; Le et al., 2015). There

57

Figure 3.5: A graphical representation of the LSTM. From the figure we note that
all 3 gates (input, forget, cell) receive xt, ht−1 as inputs. The cell values at t− 1 are
multiplied by a forget gate and the result is added to the gated inputs as opposed to
the standard RNN where the updates are multiplicative. Finally the cell state values
are multiplied with the output gate to give the LSTM outputs ht.

have also been some studies that explore different gating and update mechanisms to

improve learning (Jozefowicz et al., 2015).

3.3.5 Regularisation

One of the most common issues with training machine learning algorithms is overfit-

ting, which is when the trained model is a good predictor on the training data but

performs poorly on unseen test data (Bishop, 2006, Chapter 3). When models have

many parameters, which is the case with neural networks with many layers, there are

many parameter configurations that might lead to good performance on the training

set but generalise poorly to new data. Given that the test set is not available dur-

ing training, there is no obvious way to overcome this difficulty. Typically, certain

assumptions about the data and the model parameters are made in order to improve

model generalisation. This process is known as regularisation.

58

Regularisation is a means to constrain the search space of model parameters. The

most common form of regularisation used to train neural networks is L2-regularisation

or weight decay. L2-regularisation (or ridge regression in statistics) is applied by

introducing an additive term to the optimisation objective:

C̃(Θ) = C(Θ) +
λ

2
‖Θ‖2

2, (3.27)

where λ is the weight decay constant, ‖x‖p :=

(∑D
i=1 |xi|

p

)1/p

and Θ is the set of

model parameters. The L2-regularisation term in the objective function introduces

a trade-off between minimising the cost and minimising the magnitude of the model

parameters. The term weight decay arises from the fact that the parameter updates

have an extra −λ‖Θ‖2 term, which causes a decay in the parameter values over

successive iterations (Section 3.3.3).

L1-regularisation (or lasso regularisation in statistics) is another simple regulari-

sation technique with the following objective function:

C̃(Θ) = C(Θ) + α‖Θ‖1, (3.28)

where α is a constant. Unlike L2-regularisation, the L1 constraint encourages the

parameters to be sparse (Bishop, 2006, Chapter 3). Both L1 and L2-regularisation

prevent overfitting by limiting the model complexity by encouraging many model

parameters to be close to 0.

Recently Dropout (Srivastava et al., 2014) has become an indispensable part of

the neural network optimisation toolkit. Dropout is a simple regularisation technique

that has been shown to be effective at controlling overfitting in large neural networks.

Given an input x ∈ RD to the neural network, a binary mask m ∈ {0, 1}D is sampled

from a Bernouilli distribution with probability p. The new masked input to the

59

network is computed as:

mi ∼ Bernouilli(p), (3.29)

x̃ = m� x. (3.30)

The above operation is usually performed on all the layers of the network excluding

the outputs. Dropout has proved to be a very simple and effective way to prevent

overfitting in neural networks. The effectiveness of Dropout can be explained qualita-

tively as follows. By randomly dropping out certain activations, the network weights

are forced to learn good features independently, without depending on other features

in the layer. Therefore Dropout inhibits the co-adaptation of features (Srivastava

et al., 2014). Alternatively, Dropout can also be seen as a form of model averaging.

When an activation is dropped, it is equivalent to pruning parts of the network or

setting certain weights to 0. Therefore with each Dropout mask that is sampled, a

sub-network of the entire network is optimised. Therefore in effect, we train an en-

semble of networks with varying architectures and shared weights. The predictions at

test time represent approximate predictions from this ensemble, contributing to lower

generalisation error. Recent work has cast Dropout in a probabilistic setting which

allows calculation of uncertainty estimates of the predictions from neural networks

(Gal and Ghahramani, 2015).

Another simple but effective regularisation technique is early stopping (Bishop,

2006, Chapter 5). Since the objective is to train a model that performs well on unseen

data, a subset of data is randomly selected and used as a validation set. The examples

in the validation set are not used for numerical optimisation of the model parameters

(Section 3.3.3). Instead, the validation set is used to monitor the model performance

on unseen data. Typically, the cost on the training set continues to decrease while

the cost over the validation set begins to saturate or even increase (Figure 3.6). Early

stopping is used to determine when to stop training and updating parameter values.

60

Figure 3.6: Training and validation cost as a function of the number of training
epochs.

Qualitatively, saturation of cost over the validation set is seen as an indication that

the model is starting to overfit the training examples and therefore stopping training

when validation error is minimum is a natural choice. In our experiments, we monitor

the validation cost at the end of every epoch of training, which is defined as one

iteration over the entire training set. Training is stopped if the validation cost does

not decrease after a pre-determined number of epochs.

Since overfitting is a very common occurrence in neural networks with many pa-

rameters, typically all of the above techniques are used simultaneously to try and

control overfitting.

3.4 Density Estimation

So far the discussion has been restricted to the case of supervised learning, where

the objective is to learn a mapping f : X → Y given many input/output pairs

61

Figure 3.7: Graphical structure of the RBM. There are no connections between vari-
ables in the same layer, while every variable xi is connected all variables hi and vice
versa. Note that the connection between variables are undirected.

as examples. Another problem of interest is the problem of estimating probability

distributions over a given set of points. This is also known as generative modelling

because the trained models can be used to generate new data by sampling from the

distributions. Here we describe the restricted Boltzmann machine (RBM) and the

neural autoregressive distribution estimator (NADE).

3.4.1 Restricted Boltzmann Machines

The RBM is an energy based model (LeCun et al., 2006) that estimates a joint

probability distribution over a set of input variables x ∈ {0, 1}D and a set of hidden

or latent variables h ∈ {0, 1}K . Each hidden variable hi is fully connected to all visible

variables x and each visible variable xi is fully connected to all hidden variables h,

however all connections between variables in the same layer are restricted (Figure

3.7). The joint probability is computed as:

P (x, h) =
exp(−bTv x− bThh− hTWx)

Z
, (3.31)

Z =
∑
x,h

exp(−bTv x− bThh− hTWx), (3.32)

62

where Z is the normalising constant and is known as the partition function. bv, bh

are the visible and hidden biases, while W is the weight matrix. Computing the

partition function exactly is intractable since it involves a summation over all possible

configurations of the variables which is exponential in the dimensionality of x and h.

The marginal probability of x can be expressed in terms of the free energy:

P (x) = exp(−F (x))/Z, (3.33)

F (x) = −bTv x−
K−1∑
i=0

log(1 + ebh+Wx)i, (3.34)

where F (x) is the free energy (Bengio, 2009, Chapter 5) and K is dimensionality

of the hidden vector h. RBMs are also trained using gradient based methods. The

gradient of the log-likelihood involves the following terms:

∂(− logP (x))

∂Θ
=
∂F (x)

∂Θ
− ERBM[

∂F (x)

∂Θ
], (3.35)

where the second term ERBM[∂F (x)
∂Θ

] denotes an expectation over the model distribution

(Bengio, 2009, Chapter 5). Calculating the expectation analytically is intractable.

The expectation of the gradient of the free energy is approximated by drawing samples

from the model distribution instead. It has been found that even one sample can work

well in practice. Samples are drawn using alternative Gibbs sampling steps (h|x and

x|h). This is known as the Contrastive Divergence algorithm (Hinton, 2002). The

binary units of an RBM can be replaced with Gaussian visible units to estimate

distributions over real-valued inputs (Welling et al., 2004).

3.4.2 Neural Autoregressive Distribution Estimator

The NADE is a distribution estimator for high dimensional binary data (Larochelle

and Murray, 2011). The NADE was initially proposed as a tractable alternative

63

to the restricted Boltzmann machine (RBM). Consider a vector of binary variables

x ∈ {0, 1}D. Let xi denote the ith entry in x and let x<i = {x0, . . . , xi−1}. The NADE

estimates the joint distribution over high dimensional binary variables as follows:

P (x) =
∏
i

P (xi|x<i).

The NADE is similar to a fully visible sigmoid belief network (Neal, 1992), since the

conditional probability of xi is a non-linear function of xi−1
0 . The NADE computes

the conditional distributions according to:

hi = σ(W:,<ix<i + bh), (3.36)

P (xi|x<i) = σ(Vihi + biv), (3.37)

where W,V are weight matrices, W:,<i is a sub-matrix of W that denotes the first i

columns and bh, bv are the hidden and visible biases, respectively. The equation for

the conditional distribution (Equation 3.37) is equivalent to a feed forward neural

network with tied weights (Larochelle and Murray, 2011). The gradients of the like-

lihood function P (x) with respect to the model parameters θ = {W,V, bh, bv} can be

found exactly, which is not possible with RBMs (Larochelle and Murray, 2011). This

property allows the NADE to be readily combined with other models and the models

can be jointly trained with gradient based optimisers.

3.4.3 Distributions Over Sequences

Learning distributions over sequences is an important task. Generative sequential

models find applications where prior probabilities over sequences are required, for

example language modelling (Mikolov et al., 2010). RNNs can be used to define

64

Figure 3.8: Graphical structure of the generative RNN for an input sequence y =
{y0, . . . , yT}. At any time t, the RNN yields a distribution over the outputs at t+ 1.
Wf ,Wr,Wo represent the input, recurrent and output weight matrices, respectively.

distributions over sequences. Given a sequence y = {y0, . . . , yt}, the joint probability

can be factorised using the product rule:

P (y) = P (y0)
∏
t>0

P (yt|yt−1
0), (3.38)

where yt0 = {y0, . . . , yt}. An RNN that is trained to maximise the likelihood

of yt given yt−1
0 , yields the desired distribution over the sequence y (Figure 3.8).

Alternatively, a generative RNN can be seen as an RNN model where the output at

t is connected to the input at t− 1.

In Section 3.3.2, we discussed how the output layer activation functions deter-

mine the type of output distribution. Although we discussed 3 commonly used out-

put distributions (Gaussian, Bernouilli, multinomial), it is possible to define more

complicated output distributions with neural networks. For example a GMM is used

to model the output distribution in mixture density neural networks (Bishop, 1994)

where the network is trained to output the means and variances of a GMM. Simi-

larly, a recurrent mixture density network can be used to define distributions over

real-valued sequences (Schuster, 1999). In general, neural networks can define more

65

complex families of output distributions by letting the network output the parameters

of distribution estimators. As long as the log-likelihood of the distribution estimator

is differentiable with respect to its parameters, the entire network can be trained with

gradient descent. In Boulanger-Lewandowski et al. (2012), the authors use an RBM

and a NADE to define a high-dimensional joint distribution over a sequence of binary

variables.

3.5 Other Models

In addition to the neural network models described above, we also use other machine

learning models for comparisons, especially in Chapter 6. Here we present the relevant

background for the remaining models presented in this thesis.

3.5.1 Gaussian Mixture Models

Given a D dimensional feature vector x, a GMM (Bishop, 2006, Chapter 2) is a

weighted sum of Gaussian component densities which provides an estimate of the

likelihood of x being generated by the probability distribution defined by a set of

parameters θ:

p(x|θ) =
M−1∑
i=0

wi · g(x|µi,Σi), (3.39)

where:

g(x|µi,Σi) =
1

(2π)
D
2 |Σi|

1
2

· e−
1
2

(x−µi)T Σ−1
i (x−µi), (3.40)

where θ = (µi,Σi, wi)0≤i<M is the parameter set, M is the number of Gaussian com-

ponents, µi is the mean, Σi the covariance matrix and wi is the weight for the ith

Gaussian component. In practice, the likelihood is computed in the log domain to

avoid numerical underflow. Furthermore, the covariance matrices are constrained to

66

be diagonal, thus transforming Equations (3.39) and (3.40) into:

log p(x|θ) = logsumM−1
i=0

{∑D−1
d=0 (xd − µi,d)2 · σ−1

i,d + wi

}
+K (3.41)

where d is the dimension index, constant K can be neglected for classification pur-

poses, and logsum symbolises a recursive version of function log(a + b) = log a +

log(1 + e(log b−log a)) (Murphy, 2006).

3.5.2 Support Vector Machines

Support Vector Machines (SVMs) (Burges, 1998) are discriminative classifiers. Given

a set of data points belonging to two different classes, an SVM determines the optimal

separating hyperplane between the two classes of data. In the linearly separable case,

this is achieved by maximising the margin between two hyperplanes that pass through

a number of support vectors. The optimal separating hyperplane is defined by all

points x that satisfy:

x · w + b = 0, (3.42)

where w is a normal vector to the hyperplane and |b|
‖w‖ is the perpendicular distance

from the hyperplane to the origin. Given that all data points xi satisfy:

 xi · w + b ≥ 1 for labels yi = +1

xi · w + b ≤ −1 for labels yi = −1
(3.43)

It can be shown that the maximum margin is defined by minimising ‖w‖2
2

(Burges,

1998). This can be solved using a Lagrangian formulation of the problem, thus

producing the multipliers αi and the decision function:

f(x) = sgn
(N−1∑

i=0

yiαix · xi + b
)
, (3.44)

67

where N is the number of training examples and x is a feature vector we wish to

classify. In practice, most of the αi turn out to be zero and the xi for non-zero αi are

called the support vectors of the algorithm.

In the case where the data is not linearly separable, a non-linear kernel function

K(xi, xj) can be used to replace the dot products x · xi, which effectively projects

the data into a higher dimensional space where it could potentially become linearly

separable. The decision function then becomes:

f(x) = sgn
(N−1∑

i=0

yiαiK(x, xi) + b
)

(3.45)

Commonly used kernel functions include:

• Linear: K(x, xi) = x · xi

• Polynomial: K(x, xi) = (x · xi)d

• Radial basis function (RBF): K(x, xi) = exp(−γ|x− xi|2)

• Sigmoid: K(x, xi) = tanh(x · xi)

A further refinement to the SVM algorithm makes use of a soft margin whereby

a hyperplane can still be found even if the data is non-separable (perhaps due to

mislabelled examples) (Burges, 1998). The modified objective function is defined as

follows:

arg min
w,ξ,b

{
1

2
‖w‖2 + C

n∑
i=1

ξi

}
(3.46)

subject to: yi(w · xi − b) ≥ 1− ξi, ξi ≥ 0,

where ξi are non-negative slack variables. The modified algorithm finds the best

hyperplane that fits the data while minimising the error due to misclassified data

points. The importance of these error terms is determined by parameter C, which

can control the tendency of the algorithm to over fit or under fit the data.

68

3.6 Implementation

So far we have discussed the mathematical and theoretical foundations of the neural

network models used in this thesis. As mentioned earlier, one of the main contributors

to the recent success of neural networks has been the ability to design and train

networks which are very deep, might contain millions of parameters and that can be

trained on very large datasets. The flexible design and training of neural networks has

been made possible by the development of open source libraries such as TensorFlow,

Theano and Torch. The key idea behind all these libraries is the fact that they

act as compilers for symbolic mathematical expressions. The libraries allow users to

define computational graphs by composing symbolic representations of mathematical

expressions. For example, the cost function of a particular neural network architecture

can be defined as a symbolic computational graph. Once computational graphs are

defined, the libraries are able to optimise various computations to compile highly

efficient code for either CPUs or GPUs. Additionally, a symbolic representation of

the computations allows the libraries to perform symbolic differentiation with respect

to arbitrary graph inputs. When the graphs represent neural networks, this property

can be used to automatically compute the gradients for a given instance of a neural

network architecture. This flexible approach has allowed researchers to design and

experiment with neural network architectures.

The neural network models presented in the remainder of this thesis were im-

plemented using the Theano library for Python. Symbolic graphs were defined for

different neural network architectures (DNN, RNN, CNN, NADE) and training was

performed on a Tesla K40c GPU. Although writing defining neural networks from

scratch using Theano is useful to gain familiarity with various aspects of the neural

network architectures and indeed the dynamics of training, in the last 2 years there

have been several libraries that have been built on top of Theano and TensorFlow

that further simply the implementation and consequently experimentation with neu-

69

ral networks. Readers are referred to Lasagne1 and TFLearn2, which are built on top

of Theano and TensorFlow respectively. These open source projects offer a large num-

ber of flexible neural network architectures, optimisers and techniques for handling

low-level data.

3.7 Conclusion

In this chapter, we presented the necessary background and definitions for the neural

network models used in the remaining chapters. We described feed forward, convolu-

tional and recurrent neural network layers. We also show how neural network models

can be used for density estimation. We described the gradient descent algorithm,

along with a number of commonly used heuristics (like regularisation, dropout, gra-

dient clipping) for effectively estimating the parameters of neural networks. In the

following chapter, we describe how neural network models can be used for automatic

music transcription of polyphonic music.

1www.lasagne.com
2www.tflearn.com

70

Chapter 4

Automatic Music Transcription

In this chapter we describe experiments which employ neural network based models

for automatic music transcription. In the first section, we describe experiments with

piano music transcription. The motivation for performing experiments with piano

music is that labelled datasets of piano music are more readily available, compared

to other instruments. This allows us to compare the performance of neural network

transcription systems which require a lot of training data, to other methods found

in the literature. In addition to processing the acoustic signal, we also investigate

whether neural network music language models (MLMs) which define a prior prob-

ability distribution over sequences of polyphonic music, help improve transcription

accuracies. Furthermore, we investigate the problem of estimating the mode of the

conditional output distributions of an RNN.

In the second section, we present experiments with multi-instrument polyphonic

music. These experiments represent a more general experimental setup, where the

recording contains more than one instrument and large amounts of labelled training

data are not available for each instrument. The aim of these experiments is to inves-

tigate whether MLMs can improve transcription performance, when labelled training

data for the acoustic models is scarce and the MLMs are trained on a set of musical

71

scores that are disjoint from the training set of the acoustic model. We present a

method for combining the predictions of a latent variable PLCA acoustic model with

an RNN MLM and investigate system performance on a dataset of multi-instrument

polyphonic music.

4.1 Polyphonic Piano Music Transcription

This section describes experiments with neural networks for transcribing piano mu-

sic. We are interested in designing an end-to-end architecture for polyphonic AMT.

It is worth noting that although it is possible to train neural network acoustic models

directly on raw audio samples (Graves, 2012b; Dieleman and Schrauwen, 2014), it has

been observed that such models are computationally more expensive and do not yield

a major improvement in performance compared to pre-processing the waveforms into

time-frequency features like the STFT or CQT. Given the fact that datasets in MIR

can be orders of magnitude smaller than speech datasets, we assume that all audio

waveforms in this thesis are pre-processed into some time-frequency representation.

One of the motivations for using deep neural networks architectures is to allow the

model to automatically learn the most useful transformations or features directly

from a low-level time-frequency representation of the audio in order to correctly iden-

tify pitches. These experiments aim to carry out fair comparisons between neural

network acoustic models and 2 state-of-the-art acoustic models, given sufficient train-

ing data. Secondly, we investigate how MLMs can be incorporated into transcription

systems. Similar to language models in speech, MLMs have the potential to signif-

icantly improve transcription accuracies. Language models in speech are trained on

large corpora of text. Similarly, MLMs can be trained on large corpora of musical

scores without the need for any manual annotation or labelling. Despite the strong

motivation for MLMs, their application to music transcription has been limited due

72

(a) C3 Note (b) All notes (ascending and descending)

Figure 4.1: Constant Q Transform plots for examples in the MAPS dataset.

to the high-dimensionality of the output space of polyphonic music. In these exper-

iments, we investigate how neural network MLMs can be incorporated into existing

transcription systems. Finally, we also investigate how to better decode the high-

dimensional conditional distributions obtained as outputs from an RNN. The rest of

this section is organised as follows: we first describe the various neural network ar-

chitectures used for acoustic modelling. We then describe the RNN MLMs. Next, we

present the proposed model for combining acoustic and language model predictions.

Finally we present results from experiments with the proposed model on a dataset of

piano music.

4.1.1 Preprocessing

We transform the input audio to a time-frequency representation which is then used

as input to the acoustic models. In the past, Sigtia et al. (2015a) used the magni-

tude short-time Fourier transform (STFT) as input to the acoustic models. However,

here we experiment with the constant Q transform (CQT) as the input representation

73

(Brown, 1991). There are two motivations for this. Firstly, the CQT is fundamentally

better suited as a time-frequency representation for music signals, since the frequency

axis is linear in pitch (Figure 4.1b). Secondly, the log-frequency axis requires fewer

frequency bins to effectively cover a given range, resulting in a more compact repre-

sentation. This is practically very useful given that the human auditory range covers

approximately ten octaves (from 20 Hz to 20kHz). For the CQT representation, the

spectral resolution is higher for lower frequencies and decreases for higher frequencies.

From a machine learning perspective, a compact representation is useful when using

neural networks since it reduces the number of parameters in the model.

We downsample the audio to 16 kHz from 44.1 kHz. We then compute CQTs over

7 octaves with 36 bins per octave and a hop size of 512 samples, resulting in a 252

dimensional input vector of real values, with a frame rate of 31.25 frames per second.

Additionally, we compute the mean and standard deviation of each dimension over

the training set and transform each vector by subtracting the mean and dividing by

the standard deviation. These pre-processed vectors are used as inputs to the acoustic

model.

4.1.2 Acoustic Models

The acoustic model is used to identify the active pitches in a short frame of audio.

Acoustic models can be broadly divided into 2 classes: supervised and unsupervised

acoustic models. Supervised acoustic models can in theory be trained on complex

mixtures of instrument sources, without having to account for each instrument sep-

arately. This is in contrast to NMF/PLCA acoustic models that require instrument

specific prior knowledge for transcription. For AMT, acquiring large datasets of mu-

sical recordings with corresponding human annotated transcriptions is a difficult task

(Su and Yang, 2015). Consequently, the datasets available for AMT are usually quite

small and unsupervised or NMF-based acoustic models are preferred over supervised

74

models. In this study, we aim to compare the performance of supervised neural net-

work acoustic models to two popular state-of-the-art acoustic models. In order to be

able to make fair comparisons, we perform experiments on a dataset of piano music

with sufficient data for training neural networks. In this section, we describe the

various neural network architectures considered for acoustic modelling.

4.1.2.1 DNNs

Given an input frame of features xt at any time t, the DNN with one or more hidden

layers is trained to predict the probability of pitches yt (Figure 3.1). The DNN

yields a probability distribution P (yt|xt). Each yt is an 88-dimensional binary vector

representing the keys on a piano. The input to the DNN is xt, a frame of preprocessed

CQT. A sigmoid non-linearity is applied to the activations of the output layer and

each output represents P (yt(i) = 1|xt), the probability of the ith pitch being on.

4.1.2.2 RNNs

DNNs make a prediction given a frame of acoustic features as inputs. However, a

single frame of features contains insufficient data since a frame is ambiguous with-

out its context. There are many previous studies in MIR that suggest that rather

than classifying a single frame of input, better prediction accuracies can be achieved

by incorporating information over several frames of inputs (Bergstra et al., 2006;

Boulanger-Lewandowski et al., 2013a; Sigtia and Dixon, 2014). Unlike DNNs, RNN

acoustic models incorporate past inputs while making a prediction (Figure 3.4). Given

a sequence of inputs xt0 = {x0, . . . , xt}, the RNN yields an output probability distri-

bution P (yt|xt0). Through the recurrent hidden state (Equation 3.5), the RNN is able

to model distributions that are conditioned on the entire input sequence xt0.

75

4.1.2.3 ConvNets

ConvNets contain one or more layers of convolutions, in addition to fully connected

layers (Section 3.2.2, Figure 3.3). Although ConvNets were designed for processing

images, they have been successfully applied to speech recognition (Abdel-Hamid et al.,

2012, 2013). We use ConvNet acoustic models to estimate a distribution P (yt|xt+kt−k),

where the input to the acoustic model is a context window of features of size 2k + 1

and the ConvNet is trained to predict the targets corresponding to the central frame

in the window. Unlike RNNs, ConvNets use a fixed size context that incorporates

information from both past and future frames. When applied to a time-frequency

input representation like the CQT, ConvNets can potentially learn features that are

invariant to pitch transpositions, such as inter-harmonic spacings for music signals

which are constant across log-frequency. Although this is theoretically possible with

fully connected networks, we would require a very large number of training examples

for the network to discover such regularities. Another important property of ConvNets

is that the size of the input window can be increased without necessarily increasing

the size of the convolutional filters, thereby resulting in models with fewer parameters

(Section 3.2.2). Although ConvNets have been applied to some problems in MIR

(Schlüter and Böck, 2014; Humphrey and Bello, 2012), they remain unexplored for

AMT tasks.

4.1.3 Music Language Models

As mentioned earlier, the motivation for statistical models of sequences of music is

similar to the motivation for statistical language models in speech recognition. Often

the acoustic signal on its own may not contain all the information necessary to identify

the correct words contained in the signal. Languages exhibit structural regularities

which can be used to make better predictions. Similarly for music, the structural

regularities and patterns in sequences of music can be used to improve predictions

76

of AMT systems. From a probabilistic perspective, when trying to estimate P (y|x),

language models provide a prior P (y) for the likelihood of the sequence y.

Given a sequence of transcriptions in piano-roll notation y = yt0, we use the MLM

to define a prior probability distribution P (y). yt is an 88-dimensional binary vector

that represents the notes being played at t (one time-step of a piano-roll representa-

tion). Index 0 represents A0 (27.5 Hz) and index 87 corresponds to C8 (4186 Hz).

The motivation for using MLMs is to learn harmonic rules and patterns in music

and use this information to improve transcription. The harmonic content of music

includes information related to musical intervals, scales and chords. In addition to

the harmonic content of music, there are also temporal structural patterns like the

synchronisation of pitch changes and durations of pitches or inter-onset intervals and

also more higher level musical structure like verses and chorus. The MLMs presented

here explicitly model the harmonic properties only, while higher-level temporal infor-

mation (like beats, duration) is ignored.

Compared to language modelling for speech, modelling the structure of music is

complicated by the presence of polyphony and complex long-term temporal structure.

Due to polyphony, the number of possible note combinations is exponentially large, for

example there are 288 possible note combinations for 88 notes on a piano. Secondly,

statistical modelling of the long-term repeating structure of polyphonic notes is a

difficult task. Most transcription systems make the simplifying assumption that all

notes are independent and model the temporal evolution of notes independently (one

model per note) (e.g. Poliner and Ellis (2007)). Models of this kind are capable of

learning the durations of notes and smoothing the predictions of the acoustic models.

Although there are some studies that investigate jointly modelling the temporal and

polyphonic structure of music (Raczynski et al., 2013), the problem of music language

modelling has been largely ignored for AMT. In this section, we describe RNN based-

architectures for MLMs.

77

Figure 4.2: Graphical structure of the RNN-NADE for an input sequence y =
{y0, . . . , yT}. Compared to the generative RNN (Figure 3.8), the parameters of a
NADE at time t are conditioned on the hidden state ht and the conditional distribu-
tion P (yt+1|yt0) is obtained from the NADE for all t.

4.1.3.1 Generative RNN

In section 3.4.3 we described how RNNs can be used to define probability distribu-

tions over sequences (Equation 3.38). When the inputs to the generative RNN are

formed by sequences of polyphonic music y = yt0, the model describes an MLM. Al-

though an RNN MLM yields a distribution P (yt|yt−1
0), the individual pitch outputs

yt(i) are conditionally independent given yt−1
0 , where i is the pitch index. As men-

tioned earlier, this is not true for polyphonic music where harmonies and chords are

formed by multiple simultaneously sounding notes. Therefore, although RNN MLMs

can be used to define a distribution over a sequences of symbolic music, the output

distribution at each time step is limited to modelling independent pitches. It should

be noted that although this is a limitation, a generative RNN is conditioned on high

dimensional input sequences and is more general than using 2-state HMMs for each

pitch separately.

78

4.1.3.2 RNN-NADE

In order to learn high dimensional, temporal distributions for the MLM, we combine

the NADE and an RNN, as proposed by Boulanger-Lewandowski et al. (2012). The

resulting model is shown in Figure 4.2. As mentioned earlier, the main limitation of

the generative RNN is the fact that the output distribution is limited to modelling

independent pitches. The NADE (Larochelle and Murray, 2011) is a distribution esti-

mator for high-dimensional binary data. The RNN-NADE is obtained by conditioning

the parameters of a NADE at every time-step on the hidden state of an RNN (Figure

4.2). The NADE can be seen as an additional differentiable block in the generative

RNN architecture. The resulting model yields a sequence of NADEs conditioned on

an RNN, that describe a distribution over sequences of polyphonic music. In order

to limit the number of free parameters in the model, we only allow the NADE biases

to be functions of the RNN hidden state, while the remaining parameters (W,V) are

held constant over time (Section 3.4.2). We compute the NADE biases as a linear

transformation of the RNN hidden state plus an added bias term:

btv = bv +W1ht, (4.1)

bth = bh +W2ht, (4.2)

where W1 and W2 are weight matrices from the RNN hidden state to the visible

and hidden biases, while bh, bv are the fixed hidden and visible biases for the NADE

(Equation 3.36). The gradients with respect to all the model parameters can be

easily computed using the chain rule and the joint model is trained using the BPTT

algorithm (Boulanger-Lewandowski et al., 2012).

79

4.1.4 Proposed Model

In this section we describe the proposed neural network model for polyphonic AMT.

The model comprises an acoustic model and a music language model. In addition

to DNN and RNN acoustic models, we propose the use of ConvNets for identifying

pitches present in the input audio signal and compare their performance to various

other acoustic models (Section 4.1.5.5). The acoustic and language models are com-

bined using a probabilistic graphical model, yielding an end-to-end model for AMT

with unconstrained polyphony. We first describe the hybrid RNN model, followed by

a description of the proposed inference algorithm.

4.1.4.1 Hybrid RNN

The hybrid RNN is a graphical model that combines the predictions of any arbitrary

frame level acoustic model, with an RNN-based language model. Let x = xT0 be a

sequence of inputs and let y = yT0 be the corresponding transcriptions. The joint

probability of y, x can be factorised as follows:

P (y, x) = P (y0 . . . yT , x0 . . . xT) (4.3)

= P (y0)P (x0|y0)
T∏
t=1

P (yt|yt−1
0)P (xt|yt).

The factorisation in Equation 4.3 makes the following independence assumptions:

P (yt|yt−1
0 , xt−1

0) = P (yt|yt−1
0) (4.4)

P (xt|yt0, xt−1
0) = P (xt|yt) (4.5)

80

Figure 4.3: Graphical Model of the Hybrid Architecture. The variables yt represent
the output pitches, while the variables xt represent the acoustic observations. Com-
pared to the HMM graph (Figure 2.5) there are additional connections between each
state yt and all previous states yτ , for τ < t.

These independence assumptions are similar to the assumptions made in HMMs

(Rabiner, 1989). Equation 4.4 implies that pitch content at t is dependent only on

the previous pitch content yt−1
0 and independent of the past acoustic inputs xt−1

0 .

Equation 4.5 implies that the acoustic observations at t are only conditioned on the

active pitches at time t. Figure 4.3 is a graphical representation of the hybrid model.

In equation 4.3, P (xt|yt) is the emission probability of an input, given output yt.

Using Bayes’s rule, the conditional distribution can be written as follows:

P (y|x) ∝ P (y0|x0)
T∏
t=1

P (yt|yt−1
0)P (yt|xt), (4.6)

where the marginals P (yt) and priors P (y0), P (x0) are assumed to be fixed with

respect to the model parameters and are replaced by the proportionality sign.

With this reformulation of the joint distribution, we observe that the conditional

distribution P (y|x) is directly proportional to the product of two distributions. The

prior distribution P (yt|yt−1
0) is obtained using a generative RNN (Section 4.1.3) and

the posterior distribution over note-combinations P (yt|xt) can be modelled using any

frame based classifier. The hybrid RNN graphical model is similar to an HMM, where

the state transition probabilities for the HMM P (yt|yt−1) have been generalised to

include connections from all previous outputs, resulting in the P (yt|yt−1
0) terms in

81

Equation 4.6.

For the problem of automatic music transcription, the input time-frequency repre-

sentation forms the input sequence x, while the output piano-roll sequence y denotes

the transcriptions. The priors P (yt|yt−1
0) are obtained from the RNN-NADE MLM,

while the posterior distributions P (yt|xt) are obtained from the acoustic models. The

models can then be trained by finding the derivatives of the acoustic and language

model objectives with respect to the model parameters and training using gradient

descent. The independent training of the acoustic and language models is a useful

property since datasets available for music transcription are considerably smaller in

size as compared to datasets in computer vision and speech. However large corpora

of MIDI music are relatively easy to find on the internet1 (Poliner and Ellis, 2007;

Allan and Williams, 2005). Therefore in theory, the MLMs can be trained on large

corpora of MIDI music, analogous to language model training in speech.

4.1.4.2 Inference

At test time, we would like to find the mode of the conditional output distribution:

y∗ = argmax
y

P (y|x) (4.7)

From Equation 4.6, we observe that the priors P (yt|yt−1
0), tie the predictions of the

acoustic model P (yt|xt) to all the predictions made till time t. This prior term en-

courages coherence between predictions over time and allows musicological structure

learnt by the language models to influence successive predictions. However, this more

general structure leads to a more complex inference (or decoding) procedure at test

time. This is due to the fact that at time t, the history yt−1
0 has not been optimally

determined. Therefore, the optimum choice of yt depends on all the past model pre-

dictions. Proceeding greedily in a chronological manner by selecting yt that optimises

1for e.g ifdo.ca/~seymour/nottingham/nottingham.html and http://www.musedata.org/

82

P (yt|xt) does not necessarily yield good solutions. We are interested in solutions

that globally optimise p(y|x). But exhaustively searching for the best sequence is

intractable since the number of possible configurations of yt is exponential in the

number of output pitches (2n for n pitches).

Beam search is a graph search algorithm that is commonly used to decode the con-

ditional outputs of an RNN (Graves, 2012a; Boulanger-Lewandowski et al., 2013b).

Beam search scales to arbitrarily long sequences and the computational cost versus

accuracy trade-off can be controlled via the width of the beam. The inference al-

gorithm is comprised of the following steps: at any time t, the algorithm maintains

at most w partial solutions, where w is the beam width or the beam capacity. The

solutions in the beam at t correspond to sub-sequences of length t. Next, all possible

descendants of the w partial solutions in the beam are enumerated and then sorted in

decreasing order of log-likelihood. From these candidate solutions, the top w solutions

are retained as beam entries for further search. Beam search can be readily applied

to problems where the number of candidate solutions at each step is limited, like

speech recognition (Boulanger-Lewandowski et al., 2014) and audio chord estimation

(Boulanger-Lewandowski et al., 2013a). However, using beam search for decoding

sequences with a large output space is prohibitively inefficient.

When the space of candidate solutions is large, the algorithm can be constrained

to consider only K new candidates for each partial solution in the beam, where K is

known as the branching factor. The procedure for selecting the K candidates can be

designed according to the given problem. For the hybrid architecture, from Equation

4.6 we note:

P (yt0|xt0) ∝ P (yt−1
0 |xt−1

0)P (yt|yt−1
0)P (yt|xt) (4.8)

At time t, the partial solutions in the beam correspond to configurations of yt−1
0 .

Therefore given P (yt−1
0 |xt−1

0), the K configurations that maximise P (yt|yt−1
0)P (yt|xt)

83

would be a suitable choice of candidates for yt. However for many families of distri-

butions, it might not be possible to enumerate yt in decreasing order of likelihood.

Boulanger-Lewandowski et al. (2013b) propose forming a pool of K candidates by

drawing random samples from the conditional output distributions. However, random

sampling can be inefficient and obtaining independent samples can be very expensive

for many types of distributions. As an alternative, we propose to sample solutions

from the posterior distribution of the acoustic model P (yt|xt) (Sigtia et al., 2015a).

There are 2 main motivations for doing this. Firstly, the outputs of the acoustic

model are independent class probabilities. Therefore, it is easy to enumerate samples

in decreasing order of log-likelihood (Boulanger-Lewandowski et al., 2013b). Sec-

ondly, we avoid the accumulation of errors in the RNN predictions over time (Bengio

et al., 2015; Ranzato et al., 2016). The RNN models are trained to predict yt, given

the true outputs yt−1
0 . However at test time, outputs sampled from the RNN are fed

back as inputs at the next time step. This discrepancy between the training and test

objectives can cause prediction errors to accumulate over time.

Although generating candidates from the acoustic model yields good results, it

requires the use of large beam widths. This makes the inference procedure compu-

tationally slow and unsuitable for real-time applications (Sigtia et al., 2015a). We

propose using the hashed beam search algorithm proposed by Sigtia et al. (2015b).

Beam search is fundamentally limited when decoding long temporal sequences. This

is due to the fact that solutions that differ at only a few time-steps can saturate the

beam. This causes the algorithm to search a very limited space of possible solutions.

This issue can be solved by efficient pruning. The hashed beam search algorithm

improves efficiency by pruning solutions that are similar to solutions with a higher

likelihood. The metric that determines the similarity of sequences can be chosen in

a problem dependent manner and is encoded in the form of a locality sensitive hash

function (Sigtia et al., 2015b).

84

Algorithm 1 High Dimensional Beam Search

Find the most likely sequence y given x with a beam width w and branching factor
K.
beam← new beam object
l← 0
s← {}
ml ← ml with yt := {}
ma ← ma with x := x0

beam.insert(l, s,ma,ml)
for t = 1 to T do

new beam← new beam object
for l, s,ma,ml in beam do

for k = 1 to K do
y′ = ma.next most probable candidates()
l′ = logPl(y

′|s)Pa(y′|xt)− logP (y′)
m′l ← ml with yt := y′

m′a ← ma with x := xt+1

new beam.insert(l + l′, {s, y′},ma,ml)
beam← new beam

return beam.pop()

Algorithm 1 describes the general beam-search algorithm. The beam object can

be a priority queue (Sigtia et al., 2015a) or a hash table (Algorithm 3). The entries

to the beam are tuples (l, s,ma,ml) containing the likelihood l of a subsequence s,

followed by the acoustic model ma and the language model ml. The beam search

comprises 2 for loops. The outer loop iterates through the input sequence, while

the inner loop at each iteration evaluates K (branching factor) candidate solutions

which are stored in the beam. It should be noted that according to the earlier

discussion, the acoustic model computations P (yt|xt) can be performed independently

outside both loops. However, the frame-level acoustic models can be replaced by

models that incorporate previous model predictions as inputs, for example the model

by Boulanger-Lewandowski et al. (2013a). The acoustic models have been included

within the for loop for cases where they might have to maintain a state. Another

reason for including the acoustic models in the for loop is that at each step, the

K most likely predictions are enumerated using the efficient dynamic programming

85

algorithm described in Algorithm 2. Algorithm 2 which is O(K logK + N logN),

allows the use of large much larger beam widths with unbounded branching factors.

This fact is more clearly expressible in each iteration of the for loop in Algorithm 1.

Algorithm 2 Find Most Probable Candidates

Find the K most likely configurations of N independent Bernouilli random variables
with parameters 0 < pi < 1.
v0 ← {i : pi ≥ 1/2}
l0 ←

∑
i log(max(pi, 1− pi))

yield v0, l0
Li ← | log pi

1−pi |
sort L, store corresponding permutation R
q ← min-priority queue
q.insert(L0, {0})
while l, v ← q.pop() do

yield l0 − l, v0∆R[v]∗

i← max(v)
if i+i ¡ N then

q.insert(l + Li+1, v ∪ {i+ 1})
q.insert(l + Li+1 − Li, v ∪ {i+ 1})

∗A∆B = (A∪B)\(A∩B) and R[v] represents the R-permutation of indices in the
set v.

There are two key differences between Algorithm 1 and the algorithm by Sigtia

et al. (2015a). First, the beam object in Algorithm 1 is general and does not have to

be a priority queue. Secondly, for each entry in the beam we evaluate K candidate

solutions. This is in contrast to the algorithm in (Sigtia et al., 2015a), where the

algorithm maintains w solutions in the beam and at each iteration the locally most

optimal choice is added to the previous solution. It might appear that the hashed

beam search algorithm might be more expensive, since it evaluates w ∗K candidates

instead of w candidates. However, by efficiently pruning similar solutions, the al-

gorithm yields better results for much smaller values of w, resulting in a significant

increase in efficiency (Section 4.1.5.5, Figure 4.4).

Algorithm 3 describes the hash table beam object. The beam object is parame-

terised by the beam width w, the hash key generating function fh and the maximum

86

Algorithm 3 Description of beam objects given w, fh, k

Initialise beam object
beam.hashQ = new defaultdict of priority queues∗

beam.queue = new indexed priority queue of length w∗∗

Insert l, s,ma,ml into beam
key= fh(s)
queue = beam.queue
hashQ = beam.hashQ[key]
fits in queue = not queue.full() or l ≥queue.min()
fits in hashQ = not hashQ.full() or l ≥hashQ.min()
if fits in queue and fits in hashQ then

hashQ.insert(l, s,ma,ml)
if hashQ.overfull() then

item = hashQ.del min()
queue.remove(item)

queue.insert(l, s,ma,ml)
if queue.overfull() then

item = queue.del min()
beam.hashQ[fh(item.s)].remove(item)

∗ A priority queue of length k maintains the top k entries at all times.
∗∗ An indexed priority queue allows efficient random access and deletion.

number of entries per key k. Given a subsequence s, the function fh computes the

key for the subsequence, fh(s). If the current solution s has a higher log-likelihood

compared to existing solutions in the beam, then the new entry s is added to the

beam. Each key in the table corresponds to a priority queue of maximum capacity k.

In addition to the hash table, the algorithm maintains a global priority queue in order

to efficiently retrieve and delete (in O(1)) the entry with the smallest log-likelihood

when necessary.

The hashed beam search algorithm offers several advantages compared to the

standard beam search algorithm. The notion of similarity of solutions can be encoded

in the form of hash functions. For music transcription, we choose the similarity

function to be equality of the last n frames in a sequence s. n = 1 corresponds to

a dynamic programming like decoding (similar to HMMs) where all sequences with

the same final state yt are considered to be equivalent, and the sequence with the

87

highest log-likelihood is retained. n = len(sequence) corresponds to regular beam

search. Additionally, the hash beam search algorithm can maintain ≥ 1 solution per

hash key through a process called chaining (Cormen et al., 2001, Chapter 11).

4.1.5 Evaluation

In this section we describe how the performance of the proposed model is evaluated

for a polyphonic piano transcription task.

4.1.5.1 Dataset

We evaluate the proposed model on the MAPS dataset (Emiya et al., 2010). The

dataset consists of audio and corresponding annotations for isolated sounds, chords

and complete pieces of piano music. For our experiments, we use only the full musical

pieces for training and testing the neural network acoustic models and MLMs. The

dataset consists of 54 unique pieces of classical music, where each piece is played on

up to 9 variations of piano and recording conditions, resulting in 270 recordings in

total. 7 categories of audio are produced by software piano synthesisers, while 2 sets

of recordings are obtained from a Yamaha Disklavier upright piano.

We perform 2 sets of investigations in this study. The first set of experiments

investigates the effect of the RNN MLMs on the predictions of the acoustic models.

For this task, we divide the entire dataset into 4 disjoint train/test splits, to ensure

that the folds are music piece-independent. Specifically, for some of the musical pieces

in the dataset, audio for each piece is rendered using more than one piano. Therefore

while creating the splits, we ensure that the training and test data do not contain

any overlapping pieces2. For each split, we select 80% of the data for training (216

musical pieces) and the remaining for testing (54 pieces). From each training split,

we hold out 26 tracks as a validation set for selecting the hyper-parameters for the

2Details of splits available at: http://www.eecs.qmul.ac.uk/~sss31/TASLP/info.html

88

training algorithm (Section 4.1.5.3). All the reported results are mean values of the

evaluation metrics over the 4 splits. From now on, this evaluation configuration will

be named as Configuration 1. Table 4.1 shows the distribution of training and test

data.

Although the above experimental setup is useful for investigating the effective-

ness of the RNN MLMs, the training set contains examples from piano models which

are used for testing. This is usually not the case in practice, where the instrument

models/sources at test time are unknown and usually do not coincide with the in-

struments used for training. The majority of experiments with the MAPS dataset

train and test models on disjoint instrument types (Benetos and Dixon, 2012; Berg-

Kirkpatrick et al., 2014; O’Hanlon and Plumbley, 2014). We thus perform a second

set of experiments to compare performance of the different neural network acoustic

models in a more practical setting. We train the acoustic models using the 210 tracks

created using synthesized pianos (180 tracks for training and 30 tracks for validation)

and we test the acoustic models on the 60 audio recordings obtained from Yamaha

Disklavier piano recordings (models ‘ENSTDkAm’ and ‘ENSTDkCl’ in the MAPS

database). In this experiment, we do not apply the language models since the train

and test sets contain overlapping musical pieces. In addition to the neural network

acoustic models, we include comparisons with two popular acoustic models (Vincent

et al., 2010; Benetos and Dixon, 2012) for both experiments. This instrument source-

independent evaluation configuration will be named from now on as Configuration

2.

According to convention, we use the first 30 seconds of each recording from the

test set (Vincent et al., 2010; Benetos and Dixon, 2012). The test audio is sampled

at a frame rate of 100 Hz yielding 100 ∗ 30 = 3000 frames per test file. For 54 test

files over 4 splits, we obtain a total of 648, 000 frames at test time for Configuration

89

Number of Frames
Fold Train Validation Test

1 1 412 539 205 667 162 000
2 1 480 979 203 421 162 000
3 1 559 251 226 363 162 000
4 1 216 892 193 273 162 000

Table 4.1: Distribution of data over the train, valid and test splits for the MAPS
dataset for Configuration 1.

13.

4.1.5.2 Metrics

We use both frame and note based metrics to assess the performance of the proposed

system (Bay et al., 2009). Frame-based evaluations are made by comparing the

transcribed binary output and the MIDI ground truth frame-by-frame. For note-

based evaluation, the system returns a list of notes, along with the corresponding

pitches, onset and offset times. We use the F-measure, precision, recall and accuracy

for both frame and note based evaluation. Formally, the frame-based metrics are

defined as:

P =
T∑
t=1

TP[t]

TP[t] + FP[t]
,

R =
T∑
t=1

TP[t]

TP[t] + FN[t]
,

A =
T∑
t=1

TP[t]

TP[t] + FP[t] + FN[t]
,

F =
2 ∗ P ∗ R
P +R

,

where TP[t] is the number of true positives for the event at t, FP is the number of

3It should be noted that carrying out statistical significance tests on a track level is an over-
simplification in the context of multi-pitch detection, as argued in (Benetos, 2012).

90

false positives and FN is the number of false negatives. The summation over t is

carried out over the entire test data. Similarly, analogous note-based metrics can be

defined (Bay et al., 2009). A note event is defined to be correct if its predicted pitch

is correct and its onset is within a ±50ms range of the ground truth onset.

4.1.5.3 Network Training

In this section we describe the details of the training procedure for the various acous-

tic model architectures and the RNN-NADE language model. All the acoustic and

language models have 88 units in the output layer, corresponding to the 88 output

pitches. The outputs of the final layer of all acoustic models are transformed by a

sigmoid function and yield independent pitch probabilities P (yt(i) = 1|x). The re-

sulting cost function used for training is the binary cross-entropy function, which is

used to iteratively estimate parameters that maximise the log-likelihood of the data

over the entire training set.

• DNN Acoustic Models: For DNN training, we constrain all the hidden lay-

ers of the model to have the same number of units to simplify searching for

good model architectures. We perform a grid search over the following param-

eters: number of layers L ∈ {1, 2, 3, 4}, number of hidden units per layer H ∈

{25, 50, 100, 125, 150, 200, 250}, hidden unit activations act ∈ {ReLU, sigmoid}

where ReLU is the rectified linear unit activation function (Glorot et al., 2011).

We found Dropout (Srivastava et al., 2014) to be essential for improving gen-

eralisation performance. A Dropout rate of 0.3 was used for the input layer

and all the hidden layers of the network. Rather than using learning rate and

momentum update schedules, we use ADADELTA (Zeiler, 2012) to adapt the

learning over iterations. In addition to Dropout, we use early stopping to deter-

mine when to stop training. Training was stopped if the cost over the validation

set did not decrease for 20 epochs. We used mini batches of size 100 for the

91

SGD updates.

• RNN Acoustic Models: For RNN training, we constrain all the hidden layers

to have the same number of units. We perform a grid search over the following

parameters: L ∈ {1, 2, 3}, H ∈ {25, 50, 100, 150, 200, 250}. We fix the hidden

activations of the recurrent layers to be the hyperbolic tangent function. We

found that ADADELTA was not particularly well suited for training RNNs.

We use an initial learning rate of 0.001 and linearly decrease it to 0 over 1000

iterations. We use a constant momentum rate of 0.9. The training sequences are

further divided into sub-sequences of length 100. The SGD updates are made

one sub-sequence at a time, without any mini batching. Similar to the DNNs, we

use early stopping and stop training if validation cost does not decrease after 20

iterations. In order to prevent gradient explosion in the early stages of training,

we use gradient clipping (Bengio et al., 2013). We clipped the gradients when

the norm of the gradient was greater than 5.

• ConvNet Acoustic Models: The input to the ConvNet is a context window

of frames and the target is the central frame in the window. The frames at the

beginning and end of the audio are zero padded so that a context window can be

applied to each frame4. Although pooling can be performed along both axes, we

only perform pooling over the frequency axis. We performed a grid search over

the following parameters: window size ws ∈ {3, 5, 7, 9} number of convolutional

layers Lc ∈ {1, 2, 3, 4}, number of filters per layer nl ∈ {10, 25, 50, 75, 100},

number of fully connected layers Lfc ∈ {1, 2, 3}, number of hidden units in fully

connected layers H ∈ {200, 500, 1000}. The convolution activation functions

were fixed to be the hyperbolic tangent functions, while all the fully connected

4Note that typically the first and last frames in a sequence are padded by repeating either the
beginning or the end frames in the sequence. However since there are few very such frames during
training and evaluation, padding the context windows with zeros does not affect the results and we
choose to perform zero padding for convenience.

92

Model Architecture
DNN L = 3, H = 125
RNN L = 2, H = 200

ConvNet ws = 7, Lc = 2, Lfc = 2, w1 = (5, 25), P1 = (1, 3)
w2 = (3, 5), P2 = (1, 3), n1 = n2 = 50, h1 = 1000, h2 = 200

RNN-NADE HRNN = 200, HNADE = 150

Table 4.2: Model configurations for the best performing architectures.

layer activations were set to the sigmoid function. The pooling size is fixed to

be P = (1, 3) for all convolutional layers. Dropout with rate 0.5 is applied to

all convolutional layers. We tried a large permutation of window shapes for

the convolutional layer and the following subset of window shapes yielded good

results: w ∈ {(3, 3), (3, 5), (5, 5), (3, 25), (5, 25), (3, 75), (5, 75)}. We observed

that classification performance deteriorated sharply for longer filters along the

frequency axis. 0.5 Dropout was applied to all the fully connected layers. The

model parameters were trained with SGD and a batch size of 256. An initial

learning rate of 0.01 was linearly decreased to 0 over 1000 iterations. A constant

momentum rate 0.9 was used for all the updates. We stopped training if the

validation error did not decrease after 20 iterations over the entire training set.

• RNN-NADE MLMs: The RNN-NADE models were trained with SGD and

with sequences of length 100. We performed a grid search over the following

parameters: number of recurrent units HRNN ∈ {50, 100, 150, 200, 250, 300} and

number of hidden units for the NADE HNADE ∈ {50, 100, 150, 200, 250, 300}.

The model was trained with an initial learning rate of 0.001 which was linearly

reduced to 0 over 1000 iterations. A constant momentum rate of 0.9 was applied

throughout training.

We selected the model architectures by performing a grid search over the con-

figurations described earlier in the section. The various models were trained on one

train/test split and the best performing architecture was then used for all 4 splits in

93

our experiments (Table 4.2).

4.1.5.4 Comparative Approaches

For comparative purposes, two state-of-the-art polyphonic music transcription meth-

ods were used for experiments (Vincent et al., 2010; Benetos and Dixon, 2012). In

both cases, the non-binary pitch activation output of the aforementioned methods was

extracted, for performing an in-depth comparison with the proposed neural network

models.

The multi-pitch detection method by Vincent et al. (2010) is based on non-negative

matrix factorisation (NMF) and operates by decomposing an input time-frequency

representation as a series of basis spectra (representing pitches) and component activa-

tions (indicating pitch activity across time). This method models each basis spectrum

as a weighted sum of narrowband spectra representing a few adjacent harmonic par-

tials, enforcing harmonicity and spectral smoothness. As input time-frequency rep-

resentation, an Equivalent Rectangular Bandwidth (ERB) filterbank is used. Since

the method relies on a dictionary of (hand-crafted) narrowband harmonic spectra,

system parameters remain the same for the two evaluation configurations.

The multiple-instrument transcription method by Benetos and Dixon (2012) is

based on shift-invariant PLCA (a convolutive and probabilistic counterpart of NMF).

In this model, the input time-frequency representation is decomposed into a series of

basis spectra per pitch and instrument source which are shifted across log-frequency,

thus supporting tuning changes and frequency modulations. Outputs include the

pitch activation distribution and the instrument source contribution per pitch. Con-

trary to the parametric model of Vincent et al. (2010), the basis spectra are pre-

extracted from isolated musical instrument sounds. As in the proposed method, the

input time-frequency representation of Benetos and Dixon (2012) is the CQT. For the

investigations with MLMs (Configuration 1), the PLCA models are trained on iso-

94

lated sound examples from all 9 piano models from the MAPS database (in order for

the experiments to be comparable with the proposed method). For the second set of

experiments which investigate the generalisation capabilities of the models (Configu-

ration 2), the PLCA acoustic model is trained on isolated sounds from the synthesised

pianos and tested on recordings created using the Yamaha Disklavier piano.

4.1.5.5 Results

In this section we present results from the experiments on the MAPS dataset. As

mentioned before, all results for Configuration 1 are the mean values of various metrics

computed over the 4 different train/test splits. On the other hand, Configuration 2

has only 1 train/test partition. The acoustic models yield a sequence of probabilities

for the individual pitches being active (posteriograms). The post-processing methods

are used to transform the posteriograms to a binary piano-roll representation. The

various performance metrics (both frame and note based) are then computed by

comparing the outputs of the systems to the ground truth.

We consider 3 kinds of post-processing methods. The simplest post-processing

method is to apply a threshold to the output pitch activities obtained from the

acoustic model. We select the threshold that maximises the F-measure over the entire

training set and use this threshold for testing. Pitch activities that are greater than

the threshold are set to 1, while the remaining pitch activities are set to 0. The second

post-processing method considered uses individual pitch HMMs for post-processing

similar to Poliner and Ellis (2007). The HMM parameters (transition probabilities,

pitch marginals) are obtained by counting the frequency of each event over the MIDI

ground truth data. The binary pitch activities are obtained using Viterbi decoding

(Rabiner, 1989), where the scaled likelihoods are used as emission probabilities. Fi-

nally, we combine the acoustic model predictions with the RNN-NADE MLMs and

obtain binary transcriptions using beam search.

95

For all the results presented in this section, the table entry Benetos represents

the PLCA acoustic model by Benetos and Dixon (2012) while the entry Vincent rep-

resents the NMF based acoustic model by Vincent et al. (2010). In Table 4.3, we

present F-scores (both frame and note based) for all the acoustic models and the 3

post-processing methods using Configuration 1. From the table, we note that all the

neural network models outperform the PLCA and NMF models in terms of frame-

based F-measure by 3%− 9%. The DNN and RNN acoustic model performances are

similar, while the ConvNet acoustic model clearly outperforms all the other models.

The ConvNets yield an absolute improvement of ∼ 5% over the other neural net-

work models, while outperforming the spectrogram factorisation models by ∼ 10% in

frame-wise F-measure. For the note-based F-measure, the RNN and ConvNet models

perform better than the DNN acoustic model. This is largely due to the fact that

these models include context information in their inputs, which implicitly smooths

the output predictions. With regards to the ConvNet acoustic models, from Table

4.2 we note that the filters for the ConvNets are relatively long. This is in contrast

to filter shapes used for processing images, which are typically small square filters for

e.g. 3× 3 or 5× 5 (Lin et al., 2013; Szegedy et al., 2015). As mentioned before (Sec-

tion 2.1.1), this is due to the fact individual pitches are composed of a fundamental

frequency and a series of harmonics or overtones. Therefore, pitches aren’t localised

within a narrow region along the frequency axis and consequently we we observe that

longer filters yield better performance compared to small square filters.

From Rows 1 and 2 of Table 4.3 we observe that the RNN-NADE MLM yields

a performance increase for the PLCA and NMF acoustic models, though the im-

provement is small, ∼ 1% F-measure. This might be due to the fact that unlike

the neural network models, these models are not trained to maximise the conditional

probability of output pitches given the acoustic inputs. Another contributing factor

is the fact that the PLCA and NMF posteriograms represent the energy distribution

96

Post Processing Thresholding HMM Hybrid Architecture
Acoustic Model Frame (%) Note (%) Frame (%) Note (%) Frame (%) Note(%)

Benetos 64.20 65.22 64.84 66.05 65.10 66.48
Vincent 58.95 68.50 60.37 68.87 59.78 69.00

DNN 67.54 60.02 68.32 62.26 67.92 63.18
RNN 68.38 63.84 68.09 64.50 69.25 65.24

ConvNet 73.57 65.35 73.75 66.20 74.45 67.05

Table 4.3: F-measures for multiple pitch detection on the MAPS dataset, using eval-
uation configuration 1.

P R A
Acoustic Model Frame (%) Note (%) Frame (%) Note (%) Frame (%) Note (%)

Benetos 59.54 73.51 69.51 60.67 48.47 49.03
Vincent 52.71 79.93 69.04 60.69 43.04 52.92

DNN 65.66 62.62 70.34 63.75 51.76 45.33
RNN 67.89 64.64 70.66 65.85 54.38 48.18

ConvNet 72.45 67.75 76.56 66.36 58.87 50.07

Table 4.4: Precision, Recall and Accuracy for multiple pitch detection on the MAPS
dataset using the hybrid architecture (w = 10, K = 4, k = 2, fh(y

t
0) = yt), using

evaluation configuration 1.

over pitches rather than explicit pitch probabilities, which results in many activa-

tions being greater than 1. This discrepancy in the scale of the acoustic and language

predictions leads to an unequal weighting of predictions when used in the hybrid

RNN framework. In Table 4.3 we observe that the acoustic model by Vincent et al.

(2010) outperforms all other acoustic models on the note-based F-measure, while the

frame based F-measure is significantly lower. This can be attributed to the use of

an ERB filter-bank input representation, which offers improved temporal resolution

over the CQT for lower frequencies. Recall that the reported note onset time must lie

within the ±50ms window around the ground truth onset for it to be a correct match

(Section 4.1.5.2). Consequently the neural network acoustic models (especially the

ConvNets) are able to achieve high frame-based scores, while the note-based scores

are lower due to the temporal resolution of the input representation.

97

Acoustic Model Benetos Vincent DNN RNN ConvNet
F-measure (Frame) (%) 59.31 59.60 59.91 57.67 64.14
F-measure (Note) (%) 54.29 59.12 49.43 49.20 54.89

Table 4.5: F-measures for acoustic models trained on synthesised pianos and tested
on real recordings (evaluation configuration 2).

In Table 4.4, we present additional metrics (precision, recall and accuracy) for

the all the acoustic models after decoding with an RNN-MLM, using Configuration

1. We observe that the NMF and PLCA models have low frame-based precision

and high recall and the converse is true for the note-based metrics. For the neural

network models, we observe smaller differences between the precision and recall values

in both frame-based and note-based cases. Amongst all the neural network models,

we observe that the ConvNet outperforms all the other models on all the metrics.

In Table 4.5, we present F-measures for experiments where the acoustic mod-

els are trained on synthesised data and tested on real data (Configuration 2). We

compare the pitch activation probabilities against learnt thresholds to make a binary

classification decision. From the table we note that frame based F-measure for the

DNN and RNN models is similar to the PLCA model and the model by Vincent et al.

(2010). We note that the ConvNet outperforms all other models on the frame-based

F-measure by ∼ 5%. On the note based evaluations, we observe that both RNN and

DNN are outperformed by all the other models. The ConvNet performance is similar

to the PLCA model, while the acoustic model from Vincent et al. (2010) again has

best performance on the note based metrics. We note that the performance of all

models ∼ 10% worse than for Configuration 1.

We now discuss details of the inference algorithm. The high dimensional hashed

beam search algorithm has the following parameters: the beam width w, the branch-

ing factor K, number of entries per hash table entry k and the similarity metric fh

(Algorithm 2). We observed that a value of K ≥ 4 produced good results. Larger

98

Figure 4.4: Effect of beam width (w) on F-measure. k = 2, K = 4, fh = yt

values of K do not yield a significant performance increase and result in much longer

run times, therefore we set K = 4 for all experiments. We observed that small values

of k (number of solutions per hash table entry), 1 ≤ k ≤ 4 produced good results. De-

coding accuracies deteriorate sharply for large values of k, as observed by Sigtia et al.

(2015b). Therefore, we set the number of entries per hash key k = 2 for all experi-

ments. We let the similarity metric be the last n emitted symbols, fh(y
t
0) = ytt−n+1.

We experimented with varying the values of n and observed that we were able to

achieve good performance for small n, 1 ≤ n ≤ 5. We did not observe any per-

formance improvement for large n, therefore for all experiments we fix fh(y
t
0) = yt.

Figure 4.4 is a plot showing the effect of beam width w on transcription performance.

The results are average values of decoding accuracies over 4 splits. We compare per-

formance of the hashed beam search with the high dimensional beam search by Sigtia

et al. (2015a). From Figure 4.4 we observe that the hashed beam search algorithm

is able to achieve performance improvement with significantly smaller beam-widths.

For instance, the high dimensional beam search algorithm takes 20 hours to decode

the entire test set with w = 100, while the hashed beam search takes 22 minutes with

w = 10 and achieves better decoding accuracy.

Figure 4.5 is a graphical representation of the outputs of a ConvNet acoustic

99

(a) ConvNet Posteriogram

(b) ConvNet Transcription

(c) Ground Truth

Figure 4.5: (a) Pitch-activation (posteriogram) matrix for the first 30 seconds of
track MAPS MUS-chpn op27 2 AkPnStgb produced by a ConvNet acoustic model.
(b) Binary piano-roll transcription obtained from posteriogram in a) after post pro-
cessing with RNN MLM and beam search. (c) Corresponding ground truth piano roll
representation.

100

model. We observe that some of the longer notes are fragmented and the offsets

are estimated incorrectly. One reason for this is that the ground truth offsets don’t

necessarily correspond to the offset in the acoustic signal (due to effects of the sustain

pedal and reverberations), implying noisy offsets in the ground truth. We also observe

that the model does not make many harmonic errors in its predictions.

4.1.6 Discussion

In this set of experiments, we present a hybrid RNN model for AMT of polyphonic

piano music. The model comprises a neural network acoustic model and an RNN

based music language model. In addition to the DNN and RNN models we design a

ConvNet architecture for AMT, which to the best of the author’s knowledge has not

been attempted before. Our experiments on the MAPS dataset demonstrate that the

neural network acoustic models consistently outperform 2 popular acoustic models

from the AMT literature on frame-based metrics, with the ConvNets clearly outper-

forming all other models. The neural network acoustic models are able to achieve

better accuracy when applied directly to the input time-frequency representation of

the audio, without the need for any feature engineering. Additionally, the neural

network acoustic models have general processing architectures, unlike the models by

Benetos and Dixon (2012) and Vincent et al. (2010), which are designed specifically

for AMT and harmonic sounds. We note that the results also demonstrate the ability

of the neural network acoustic models to generalise to new piano types. Although all

acoustic models perform worse by ∼ 10% F-measure, the ConvNets again outperform

all other models. We also observe that the RNN MLMs improve performance on all

evaluation metrics. The proposed inference algorithm with the hash beam search is

able to yield good decoding accuracies with significantly shorter run times, making

the model suitable for real-time applications.

We now discuss some of the limitations of the proposed model and identify direc-

101

tions for future work to improve the system. As discussed earlier, one of the main

contributing factors to the success of deep neural networks has been the availability

of very large datasets. However datasets available for AMT research are consider-

ably smaller than datasets available in speech, computer vision and natural language

processing (NLP). Therefore the applicability of deep neural networks for acoustic

modelling is limited to datasets with large amounts of labelled data, which is not

common in AMT (at least in non-piano music). Although the neural network acous-

tic models perform competitively, their performance could be further improved in

many ways. Noise or deformations can be added to training examples to encourage

the classifiers to be invariant to commonly encountered input transformations. Ad-

ditionally, the CQT input representation can be replaced by a representation with

higher temporal resolution (like the ERB or a variable-Q transform (Schörkhuber

et al., 2014)), to improve performance on note based metrics.

Although we observe that the performance improvement due to MLMs is small,

the abundance of musical score data and recent progress in NLP tasks with neural

networks provide strong motivation for further investigations into MLMs for AMT.

There are several limitations and open questions that remain. The MLMs are trained

on binary vectors sampled from the MIDI ground truth. Depending on the sampling

rate, most note events are repeated many times in this representation. The MLMs

are trained to predict the next frame of notes, given an input sequence of binary note

combinations. In cases where the same notes are repeated many times, log-likelihood

can be trivially maximised by repeating previous inputs. This causes the MLM to

perform a smoothing operation, rather than imposing any kind of musical structure

on the outputs. A potential solution would be to perform beat-aligned language

modelling for the training and the test data, rather than sampling the MIDI at some

arbitrary sampling rate. Additionally, RNNs can be extended to include duration

models for each of their pitch outputs, similar to second order HMMs. However,

102

this is a challenging problem and currently remains unexplored. It would also be

interesting to encourage RNNs to learn long-term repeating patterns by interfacing

RNN controllers with external memory units (Grefenstette et al., 2015) and also to

incorporate a notion of timing or metre in the input representation for the MLMs.

The effect of tonality on the performance of the MLMs should be further investi-

gated. The MLMs should ideally be invariant to transpositions of a musical piece to

different pitches. The MIDI ground truth can be transposed to any tonality. MLMs

can be trained on inputs with transposed tonalities or individual MLMs for each key

can be trained. Additionally, the fully connected input layer of the RNN MLM can

be substituted with a convolutive layer, with convolutions along the pitch axis to

encourage the network to be invariant to pitch transpositions.

Another limitation of the proposed hybrid model is that the conditional probabil-

ity in Equation 4.5 is derived by assuming that the predictions at time t are only a

function of the input at t and independent of all other inputs and outputs. The vi-

olation of this assumption leads to certain factors being counted twice and therefore

reduces the impact of the MLMs. The results clearly demonstrate that improve-

ments with the MLM are maximum when the acoustic model is frame-based. The

improvements are comparatively lower when combined with predictions from an RNN

or ConvNet acoustic model. This is problematic since the ConvNet acoustic models

yield the best performance.

Despite some of these limitations, the proposed model is able to outperform 2

state-of-the-art models on frame-based metrics and the results provide strong moti-

vation for future research in both acoustic and music language modelling with neural

networks.

103

4.2 Multi-Instrument Polyphonic Transcription

In the previous section, we presented a neural network based model for piano music

transcription. The results demonstrate that the supervised neural network acoustic

models outperform 2 state-of-the-art acoustic models from the literature. We also

observed that the MLMs improve transcription results. In this section, we further

investigate the effectiveness of MLMs for transcription. As previously mentioned,

neural network acoustic models are not feasible for most instrument types due to

scarcity of labelled training data. A lot of AMT research is therefore dedicated to

developing unsupervised or NMF-based acoustic models (Vincent et al., 2010; Benetos

and Dixon, 2012; Berg-Kirkpatrick et al., 2014). MLMs on the other hand can be

trained on musical scores, without any need for labelling. In this section we present

experiments that investigate the effectiveness of MLMs in a more realistic scenario,

where the train and test data comprises more than one instrument and the acoustic

model is a PLCA based model trained on multiple instruments. First, we present an

alternative method for combining the predictions of a PLCA acoustic model (Benetos

and Dixon, 2012) and an RNN MLM. We then investigate the performance of the

proposed model on a dataset of multi-instrument polyphonic recordings.

4.2.1 Acoustic Model

For combining acoustic and music language information in an AMT context, we em-

ploy the model by Benetos and Dixon (2012), which supports the transcription of

multiple-instrument polyphonic music and also supports pitch deviations and fre-

quency modulations. The model is based on PLCA, which is a latent variable analysis

method which has been used for decomposing spectrograms. For computational effi-

ciency, we employ the fast implementation from Benetos et al. (2013), which utilises

pre-extracted note templates that are also pre-shifted across log-frequency, in order

104

to account for frequency modulations or tuning changes. In addition, as was shown

by Smaragdis and Mysore (2009), PLCA-based models can utilise priors for estimat-

ing unknown model parameters, which we use for incorporating information from the

MLM into the acoustic model predictions.

The transcription model takes as input a normalised log-frequency spectrogram

xt = {x0,t, . . . , xω,t, . . . , xN−1,t} (where ω is the log-frequency index, t is the time in-

dex and N is the dimensionality of xt) and approximates it as a bivariate probability

distribution P (ω, t). P (ω, t) is decomposed into a series of log-frequency spectral

templates per pitch, instrument, and log- frequency shifting (which indicates devia-

tion with respect to the ideal tuning), as well as probability distributions for pitch,

instrument, and tuning.

The model is formulated as:

P (ω, t) = P (t)
∑
y,f,s

P (ω|s, y, f)Pt(f |y)Pt(s|y)Pt(y), (4.9)

where y denotes pitch, s denotes the musical instrument source, and f denotes log-

frequency shifting. P (t) is the energy of the log-spectrogram, which is a known

quantity. P (ω|s, y, f) denotes pre-extracted log-spectral templates per pitch y and

instrument s, which are also pre-shifted across log-frequency. The pre-shifting oper-

ation is made in order to account for pitch deviations, without needing to formulate

a convolutive model across log-frequency. Pt(f |y) is the time-varying log-frequency

shifting distribution per pitch, Pt(s|y) is the time-varying source contribution per

pitch, and finally, Pt(y) is the pitch activation, which essentially is the resulting mu-

sic transcription. As a time-frequency representation in the log-frequency domain we

use the constant-Q transform (CQT) with a log-spectral resolution of 60 bins/octave

(Schörkhuber and Klapuri, 2010).

The unknown model parameters (Pt(f |y), Pt(s|y), and Pt(y)) can be iteratively es-

105

timated using the expectation-maximisation (EM) algorithm (Dempster et al., 1977).

For the Expectation step, the following posterior is computed:

Pt(s, y, f |ω) =
P (ω|s, y, f)Pt(f |y)Pt(s|y)Pt(y)∑
y,f,s P (ω|s, y, f)Pt(f |y)Pt(s|y)Pt(y)

. (4.10)

For the Maximization step (without using any priors) unknown model parameters

are updated using the posterior computed from the Expectation step:

Pt(f |y) ∝
∑
ω,s

Pt(y, f, s|ω)xω,t, (4.11)

Pt(s|y) ∝
∑
ω,f

Pt(y, f, s|ω)xω,t, (4.12)

Pt(y) ∝
∑
ω,f,s

Pt(y, f, s|ω)xω,t. (4.13)

We consider the sound state templates to be fixed, so no update rule for P (ω|s, y, f)

is applied. Using fixed templates, 20-30 iterations using these update rules are suffi-

cient for convergence. The output of the system is a pitch activation which is scaled

by the energy of the log-spectrogram:

PPLCA(y, t) = P (t)Pt(y). (4.14)

After performing 5-sample median filtering for note smoothing, thresholding is per-

formed on PPLCA(y, t) followed by minimum note duration pruning set to 40ms in

order to convert PPLCA(y, t) into a binary piano-roll representation, which is the

output of the transcription system, and is also used for evaluation purposes.

106

4.2.2 Music Language Models

We use the RNN-NADE and the generative RNN architecture as MLMs (Section

4.1.3). We choose to include the generative RNN in comparisons for the following

reason. In this study, the number of examples used to train the MLMs is much larger

than the experiments with piano music transcription (Section 4.2.4.1). It has been

previously shown that RNNs trained with HF optimisation and large mini-batches

of sequences perform well on a music prediction task (Martens, 2010; Martens and

Sutskever, 2011). In preliminary experiments, we observed that RNNs trained with

HF optimisation performed comparatively to RNN-NADEs trained with HF (Table

4.6).

4.2.3 Proposed Model

In this section, we describe the proposed method for combining the PLCA acoustic

model with the music language model. Before the proposed system is described, it

must be noted that the PLCA acoustic model and the RNN MLM are trained inde-

pendently with the EM algorithm and gradient descent, respectively. The proposed

model provides a means to combine the predictions from 2 independent models which

are optimised for different objectives, using different datasets.

Firstly, the input music signal is transcribed using the process described in Sec-

tion 4.2.1. The resulting piano-roll representation of the transcription is considered

to be a sequence yT0 = {y0, y1, y2, . . . , yT} that is placed as input to the MLMs (Figure

4.2). For the RNN-NADE, we compute the conditional pitch probabilities Pt(yi|y<i)

(Equation 3.37) for all time frames t and pitch indices i, and use that as prior infor-

mation for the combined model, with the prior information denoted as PMLM (y, t),

where PMLM (y = i, t) = Pt(yi|y<i). For the RNN, the prediction output is directly

denoted as PMLM (y, t), since pitch probabilities are independent.

As suggested by Smaragdis and Mysore (2009), PLCA-based models use multino-

107

AUDIO TIME-FREQUENCY

REPRESENTATION
TRANSCRIPTION PREDICTION

PIANO-ROLL

DICTIONARY

Figure 4.6: Proposed system diagram.

mial distributions; since the Dirichlet distribution is conjugate to the multinomial, a

Dirichlet prior can be used to enforce structure on the pitch activation distribution

Pt(y) obtained from the acoustic model. Following the procedure of Smaragdis and

Mysore (2009), we define the Dirichlet hyperparameter for the pitch activation as:

αt(y) ∝ PPLCA(y, t)PMLM (y, t) (4.15)

where αt(y) essentially is a pitch activation probability which is filtered through a

pitch indicator function computed from the symbolic prediction step (the denominator

is simply for normalisation purposes and is ignored).

The recording is then re-transcribed, using as additional information the prior

computed from the transcription step. The modified update for the pitch activation

which replaces (4.13) is given by:

Pt(y) ∝
∑
ω,f,s

Pt(y, f, s|ω)xω,t + καt(y) (4.16)

where κ is a weight parameter expressing how much the prior should be imposed; as

shown by Smaragdis and Mysore (2009), the weight decreases from 1 to 0 throughout

the iterations. To summarise, the initial transcription creates a symbolic predic-

tion, which in turn improves the subsequent re-transcription of the music signal. An

108

overview of the complete transcription-prediction system architecture can be seen in

Figure 4.6.

4.2.4 Evaluation

4.2.4.1 Dataset

For testing the transcription system, we employ the Bach10 dataset (Duan et al.,

2010a), which is a freely available multi-track collection of multiple-instrument poly-

phonic music. It consists of ten recordings of J.S. Bach chorales, performed by violin,

clarinet, saxophone, and bassoon. Pitch ground truth for each instrument is also pro-

vided. Due to the tonal and homogeneous content of the dataset (single composer,

single music language), it is suitable for testing the incorporation of music language

models in a multiple-instrument transcription system. For training the transcription

system, pre-extracted and pre-shifted spectral templates are extracted for the instru-

ments present in the dataset, using isolated note samples from the RWC database

(Goto et al., 2003).

For training the MLMs we use the Nottingham dataset5, a collection of 1200

folk music pieces in symbolic ABC format, which contain simple chord combinations

and tunes. We trained the RNN and the RNN-NADE models using both Stochastic

Gradient Descent (SGD) and HF to compare performance. The inputs to both the

models are sequences of length 200 where each frame of the sequence is a binary

vector of length 88 which covers the full piano note range. As before, both the RNN

and the RNN-NADE are trained to maximise the likelihood of the next vector given

a sequence of input vectors (Section 4.1.3).

5ifdo.ca/~seymour/nottingham/nottingham.html

109

Model P
RNN (SGD) 67.89%
RNN (HF) 69.61%
RNN-NADE (SGD) 68.89%
RNN-NADE (HF) 70.61%

Table 4.6: Validation results for MLMs

4.2.4.2 Metrics

We use note based precision (P), recall (R) and F-measure (F) to evaluate the

performance of the system (Section 4.1.5.2). As in the public evaluations on multi-

pitch detection carried out through the MIREX framework (MIR), a detected note is

considered correct if its pitch is the same as the ground truth pitch and its onset is

within a 50ms tolerance interval of the ground-truth onset.

4.2.4.3 Results

To validate the performance of the MLMs, we calculate the prediction precision on

unseen sequences of music from the Nottingham dataset of folk melodies. We utilise

the same training/validation/test split as Boulanger-Lewandowski et al. (2012)6 in

order to compare results. For both the RNN and RNN-NADE models we sample 10

vectors from the conditional distribution at each time-step and calculate the expected

precision against the ground truth. The reported precision is found by finding the

mean over the predictions over all frames. Table 4.6 shows the results of the validation

experiments. These results are of the same order as the prediction accuracies reported

by Boulanger-Lewandowski et al. (2012). We found that for both the models, HF

optimization gave better precision than SGD. The RNN models had a hidden layer

of size 150, while the RNN-NADE models had a recurrent hidden layer of size 100

and the NADE hidden layer comprised 150 units.

Multi-pitch detection experiments are performed using the proposed system, with

6http://www-etud.iro.umontreal.ca/~boulanni/icml2012

110

Configuration F (%) Pre(%) Rec(%)
Configuration 1 62.02 58.51 66.12
Configuration 2 - RNN-NADE (SGD) 62.62 59.70 65.92
Configuration 3 - RNN-NADE (SGD) 64.08 61.96 66.44
Configuration 2 - RNN (SGD) 62.29 59.08 65.98
Configuration 3 - RNN (SGD) 63.85 61.14 66.90
Configuration 2 - RNN-NADE (HF) 62.20 59.14 65.68
Configuration 3 - RNN-NADE (HF) 65.16 62.80 67.78
Configuration 2 - RNN (HF) 62.44 59.28 66.07
Configuration 3 - RNN (HF) 62.87 60.03 66.11

Table 4.7: Note-based transcription results using various system configurations.

various configurations. A first configuration only considers the PLCA transcription

system from Section 4.2.1. A second configuration takes the output of the transcrip-

tion system and gives it as input to the prediction system of Section 4.2.3, where the

final piano-roll is the output of the prediction step. A third configuration (presented

in Section 4.2.3), re-transcribes the recording, having the prediction as a prior infor-

mation for estimating the pitch activations. For the prediction system, experiments

were performed using both the RNN-NADE and the RNN.

Note-based results using the various system configurations are displayed in Table

4.7. It can be seen that the best performance is achieved by the 3rd configura-

tion when using the NADE-HF model for prediction, which surpasses the acoustic-

only transcription system by more than 3%. In general, it can be seen that using

the prediction system as a post-processing step (2nd configuration) always leads to

an improvement over the acoustic-only model (1st configuration). A similar trend

can be observed when integrating the prediction information as a prior in the tran-

scription system (configuration 3) compared to just using the prediction system as

post-processing (configuration 2); an improvement is always reported. Another ob-

servation can be made when comparing the RNN-NADE with the RNN, with the

former providing a clear improvement.

Qualitatively, the MLMs are able to improve transcription performance by pro-

111

viding a rough estimate of which pitches are expected to appear in the recording

(and which pitches are not expected to appear). The language models were trained

using simple chord sequences (from the Nottingham dataset) that are representative

of simple tonal music and are applicable as language models to the more complex

Bach chorales.

As an example of the proposed system’s performance, the spectrogram and raw

output of the transcription-prediction system using the 3rd configuration is displayed

for a recording from the Bach10 dataset in Figure 4.7, whereas the post-processed

transcription output along with the ground truth for the same recording is shown in

Figure 4.8.

For frame-based evaluation, the NADE-HF using Configuration 3 yields 74.3%

F-measure. The method by Duan et al. (2010a) (where the Bach10 dataset was

first introduced) yields 69.7% F-measure (with unknown polyphony). Therefore we

observe an improvement ∼ 4% when compared to existing methods on frame-based

F-measure.

4.2.5 Discussion

In this set of experiments, we evaluate a system for automatic music transcription

which incorporates prior information from a polyphonic music prediction model based

on recurrent neural networks. The acoustic transcription model is based on proba-

bilistic latent component analysis and the predictions from the MLM are incorporated

in the PLCA acoustic model using Dirichlet priors. Experimental results using the

multiple-instrument Bach10 dataset show that there is a clear improvement (3% in

terms of note-based F-measure) due to the RNN MLM. These results also demon-

strate that the MLM can be trained on symbolic music data from a different source

as the acoustic data and still improve transcription performance, thus eliminating the

need to acquire collections of symbolic and corresponding acoustic data (which are

112

p

t (sec)

(b)

ω

(a)

2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 22

10

20

30

40

50

60

70

100

200

300

400

500

Figure 4.7: (a) The spectrogram xω,t for recording “Ach Lieben Christen” from the
Bach10 dataset. (b) The pitch activation P (y, t) using the transcription-prediction
system using the 3rd configuration, with the NADE-HF.

scarce).

In the current system, the language models are trained on only one dataset. In

the future, we would like to evaluate the proposed system using language models

trained from multiple different sources to see if this helps the MLMs generalise better.

The MLMs presented here have exactly the same structure as the MLMs used for

piano music transcription and consequently the shortcomings discussed in Section

4.1.6 also apply here. The MLMs are trained by sampling the MIDI scores at some

frame-rate and the model does not have any explicit information about timing. As

argued before, a potential solution is to append timing information (like position in

the bar) to the piano-roll representation of the score. Another possible solution is

to use a transcription system to obtain the sequence of notes in the piece without

113

t (sec)

p

(b)

p

(a)

2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 22

10

20

30

40

50

60

70

10

20

30

40

50

60

70

Figure 4.8: Transcription example for recording “Ach Lieben Christen” from the
Bach10 dataset. (a) The post-processed output of the transcription-predicton system
using the 3rd configuration, with the NADE-HF. (b) The pitch ground truth of the
recording.

any alignment, for example with a method like connectionist temporal classification

(CTC) (Graves et al., 2006). This is analogous to the problem of speech recognition

where the output is a sequence of words or phonemes. The system can then be used

to infer the alignments of labels with input frames. This can be further combined

with a separate onset detection system to accurately estimate the note-onsets.

4.3 Conclusions

In this chapter, we presented results from 2 sets of experiments with polyphonic AMT.

The experiments with piano music transcription demonstrate that neural network

114

acoustic models can outperform existing state-of-the-art AMT systems on frame-

based metrics, given sufficient training data. The neural network acoustic models can

be directly applied to classify the input time-frequency representation, eliminating the

need for problem specific feature extraction. The experiments also demonstrate that

music language models can help improve transcription performance. We investigate

how the acoustic models and MLMs can be combined and discuss ways to improve the

performance of MLMs for AMT tasks. Furthermore, we present a general modification

to the beam search algorithm, which helps reduce decoding times by an order of

magnitude. The proposed beam search algorithm is general and can be applied to

other sequential search problems.

We further investigate MLMs by using them for multi-instrument transcription.

The proposed method using Dirichlet priors helps improve F-measure by 3%, a clear

improvement over previous results. These results show that MLMs and acoustic mod-

els can be trained on disjoint datasets and the MLMs can still improve transcription

similar to language models in speech. This is a useful result, since training labelled

training data for AMT is scarce and MLMs can be trained on musical scores and

MIDI music obtained from the internet.

In the next chapter, we apply the ideas developed here to the problem of automatic

chord transcription.

115

Chapter 5

Automatic Chord Transcription

In the previous chapter we proposed a neural network based model for AMT. In this

chapter, we extend the ideas developed in Chapter 4 for automatic chord transcrip-

tion. We investigate 2 aspects of ACT: the audio signal analysis and the temporal

modelling of chord sequences. In addition to directly classifying the input time-

frequency representation, we also present results of experiments with feature learning.

This chapter is organised as follows: we first present the details of the proposed model

and the inference algorithm. The next section contains details of the preprocessing,

followed by a preliminary investigation of model performance. Finally, we present

results with the experiments on feature learning and the inference algorithm.

5.1 Proposed Model

In this section we describe the proposed neural network model for ACT. We use the

hybrid RNN architecture (Section 4.1.4.1) for transcribing chords. The model com-

prises an acoustic model and a chord language model. The motivations for using the

hybrid model are twofold. Firstly, we use neural network acoustic models to estimate

the probabilities of chords given input feature frames. Using neural network models

allows us to jointly learn the acoustic features and the classifier from data. Neu-

116

ral acoustic models also allow us to experiment with different architectures (DNNs,

RNNs, ConvNets). Secondly, the RNN chord language model learns the temporal

structure in sequences of chord labels. RNNs generalise the first-order assumption

made by HMMs and dynamic Bayesian networks and can in theory learn more general

distributions over sequences of chord labels (Section 4.1.4.1).

5.1.1 Acoustic Model

In this section we describe the neural network acoustic models used in the proposed

ACT system. The neural networks are used to obtain a posterior distribution P (yt|xt)

over the chord labels yt given an acoustic observation xt at some time t. Unlike AMT,

only one chord label can be assigned to each observation and therefore the output

distribution is a multinomial distribution over chord labels. The activations of the

final layer are therefore passed through a softmax function (Section 3.3.2) as compared

to a sigmoid function in Chapter 4.

5.1.1.1 Input Representation

We use the CQT as input representation for the acoustic models (Figure 5.1). The

CQT has the advantage that it yields a lower dimensional representation compared to

the STFT. It also yields a representation that is linear in pitch. This is a useful prop-

erty that can be exploited by ConvNets to learn classifiers that are invariant to octave

transpositions in pitch. We experimented with various configurations and finally de-

termined that a CQT representation calculated over 7 octaves with 24 bins per octave

yielded the best acoustic model performance. The 168-dimensional representation is

further processed by subtracting the mean and normalising by the standard deviation

calculated over the training set, for each dimension independently.

117

Figure 5.1: CQT representation of a C-major chord played on a piano.

5.1.1.2 Neural Network Architectures

We experiment with 3 different neural network architectures for acoustic modelling:

• DNNs: Feed-forward acoustic models act on individual frames of input features

to yield a multinomial distribution over output chord labels. Given a frame xt

at any time t, the DNNs yield an output distribution P (yt|xt).

• RNNs: We use RNN acoustic models as an alternative to DNN acoustic mod-

els. RNN acoustic models have the property that they can incorporate long-

term dependencies while making predictions, due to the recursive hidden state

(Equation 3.5). Since the size of the dataset available for training the acoustic

models for ACT is much larger than previous experiments with AMT (Sec-

tion 5.2.1), we experiment with RNNs with LSTM units for acoustic modelling

(Section 3.3.3.3). In preliminary experiments, we observed that LSTM RNNs

yielded better generalisation performance than RNNs with standard hidden

units (Section 3.2.3). Given an input sequence xt0, at any time t the RNN yields

a distribution P (yt|xt0).

118

• ConvNets: We use ConvNet acoustic models to classify 2-dimensional win-

dows over the time-frequency representation. ConvNets have desirable proper-

ties for acoustic modelling like weight sharing and translation invariance over

one or both axes depending on the architecture (Section 3.2.2). Given a 2-

dimensional input xt+k+1
t−k , ConvNets yield a posterior distribution P (yt|xt+k+1

t−k)

over the chord labels.

All the acoustic models are trained with gradient descent to jointly optimise the

features and the chord classifier.

5.1.1.3 Feature Learning

In addition to classifying the time-frequency input representation with neural net-

works, we also experiment with feature learning as an additional step in the acoustic

modelling pipeline. Neural networks perform non-linear transformations of the inputs

to each layer. By composing many such operations, complex transformations can be

learnt from data. The resulting activations at each layer can be regarded as features

learnt by the network.

Recently, there have been several studies in MIR that demonstrate that better

classification accuracies can be achieved by using the features learnt by a neural

network as inputs to a classifier (Hamel and Eck, 2010; Boulanger-Lewandowski et al.,

2013a; Sigtia and Dixon, 2014). In this study, we experiment with using a DNN to

learn features which are then input to a neural network classifier1.

5.1.2 Chord Language Model

Similar to language, chord sequences exhibit complex temporal structure. We train

RNN language models to learn distributions over sequences of chord labels (Section

1Similar experiments with AMT did not yield any improvements in performance. We suspect this
is due to the considerably smaller dataset available for the piano transcription problem in Chapter
4.

119

3.4.3). The sequences of chord labels are obtained by sampling the ground-truth at

the same rate as feature extraction from the corresponding audio. We found that the

transcription accuracies were improved if we replaced the simple hidden units of an

RNN with LSTM units (Section 3.3.3.3).

5.1.3 Hybrid RNN

The predictions from the acoustic model and language model are combined using the

hybrid architecture (Section 4.1.4.1). The acoustic and language models are trained

independently. This has the advantage that the chord language models can be trained

on chord transcription data available on the internet from various sources 2, without

the need for the corresponding audio.

5.1.4 Inference

At test time, we would like to estimate the mode of the distribution P (y|x), where x is

the input sequence and y is the output sequence of chord labels. From Section 4.1.4.2,

we note that the RNN language model conditions output probabilities at any time t

on all past predictions. Say the vocabulary of chord labels is of size N and we have a

sequence of length T . Exhaustively searching for the best output sequence would be

O(NT), which is intractable. Usually, beam search is used to obtain estimates for the

output sequence y. Beam search scales linearly with the length of the sequence, which

makes it an attractive choice when decoding input sequences of unknown length at

test time. At any intermediate time-step t during search, beam search maintains a

maximum of w partial solutions, which correspond to sequences of length t. Beam

search proceeds by enumerating all possible next step predictions for the w partial

solutions, sorting them in decreasing order of log-likelihood and then retaining the

w top sequences of length t + 1 for further search. Algorithm 4 describes the beam

2e.g: www.ultimate-guitar.com

120

search algorithm used for estimating chord sequences.

Algorithm 4 Beam Search

Find the most likely sequence y given x with a beam width w.
beam← new beam object
beam.insert(0, {})
for t = 1 to T do

new beam← new beam object
for (l, s) in beam do

for y in C do
l′ = logPlm(y|s)Pam(y|xt)− logP (y)
new beam.insert(l + l′, {s, y})

beam← new beam
return beam.pop()

In Algorithm 4, the beam object is a priority queue. It should be noted that

Algorithm 4 and Algorithm 1 in Chapter 4 differ in the way candidate solutions

at every step are generated. For ACT, the output distribution is a multinomial

distribution over all possible chord labels. At any time, only one chord label can be

assigned to a frame. This is in contrast to the polyphonic AMT case where multiple

notes can be sounding at any time. For a piano with 88 keys, there are 288 possible

note combinations. The combinatorially large output space for AMT is dealt with

by enumerating a fixed number of candidates at each step (Section 4.1.4.2). For

ACT, the number of possible outputs at each step is limited to N , the size of the

chord vocabulary. Therefore in Algorithm 4, we can enumerate all possible candidate

solutions for each beam entry and then keep the top w solutions. The time complexity

of Algorithm 4 is O(NTw logw), where w is number of solutions in the beam or beam

width. The complexity of beam search increases linearly with N, T , which is desirable.

The complexity is proportional to w logw, where w is the beam width. Therefore

increasing the beam width incurs a greater computational cost while decoding as

compared to increasing the the length of the sequence or the vocabulary size.

As discussed in Section 4.1.4.2, the beam can get saturated with quasi-identical

solutions when decoding long sequences. The priority queue in Algorithm 4 can be

121

replaced with the hashed beam object described in Chapter 4, Algorithm 3. The

hashed beam search allows the algorithm to maintain diversity in the solutions.

5.2 Evaluation

In this section we describe the experiments to evaluate the performance of the pro-

posed system.

5.2.1 Dataset

Unlike other approaches to chord estimation, our proposed approach aims to learn

the audio features, the acoustic model and the language model from the training

data. Therefore, maximum likelihood training of the acoustic and language models

requires a large dataset for training. Additionally, we require the raw audio for all

the examples in the dataset in order to train the acoustic model which operates on

CQTs extracted from the audio.

The first dataset made available for ACT was the Beatles dataset with annotations

for 180 tracks (Harte, 2010). The dataset was later expanded to include tracks by

Queen and Zweieck (Mauch et al., 2009). The combined dataset contains annotations

for 217 tracks3. The Billboard dataset4 from McGill University provides annotations

for 740 tracks (Burgoyne et al., 2011). The Billboard dataset also contains at least

197 unreleased annotations which are used as the unseen test set in the annual Music

Information Retrieval Evaluation eXchange (MIREX) ACT task5. It should be noted

that the datasets mentioned here include only the annotations and not the audio for

any of the tracks due to copyright issues.

For our experiments we use the combined Beatles, Queen and Zweieck and the

3http://isophonics.net/datasets
4http://ddmal.music.mcgill.ca/billboard
5http://www.music-ir.org/mirex/wiki/MIREX_HOME

122

Number of Frames
Fold Train Validation Test

1 963 872 327 322 449 666
2 972 726 325 710 442 442
3 966 612 327 102 447 146
4 973 924 328 818 418 118

Table 5.1: Distribution of data over the train, valid and test splits.

Billboard datasets which are used for the annual ACT task in MIREX6. We were able

to obtain all 217 tracks from the Beatles, Queen and Zweieck dataset. Additionally,

we obtained 650 out of the 740 tracks in the publicly available Billboard dataset7. The

resulting dataset of 867 tracks was used for evaluating the proposed model. For all

our experiments, we consider the major/minor chord alphabet (Harte, 2010), which

is the most popular in literature (Lee and Slaney, 2006; Papadopoulos and Peeters,

2007; Humphrey and Bello, 2012; Boulanger-Lewandowski et al., 2013a; McVicar

et al., 2014). We transform all given annotations to either major or minor chord

labels. This yields 24 chord labels for the 12 pitch classes and 1 label for no-chord

class. Since the hidden tracks for the MIREX evaluation are not publicly available,

we perform 4-fold cross-validation over the 867 tracks for training and testing. All

reported results are mean values of metrics over all 4 folds. The distribution of data

over the 4 folds is reported in Table 5.1.

5.2.2 Metrics

We use the overlap ratio and weighted average overlap ratio for evaluation (Mauch,

2010; McVicar et al., 2014). Let there be N tracks in the test set. Let E(y, g) be a

function that acts on pairs of predicted labels and ground truth labels (y, g). E(y, g)

is 1 if the predicted label matches the ground truth label and 0 otherwise. The

6http://www.music-ir.org/mirex/wiki/2015:Audio_Chord_Estimation
7Details of the tracks IDs used for experiments can be found at: http://www.eecs.qmul.ac.

uk/~sss31/info.html

123

Figure 5.2: Acoustic Model Pipeline

evaluation metrics are defined below:

Overlap Ratio (OR) =
1

T

N∑
n=1

Tn∑
t=1

E(ynt , g
n
t), (5.1)

where T n is the length of nth track in the dataset and T =
∑N

n=1 T
n is the total

number of frames in the test set. The overlap ratio is independent of the length

of individual tracks. The weighted average overlap ratio (WAOR) is an alternative

metric that accounts for individual track lengths:

WAOR =
1

N

N∑
n=1

Tn∑
t=1

E(ynt , g
n
t)

T n
. (5.2)

5.2.3 Preliminary Experiments

An overview of the acoustic model pipeline is shown in Figure 5.2. The audio is first

down-sampled to 11.025 kHz. We then compute the CQT on audio frames with a

hop-size of 1024 samples. The CQT is computed over 7 octaves with 24 bins per

octave resulting in a 168-dimensional vector x. The vector x is input to the acoustic

model which yields a probability distribution over chord labels P (y|x).

5.2.3.1 Acoustic Model Training

For the purposes of training, the training data for all folds is further divided into a

training set (80%) and a validation set (20%). The validation data is used to monitor

124

the network performance during training and to decide when to stop training. The

outputs of the final layer of the acoustic model are passed through a softmax function

to obtain a multinomial distribution over chord labels. All acoustic models are trained

to minimise the negative log-likelihood of correct predictions over the training set.

• DNNs: We constrain all the hidden layers to have the same number of units

to simplify searching for good network architectures. Based on previous ex-

periments, we fix the number of layers of the network to 3 hidden layers. We

perform a grid search over the following parameters: number of hidden units

nh ∈ {25, 50, 75, 100, 200, 500}, hidden activations ∈ {ReLU, sigmoid}. We used

a fixed Dropout rate of 0.3 for all hidden and input layers. We use minibatch

SGD with ADADELTA to estimate the model parameters. We use a batch-size

of 100. Training is stopped if the validation error does not decrease after 20

epochs of training.

• RNNs: We train RNNs with LSTM units. We perform a grid search over

the following parameters: number of hidden layers L ∈ {1, 2, 3}, number of

LSTM units nh ∈ {25, 50, 100, 200, 500}. We found that LSTM units led to

better generalisation performance. We use mini-batch SGD with momentum

for estimating model parameters. We average the gradients using batches of

size 128. All training sequences are further divided into sub-sequences of length

200. Shorter sub-sequences are zero-padded to length 200. We use a fixed

momentum rate of 0.9. We use an initial learning rate of 0.01 which is linearly

reduced to 0 over 1000 iterations. Again, training is stopped if error on the

validation set does not decrease after 20 epochs of training.

• ConvNets: We train ConvNets to correctly classify the central frame in a con-

text window of size 2n+ 1. The input is a 2-D window of shape 7× 168. Based

on previous experiments with AMT, we fix the architecture as follows: the first

125

Model Architecture
DNN L = 3, H = 100

RNN-LSTM L = 2, H = 50
ConvNet w1 = (3, 25), P1 = (1, 3),w2 = (3, 7), P2 = (1, 3)

n1 = n2 = 20, h1 = 50, h2 = 50
RNN-LSTM-lm L = 2, H = 100

Table 5.2: Model configurations for the best performing architectures.

2 layers of the network are alternating convolutional and max-pooling layers.

This is followed by two fully connected layers, the output of which is then passed

through a softmax function. We then perform a search over the filter sizes and

the number of filters in each layer. We searched over the following filter shapes

for the convolutional layers: {(3, 5), (3, 7), (3, 13), (3, 25), (5, 5), (5, 7), (5, 13), (5, 25)}.

We fixed the number of filters in each convolutional layer to 20. Max-pooling

over windows of size (1, 3) was applied after both convolutional layers. We

searched over the following number of hidden units for the fully connected lay-

ers: {25, 50, 100, 200}. A dropout of 0.4 was applied to all layers. The model

parameters were estimated using mini-batch SGD and momentum. A constant

momentum rate of 0.9 was used. We used a fixed learning rate of 0.001. Training

was stopped if the validation error did not decrease after 20 epochs.

We performed the search over network architectures for the first fold. The best

performing network architectures were used for training all other folds. The network

architectures used in the experiments are summarised in Table 5.2.

5.2.3.2 Language Model Training

We train RNNs with 2 layers of LSTM units for modelling sequences of chord labels.

The inputs to the language model are sequences of one-hot vectors of 25-dimensions.

Each of the 25 dimensions corresponds to a chord label, with a value of 1 indicating

the presence of a chord label. The RNNs are trained to minimise the negative log-

126

likelihood of predicting yt+1 given the sequence yt0 (Section 3.4.3). We use minibatch

SGD with momentum to train the RNNs. We use mini-batches of size 100 and

a constant momentum rate 0.9. We use an initial learning rate of 0.001 which is

linearly reduced to 0 over 1000 training epochs. Training is stopped if error on the

validation set does not decrease after 20 training epochs.

5.2.3.3 HMM Comparison

Typically, the predictions from the acoustic model are noisy and are post-processed

in order to enforce temporal smoothing and musicological structure. The outputs are

either median filtered or the output probabilities are regarded as observations of an

HMM model, where the hidden states correspond to chord labels (Papadopoulos and

Peeters, 2007; Cho et al., 2010). At test time, Viterbi decoding is used to infer the

most likely sequence of chord labels given the observations and the HMM parameters.

The set of HMM parameters include the prior probabilities over hidden states, state

transition probabilities and the parameters of the GMM acoustic model. All the

HMM parameters can be learnt jointly using the Baum-Welch algorithm (Rabiner,

1989). However, studies show that similar performance can be achieved when the

acoustic model is trained separately and the transition probabilities are set using prior

musical knowledge (Papadopoulos and Peeters, 2007; Cho et al., 2010). We adopt the

method described by Cho et al. (2010) for our experiments. We consider an HMM

with 25 states, one for each chord label. We estimate the emission probabilities as

P (xt|yt) ∝ P (yt|xt)
P (yt)

, where the posteriors are obtained from the trained acoustic models

and the marginals P (yt) are obtained by counting frequencies of chord labels over the

training set. The transition probabilities for the HMM are defined as follows:

log P̂i,j =

logPi,j − logP, if i 6= j

logPi,j if i = j.

(5.3)

127

Language Model
None HMM LSTM

Acoustic Model OR(%) WAOR(%) OR(%) WAOR(%) OR WAOR(%)
DNN 57.06 56.59 61.21 60.38 62.81 62.00

RNN-LSTM 59.69 58.98 63.14 62.26 64.96 64.25
ConvNet 61.75 61.10 63.93 63.33 65.47 64.78

Table 5.3: 4-fold cross-validation results on the MIREX dataset for the major/minor
prediction task.

In Equation 5.3, the parameter P is a penalty parameter that ensures that the

diagonal elements have larger values than the off-diagonal elements. This is to account

for the fact that due to repeating chord labels over many frames, the probability of

a chord maintaining it’s current state is higher than that of a chord change. In our

experiments, the transition matrix is of size 25×25. We set all transition probabilities

Pi,j to a uniform value of 1
25

. Each row of the transition matrix is normalised so that

the probabilities sum to 1. The prior probabilities for each HMM state are also

uniformly set to 1
25

.

5.2.3.4 Results

Table 5.3 summarises the results of the preliminary experiments. The results in

Column 1 are obtained directly from the outputs of the neural network acoustic

models without any post-processing. The results in Column 2 are obtained by post-

processing the acoustic model outputs with an HMM. We perform a grid search over

the penalty parameter P (Equation 5.3) and results are reported with P = 17. The

results in Column 3 are obtained by post-processing the acoustic model outputs with

an RNN language model. The outputs are decoded using a standard priority queue

beam search (Algorithm 4) with a beam width w = 100.

From Table 5.3 we observe that the ConvNet acoustic models outperform the

DNN and RNN acoustic models. With respect to post-processing, we note that

both the HMM and RNN post-processing improve system performance, with the

128

RNN post-processing outperforming the HMMs. Although these are encouraging

results, a comparison with the best performing systems in the MIREX 2015 Audio

Chord Estimation Challenge8 reveals that the models in Table 5.3 are significantly

outperformed by the best performing models at MIREX (75.58% OR).

5.2.4 Feature Learning

A very interesting property of neural networks is their ability to learn a hierarchy of

representations in the intermediate or hidden layers of the network. A DNN classifier

can be regarded as a sequence of trainable non-linear transformations of the input

with a logistic regression classifier at the output layer, where the whole network is

jointly optimised for a particular task. Rather than using the entire network, it is

possible to use the activations of the intermediate layers as learnt transformations or

features which are then used as inputs to another model for further processing (Hamel

and Eck, 2010; Boulanger-Lewandowski et al., 2013a; Sigtia and Dixon, 2014).

The ability to learn features for a particular task is particularly relevant to MIR.

Most MIR systems for problems like AMT and ACT follow a similar pipeline which in-

volves feature extraction from the audio followed by classification (Humphrey, 2015).

A considerable amount of time and effort has been spent in identifying the right com-

bination of audio features and classifiers for a given task. Often these features are

hand-engineered using prior domain knowledge about music and signal processing,

for example chroma features and their variants for ACT. The ability to automatically

learn good features for a task given a large dataset would greatly simplify the design of

many MIR systems and allow researchers to focus attention on modelling higher level

musical structure. Previously, feature learning has been applied to genre classification

(Hamel and Eck, 2010; Sigtia and Dixon, 2014) and ACT (Boulanger-Lewandowski

et al., 2013a). Here we investigate feature learning as a means to improve upon the

8http://www.music-ir.org/mirex/wiki/2015:Audio_Chord_Estimation_Results

129

Figure 5.3: Feature Learning Pipeline

results from the previous section.

5.2.4.1 System Outline

Figure 5.3 represents the feature learning pipeline. We use the best performing DNN

from the preliminary experiments for feature extraction (Table 5.2). The DNN has an

input layer, 3 hidden layers with 100 unites each and an output layer. The pipeline for

feature extraction is as follows: the raw audio is transformed into a time-frequency

representation using the CQT and a hop-size of 1024 to obtain a sequence of 168

dimensional vectors. Individual CQT frames are then normalised by subtracting the

mean and dividing by the standard deviation, calculated over the training dataset.

The normalised vectors are then forward propagated through the DNN. The activa-

tions of the final hidden layer are then used as features. We observed that adding

activations from other layers did not result in an improvement in performance. This

results in a 100 dimensional feature vector for each audio frame.

We follow the same experimental procedure for evaluation as the previous exper-

iments. The only difference is that the raw CQT inputs to the acoustic model are

replaced with the learnt features from the DNN. We use the same 4 folds as the pre-

vious experiments and all reported results are mean values of metrics over all folds.

We train DNN, RNN and ConvNet acoustic models and we perform a parameter

sweet over the same parameters as described in Section 5.2.3. Additionally, we also

experiment with providing context information to the DNN. There are several studies

130

Model Architecture
DNN L = 3, H = 200

RNN-LSTM L = 2, H = 100
ConvNet w1 = (5, 25), P1 = (1, 3),w2 = (3, 5), P2 = (1, 3)

n1 = n2 = 20, h1 = 100, h2 = 50

Table 5.4: Model configurations for the best performing architectures.

that demonstrate that providing context information to classifiers results in improved

prediction accuracy (Bergstra et al., 2006; Boulanger-Lewandowski et al., 2013a; Sig-

tia and Dixon, 2014). Usually this is done by using a context window as input to the

classifier, rather than individual frames. A context window of size 2k + 1 comprises

a central frame of interest, along with k frames before and after the central frame.

The target label for each context window is the target label for the central frame. All

the frames in a context window are appended together and the joint representation is

used as input to the DNN. Rather than appending all the feature vectors together, we

found that aggregating information over the window by calculating mean and stan-

dard deviation for each feature provided better classification accuracies. This is a

form of pooling over the context window. Therefore we trained DNN acoustic models

with mean and variance pooled features over context windows of size 7. The resulting

features have 200 dimensions. Finally, rather than using the best performing acoustic

model for evaluation, we retain all the trained models and average their predictions to

form an ensemble of neural network acoustic models (Dietterich, 2000; Hinton et al.,

2015). We observed an absolute improvement of ∼ 3% OR for all acoustic mod-

els when averaging predictions. We use the same language models as the previous

experiments. The model configurations used for evaluation are presented in Table

5.4.

131

Language Model
None HMM LSTM

Acoustic Model OR(%) WAOR(%) OR(%) WAOR(%) OR WAOR(%)
DNN 69.80 69.10 72.25 71.78 73.40 73.0

DNN-CW 72.90 72.50 74.68 74.35 75.53 75.07
RNN-LSTM 73.85 73.47 75.40 75.07 76.20 75.75

ConvNet 75.24 74.87 77.13 76.65 77.95 77.38

Table 5.5: 4-fold cross-validation results on the MIREX dataset for the major/minor
prediction task.

5.2.4.2 Results

Table 5.5 summarises the results of the experiments with feature learning. Again, the

results in Column 1 are obtained directly from the outputs of acoustic model. The

results with HMM post-processing in Column 2 are reported with λ = 19. The results

in Column 3 are obtained using the proposed hybrid RNN model. The model outputs

were decoded using the hashed beam search algorithm, with w = 10, n = 2, k = 1

(Section 4.1.4.2).

From Table 5.5 we observe that using the learnt features as inputs to the acoustic

models yields a significant improvement in overall performance for all acoustic model

types. For all the three models, we observe an improvement by at least 10% for both

OR and WAOR scores. From Rows 1 and 2, we note that the DNN acoustic model

when provided with contextual information yields an improvement of 3% for both

metrics. The RNN-LSTM acoustic model outputs both the DNN acoustic model

architectures, while the ConvNet acoustic models outperforms all the other acous-

tic models. Again with regards to the ConvNets, from Table 5.2 we observe that

longer filters yield better accuracies than small square filters. Recall that the same

observations were made for AMT (Chapter 4, Table 4.2). As mentioned before, this

due to the fact that the individual pitches are comprised by a fundamental frequency

and a series harmonically related overtones which necessitates longer filters along the

frequency axis.

132

Across the columns of Table 5.5, we note that both HMM post-processing and

the hybrid RNN model yield performance improvements as compared to the models

without any post-processing. For all acoustic models, we note that the hybrid RNN

outperforms HMM post-processing. Again, we observe that the relative improvement

in performance with the hybrid RNN is most for the DNN acoustic models. The

relative improvement for the RNN and ConvNet acoustic models is less due to the

addition of context information to the inputs of the acoustic model, thus violating

the assumptions of the hybrid RNN model (Section 4.1.4.1). Although not directly

comparable, we note that the results in Table 5.5 are of the same order as the best

performing entries in MIREX 2015 (75.58% OR).

To investigate the performance of the proposed hashed beam search algorithm,

we plot the overlap ratio against the beam width in Figure 5.4a. We post-process the

outputs of a DNN acoustic model with the RNN-LSTM language model in a hybrid

setup. Figure 5.4a illustrates that the proposed algorithm can achieve marginally

better decoding performance at a significant reduction in beam size. As an example,

the hashed beam search yields an OR of 75.1% with a beam width of 5, while regular

beam search yields 74.7% accuracy with a beam width of 1000. The time taken to

run the hash beam search (w = 5) over the test set was 5 minutes, as compared

to the regular beam algorithm (w = 1000) which took 17 hours to decode the test

set. The algorithm’s ability to yield good performance at significantly smaller beam

widths indicates that it performs efficient pruning of similar paths, thus utilising the

available beam width more efficiently. The run-times of the algorithm show that it

can be used for real-time applications without compromising recognition accuracy.

In addition to the beam width, the hash beam search algorithm allows the user to

specify the similarity metric and the number of solutions for each hash table entry.

We investigate the effect of these parameters on the OR and plot the results in Figure

5.4b. We let the similarity metric be the previous n frames and observe performance

133

(a) %OR vs beam width (n = 2, k = 1) (b) %OR vs fh, k (w = 25)

Figure 5.4: Effect of varying hashed beam search parameters w, fh, k on %OR.

as n is linearly increased for a fixed beam width of 25. From Figure 5.4b we observe

that the performance is quite robust to changes in the number of past frames for

small values of n. One possible explanation for the graph is that since the test data

is sampled at a frame rate of 10ms, all occurrences of chords last for several frames.

Therefore counting the previous n frames, effectively leads to the same metric each

time. We experimented with using the previous n unique frames as a metric but

found that the results deteriorated quite drastically as n was increased. This might

reflect the limited memory of RNN language models and the issues caused due to lack

of explicit duration modelling. The blue line in Figure 5.4b illustrates the effect of

varying the number of solutions per hash table entry. From this graph we see that

performance deteriorates significantly once the number of entries per bin crosses a

certain threshold (∼ 5). This is due to the fact that maintaining many solutions of

the same kind saturates the beam capacity with very similar solutions, limiting the

breadth of search. This can be solved by using much larger beam widths, however at

the cost of increased time-complexity of the beam search algorithm (Section 5.1.4).

134

5.3 Discussion

We present a method for automatic chord transcription using the hybrid RNN model,

with an aim to learn an end-to-end ACT system that can be applied directly to low-

level features. We evaluated the model performance on the MIREX dataset for ACT.

The results from preliminary experiments show that the neural network acoustic

models are capable of identifying chord labels directly from the input time-frequency

representation. Though we note that the performance is 10% worse than state-of-the-

art ACT systems found in literature. Additionally, the results also demonstrate that

the RNN chord language models are able to improve performance when combined with

the acoustic models in the hybrid RNN framework, outperforming HMM based post-

processing. Next, we perform experiments with feature learning. The results from

these set of experiments are considerably better than the preliminary results. All

the acoustic model types considered are able to perform similarly to state-of-the-art

ACT systems. We note that the ConvNet acoustic models outperform the RNN-

LSTM models, which in turn perform better than the DNN acoustic models. We also

note that the RNN language models outperform HMM post-processing for all acoustic

models. We also investigate the performance of the hashed beam search algorithm

for decoding. We note that the hashed beam search is able to yield marginally

better accuracies, at a significant reduction in beam size and run-times. These results

demonstrate that given a sufficiently large annotated dataset, it is possible to train

acoustic classifiers that learn useful features for classification from data. They also

show the applicability of RNN-based language models for ACT.

The performance of the acoustic models presented here can be improved using

techniques like data augmentation (Schlüter and Grill, 2015) and new optimisation

strategies like batch-normalisation (Ioffe and Szegedy, 2015). The training of the

RNN language models can be improved using better optimisation strategies for RNNs

(Saxe et al., 2013; Le et al., 2015). Similarly to chapter 4, the RNN language models

135

presented here learn to model both durations and chord transitions. One way to deal

with this issue would be to perform chord transcription in a beat-aligned manner,

similar to beat-synchronous chromagrams (McVicar et al., 2014). Additionally, the

RNNs can be used to model the chord transitions while a separate model (like an

HMM) can be used to learn chord durations.

The results from this chapter follow some of the observations from Chapter 4.

In both experiments we observe that the neural network acoustic models are able to

learn useful mappings from CQTs to the desired output symbols (pitches or chords).

We also observe that ConvNets with long filter shapes outperform DNN and RNN

acoustic models on both tasks. In the following chapter, we investigate whether neural

network acoustic models are also suitable for acoustic event detection for environmen-

tal sounds.

136

Chapter 6

Acoustic Event Detection

In the previous chapters, we presented neural networks models for automatic music

and chord transcription. We observed that the neural network acoustic models are

able to learn mappings from feature frames to note and chord labels given sufficient

training data. In this chapter we present experiments with neural networks for an

Acoustic Event Detection (AED) task for environmental sounds. The structure of

the AED problem is similar to AMT and ACT, where the system outputs a sequence

of semantic labels along with onset and offset times. As discussed in Section 2.2.1,

the semantic labels for AED on environmental sounds depend on the particular task.

In this chapter we design acoustic models for detecting baby cries and smoke alarm

sounds. We compare the performance of neural network models with support vector

machines and Gaussian mixture models. Additionally, since AED systems are typi-

cally deployed on embedded hardware, we derive estimates for the computational cost

of each model and compare model performance as a function of the computational

cost. The rest of the chapter is organised as follows: first we build the context for

the experiments by describing the industrial and computational constraints for AED

systems. Next, we derive computational cost estimates for each of the models consid-

ered. We then present results from the experiments and conclude the chapter with a

137

discussion of the results and future work.

6.1 Context

Automatic speech recognition, music classification, audio indexing and to some ex-

tent biometric voice authentication have achieved some degree of commercial success

in consumer markets. A majority of these applications are typically deployed on PC

platforms, cloud computing or modern smart phones. Recently, a new area of appli-

cation is quickly emerging in the domain of Internet of Things (IoT) (Gubbi et al.,

2013). In this domain, AED for environmental sounds or automatic environmental

sound recognition (AESR) (Chachada and Kuo, 2014) has a significant potential to

create useful applications, e.g. for security or home safety applications (Istrate et al.,

2006; Vacher et al., 2010; Sitte and Willets, 2007). However in the context of IoT,

algorithms and applications are subject to strict constraints imposed by the nature

of embedded devices and their limited computing power. IoT devices can be broadly

classified into two categories (Gubbi et al., 2013):

• Devices which perform a single function, say detecting alarms.

• Embedded devices where AED is offered as an additional service, for instance

adding voice control features to a TV or sound recognition to a consumer cam-

era. In this case, the AED algorithm must fit into the device’s existing compu-

tational and cost constraints.

For both these cases, the use of high-end processors for embedded applications is

infeasible since it drastically increases the cost of these devices making them com-

mercially not viable. Typically, the following features jointly define the financial cost

of a processor and the constraints imposed by embedded computing (Hennessy and

Patterson, 2011):

138

• The clock speed of the processor which is related to energy consumption.

• The instruction set is related to chip size and manufacturing costs. In some

processors, special instruction sets are included to parallelise more operations

into a single clock cycle.

• The architecture of the processor defines the number of registers, number of

cores and presence or absence of a Floating Point Unit (FPU), a Graphical

Processing Unit (GPU) and/or a Digital Signal Processing (DSP) unit.

• Onboard memory size is an important factor related to processor cost. It af-

fects both the computational performance, where repetitive operations can be

cached to trade speed against memory, and the scalability of an algorithm, by

imposing upper limits on the number of model parameters that can be stored

and manipulated.

These features jointly define an upper limit on the number and type of operations

that can be executed in a given amount of time. It could be argued that since most

embedded devices allow internet connectivity, cloud computing can overcome the

computational constraints by abstracting the computing platform and making it as

powerful as necessary. However, a number of additional design considerations rule

out the use of cloud computing for many AED applications. The latency introduced

by cloud computing can be a problem for time critical security applications (Bonomi

et al., 2014). The network communications in cloud computing add an additional

point failure into the system which degrades the quality of service (QoS). Sending

alerts rather than streaming audio or acoustic features is more suitable in terms of

privacy (Medaglia and Serbanati, 2010) and bandwidth, both of which are critically

important for consumer applications.

Due to the above considerations, IoT devices are typically devoid of an FPU,

operate in Megahertz clock speed range (unlike PCs that operate in the Gigahertz

139

range) and do not offer onboard DSP or other specialised instruction sets. Given the

additional design constraints related to privacy, latency, bandwidth and QoS, AED

applications have to be deployed directly on embedded platforms with limited com-

putational capacity. Despite these considerations, the design and evaluation of such

systems is carried out with limited regard for the practical limitations of embedded

platforms. Most results are obtained with floating point arithmetic on powerful com-

puting platforms, with no constraints on the run-time and memory requirements of

the final system. The experiments presented in this chapter are performed with 2

main objectives. Firstly, to compare the performance of neural networks to GMMs

and SVMs on a large-scale practical AED task. Secondly, to compare their perfor-

mance as a function of the computational cost in order to estimate the viability of

deploying the algorithms on embedded hardware.

6.2 Computational Cost

6.2.1 Motivation

As mentioned before, one of the main aims of these experiments is to compare the

performance of machine learning algorithms on an AED task as a function of their

computational cost. While computational cost is related to computational complexity,

the notions are distinct: computational cost simply counts the number of operations

at a given model dimension, whereas computational complexity expresses the mathe-

matical law according to which the computational cost scales up with the dimensions

of the input feature space (Cormen et al., 2001).

We study the computational cost of different algorithms at the sound recogni-

tion or acoustic decoding stage. Unless specifically required by applications, it is

uncommon for the training stage of machine learning algorithms to be implemented

on embedded devices. Typically, the training stage is designed as an offline process

140

and is implemented on powerful scientific computing platforms equipped with clus-

ters of FPUs and GPUs. For embedded devices, the floating point model trained

offline is quantised according to the specific hardware (Smith, 1997). It is generally

accepted that the quantisation error introduced by this operation does not affect

acoustic modelling performance significantly (Gupta et al., 2015).

The computational cost estimates used in this study account for four types of basic

operations: addition, comparison, multiplication, and lookup table retrieval (LUT).

Multiply-add operations are commonly found in dot products, matrix multiplications

and FFTs. For example, correlation operations, linear filtering and Mahalanobis

distance, which are at the heart of many machine learning algorithms, rely solely

on multiply-add operations. The precision of multiply-add operations when imple-

mented using fixed point DSP is fairly straightforward to manage. Division, on the

other hand, and in particular matrix inversion, can be more difficult to manage. With

regards to matrix inversion, quantisation errors can add up to make the inversion al-

gorithm unstable (Parhami, 2009), though in many cases it is possible to pre-compute

the inversion of key parameters like the variances offline and in floating point, before

applying fixed-point quantisation. Non-linear operations such as logarithms, expo-

nentials, cosines and N th roots are required by some machine learning algorithms.

Two approaches are commonly taken to transform non-linear functions into a series

of multiply-adds: either Taylor series expansion, or look-up tables (LUTs). LUTs

consume more memory than Taylor series expansions, but require a lower number

of instructions to achieve the desired precision. It is important to be aware of the

presence of non-linearities in a particular algorithm, before assessing its cost: algo-

rithms which rely on a majority of multiply-add operations are more desirable than

algorithms relying more heavily on non-linearities.

For all the estimates presented in this chapter, it is assumed that these four types

of operations have an equal cost. While this assumption would be true for a majority

141

of processors on the market, it may underestimate the cost of non-linear functions if

interpolated LUTs or Taylor series are used instead of simpler direct LUT lookups.

In addition to the 4 operations considered here, there are additional costs incurred

with other operations (like data handling) in the processor. However, we use the

simplifying assumption that the considered operations are running on the same core,

thus minimising the data handling overhead.

As a case study, let us consider running the K-nearest neighbours algorithm on a

Cortex-M4 processor1, running at a clock speed of 80MHz and with 256kB of onboard

memory. This is a very common hardware configuration for consumer electronic

devices such as video cameras. Assuming that 20% of the processor activity is required

for general system tasks, this leaves a maximum of 64 million multiplies or adds per

second for sound recognition (80MHz × 80% = 64MHz). Assuming that the audio

is sampled at 16kHz and audio features are extracted at, say, a window shift of 256

samples, equivalent to 62.5 frames per second, implies that the AED algorithm should

use no more than 1,024,000 multiply or adds per analysis frame (64MHz / 62.5Hz =

1 024K instructions).

Assuming a K-Nearest neighbour algorithm with a 40 dimensional observation

vector x, mean vector µ and a Mahalanobis distance (x − µ)σ−1(x − µ) with a

diagonal covariance matrix σ, at run-time the algorithm involves one subtraction

and two multiplications per dimension for the Mahalanobis distance calculation, plus

one operation for the accumulation across each dimension: four operations in total,

thus entailing a maximum of 1,024,000 instructions / 4 operations / 40 dimensions =

6 400 nearest neighbours on this platform to achieve real-time recognition.

However, assuming that each nearest neighbour is a 40-dimensional vector of

16 bits/2 Bytes values, the memory requirement to store the model would be 512kB,

which is double the 256kB available on the considered platform. Again assuming

1Cortex-M4 Technical Reference Manual: http://infocenter.arm.com/help/topic/com.arm.
doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf.

142

that the code size occupies 20% of the memory, leaving 80% of the memory for model

storage, a maximum of 256kB×80% / 40 features / 2Bytes = 2 560 nearest neighbours

only which could be used as the acoustic model.

Therefore while designing an AED system for embedded hardware, the limiting

factor is a combination of the available processing power and onboard memory. In

the case of highly non-linear algorithms, the computational cost of achieving real-

time audio recognition can outweigh the model storage requirements. While only

the final integration can tell if the desired computational load and precision are met,

estimates can be obtained as illustrated in this case study in order to predict whether

an algorithm will fit on a particular platform.

6.2.2 Cost Estimates

Most AED systems use a common 3-step pipeline (Stowell et al., 2015). The audio

recording is first converted into a time-frequency representation, usually by applying

the short-time Fourier transform (STFT) to overlapping windows. This is followed by

feature extraction from the time-frequency representation. Typically, Mel Frequency

Cepstral Coefficients (MFCCs) are used as standard features, though other spectral

features have been used (Section 2.2.1). The acoustic features are then input to

an acoustic model which yields a posterior probability or class membership score.

This score is finally compared against a threshold to make a decision about class

membership. In this section, we provide estimates for each component of the AED

pipeline.

6.2.2.1 Feature extraction

Engineering the right feature space for AED is essential, since the definition of the

feature space affects the separability of the classes of acoustic data. Feature extraction

from audio recordings thus forms the first step in the classification pipeline, which

143

contributes to the overall computational cost. In this study, the acoustic models are

trained on a set of input features that are typically used for audio and speech process-

ing (Section 6.3.3). Although recent studies demonstrate that neural networks can be

trained to jointly learn the features and the classifier (LeCun et al., 2015), we have

found that this method is impractical for most AESR problems where the amount

of labelled data for training and testing is very limited (Section 6.3.2). Additionally,

by training the different algorithms on the same set of features, we are able to study

the performance of the various classifiers as a function of computation cost, with-

out having to account for the cost of extracting different features for each acoustic

model2. It also allows a fair comparison of the discriminative properties of different

classification algorithms on the same input feature space. Therefore, we factor out

the computational cost of feature extraction.

6.2.2.2 Gaussian Mixture Models

Given a D dimensional feature vector x, a GMM (Bishop, 2006, Chapter 2) is a

weighted sum of Gaussian component densities which provides an estimate of the

likelihood of x being generated by the probability distribution defined by Equation

3.39. logsum symbolises a recursive version of function log(a + b) = log a + log(1 +

e(log b−log a)) (Murphy, 2006), which can be computed using a LUT on non-linearity

log(1 + ex). Calculating the log-likelihood of a D-dimensional vector given a GMM

with M components therefore requires the following operations:

• D subtractions (i.e., additions of negated means) and 2D multiplications per

Gaussian to calculate the argument of the exponent.

• 1 extra addition per Gaussian to apply the weight in the log domain.

2For example in preliminary experiments, we observed that DNNs were able to achieve the same
performance with log-spectrogram inputs as speech features (Section 6.3.3). However, the GMMs
and SVMs performed poorly on log-spectrogram inputs. Therefore the cost estimates additionally
involved the cost of feature extraction for each acoustic model which made it harder to interpret
results.

144

• M LUT lookups and M additions for the non-linear logsum cumulation across

the Gaussian components.

This leads to the computational cost per audio frame expressed in the first row of

Table 6.1.

6.2.2.3 Support Vector Machines

Given a support vector machine with λ support vectors, a new D-dimensional ex-

ample can be classified using λ additions to sum the dot product results for each

support vector, plus a further addition for the bias term (Equation 3.45). For each

dot product, a support vector requires the computation of the kernel function, then

λ multiplications to apply the αi multipliers.

Some kernels require a number of elementary operations, whereas others require

a LUT lookup. Thus, depending on the kernel, the final costs are:

• SVM Linear – (λ ·D) + λ+ 1 additions and (λ ·D) + λ multiplications.

• Polynomial – λ(D + d + 2) + 1 additions and λ(D + 2) multiplications, where

d is the degree of the polynomial.

• Radial Basis Function – 2λD+ λ+ 1 additions, λ(D+ 2) multiplications and λ

exponential functions.

• Sigmoid – λ(D+2)+1 additions and λ(D+2) multiplications and λ hyperbolic

tangent functions.

The computational cost of SVMs per audio frame for these kernels is summarised in

Table 6.1.

6.2.2.4 Neural Networks

We compare two types of neural network architectures, DNNs and RNNs (Section

3.2). For DNNs, we consider 2 activation functions for the hidden layers, the sigmoid

145

Feature Addition Multiplication nonlinearity/LUT lookup

GMM 2(M · (D + 1) +M) 2M · 2D M
SVM - Linear λD + λ+ 1 λ ·D 0
SVM - Polynomial λD + λ+ 1 λ(D + d) 0
SVM - RBF 2λD + λ+ 1 λ(D + 2) λ
SVM - Sigmoid λD + λ+ 1 λ(D + 1) λ
DNN - Sigmoid H · (1 +D + L+ (L− 1)H) + 1 H · (1 +D + (L− 1)H) L ·H + 1
DNN - ReLU H · (1 +D + L+ (L− 1)H) + 1 H · (1 +D + (L− 1)H) L ·H + 1
RNN - Tanh H · (2 +D +H + 2(L− 1)(H + 1)) + 1 H · (1 +D +H + 2(L− 1)H) L ·H + 1

Table 6.1: Computational cost per frame of each compared model. D is the dimen-
sionality of the feature vector, M is the number of Gaussian mixtures for a GMM. λ
is the number of support vectors for a SVM, d is the degree of a polynomial kernel.
For the neural networks: H is the number of hidden units in each layer and L is the
number of layers.

and ReLU activations (Section 3.2.1). The sigmoid non-linearity is implemented as

a LUT operation, while the ReLU activation is more suited to embedded devices

as it involves only 1 comparison operation. For simplicity, every neural network

architecture was constrained to have the same number H of hidden units in each of

its L layers. The input dimensionality is denoted by D. The forward pass through a

feed-forward neural network therefore involves the following computations:

• Multiplying a column vector of size n with a matrix of size n× k involves n · k

additions and an equal number of multiplication operations.

• Therefore the first layer involves (D ·H) multiplication operations and H ·

(D + 1) additions, where the additional H additions are due to the bias term.

• The remaining L−1 layers involve the following computations: (L− 1) ·(H ·H)

multiplications and (L− 1) · (H · (H + 1)) additions.

• The output layer involves H multiplications and H + 1 additions.

• A non-linearity is applied to the outputs of each layer, leading to a total of

L ·H + 1 non-linearities.

• The RNN forward pass includes an additional matrix multiplication due to the

146

recurrent connections. This involves H ·H multiplications and an equal number

of addition operations.

The computational cost estimates for DNNs and RNNs are summarised in Table 6.1.

6.3 Evaluation

6.3.1 Evaluation Metrics

Let us consider a binary classification problem where a positive class corresponds to

the label 1 and the negative class corresponds to the label 0. Any classifier produces

2 types of errors. False negative (FN) errors are when the target class for a given

example is positive but the classifier assigns 0 to the example. Similarly, a false pos-

itive (FP) error is when the target class for an example is negative but the classifier

outputs 1. Complementary to these errors are true positives (TP), when the classifier

correctly assigns a positive label and true negatives (TN), when the classifier cor-

rectly assigns a negative label (Japkowicz and Shah, 2011). The above quantities are

typically calculated as the fraction of classifier outputs of each type divided by the

total number of examples (Section 4.1.5.2). Typically, most classifiers output a real

valued score which is compared to a threshold, after which a classification decision is

made. Therefore, the performance of a classifier on the above metrics is a function

of the threshold or operating point. The threshold value can be varied according to

the given application. For example in some cases it might be necessary to minimise

the number of false positives, which can be achieved by rejecting more examples and

therefore allowing more false negatives.

Ideally, classifiers for AED applications should be compared independently of the

choice of operating point. This can be achieved through the use of Detection Error

Tradeoff (DET) curves (Martin et al., 1997), which plot the false positive rate against

the false negative rate over a range of operating points. DET curves are equivalent to

147

Receiver Operating Curves (ROC) (Martin et al., 1997) plotted on a normal deviate

scale, under the assumption that the FP vs FN scores are normally distributed. A

curve that is closer to the origin represents a better classifier. The performance based

on DET curves can be summarised into a singer figure of merit called the Equal Error

Rate (EER), which is the point where the DET curve intersects the diagonal %FP

= %FN. Alternatively, the EER represents the operating point where the system

generates an equal proportion of false positives and false negatives.

The GMM classification system comprises 2 GMM models: the first GMM is

trained to maximise the likelihood of the examples belonging to the target class

P (x|θtarget) (Bishop, 2006, Chapter 2). A second GMM known as the universal back-

ground model (UBM) is trained to maximise the likelihood of non-target examples

P (x|θUBM). At test time, the ratio between the log-likelihoods from the two models

logP (x|θtarget)/P (x|θUBM) is the output score which is compared against a threshold.

For SVMs, the argument of the sgn() function in Equation 3.45 is the output score.

The sgn functions corresponds to a threshold of 0 and a margin defined by the support

vectors (Equation 3.46). Choosing a threshold other than 0 corresponds to a deviation

from the margin of maximum separation. According to the discussion in Section 3.3.2,

the neural network outputs a probability of class membership P (target|x), which is

compared against a threshold for classification.

6.3.2 Datasets

For AED, the training data comprises audio recordings along with annotations or

ground truth labels for each recording. Similar to AMT (Chapter 4) and ACT (Chap-

ter 5), the ground truth labels are provided in the form of onset times and offset times

for each label in a given recording. The annotations are usually performed by human

listeners and therefore collecting and labelling large datasets is a time consuming

and expensive process (Stowell et al., 2015). Typically, relatively small datasets are

148

used for evaluating AED systems. For instance the DCASE challenge (Stowell et al.,

2015) and the CLEAR challenge (Temko et al., 2006) are two popular benchmarks

for AED. The DCASE challenge data contains 20 examples for each of the 16 event

classes, while the dataset for the CLEAR challenge contains approximately 60 ex-

amples for each of the 13 classes. These datasets are considerably smaller than the

datasets available for other domains where machine learning is applied (LeCun et al.,

2015).

One of the motivations for these experiments is to evaluate whether neural network

acoustic models can perform better than existing approaches to AED. However as

discussed in previous chapters, neural network models typically have many parameters

and require large quantities of training data in order to generalise effectively. For

example, we trained neural network acoustic models on the data for the DCASE

challenge, but we were not able to match the GMM baseline (Stowell et al., 2015). In

order to be to able to train neural network acoustic models, we perform experiments

using 3 private datasets made available by Audio Analytic Ltd.3,4 These 3 datasets

are subsets of much larger data collection campaigns led by Audio Analytic Ltd. to

support the development of smoke alarm and baby cry detection products. Ground

truth annotations with onset and offset times obtained from human annotators are

also provided. Out of the 3 datasets, 2 datasets contain recordings of baby cries

and smoke alarms, while the third dataset contains a large number of recordings of

background or ambient sounds. The datasets of baby cries and smoke alarm sounds

provide a large number of examples for training and evaluating acoustic models. The

background or world dataset on the other hand is a rich source of impostor examples

for both training and evaluation. Any practical AED system would have to make

accurate detections in the presence of thousands of ambient impostor sound sources.

The background dataset provides recordings from potentially thousands of sources in

3http://www.AudioAnalytic.com
4The data can be made available upon setting suitable contractual agreements.

149

Train Test
Dataset Duration (s) # Target Frames Duration (s) # Target Frames

Baby Cries 4 822 224 076 3 669 90 958
Smoke Alarms 15 271 194 142 5 043 114 753

World 5 000 312 500 4 000 255 562

Table 6.2: Distribution of train and test data for the Baby Cry, Smoke Alarms and
World datasets.

order to simulate real-world conditions during training and testing.

The Baby Cry dataset comprises recordings obtained from two different record-

ing conditions: one through a camcorder in a hospital environment and one through

uncontrolled hand-held recorders in uncontrolled conditions (both indoors and out-

doors). Each recorder is used to record a different baby. The train/test split was made

evenly in order to achieve the same balance over both recording conditions (about

3/4 recordings from the hospital and the remaining from both indoor and outdoor

environments) without any overlap between sources (individual babies) for training

and testing. The recordings in this dataset sum up to 4 822 seconds of training data

and 3 669 seconds of test data, from which 224 076 feature frames in the training set

and 90 958 feature frames in the test set correspond to target baby cry sounds. The

target frames correspond to frames that occur between the onset and offset for an

event of interest (like baby cries) in a given recording.

The Smoke Alarm dataset comprises recordings of 10 smoke alarm models, recorded

through 13 different channels across 3 British homes. While it might appear that

smoke alarms should be relatively easy to detect, there is considerable variability due

to the plethora of alarm models, room responses, ambient surroundings and differ-

ent recording channel configurations which rules out simple audio fingerprinting or

template matching based approaches. The training set comprises recordings from 2

homes, while the test set contains recordings from the third home. The smoke alarms

were recorded using an array of consumer devices covering devices of interest for

150

example network cameras, in order to average out the channel effects. The dataset

comprises 15 271 seconds of training data and 5 043 seconds of testing data, which

result in 194 142 feature frames for training and 114 753 feature frames for evaluating

the AED acoustic models.

The World Dataset contains about 900 recordings of approximate 10 seconds each

which cover a wide variety of complex acoustic scenes recorded from numerous in-

door and outdoor locations around the UK, across a wide and uncontrolled range of

recording devices and potentially covering thousands of impostor sound classes. For

example a 10 second recording of a train station scene covers train sounds, speech,

horns, whistles and more. While it is not possible to enumerate all the sound sources,

even an underestimate of 1.1 unique sources per recording results in over 1000 im-

poster classes for evaluation. 500 recordings are used as a source of negative examples

for training the classifiers, while the remaining recordings are used as imposter ex-

amples for evaluation. The dataset consists of 5 000 seconds of data for training and

∼ 4 000 seconds of data for testing, which corresponds to 312 500 feature frames for

training and 255 562 feature frames for testing. The datasets and their contents are

summarised in Table 6.2.

6.3.3 Feature Extraction

All recordings were sampled at 16 kHz, 16 bits. All features were calculated with

a window size of 512 samples and a hop size 256 samples. We extracted MFCC

features which have been extensively used in speech recognition and in AED systems

(Radhakrishnan et al., 2005; Clavel et al., 2005; Valenzise et al., 2007; Portelo et al.,

2009) and use the first 13 MFCC coefficients. In addition to MFCCs, spectral centroid

(Clavel et al., 2005), spectral flatness (Portelo et al., 2009), spectral roll-off (Valenzise

et al., 2007), spectral kurtosis (Valenzise et al., 2007) and zero crossing rate (Valenzise

et al., 2007) features were also computed. Concatenating all the features results in an

151

18-dimensional feature vector. To incorporate temporal information into the inputs,

we also computed the first and second order differences of all features resulting in a

54-dimensional feature vector. It should be noted that the inputs to the RNN were

the original 18-dimensional features without temporal differences, since the RNN

explicitly models input context and we did not find any improvement by providing

the delta features as inputs. For all experiments, the data was normalised to have zero

mean and unit standard deviation for each dimension, where the mean and standard

deviation were computed over the entire training set.

6.3.4 Training Methodology

6.3.4.1 Gaussian Mixture Models

GMMs were trained using the expectation maximisation algorithm (EM) (Bishop,

2006, Chapter 2). The covariance matrices were constrained to be diagonal5. We

trained GMMs with Gaussian componentsM ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}.

All the Gaussians were initialised using the k-means++ algorithm (Arthur and Vassil-

vitskii, 2007). A single UBM was trained on the World training dataset. One GMM

per target class was then trained independently of the UBM. We also performed

experiments where GMMs for each class were estimated by adapting the UBM by

Maximum A Posteriori (MAP) adaptation (Reynolds et al., 2000). We observed that

this method yielded inferior results. We also observed worse results when no UBM

was used and class membership was determined by simply thresholding the outputs of

individual class GMMs. In the following sections, results are therefore only reported

for the best performing method, which is the likelihood ratio between independently

trained UBM and target GMMs.

5In preliminary experiments, we observed that a full covariance matrix did not yield any im-
provement in performance. Diagonal covariance matrices are also computationally cheaper.

152

6.3.4.2 Support Vector Machines

We compare linear, polynomial, radial basis function (RBF) and sigmoid kernel SVMs

for AED. In addition to optimising the kernel parameters (d, γ) (Section 6.2.2.3), a

grid search was performed over the penalty parameter C (Equation 3.46). In prac-

tice, real-world data are often non-separable, thus a soft margin has been used as

necessary. SVM training is known to not scale well to very large datasets (Burges,

1998): the training algorithm has a time-complexity of O(T 3), where T is the number

of training examples. As a matter of fact, our preliminary attempts at using the

full training datasets led to prohibitively long training times and poor generalisation

performance on unseen data. Standard practice in that case is to down-sample the

training set by randomly drawing T frames from the target set, and the same num-

ber of frames from the world set as negative examples for training. We performed a

grid search over the number of training examples vs test accuracy. We determined

T = 2000 to be the optimal number of examples from each class. Additionally, we

also present comparative results with T = 500. This is done as a means to control

model complexity, since the number of support vectors is automatically selected by

the optimisation algorithm and controlling model complexity is a challenging problem

with SVMs.

6.3.4.3 Neural Networks

All the neural network architectures contain 1 output unit with a sigmoid activation

that estimates the probability of class membership of an example (Section 3.3.2).

The networks were trained to maximise the likelihood of correct classification over

the training set.

For the DNNs, a grid search was performed over the following parameters: number

of hidden layers L ∈ {1, 2, 3, 4}, number of hidden units per layerH ∈ {10, 25, 50, 100, 150},

hidden activations act ∈ {sigmoid,ReLU}. In order to minimise parameter tuning,

153

we used ADADELTA to adapt the learning rate over iterations. The networks were

trained using mini-batches of size 100 and training was accelerated using an NVIDIA

Tesla K40c GPU. A constant dropout rate of 0.2 was used for all layers to improve

results on the test data. The training was stopped if the cost on the validation set

did not decrease after 20 epochs.

For the RNNs, a grid search was performed over the following parameters: number

of hidden layers L ∈ {1, 2, 3} and number of hidden units per layerH ∈ {10, 25, 50, 100, 150}.

An initial learning rate of 0.001 was used and linearly decreased to 0 over 1000 iter-

ations. A constant momentum rate of 0.9 was used for all the updates. The training

was stopped if the error on the validation set did not decrease after 20 epochs. The

training data was further divided into sub-sequences of length 100 and the networks

were trained on these sub-sequences without any mini-batching. Gradient clipping

was also used to avoid the exploding gradient problem in the early stages of RNN

training. The gradient was clipped if the norm of the gradient update exceeded 10.

6.3.5 Results

In this section, model performance is analysed for the task of recognising smoke alarms

and baby cries against the large number of impostor sounds from the world dataset.

Tables 6.3 and 6.4 present the EER for the best performing classifiers of each type

and their associated computational cost. Figure 6.1 shows the corresponding DET

curves. In Figures 6.2 and 6.3 we present a more detailed comparison between the

performance of various classifier types against the computational cost involved in

classifying a frame of input at test time.

154

(a) Baby Cry Dataset (b) Smoke Alarm Dataset

Figure 6.1: DET curves comparing frame classification performance of the best per-
forming model of each type. Curves closer to the origin imply better performance.

Best Baby Cry classifiers EER # Ops.
GMM, M = 32 14.0 10 560
Linear SVM, T = 2000, C = 1.0, λ = 655 12.9 101 985
Feed-forward DNN, sigmoid, L = 2, H = 50 10.8 10 702

Table 6.3: Performance of the best classifiers on the Baby Cry dataset along with the
optimal parameters and number of operations.

Best Smoke Alarm classifiers EER # Ops.
GMM, M = 16 2.9 5 280
Linear SVM, T = 2000, C = 0.1, λ = 152 3.0 46 655
Feed-forward DNN, sigmoid, L = 2, H = 25 1.7 4 102

Table 6.4: Performance of the best classifiers on the Smoke Alarms dataset along
with the optimal parameters and number of operations.

6.3.5.1 Baby Cry Dataset

From Table 6.3 we observe that the best performing GMM has 32 components and

achieves an EER of 14.0% for frame-wise classification. From Figure 6.2 (+ markers)

we note that the performance of the GMMs improves till M = 32, after which increas-

ing the number of components further leads to a deterioration in performance. Note

155

Figure 6.2: Acoustic frame classification performance (EER percentage) as a function
of the number of operations per frame, for each of the tested models on the Baby
Cry dataset. The number of operations and consequently the computational cost
increases from left to right.

that the computational cost increases from left to right on the X-axis. Therefore for

GMMs, models from left to right are in increasing order of the number of components

M .

From Table 6.3, we observe that an SVM with a linear kernel is the best performing

SVM classifier, with an EER of 12.9%. The SVM was trained on 2000 examples,

resulting in 655 support vectors. From Figure 6.2, we note that the performance

of the linear SVM (blue triangles) improves as the computational cost (number of

support vectors) is increased. The number of support vectors can also be controlled

by varying the parameter C (Section 6.2.2.3). For the linear SVM case, C = 1.0 yields

the best results. We observe that SVMs with a sigmoid kernel (light blue triangles)

yield similar results to the linear SVM (Figure 6.2). The best SVM with a sigmoid

kernel yields an EER of 13.5%, while the second best sigmoid SVM has an EER of

13.9%. As in the linear case, we observe an improvement in test performance as the

156

Figure 6.3: Acoustic frame classification performance (EER percentage) as a function
of the number of operations per frame, for each of the tested models on the Smoke
Alarm dataset. The number of operations and consequently the computational cost
increases from left to right.

computational cost or the number of support vectors is increased.

From Figure 6.2, we note that SVMs with RBF and polynomial kernels (green and

red triangles) are outperformed by linear and sigmoid SVMs, both in terms of %EER

and computational cost. There is also no observable trend between test performance

and computational cost. For the polynomial SVM (red triangles), we found a kernel

with d = 3 yielded the best performance, while low values of gamma γ ∈ (0.005, 0.01)

provided the best results for the RBF kernel (Section 6.2.2.3).

The number of training examples T = 2000 was empirically determined to be

the optimal value: adding more training examples did not yield any improvement in

performance. Conversely, we tried training the same classifiers with T = 500 training

examples, since the computational cost of SVMs is determined both by the type of

kernel and the number of support vectors, the latter being controlled by varying

the number of training examples and the penalty parameter C. With T = 500 and

157

C = 0.1, we were able to achieve a minimum EER rate of 13.7% with the linear SVM,

while halving the number of operations.

From Table 6.3, the best performing neural network architecture, which achieves

an EER of 10.8%, is a feed-forward DNN with sigmoid activations for the hidden

units. Figure 6.1a shows that the neural network clearly outperforms all the other

models. From Figure 6.2 we observe that the feed forward DNNs (circle and square

markers) achieve similar test performance over a wide range of computational costs.

This demonstrates that the network performance is not particularly sensitive to the

specific number of hidden units in each layer. However, we did observe that networks

which were deeper (> 1 hidden layer) yielded better performance. From Figure

6.2, we observe that the RNN architectures (hexagonal markers) yield slightly worse

performance and are computationally more expensive. An interesting observation

from Figure 6.2 is that feed-forward DNNs with sigmoid activations yield similar

results to networks with ReLU activations. This is a very important factor when

deploying these models on embedded hardware, since a ReLU net can be implemented

with only linear operations (multiplications and additions), without the need for

costly Taylor series expansions or LUTs.

6.3.5.2 Smoke Alarm Dataset

From Table 6.4, we observe that the best performing GMM yields an EER of 2.9%

and uses 16 mixture components. From Figure 6.3 (+ markers), we observe that the

GMM performance improves till M = 32 components, after which the performance

starts deteriorating. The best GMM with 16 components performs similarly to the

best SVM model, though the computational cost of the SVM is almost 10 times more

than the GMM (Table 6.4).

Similar to the results on the Baby Cry dataset, the linear and sigmoid kernel SVMs

show the best performance, out of all four SVM kernel types. The best linear SVM

158

has an EER of 3.0%, which is very similar to the GMM score, although at a much

larger computational cost. The model used 2000 training examples and C = 1.0.

From Figure 6.3 we again observe an improvement in performance with an increase

in computation cost for both the linear and sigmoid kernels (blue triangles). The best

sigmoid kernel SVM scored 3.5% with 2000 training examples, while another configu-

ration scored 3.6% with T = 500 and C = 1, at half the number of operations. Again,

the polynomial and RBF kernels (red and green triangles) yield lower performance,

with no observable trend in terms of performance versus computational cost (Figure

6.3).

From Table 6.4, we observe that a feed-forward sigmoid DNN yields the best per-

formance, with an EER of 1.6%. From the DET curves (Figure 6.1b), we see that

the neural network clearly outperforms the other models. From Figure 6.3 we note

that the neural networks consistently perform better than the other models, over a

wide range of computational costs, which correspond to different network configura-

tions (number of layers, number of units in each layer). The ReLU networks perform

similarly to the sigmoid networks, while the RNNs perform worse and are compu-

tationally more expensive. It is worth noting that the performance of all classifiers

is significantly better for the smoke alarm sounds, since the smoke alarms are com-

posed of simple tones. On the other hand, baby cries have a large variability and are

therefore more difficult to detect.

6.4 Discussion

In this chapter, we compare the performance of neural network acoustic models with

GMMs and SVMs on an AED task for environmental sounds. Unlike other machine

learning systems, AED systems are usually deployed on embedded hardware, which

imposes many computational constraints. Keeping this in mind, we compare the

159

performance of the models as a function of their computational cost. We evaluate

the models on two tasks, detecting baby cries and detecting smoke alarms against a

large number of impostor sounds. These datasets are much larger than the popular

datasets found in AESR literature which enables us to train neural network acoustic

models. Additionally, the large number of impostor sounds allows to investigate the

performance of the proposed models in a testing scenario that is closer to practical

use cases as compared to previously available data sets for AED.

Results suggest that GMMs provide a low cost baseline for classification, across

both datasets. The GMM acoustic models are able to perform reasonably well at

a modest computational cost. SVMs with linear and sigmoid kernels yield similar

performance in terms of EER compared to GMMs, but their computational cost is

overall higher. The computational cost of the SVM is determined by the number of

support vectors. Unlike GMMs, SVMs are non-parametric models which do not allow

the direct specification of model parameters. Though the number of support vectors

can be indirectly controlled with regularisation or the number of examples used for

training. Finally, our results suggest that deep neural networks clearly outperform

both the GMMs and the SVMs on both datasets. The computational cost of DNNs

can be controlled via the number of hidden units and the number of layers. While

changes in the number of units in the hidden layers did not appear to have a large

impact on performance, deeper networks appeared to perform better in all cases.

Additionally, neural networks with ReLU activations achieved good performance,

while being an attractive choice for deployment on embedded devices because they

do not require expensive LUT lookup operations.

The results presented here are in agreement with the findings in Chapter 4 and 5.

As mentioned before, the AED problem has a similar structure as AMT and ACT.

We observe that neural networks are able to learn effective mappings from input

feature vectors to high-level targets like note labels, chord labels and smoke alarm

160

and baby cry activity. Our comparisons demonstrate that given sufficient training

data, neural networks are capable of outperforming state-of-the-art acoustic models

in many domains. Additionally, the neural processing architectures and pipelines

are general. For instance, the DNNs applied to AMT, ACT and AED are similar

in their structure, though they differ in the type of input features and the specific

architectures used. This is in stark contrast to other approaches which are hand-

designed and specific to each task. The generality of the network architectures can

be leveraged by training large networks on data for different tasks in order to try

to improve the generalisation capabilities. For example, large neural networks in

computer vision are often initialised by training them on a large dataset of images

(Krizhevsky et al., 2012) before further tuning and adaptation for a specific task.

161

Chapter 7

Conclusions

In this thesis, we investigated neural networks for analysing music and environmental

audio. We evaluated the performance of the models on 3 different tasks: automatic

music transcription, automatic chord transcription and acoustic event detection for

environmental sounds. For all three problems, we observed that the proposed models

were able to perform competitively with state-of-the-art systems for each task. In

this chapter, we first summarise our findings and then discuss directions for future

research.

7.1 Summary

7.1.1 Automatic Music Transcription

In Chapter 4, we perform 2 sets of experiments for AMT. In the first set of exper-

iments, we design a hybrid RNN architecture for piano music transcription. The

hybrid RNN model combines the predictions of arbitrary frame-level acoustic models

with the predictions of an RNN MLM. We present DNN, RNN and ConvNet archi-

tectures for acoustic modelling and compare their performance to two state-of-the-art

acoustic models. Our results demonstrate that the ConvNets clearly outperform all

162

other models on all frame-based metrics. We also note that the MLMs consistently

improve performance for all metrics, though the absolute improvement is small (∼ 1%

F-measure). We then investigate whether the models are able to generalise to new

piano types. From these experiments, we observe that again the ConvNets outper-

form all other models on frame-based metrics, though the performance of all models is

worse by∼ 10% F-measure since the models are tested on unseen piano types. Finally,

we propose a beam search based algorithm for inference. Our proposed hashed beam

search modification to the decoding algorithm is able to drastically reduce decoding

time, making the proposed method suitable for real-time applications. Overall, we

note that the neural network models which are applied to CQT inputs and trained

end-to-end, are able to outperform state-of-the-art models which are hand-designed

for AMT. Secondly, the MLMs help improve performance on all metrics, though the

improvement is small. The fact that MLMs can be trained in an unsupervised setting

on corpora of musical scores provides strong encouragement for further investigation.

In the second set of experiments with AMT, we investigate the performance of

MLMs in a more general setting where the test data comprises multiple instruments.

Additionally the acoustic and language models are trained on separate datasets. The

PLCA acoustic model is trained on isolated note samples from the RWC dataset,

while the MLM is trained on folk melodies from the Nottingham dataset. We present

a novel method for combining the predictions of the PLCA acoustic model with an

RNN MLM using Dirichlet priors. The proposed model was evaluated on the Bach10

dataset. We observe that combining the predictions of the PLCA model and the

RNN MLM using the proposed method results in a 3% absolute improvement in

note-based F-measure and forms the current state-of-the-art on the Bach10 dataset.

These results demonstrate that MLMs can indeed help improve performance of AMT

systems and that similar to speech recognition, MLMs can be effective even when the

acoustic and language models are trained on disjoint sets of data.

163

7.1.2 Automatic Chord Transcription

In Chapter 5, we apply the hybrid model developed for AMT to an automatic chord

transcription problem. We evaluate the proposed model on a large dataset of popular

music for ACT. As in Chapter 4, we present DNN, RNN and ConvNet architectures

for acoustic modelling. Additionally, we use an RNN chord language model for post-

processing in the hybrid RNN framework. We also compare the performance of the

RNN with an HMM for post-processing. From preliminary experiments, we observe

that the neural network acoustic models are able to identify chord labels from CQT

inputs, though the performance of the models is worse by ∼ 10% F-measure compared

to state-of-the-art ACT systems. Next, due to the availability of a larger dataset for

training, we investigate feature learning for ACT. We use the hidden activations of

the best performing DNN from the preliminary experiments as features and train

neural network acoustic models with the learned features as inputs. We observe

that all acoustic models yield a performance improvement of ∼ 10% F-measure when

the learnt features are used as inputs. We also achieve a small improvement in

acoustic model performance by averaging the predictions of all the trained acoustic

models. Similar to our results for AMT, we observe that the ConvNets with long filters

outperform DNN and RNN acoustic models. With respect to the chord language

model, we observe that RNN language models consistently outperform the HMMs,

which are the most popular post-processing method for ACT systems. We note that

the proposed ACT system yields similar performance to state-of-the-art systems which

are designed specifically for AMT. It should be noted that the hybrid RNN model is

able to yield good performance for experiments with both AMT and ACT and is not

limited to a single task.

164

7.1.3 Acoustic Event Detection

In Chapter 6, we investigate neural network acoustic models for acoustic event de-

tection for environmental sounds. We compare the performance of neural network

acoustic models with GMMs and SVMs. We evaluate the models on 2 separate tasks:

detection of baby cry sounds and detection of smoke alarm sounds. The datasets

used for evaluation are much larger than the most commonly used datasets for AED

(Temko et al., 2006; Stowell et al., 2015) and more closely approximate real-world test

conditions. Since AED systems are typically deployed on embedded devices, we also

derive computational cost estimates for each algorithm and compare the performance

of different models as a function of the computational cost.

Our results demonstrate that for both datasets, the GMMs form a low cost base-

line. The GMM acoustic models perform reasonably well at a relatively low computa-

tional cost. We observe that the SVMs yield comparable performance to the GMMs,

though at a much higher computational cost. We also observe that due to the non-

parametric nature of SVMs, controlling computational cost is a difficult problem since

the support vectors are determined at run-time. We note that for both datasets, the

neural network acoustic models clearly outperform the GMMs and SVMs. We observe

that deeper models perform well and that the computational cost can be easily con-

trolled via the number of hidden units per layer and the number of layers. The DNN

acoustic models yield good results without incurring a heavy computational cost. In

fact the best performing DNN on both datasets has roughly the same computational

cost as the best performing GMM. Additionally, we observe DNNs with both sigmoid

and ReLU hidden units yield similar performance, which is a useful property since

ReLUs can be implemented very efficiently on embedded hardware since they do not

require LUTs or Taylor series expansions.

165

7.2 Future Work

In this section we discuss future work and potential research directions to extend the

ideas presented in this thesis.

7.2.1 Acoustic Modelling

From Chapters 4, 5 and 6, we observe that neural network models are able to learn

mappings from time-frequency inputs to high-level symbols (notes, chords, environ-

mental events) when trained end-to-end and provided sufficient labelled training data.

The general architecture of the acoustic models used for all 3 problems is similar and

in some cases (AMT and AED) the models outperform hand-designed acoustic models

for each problem. Although these results are encouraging there are several possibili-

ties for improving model performance.

The first observation we make is that the neural network acoustic models perform

better when more labelled training data is available. In Chapter 5, we observed

that the larger dataset for training could be leveraged to learn features for ACT,

which yielded an absolute improvement of 10% in F-measure. Similarly, in Chapter

6 we observed that the neural network models failed to beat a GMM baseline on the

relatively small DCASE dataset (Stowell et al., 2015), but they clearly outperformed

the GMMs and SVMs when trained on a large dataset of baby cries and smoke alarm

sounds. Therefore, one way to improve performance for MIR and environmental sound

detection is to collect larger datasets for training and evaluation. This trend has

been observed in other fields such as speech recognition and computer vision, where

the success of initial applications of neural networks has been followed by collection

of much larger datasets for training and evaluation. The current state-of-the-art

approach in both fields is to train large neural networks with many parameters on large

datasets. Although admittedly, collecting and distributing music audio is complicated

166

by copyright issues, there is compelling evidence that both fields would benefit if

evaluation and benchmarking were performed on large standardised datasets.

One way to increase the size of the training dataset is using data augmentation

techniques (Krizhevsky et al., 2012). Data augmentation involves distorting the net-

work inputs while preserving the output labels. For example for images, this can be

done by making small rotations to the images or by adding noise to the pixel intensity

values. Data augmentation expands the size of the training set while at the same time

acting as a regulariser by adding noise to the training data. Although data augmen-

tation is now standard practice for computer vision, it hasn’t been widely adopted

for MIR and environmental audio research. The main reason for this is that it is not

not clear what kind of transformations can be validly applied to CQTs or any other

time-frequency representation being used as inputs to the network. Though recently

there has been some interest in data augmentation for MIR (Mauch and Ewert, 2013;

Schlüter and Grill, 2015), we believe it is a promising direction for audio analysis

research.

One important observation from all the experiments presented in this thesis is

that the neural network acoustic models are general and similar architectures can be

applied to different tasks. In our experiments we observed that similar DNN archi-

tectures could be trained on 3 different tasks, provided a sufficiently large training

dataset was available. It could be argued that the feature engineering stage which

was previously required in designing acoustic models has now been replaced by an

architecture engineering stage for neural networks. However, being able to train net-

works end-to-end that learn the features and classifiers jointly from examples is a big

generalisation compared to manually injecting domain knowledge into the acoustic

features for each task. As meta-learning and Bayesian optimisation algorithms im-

prove (Snoek et al., 2012, 2015), the task of finding the most appropriate architectures

can potentially by automated.

167

Related to the generality of architectures, is the idea of transfer learning. In

computer vision, it is now common to start with a network that is trained on a

large dataset of images (Krizhevsky et al., 2012) and then fine-tune the network to

a more specific task, for instance by retraining the output layer while keeping the

other parameters fixed. This technique allows the network to share concepts between

similar tasks. Similar ideas can be applied for processing audio signals. For example,

in order to recognise chords correctly, a network should be able identify pitches.

Therefore, a neural network chord recognition model can be pre-trained on a large

dataset for AMT, before subsequent fine-tuning for chord recognition. It should be

noted that this is only possible due to the fact that the same architectures can be

applied to different tasks.

From the results in Chapter 4, we observe that the neural network acoustic mod-

els outperform all other models on frame-based metrics, but are outperformed by the

model by Vincent et al. (2010) on note-based metrics. We note that for note-based

metrics, a detection is made correctly if the right pitches are predicted and the onset

time for the pitches is within ±50ms of the ground truth onset. The fact that the

neural network models get high frame-wise accuracy but relatively lower note-wise

accuracy implies that the temporal resolution of the neural network predictions is

low. This is due to the fact that inputs to the neural networks are CQTs, while the

inputs to the model by Vincent et al. (2010) are ERB filter-banks. The ERB rep-

resentation has higher temporal resolution and consequently the model yields better

note-based performance. Both the neural networks and the model by Benetos and

Dixon (2012) use CQT inputs and yield lower note-based performance. The temporal

resolution of the neural network acoustic models can be improved by experimenting

with alternative input representations.

All the acoustic models presented in this thesis were trained on a frame-wise ba-

sis or at a frame-level i.e. an input sequence of features was mapped to an output

168

sequence, with one output per frame. However, frame-level training requires the

availability of ground truth labels with alignment or labels with onset/offset times.

Collecting large annotated datasets of this form is an expensive task. Additionally, as

briefly mentioned in Section 4.1.5.5, annotating offsets for many instruments can be

noisy due to sustain and reverberation effects. An alternative to frame-wise training

is to cast the acoustic modelling objective in the sequence-to-sequence framework.

In this case the objective would be to map the sequence of input features to the

sequence of output symbols, where the output symbols are not repeated per frame.

For example for ACT, the output symbols would be a sequence of chord labels, e.g.

{Cmajor, Dmajor, Emajor}. This is similar to the training objective for large vocabulary

speech recognition acoustic models, where the ground truth is composed of word-level

transcriptions without alignments. The task of mapping a sequence of acoustic fea-

tures to a shorter sequence of labels can be achieved with RNN architectures like

Connectionist Temporal Classification (Graves et al., 2006) or the recently proposed

sequence-to-sequence models for machine translation (Sutskever et al., 2014; Bah-

danau et al., 2014), which have been successfully applied to large vocabulary speech

recognition (Bahdanau et al., 2016). The recently developed attention mechanisms

can also be easily incorporated into these architectures (Bahdanau et al., 2014). In

such a scenario, a separate onset detection system can be used to find the label align-

ments or in some cases the alignment can be inferred from the model outputs (Graves

et al., 2006).

7.2.2 Music Language Models

In Chapters 4 and 5, we investigated using RNN language models for AMT and ACT,

respectively. As mentioned previously, language models are a fundamental part of

speech recognition systems and they have significant potential to improve systems for

processing music. Similar to speech, music language models (for AMT or ACT) learn

169

useful priors when trying to identify notes or chords from acoustic features. Just

like language, polyphonic sequences of notes or chords exhibit temporal structure.

Accurate statistical models of this structure have the potential to provide priors for

AMT and ACT tasks, in addition to generative models for sampling novel music

and chord sequences. A practical motivation for investigating MLMs is that rather

than collecting labelled training data, MLMs can be trained on music scores, guitar

tabs and MIDI files. This is similar to language modelling in speech, where language

models are often trained on large corpora of text data obtained from different sources,

for example Wikipedia.

From Chapter 4, we observe that the MLMs trained on a corpus of folk melodies

help improve the F-measure by 3% on the Bach10 dataset, giving the best reported

results on the Bach10 dataset. Similarly, from Chapter 5 we observe that RNN lan-

guage models for ACT consistently outperform HMM based post-processing, which

is the most popular post-processing method for ACT systems. Although the perfor-

mance gains on the piano transcription task were modest (1%), we believe that the

remaining results provide strong motivation for further investigations with MLMs.

From Chapter 4, we note that the input representation was identified as one of

the limitations of the proposed MLMs. Typically, language models are trained to

maximise the log-likelihood of sequences of note or chord vectors. These sequences

are formed by sampling the ground truth at the same sampling rate as the acoustic

models. In this setting, there is no explicit information provided to the network

about higher level temporal concepts like metrical position. The input piano-roll

representation to the MLMs can be supplemented with information about position in

the bar to encourage the learning of higher level temporal structure. Additionally, the

proposed RNN MLMs learn durations implicitly through the repetition of frames in

the training data. As argued before, when the sampling rate is high enough and there

are many repetitions, log-likelihood during training can be trivially maximised by

170

repeating the previous frame. This happens to be different from language modelling

in speech where the models are trained at a word level, therefore the duration of each

symbol is immaterial. The language model simply models the transition probabilities

given sequences of words. In order to decompose the problem of learning transition

probabilities and durations, MLMs can be trained on sequences of notes or chords

without any repetition. A separate model can be used to model the durations of

note combinations or chords. Or alternatively, the RNNs can be supplemented with

duration models for each symbol and both the transition probabilities and durations

can be learnt jointly. The problem of repeating frames can also be addressed by

supplementing the RNN with an external differentiable memory (Graves et al., 2014;

Grefenstette et al., 2015). It has been shown that RNNs with external memories

are able to perform copy, replacement and sorting tasks more effectively than regular

RNNs. The external memory allows the RNN to write to and copy from memory as

necessary, without having to compress all the information in the hidden state.

Earlier we discussed data augmentation for acoustic models. Similar ideas can be

applied to MLMs to increase the size of the training dataset. For instance, the data to

train MLMs can be transposed across all tonalities. This would provide the network

with significantly more data and also encourage the network to learn translation

invariance across pitches. An alternative method to encourage the network to learn

translation invariance would be to use convolutional filters along the pitch axis, rather

than the fully connected input layers to the RNN.

The ideas, methods and results presented in this thesis provide some evidence

that demonstrates that neural networks can be effective for analysing the contents

of music and environmental audio. However, this study merely scratches the surface

of the possibilities of neural networks approaches for audio signal analysis. As in

other domains, we hope that the fields of music and environmental audio processing

adopt the use of neural networks for processing low-level features. This will allow

171

researchers to focus on modelling higher-level structural aspects of audio signals.

Similarly, we hope that learning distributions (or language models) and structure

over temporal sequences of notes, chords and acoustic events is explored further,

since these methods have the potential to significantly advance the state-of-the-art in

music and environmental audio analysis.

172

Bibliography

Music Information Retrieval Evaluation eXchange (MIREX). http://music-ir.

org/mirexwiki/.

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan

Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete War-

den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-

sorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015. URL

http://tensorflow.org/. Software available from tensorflow.org.

Samer A Abdallah and Mark D Plumbley. Unsupervised Analysis of Polyphonic

Music by Sparse Coding. Neural Networks, IEEE Transactions on, 17(1):179–196,

2006.

Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Gerald Penn. Ap-

plying Convolutional Neural Networks Concepts to Hybrid NN-HMM Model for

Speech Recognition. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 4277–4280. IEEE, 2012.

173

Ossama Abdel-Hamid, Li Deng, and Dong Yu. Exploring Convolutional Neural Net-

work Structures and Optimization Techniques for Speech Recognition. In INTER-

SPEECH, pages 3366–3370, 2013.

Moray Allan and Christopher KI Williams. Harmonising Chorales by Probabilistic

Inference. Advances in Neural Information Processing Systems (NIPS), 17:25–32,

2005.

Naomi S Altman. An Introduction to Kernel and Nearest-Neighbor Nonparametric

Regression. The American Statistician, 46(3):175–185, 1992.

Ehsan Amid, Annamaria Mesaros, Kalle J Palomaki, Jorma Laaksonen, and Mikko

Kurimo. Unsupervised Feature Extraction for Multimedia Event Detection and

Ranking Using Audio Content. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 5939–5943. IEEE, 2014.

Tobias Andersson. Audio Classification and Content Description. Lulea University

of Technology, Multimedia Technology, Ericsson Research, Corporate unit, Lulea,

Sweden, 2004.

Fabrizio Argenti, Paolo Nesi, and Gianni Pantaleo. Automatic Transcription of Poly-

phonic Music based on the Constant-Q Bispectral Analysis. Audio, Speech, and

Language Processing, IEEE Transactions on, 19(6):1610–1630, 2011.

José Anibal Arias, Julien Pinquier, and Régine André-Obrecht. Evaluation of Classi-

fication Techniques for Audio Indexing. In Proceedings of the 13th European Signal

Processing Conference (EUSIPCO), pages 1–4. IEEE, 2005.

David Arthur and Sergei Vassilvitskii. k-means++: The Advantages of Careful Seed-

ing. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

174

Jean-Julien Aucouturier, Boris Defreville, and François Pachet. The Bag-of-Frames

Approach to Audio Pattern Recognition: A Sufficient Model for Urban Soundscapes

but not for Polyphonic Music. The Journal of the Acoustical Society of America,

122(2):881–891, 2007.

Roland Badeau, Valentin Emiya, and Bertrand David. Expectation-Maximization

Algorithm for Multi-pitch Estimation and Separation of Overlapping Harmonic

Spectra. In IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, pages 3073–3076, 2009.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Transla-

tion by Jointly Learning to Align and Translate. arXiv preprint arXiv:1409.0473,

2014.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Yoshua Bengio, et al. End-

to-end attention-based large vocabulary speech recognition. In 2016 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

4945–4949. IEEE, 2016.

Eric Battenberg and David Wessel. Analyzing Drum Patterns Using Conditional Deep

Belief Networks. In Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), pages 37–42. Citeseer, 2012.

Mert Bay, Andreas F Ehmann, and J Stephen Downie. Evaluation of Multiple-F0

Estimation and Tracking Systems. In Proceedings of the 9th International Society

for Music Information Retrieval Conference (ISMIR), pages 315–320, 2009.

Juan Pablo Bello and Jeremy Pickens. A Robust Mid-Level Representation for Har-

monic Content in Music Signals. In Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), volume 5, pages 304–311, 2005.

175

Emmanouil Benetos. Automatic Transcription of Polyphonic Music Exploiting Tem-

poral Evolution. PhD thesis, Queen Mary University of London, December 2012.

Emmanouil Benetos and Simon Dixon. A Shift-Invariant Latent Variable Model for

Automatic Music Transcription. Computer Music Journal, 36(4):81–94, 2012.

Emmanouil Benetos, Srikanth Cherla, and Tillman Weyde. An Effcient Shift-

Invariant Model for Polyphonic Music Transcription. In 6th International Workshop

on Machine Learning and Music, 2013.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled Sampling

for Sequence Prediction with Recurrent Neural Networks. In Advances in Neural

Information Processing Systems (NIPS), pages 1171–1179, 2015.

Yoshua Bengio. Learning Deep Architectures for AI. Foundations and Trends in

Machine Learning, 2(1):1–127, 2009.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning Long-term Dependen-

cies with Gradient Descent is Difficult. IEEE Transactions on Neural Networks, 5

(2):157–166, 1994.

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in

Optimizing Recurrent Networks. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 8624–8628. IEEE, 2013.

Bruce Benward. Music in Theory and Practice Volume 1. McGraw-Hill Higher Edu-

cation, 2014.

Taylor Berg-Kirkpatrick, Jacob Andreas, and Dan Klein. Unsupervised Transcription

of Piano Music. In Advances in Neural Information Processing Systems (NIPS),

pages 1538–1546, 2014.

176

James Bergstra, Norman Casagrande, Dumitru Erhan, Douglas Eck, and Balázs Kégl.

Aggregate Features and AdaBoost for Music Classification. Machine learning, 65

(2-3):473–484, 2006.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.

Theano: a CPU and GPU Math Expression Compiler. In Proceedings of the Python

for Scientific Computing Conference (SciPy), June 2010. Oral Presentation.

Nancy Bertin, Roland Badeau, and Emmanuel Vincent. Enforcing Harmonicity and

Smoothness in Bayesian Non-negative Matrix Factorization Applied to Polyphonic

Music Transcription. IEEE Transactions on Audio, Speech, and Language Process-

ing., 18(3):538–549, 2010.

Christopher M Bishop. Mixture Density Networks. 1994.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

ISBN 0387310738.

Thomas Blumensath and Mike Davies. Unsupervised Learning of Sparse and Shift-

invariant Decompositions of Polyphonic Music. In IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP)., volume 5, pages 497–500.

IEEE, 2004.

Sebastian Böck and Markus Schedl. Polyphonic Piano Note Transcription with Re-

current Neural Networks. In IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 121–124. IEEE, 2012.

Sebastian Böck, Florian Krebs, and Gerhard Widmer. Accurate Tempo Estimation

Based on Recurrent Neural Networks and Resonating Comb Filters. In Proceed-

177

ings of the 16th International Society for Music Information Retrieval Conference

(ISMIR), pages 625–631, 2015.

Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog Computing:

A Platform for Internet of Things and Analytics. In Big Data and Internet of

Things: A Roadmap for Smart Environments, pages 169–186. Springer, 2014.

Léon Bottou. Large-scale Machine Learning with Stochastic Gradient Descent. In

Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling Tem-

poral Dependencies in High-Dimensional Sequences: Application to Polyphonic

Music Generation and Transcription. In Proceedings of the 29th International Con-

ference on Machine Learning (ICML), pages 1159–1166, 2012.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Audio Chord

Recognition with Recurrent Neural Networks. In Proceedings of the 13th Interna-

tional Society for Music Information Retrieval Conference (ISMIR), pages 335–340,

2013a.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pierre Vincent. High-

Dimensional Sequence Transduction. In IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 3178–3182. IEEE, 2013b.

Nicolas Boulanger-Lewandowski, Jasha Droppo, Mike Seltzer, and Dong Yu. Phone

Sequence Modeling with Recurrent Neural Networks. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pages 5417–5421.

IEEE, 2014.

John S Bridle. Probabilistic Interpretation of Feedforward Classification Network

Outputs with Relationships to Statistical Pattern Recognition. In Neurocomputing,

pages 227–236. Springer, 1990.

178

Judith C Brown. Calculation of a Constant-Q Spectral Transform. The Journal of

the Acoustical Society of America, 89(1):425–434, 1991.

Christopher JC Burges. A Tutorial on Support Vector Machines for Pattern Recog-

nition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

John Ashley Burgoyne, Laurent Pugin, Corey Kereliuk, and Ichiro Fujinaga. A Cross-

Validated Study of Modelling Strategies for Automatic Chord Recognition in Au-

dio. In Proceedings of the International Society for Music Information Retrieval

Conference (ISMIR), pages 251–254, 2007.

John Ashley Burgoyne, Jonathan Wild, and Ichiro Fujinaga. An Expert Ground

Truth Set for Audio Chord Recognition and Music Analysis. In Proceedings of the

International Society for Music Information Retrieval Conference (ISMIR), pages

633–638, 2011.

Emre Cakir, Toni Heittola, Heikki Huttunen, and Tuomas Virtanen. Polyphonic

Sound Event Detection Using Multi Label Deep Neural Networks. In International

Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2015.

Francisco Jesus Canadas-Quesada, Julio Jose Carabias-Orti, Raul Mata-Campos,

Nicolas Ruiz-Reyes, and Pedro Vera-Candeas. Multipitch Estimation of

Harmonically-Related Event-Notes by Improving Harmonic Matching Pursuit De-

composition. In Audio Engineering Society Convention 124. Audio Engineering

Society, 2008.

Benoit Catteau, Jean-Pierre Martens, and Marc Leman. A Probabilistic Framework

for Audio-based Tonal Key and Chord Recognition. In Advances in data analysis,

pages 637–644. Springer, 2007.

Benjamin Cauchi. Non-Negative Matrix Factorisation Applied to Auditory Scenes

179

Classification. Master’s thesis, Master ATIAM, Université Pierre et Marie Curie,

2011.

Sachin Chachada and C-C Jay Kuo. Environmental Sound Recognition: A Survey.

APSIPA Transactions on Signal and Information Processing, 3:e14, 2014.

Srikanth Cherla, Tillman Weyde, Artur S d’Avila Garcez, and Marcus Pearce. A

Distributed Model For Multiple-Viewpoint Melodic Prediction. In Proceedings of

the International Society for Music Information Retrieval Conference (ISMIR),

pages 15–20, 2013.

Taemin Cho and Juan P Bello. A Feature Smoothing Method for Chord Recognition

Using Recurrence Plots. In Proceedings of the 12th International Society for Music

Information Retrieval Conference (ISMIR), pages 651–656, 2011.

Taemin Cho, Ron J Weiss, and Juan Pablo Bello. Exploring Common Variations

in State of the Art Chord Recognition Systems. In Proceedings of the Sound and

Music Computing Conference (SMC), pages 1–8, 2010.

Chloé Clavel, Thibaut Ehrette, and Gaël Richard. Events Detection for an Audio-

based Surveillance System. In IEEE International Conference on Multimedia and

Expo (ICME), pages 1306–1309. IEEE, 2005.

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like

environment for machine learning. In BigLearn, NIPS Workshop, number EPFL-

CONF-192376, 2011a.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,

and Pavel Kuksa. Natural Language Processing (Almost) from Scratch. The Jour-

nal of Machine Learning Research, 12:2493–2537, 2011b.

180

Arshia Cont. Realtime Audio to Score Alignment for Polyphonic Music Instruments,

Using Sparse Non-negative Constraints and Hierarchical HMMs. In IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), volume 5,

pages 245–248. IEEE, 2006.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-

duction to Algorithms, volume 2. MIT press Cambridge, 2001.

Giovanni Costantini, Renzo Perfetti, and Massimiliano Todisco. Event Based Tran-

scription System for Polyphonic Piano Music. Signal processing, 89(9):1798–1811,

2009.

Courtenay V Cotton and Daniel PW Ellis. Spectral vs. Spectro-temporal Features for

Acoustic Event Detection. In IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics (WASPAA), pages 69–72. IEEE, 2011.

George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-Dependent Pre-trained

Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Transac-

tions on Audio, Speech, and Language Processing, 20(1):30–42, 2012.

Roger B Dannenberg. A Brief Survey of Music Representation Issues, Techniques,

and Systems. 1993.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Andrew Senior, Paul Tucker, Ke Yang, and Quoc V Le. Large Scale Distributed

Deep Networks. In Advances in Neural Information Processing Systems (NIPS),

pages 1223–1231, 2012.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum Likelihood from

Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society,

39(1):1–38, 1977.

181

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A Large-Scale Hierarchical Image Database. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 248–255. IEEE, 2009.

Arnaud Dessein, Arshia Cont, and Guillaume Lemaitre. Real-time Polyphonic Mu-

sic Transcription with Non-negative Matrix Factorization and Beta-divergence. In

Proceedings of the 11th International Society for Music Information Retrieval Con-

ference (ISMIR), pages 489–494, 2010.

Diana Deutsch. Music Recognition. Psychological Review, 76(3):300, 1969.

Sander Dieleman and Benjamin Schrauwen. End-to-End Learning for Music Au-

dio. In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 6964–6968. IEEE, 2014.

Thomas G Dietterich. Ensemble Methods in Machine Learning. In Multiple Classifier

Systems, pages 1–15. Springer, 2000.

Zhiyao Duan, Bryan Pardo, and Changshui Zhang. Multiple Fundamental Frequency

Estimation by Modeling Spectral Peaks and Non-peak Regions. IEEE Transactions

Audio, Speech, and Language Processing, 18(8):2121–2133, November 2010a.

Zhiyao Duan, Bryan Pardo, and Changshui Zhang. Multiple Fundamental Frequency

Estimation by Modeling Spectral Peaks and non-peak Regions. IEEE Transactions

on Audio, Speech, and Language Processing., 18(8):2121–2133, 2010b.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for

Online Learning and Stochastic Optimization. The Journal of Machine Learning

Research, 12:2121–2159, 2011.

Daniel PW Ellis. Detecting Alarm Sounds. In Consistent & Reliable Acoustic Cues for

182

Sound Analysis: One-day Workshop: Aalborg, Denmark, pages 59–62. Department

of Electrical Engineering, Columbia University, 2001.

Valentin Emiya, Roland Badeau, and Bertrand David. Multipitch Estimation of

Piano Sounds using a new Probabilistic Spectral Smoothness Principle. IEEE

Transactions on Audio, Speech, and Language Processing, 18(6):1643–1654, 2010.

Reeves Fletcher and Colin M Reeves. Function Minimization by Conjugate Gradients.

The computer journal, 7(2):149–154, 1964.

Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, 2013.

Takuya Fujishima. Realtime Chord Recognition of Musical Sound: A System Using

Common Lisp Music. In Proceedings of the International Computer Music Confer-

ence (ICMC), volume 1999, pages 464–467, 1999.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Rep-

resenting Model Uncertainty in Deep Learning. arXiv preprint arXiv:1506.02142,

2015.

Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, Mathias Rossignol, Mathieu

Lagrange, and Mark D Plumbley. Detection and Classification of Acoustic Scenes

and Events: An IEEE AASP Challenge. In IEEE Workshop on Applications of

Signal Processing to Audio and Acoustics (WASPAA),, pages 1–4. IEEE, 2013.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neural

Networks. In International Conference on Artificial Intelligence and Statistics,

pages 315–323, 2011.

King-Shy Goh, Koji Miyahara, Regunathan Radhakrishnan, Ziyou Xiong, and Ajay

Divakaran. Audio-Visual Event Detection Based on Mining of Semantic Audio-

183

Visual Labels. In Electronic Imaging 2004, pages 292–299. International Society

for Optics and Photonics, 2003.

Yoav Goldberg. A Primer on Neural Network Models for Natural Language Process-

ing. arXiv preprint arXiv:1510.00726, 2015.

Masataka Goto. A Real-time Music-scene-description System: Predominant-F0 Esti-

mation for Detecting Melody and Bass Lines in Real-world Audio Signals. Speech

Communication, 43(4):311–329, 2004.

Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and Ryuichi Oka. RWC Mu-

sic Database: Music Genre Database and Musical Instrument Sound Database. In

Proceedings of International Conference on Music Information Retrieval (ISMIR),

Baltimore, USA, October 2003.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech Recognition

with Deep Recurrent Neural Networks. In IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 6645–6649. IEEE, 2013.

Alex Graves. Sequence Transduction with Recurrent Neural Networks. In Represen-

tation Learning Workshop, ICML, 2012a.

Alex Graves. Supervised sequence labelling. In Supervised Sequence Labelling with

Recurrent Neural Networks, pages 5–13. Springer, 2012b.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Con-

nectionist Temporal Classification: Labelling Unsegmented Sequence Data with

Recurrent Neural Networks. In Proceedings of the 23rd International Conference

on Machine Learning (ICML), pages 369–376. ACM, 2006.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint

arXiv:1410.5401, 2014.

184

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom.

Learning to Transduce with Unbounded Memory. In Advances in Neural Informa-

tion Processing Systems (NIPS), pages 1828–1836, 2015.

Thomas Grill and Jan Schlüter. Music Boundary Detection Using Neural Networks on

Spectrograms and Self-Similarity Lag Matrices. In Proceedings of the 23rd European

Signal Processing Conference (EUSIPCO), Nice, France, 2015a.

Thomas Grill and Jan Schlüter. Music Boundary Detection Using Neural Networks

on Combined Features and Two-Level Annotations. In Proceedings of the 16th

International Society for Music Information Retrieval Conference (ISMIR 2015),

Malaga, Spain, 2015b.

Graham Grindlay and Daniel PW Ellis. Transcribing Multi-instrument Polyphonic

Music with Hierarchical Eigeninstruments. IEEE Journal of Selected Topics in

Signal Processing, 5(6):1159–1169, 2011.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of Things (IoT): A Vision, Architectural Alements, and

Future Directions. Future Generation Computer Systems, 29(7):1645–1660, 2013.

Zheng Guibin and Liu Sheng. Automatic Transcription Method for Polyphonic Music

Based on Adaptive Comb Filter and Neural Network. In International Conference

on Mechatronics and Automation (ICMA)., pages 2592–2597. IEEE, 2007.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep

Learning with Limited Numerical Precision. In Proceedings of the 32nd Interna-

tional Conference on Machine Learning (ICML), pages 1737–1746, 2015. URL

http://jmlr.org/proceedings/papers/v37/gupta15.html.

Philippe Hamel and Douglas Eck. Learning Features from Music Audio with Deep

185

Belief Networks. In Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), pages 339–344, 2010.

Christopher Harte. Towards Automatic Extraction of Harmony Information from Mu-

sic Signals. PhD thesis, Queen Mary University of London, August 2010. @phdthe-

sisHarte2010thesis, Address = London, UK, Author = Christopher Harte, Month =

August, School = Queen Mary University of London, Title = Towards Automatic

Extraction of Harmony Information from Music Signals, Year = 2010 .

Christopher Harte and Mark Sandler. Automatic Chord Ddentifcation Using a Auan-

tised Chromagram. In Audio Engineering Society Convention 118. Audio Engineer-

ing Society, 2005.

Marti A. Hearst, Susan T Dumais, Edgar Osman, John Platt, and Bernhard

Scholkopf. Support vector machines. IEEE Intelligent Systems and their Appli-

cations., 13(4):18–28, 1998.

Toni Heittola, Annamaria Mesaros, Antti Eronen, and Tuomas Virtanen. Context-

Dependent Sound Event Detection. EURASIP Journal on Audio, Speech, and

Music Processing, 2013(1):1–13, 2013.

John L Hennessy and David A Patterson. Computer Architecture: A Quantitative

Approach. Elsevier, 2011.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural

Network. arXiv preprint arXiv:1503.02531, 2015.

Geoffrey E Hinton. Learning Distributed Representations of Concepts. In Proceedings

of the eighth annual conference of the cognitive science society, volume 1, page 12.

Amherst, MA, 1986.

186

Geoffrey E Hinton. Training Products of Experts by Minimizing Contrastive Diver-

gence. Neural Computation, 14(8):1771–1800, 2002.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Algorithm

for Deep Belief Nets. Neural Computation, 18(7):1527–1554, 2006.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Com-

putation, 9(8):1735–1780, 1997.

Derek Hoiem, Yan Ke, and Rahul Sukthankar. SOLAR: Sound Object Localization

and Retrieval in Complex Audio Environments. In Acoustics, Speech, and Signal

Processing, 2005. Proceedings.(ICASSP’05). IEEE International Conference on,

volume 5, pages v–429. IEEE, 2005.

Kurt Hornik. Approximation Capabilities of Multilayer Feedforward Networks. Neural

networks, 4(2):251–257, 1991.

Adrianus JM Houtsma. Pitch Perception. Academic Press San Diego, London, 1995.

David H Hubel and Torsten N Wiesel. Receptive Fields of Single Neurons in the Cat’s

Striate Cortex. The Journal of physiology, 148(3):574–591, 1959.

Eric J Humphrey. An Exploration of Deep Learning in Content-Based Music Infor-

matics. PhD thesis, NEW YORK UNIVERSITY, 2015.

Eric J Humphrey and Juan P Bello. Rethinking automatic chord recognition with con-

volutional neural networks. In 11th International Conference on Machine Learning

and Applications (ICMLA), volume 2, pages 357–362. IEEE, 2012.

Eric J Humphrey, Taemin Cho, and Juan P Bello. Learning a Robust Tonnetz-Space

Transform for Automatic Chord Recognition. In IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 453–456. IEEE, 2012.

187

Eric J Humphrey, Juan P Bello, and Yann LeCun. Feature Learning and Deep Archi-

tectures: New Directions for Music Informatics. Journal of Intelligent Information

Systems, 41(3):461–481, 2013.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd

International Conference on Machine Learning (ICML), pages 448–456, 2015. URL

http://jmlr.org/proceedings/papers/v37/ioffe15.html.

Dan Istrate, Eric Castelli, Michel Vacher, Laurent Besacier, and Jean-François Serig-

nat. Information Extraction from Sound for Medical Telemonitoring. IEEE Trans-

actions on Information Technology in Biomedicine, 10(2):264–274, 2006.

Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms: A Classifica-

tion Perspective. Cambridge University Press, 2011.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An Empirical Exploration

of Recurrent Network Architectures. In Proceedings of the 32nd International Con-

ference on Machine Learning (ICML), pages 2342–2350, 2015.

Otto Karolyi. Introducing Music. Penguin (Non-Classics), 1965.

Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for Generating

Image Descriptions. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR)., pages 3128–3137, 2015.

Kunio Kashino and Norihiro Hagita. A Music Scene Analysis System with the MRF-

based Information Integration Scheme. In Proceedings of the 13th International

Conference on Pattern Recognition., volume 2, pages 725–729. IEEE, 1996.

Lyndon S Kennedy and Daniel PW Ellis. Laughter Detection in Meetings. In NIST

188

ICASSP Meeting Recognition Workshop, Montreal, pages 118–121. National Insti-

tute of Standards and Technology, 2004.

Maksim Khadkevich and Maurizio Omologo. Use of Hidden Markov Models and

Factored Language Models for Automatic Chord Recognition. In Proceedings of

the International Society for Music Information Retrieval Conference (ISMIR),

pages 561–566, 2009.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

arXiv preprint arXiv:1412.6980, 2014.

Anssi Klapuri. Introduction to Muusic Transcription. In Signal Processing Methods

for Music Transcription, pages 3–20. Springer, 2006.

Anssi P Klapuri. Multiple Fundamental Frequency Estimation Based on Harmonicity

and Spectral Smoothness. IEEE Transactions on Speech and Audio Processing, 11

(6):804–816, 2003.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet Classification

With Deep Convolutional Neural Networks. In Advances in Neural Information

Processing Systems (NIPS), pages 1097–1105, 2012.

Hugo Larochelle and Iain Murray. The Neural Autoregressive Distribution Estimator.

In International Conference on Artificial Intelligence and Statistics, pages 29–37,

2011.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A Simple Way to Initialize

Recurrent Networks of Rectified Linear Units. arXiv preprint arXiv:1504.00941,

2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

189

Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11):

2278–2324, 1998.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A Tutorial on

Energy-Based Learning. Predicting structured data, 1:1–10, 2006.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature, 521

(7553):436–444, 2015.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient

Backprop. In Neural Networks: Tricks of the Trade, pages 9–48. Springer, 2012.

Daniel D Lee and H Sebastian Seung. Algorithms for Non-Negative Matrix Fac-

torization. In Advances in Neural Information Processing Systems (NIPS), pages

556–562, 2001.

Honglak Lee, Peter Pham, Yan Largman, and Andrew Y Ng. Unsupervised fea-

ture learning for audio classification using convolutional deep belief networks. In

Advances in neural information processing systems, pages 1096–1104, 2009.

Kyogu Lee and Malcolm Slaney. Automatic Chord Recognition from Audio Using a

HMM with Supervised Learning. In Proceedings of the International Conference

on Music Information Retrieval (ISMIR), pages 133–137, 2006.

Kyogu Lee and Malcolm Slaney. Acoustic Chord Transcription and Key Extraction

from Audio Using Key-Dependent HMMs Trained on Synthesized Audio. IEEE

Transactions on Audio, Speech, and Language Processing (ICASSP), 16(2):291–

301, 2008.

Bernhard Lehner, Gerhard Widmer, and Sebastian Bock. A Low-Latency, Real-Time-

Capable Singing Voice Detection Method with LSTM Recurrent Neural Networks.

190

In 23rd European Signal Processing Conference (EUSIPCO), pages 21–25. IEEE,

2015.

Dawen Liang, Minshu Zhan, and Daniel P. W. Ellis. Content-Aware Collaborative

Music Recommendation Using Pre-trained Neural Networks. In Proceedings of the

16th International Society for Music Information Retrieval Conference, ISMIR,

pages 295–301, 2015. URL http://ismir2015.uma.es/articles/290_Paper.

pdf.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in Network. In Proceedings of the

International Conference on Learning Representations (ICLR), pages 1–6, 2013.

Matija Marolt. A Connectionist Approach to Automatic Transcription of Polyphonic

Piano Music. IEEE Transactions on Multimedia., 6(3):439–449, 2004.

James Martens. Deep Learning via Hessian-Free Optimization. In Proceedings of the

27th International Conference on Machine Learning (ICML), pages 735–742, 2010.

James Martens and Ilya Sutskever. Learning Recurrent Neural Networks with

Hessian-Free Optimization. In Proceedings of the 28th International Conference

on Machine Learning (ICML), pages 1033–1040, 2011.

Alvin Martin, George Doddington, Terri Kamm, Mark Ordowski, and Mark Przy-

bocki. The DET Curve in Assessment of Detection Task Performance. Technical

report, DTIC Document, 1997.

Keith D Martin. A Blackboard System for Automatic Transcription of Simple Poly-

phonic Music. Massachusetts Institute of Technology Media Laboratory Perceptual

Computing Section Technical Report, 385, 1996.

Matthias Mauch. Automatic Chord Transcription from Audio Using Computational

191

Models of Musical Context. PhD thesis, School of Electronic Engineering and Com-

puter Science Queen Mary, University of London, 2010.

Matthias Mauch and Simon Dixon. Simultaneous Estimation of Chords and Mu-

sical Context from Audio. IEEE Transactions on Audio, Speech, and Language

Processing., 18(6):1280–1289, 2010.

Matthias Mauch and Sebastian Ewert. The Audio Degradation Toolbox and Its

Application to Robustness Evaluation. In Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR), pages 83–88, 2013.

Matthias Mauch, Chris Cannam, Matthew Davies, Simon Dixon, Christopher Harte,

Sefki Kolozali, Dan Tidhar, and Mark Sandler. OMRAS2 Metadata Project 2009.

In Proceedings of 10th International Conference on Music Information Retrieval

(ISMIR), 2009.

Warren S McCulloch and Walter Pitts. A Logical Calculus of the Ideas Immanent in

Nervous Activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

Matt McVicar, Raúl Santos-Rodŕıguez, Yizhao Ni, and Tijl De Bie. Automatic Chord

Estimation From Audio: A Review of the State of the Art. IEEE/ACM Transac-

tions on Audio, Speech, and Language Processing, 22(2):556–575, 2014.

Carlo Maria Medaglia and Alexandru Serbanati. An Overview of Privacy and Security

Issues in the Internet of Things. In The Internet of Things, pages 389–395. Springer,

2010.

Annamaria Mesaros, Toni Heittola, Antti Eronen, and Tuomas Virtanen. Acoustic

Event Detection in Real Life Recordings. In Proceedings of the 18th European Signal

Processing Conference (EUSIPCO), pages 1267–1271. IEEE, 2010.

192

Annamaria Mesaros, Toni Heittola, and Anssi Klapuri. Latent Semantic Analysis

in Sound Event Detection. In 19th European Signal Processing Conference (EU-

SIPCO)., pages 1307–1311. IEEE, 2011.

Annamaria Mesaros, Toni Heittola, Onur Dikmen, and Tuomas Virtanen. Sound

Event Detection in Real Life Recordings Using Coupled Matrix Factorization of

Spectral Representations and Class Activity Annotations. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 151–155.

IEEE, 2015.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khu-

danpur. Recurrent Neural Network Based Language Model. In INTERSPEECH,

volume 2, page 3, 2010.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Honza Černockỳ, and Sanjeev

Khudanpur. Extensions of Recurrent Neural Network Language Model. In IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 5528–5531. IEEE, 2011.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

Representations of Words and Phrases and their Compositionality. In Advances in

Neural Information Processing Systems (NIPS), pages 3111–3119, 2013.

Marvin Minsky and Seymour Papert. Perceptrons. 1969.

Katsuhiko Miyamoto, Hirokazu Kameoka, Haruto Takeda, Takuya Nishimoto, and

Shigeki Sagayama. Probabilistic Approach to Automatic Music Transcription from

Audio Signals. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), volume 2, pages 697–700. IEEE, 2007.

Abdel-rahman Mohamed, George Dahl, and Geoffrey Hinton. Deep Belief Networks

193

for Phone Recognition. In NIPS Workshop on Deep Learning for Speech Recognition

and Related Applications, volume 1, page 39, 2009.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine

Learning. MIT press, 2012.

Kevin P Murphy. Naive Bayes Classifiers. University Lecture Notes, 2006.

Juhan Nam, Jiquan Ngiam, Honglak Lee, and Malcolm Slaney. A Classification-Based

Polyphonic Piano Transcription Approach Using Learned Feature Representations.

In Proceedings of the 12th International Society for Music Information Retrieval

Conference (ISMIR), pages 175–180, 2011.

Radford M Neal. Connectionist Learning of Belief Networks. Artificial Intelligence,

56(1):71–113, 1992.

Yizhao Ni, Matt McVicar, Raul Santos-Rodriguez, and Tijl De Bie. An End-to-End

Machine Learning System for Harmonic Analysis of Music. Audio, Speech, and

Language Processing, IEEE Transactions on, 20(6):1771–1783, 2012.

Ken O’Hanlon and Mark D Plumbley. Structure-aware Dictionary Learning with

Harmonic Atoms. In 19th European Signal Processing Conference (EUSIPCO),

pages 1761–1765. IEEE, 2011.

Ken O’Hanlon and Mark D Plumbley. Polyphonic Piano Transcription Using Non-

negative Matrix Factorisation with Group Sparsity. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pages 3112–3116.

IEEE, 2014.

Ken O’Hanlon, Hidehisa Nagano, and Mark D Plumbley. Structured Sparsity for

Automatic Music Transcription. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP)., pages 441–444. IEEE, 2012.

194

Bruno A Olshausen and David J Field. Sparse Coding with an Overcomplete Basis

Set: A Strategy Employed by V1? Vision Research, 37(23):3311–3325, 1997.

Aaron Van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent

neural networks. In Proceedings of The 33rd International Conference on Machine

Learning, pages 1747–1756, 2016.

Laurent Oudre, Yves Grenier, and Cédric Févotte. Template-based Chord Recogni-

tion: Influence of the Chord Types. In Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), pages 153–158, 2009.

Hélene Papadopoulos and Geoffroy Peeters. Large-scale Study of Chord Estimation

Algorithms based on Chroma Representation and HMM. In International Work-

shop on Content-Based Multimedia Indexing (CBMI), pages 53–60. IEEE, 2007.

Hélene Papadopoulos and Geoffroy Peeters. Simultaneous Estimation of Chord Pro-

gression and Downbeats from an Audio File. In IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP)., pages 121–124. IEEE, 2008.

Behrooz Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford

University Press, Inc., 2009.

Steffen Pauws. Musical Key Extraction from Audio. In Proceedings of the Interna-

tional Society for Music Information Retrieval Conference (ISMIR), 2004.

Paul H Peeling and Simon J Godsill. Multiple Pitch Estimation Using Non-

homogeneous Poisson Processes. IEEE Journal of Selected Topics in Signal Pro-

cessing., 5(6):1133–1143, 2011.

Geoffroy Peeters. Chroma-based Estimation of Musical Key from Audio-Signal Anal-

ysis. In Proceedings of the International Society for Music Information Retrieval

Conference (ISMIR), pages 115–120, 2006.

195

Antonio Pertusa and José M Iñesta. Polyphonic Monotimbral Music Transcription

using Dynamic Tetworks. Pattern Recognition Letters, 26(12):1809–1818, 2005.

Graham E Poliner and Daniel PW Ellis. A Discriminative Model for Polyphonic

Piano Transcription. EURASIP Journal on Applied Signal Processing, 2007(1):

154–154, 2007.

Jose Portelo, Miguel Bugalho, Isabel Trancoso, Joao Neto, Alberto Abad, and Antonio

Serralheiro. Non-speech Audio Event Detection. In IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 1973–1976. IEEE,

2009.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition.

1993.

Lawrence R Rabiner. A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Stanislaw Raczynski, Emmanuel Vincent, and Shigeki Sagayama. Dynamic Bayesian

Networks for Symbolic Polyphonic Pitch Modeling. IEEE Transactions on Audio,

Speech, and Language Processing, 21(9):1830–1840, 2013.

Regunathan Radhakrishnan, Ajay Divakaran, and Paris Smaragdis. Audio Analy-

sis for Surveillance Applications. In IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA), pages 158–161. IEEE, 2005.

Marc’Aurelio Ranzato, Sumin Chopra, Michael Auli, and Wojciech Zaremba. Se-

quence Level Training with Recurrent Neural Networks. In Proceedings of the

International Conference on Learning Representations (ICLR), pages 1–8, 2016.

Christopher Raphael. A Graphical Model for Recognizing Sung Melodies. In Pro-

196

ceedings of the International Society for Music Information Retrieval Conference

(ISMIR), pages 658–663, 2005.

Jeremy Reed, Yushi Ueda, Sabato Marco Siniscalchi, Yuuki Uchiyama, Shigeki

Sagayama, and Chin-Hui Lee. Minimum Classification Error Training to Improve

Isolated Chord Recognition. In Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), pages 609–614. Citeseer, 2009.

Douglas Reynolds, Thomas F Quatieri, and Robert B Dunn. Speaker Verification

Using Adapted Gaussian Mixture Models. Digital signal processing, 10(1):19–41,

2000.

Frank Rosenblatt. The Perceptron: a Probabilistic Model for Information Storage

and Organization in the Brain. Psychological review, 65(6):386, 1958.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning Represen-

tations by Back-propagating Errors. Cognitive modeling, 5(3):1, 1988.

Matti P Ryynänen and Anssi Klapuri. Polyphonic Music Transcription using Note

Event Modeling. In IEEE Workshop on Applications of Signal Processing to Audio

and Acoustics (WASPAA), pages 319–322. IEEE, 2005.

Matti P Ryynänen and Anssi P Klapuri. Automatic Transcription of Melody, Bass

Line, and Chords in Polyphonic Music. Computer Music Journal, 32(3):72–86,

2008.

Tara N Sainath, Oriol Vinyals, Andrew Senior, and Hasim Sak. Convolutional, Long

Short-term Memory, Fully Connected Deep Neural Networks. In IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

4580–4584. IEEE, 2015.

197

Daichi Sakaue, Takuma Otsuka, Katsutoshi Itoyama, and Hiroshi G Okuno. Bayesian

Non-negative Harmonic-temporal Factorization and its Application to Multipitch

Analysis. In Proceedings of the 13th International Society for Music Information

Retrieval Conference (ISMIR), pages 91–96, 2012.

Daichi Sakaue, Takayuki Otsuka, Katsutoshi Itoyama, and Hiroshi G Okuno.

Initialization-robust Bayesian Multipitch Analyzer Based on Psychoacoustical and

Musical Criteria. In IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), pages 226–230. IEEE, 2013.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact Solutions to the

Nonlinear Dynamics of Learning in Deep Linear Neural Networks. arXiv preprint

arXiv:1312.6120, 2013.

Markus Schedl, Emilia Gómez, and Julián Urbano. Music Information Retrieval:

Recent Developments and Applications. Foundations and Trends in Information

Retrieval, 8(2-3):127–261, 2014. ISSN 1554-0669. doi: 10.1561/1500000042. URL

http://dx.doi.org/10.1561/1500000042.

Jan Schlüter and Sebastian Böck. Improved Musical Onset Detection With Convo-

lutional Neural Networks. In IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 6979–6983. IEEE, 2014.

Jan Schlüter and Thomas Grill. Exploring Data Augmentation for Improved Singing

Voice Detection with Neural Networks. In Proceedings of the 16th International So-

ciety for Music Information Retrieval Conference (ISMIR), pages 21–126, Malaga,

Spain, 2015.

Jürgen Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural

Networks, 61:85–117, 2015.

198

Erik Schmidt and Youngmoo Kim. Learning Rhythm And Melody Features With

Deep Belief Networks. In Proceedings of the International Society for Music Infor-

mation Retrieval Conference (ISMIR), pages 21–26, 2013.

Mikkel N Schmidt and Morten Mørup. Sparse Non-negative Matrix Factor 2-D De-

convolution for Automatic Transcription of Polyphonic Music. Technical report,

2006.

Chistian Schörkhuber and Anssi Klapuri. Constant-Q Transform Toolbox for Music

Processing. In 7th Sound and Music Computing Conf., Barcelona, Spain, July 2010.

Christian Schörkhuber, Anssi Klapuri, Nicki Holighaus, and Monika Dörfler. A MAT-

LAB Toolbox for Efficient Perfect Reconstruction Time-Frequency Transforms with

Log-Frequency Resolution. In Audio Engineering Society Conference: 53rd Inter-

national Conference: Semantic Audio. Audio Engineering Society, 2014.

Mike Schuster. Better Generative Models for Sequential Data Problems: Bidirec-

tional Recurrent Mixture Density Networks. In Advances in Neural Information

Processing Systems (NIPS), pages 589–595, 1999.

Alexander Sheh and Daniel PW Ellis. Chord Segmentation and Recognition Using

EM-trained Hidden Markov Models. In Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), pages 185–191, 2003.

Arun Shenoy and Ye Wang. Key, Chord and Rhythm Tracking of Popular Music

Recordings. Computer Music Journal, 29(3):75–86, 2005.

Roger N Shepard. Circularity in Judgments of Relative Pitch. The Journal of the

Acoustical Society of America, 36(12):2346–2353, 1964.

Hava T Siegelmann. Computation Beyond the Turing Limit. Science, 268(5210):

545–548, 1995.

199

Siddharth Sigtia and Simon Dixon. Improved Music Feature Learning with Deep

Neural Networks. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 6959–6963. IEEE, 2014.

Siddharth Sigtia, Emmanouil Benetos, Srikanth Cherla, Tillman Weyde, Artur

S. d’Avila Garcez, and Simon Dixon. An RNN-based Music Language Model for

Improving Automatic Music Transcription. In Proceedings of the 15th International

Society for Music Information Retrieval Conference (ISMIR), pages 53–58, 2014.

Siddharth Sigtia, Emmanouil Benetos, Nicolas Boulanger-Lewandowski, Tillman

Weyde, Artur S. d’Avila Garcez, and Simon Dixon. A Hybrid Recurrent Neural

Network for Music Transcription. In IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), pages 2061–2065, Brisbane, Australia,

April 2015a.

Siddharth Sigtia, Nicolas Boulanger-Lewandowski, and Simon Dixon. Audio Chord

Recognition with a Hybrid Recurrent Neural Network. In Proceedings of the 16th

International Society for Music Information Retrieval Conference (ISMIR), pages

127–133, 2015b.

Siddharth Sigtia, Emmanouil Benetos, and Simon Dixon. An End-to-End Neural

Network for Polyphonic Piano Music Transcription. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 24(5):927–939, 2016.

Renate Sitte and Liam Willets. Non-Speech Environmental Sound Identification for

Surveillance using Self-Organizing Maps. In Proceedings of the Fourth conference

on IASTED International Conference: Signal Processing, Pattern Recognition, and

Applications, pages 281–286. ACTA Press, 2007.

Paris Smaragdis. Non-negative Matrix Factor Deconvolution; Extraction of Multiple

200

Sound Sources from Monophonic Inputs. In Independent Component Analysis and

Blind Signal Separation, pages 494–499. Springer, 2004.

Paris Smaragdis and Judith C Brown. Non-negative Matrix Factorization for Poly-

phonic Music Transcription. In IEEE Workshop on Applications of Signal Process-

ing to Audio and Acoustics (WASPAA), pages 177–180. IEEE, 2003.

Paris Smaragdis and Gautham Mysore. Separation by “Humming”: User-guided

Sound Extraction from Monophonic Mixtures. In IEEE Workshop Applications of

Signal Processing to Audio and Acoustics, pages 69–72, October 2009.

Paris Smaragdis, Bhiksha Raj, and Madhusudana Shashanka. A Probabilistic Latent

Variable Model for Acoustic Modeling. Advances in Models for Acoustic Processing,

NIPS, 148, 2006.

Steven W Smith. The Scientist and Engineer’s Guide to Digital Signal Processing.

1997.

Jasper Snoek, Hugo Larochelle, and Ryan Prescott Adams. Practical bayesian op-

timization of machine learning algorithms. In Neural Information Processing Sys-

tems, 2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan

Sundaram, Md. Mostofa Ali Patwary, Prabhat, and Ryan P. Adams. Scalable

bayesian optimization using deep neural networks. In International Conference on

Machine Learning, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Over-

fitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

201

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.

arXiv preprint arXiv:1505.00387, 2015.

Mathias Stager, Paul Lukowicz, Niroshan Perera, Thomas Von Büren, Gerhard

Tröster, and Thad Starner. SoundButton: Design of a Low Power Wearable Audio

Classification System. In Proceedings of the Seventh IEEE International Sympo-

sium on Wearable Computers, pages 12–17. IEEE, 2005.

Dan Stowell and David Clayton. Acoustic Event Detection for Multiple Overlapping

Similar Sources. In IEEE Workshop on Applications of Signal Processing to Audio

and Acoustics (WASPAA), pages 1–5. IEEE, 2015.

Dan Stowell, Dimitrios Giannoulis, Emmanouil Benetos, Mathieu Lagrange, and

Mark D Plumbley. Detection and Classification of Acoustic Scenes and Events.

IEEE Transactions on Multimedia., 17(10):1733–1746, 2015.

Li Su and Yi-Hsuan Yang. Escaping from the abyss of manual annotation: New

methodology of building polyphonic datasets for automatic music transcription. In

International Symposium on Computer Music Multidisciplinary Research, 2015.

Kouhei Sumi, Katsutoshi Itoyama, Kazuyoshi Yoshii, Kazunori Komatani, Tetsuya

Ogata, and Hiroshi G Okuno. Automatic Chord Recognition Based on Probabilistic

Integration of Chord Transition and Bass Pitch Estimation. In Proceedings of the

International Society for Music Information Retrieval Conference (ISMIR), pages

39–44, 2008.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the Impor-

tance of Initialization and Momentum in Deep Learning. In Proceedings of the 30th

International Conference on Machine Learning (ICML), pages 1139–1147, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with

202

Neural Networks. In Advances in Neural Information Processing Systems (NIPS),

pages 3104–3112, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

Tiago Fernandes Tavares, Jayme Garcia Arnal Barbedo, Romis Attux, and Amauri

Lopes. Survey on Automatic Transcription of Music. Journal of the Brazilian

Computer Society, 19(4):589–604, 2013.

Andrey Temko, Robert Malkin, Christian Zieger, Dušan Macho, Climent Nadeu, and

Maurizio Omologo. CLEAR Evaluation of Acoustic Event Detection and Clas-

sification Systems. In Multimodal Technologies for Perception of Humans, pages

311–322. Springer, 2006.

Ernst Terhardt. The Concept of Musical Consonance: A Link between Music and

Psychoacoustics. Music Perception: An Interdisciplinary Journal, 1(3):276–295,

1984.

Yushi Ueda, Yuki Uchiyama, Takuya Nishimoto, Nobutaka Ono, and Shigeki

Sagayama. HMM-based Approach for Automatic Chord Detection Using Refined

Acoustic Features. In IEEE International Conference on Acoustics Speech and

Signal Processing (ICASSP)., pages 5518–5521. IEEE, 2010.

Karen Ullrich, Jan Schlüter, and Thomas Grill. Boundary Detection in Music Struc-

ture Analysis using Convolutional Neural Networks. In Proceedings of the 15th In-

ternational Society for Music Information Retrieval Conference (ISMIR), Taipei,

Taiwan, 2014.

203

John Wade Ulrich. The Analysis and Synthesis of Jazz by Computer. In International

Joint Conference on Artificial Intelligence (IJCAI), pages 865–872, 1977.

Michel Vacher, François Portet, Anthony Fleury, and Norbert Noury. Challenges in

the Processing of Audio Channels for Ambient Assisted Living. In Proceedings of

the 12th IEEE International Conference on e-Health Networking Applications and

Services (Healthcom), 2010, pages 330–337. IEEE, 2010.

Giuseppe Valenzise, Luigi Gerosa, Marco Tagliasacchi, E Antonacci, and Augusto

Sarti. Scream and Gunshot Detection and Localization for Audio-Surveillance

Systems. In IEEE Conference on Advanced Video and Signal Based Surveillance

(AVSS), pages 21–26. IEEE, 2007.

Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep Content-

Based Music Recommendation. In Advances in Neural Information Processing

Systems (NIPS), pages 2643–2651, 2013.

Matthias Varewyck, Johan Pauwels, and Jean-Pierre Martens. A Novel Chroma

Representation of Polyphonic Music Based on Multiple Pitch Tracking Techniques.

In Proceedings of the 16th ACM international conference on Multimedia, pages

667–670. ACM, 2008.

Emmanuel Vincent, Nancy Bertin, and Roland Badeau. Harmonic and Inharmonic

Nonnegative Matrix Factorization for Polyphonic Pitch Transcription. In IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 109–112. IEEE, 2008.

Emmanuel Vincent, Nancy Bertin, and Roland Badeau. Adaptive Harmonic Spec-

tral Decomposition for Multiple Pitch Estimation. IEEE Transactions on Audio,

Speech, and Language Processing., 18(3):528–537, 2010.

204

Tuomas Virtanen. Separation of Sound Sources by Convolutive Sparse Coding. In

ISCA Tutorial and Research Workshop (ITRW) on Statistical and Perceptual Audio

Processing, 2004.

Alex Waibel, Hartwig Steusloff, Rainer Stiefelhagen, and Kym Watson. Computers

in the Human Interaction Loop. Springer, 2009.

Gregory H Wakefield. Mathematical Representation of Joint Time-Chroma Distri-

butions. In SPIE’s International Symposium on Optical Science, Engineering, and

Instrumentation, pages 637–645. International Society for Optics and Photonics,

1999.

DeLiang Wang and Guy J Brown. Computational Auditory Scene Analysis: Princi-

ples, Algorithms, and Applications. Wiley-IEEE Press, 2006.

Adrian Weller, Daniel Ellis, and Tony Jebara. Structured Prediction Models for Chord

Transcription of Music Audio. In International Conference on Machine Learning

and Applications (ICMLA), pages 590–595. IEEE, 2009.

Max Welling, Michal Rosen-Zvi, and Geoffrey E Hinton. Exponential Family Har-

moniums with an Application to Information Retrieval. In Advances in Neural

Information Processing Systems (NIPS), pages 1481–1488, 2004.

Paul J Werbos. Backpropagation Through Time: What it Does and How to do it.

Proceedings of the IEEE, 78(10):1550–1560, 1990.

Chunghsin Yeh, Axel Roebel, and Xavier Rodet. Multiple Fundamental Frequency

Estimation and Polyphony Inference of Polyphonic Music Signals. IEEE Transac-

tions on Audio, Speech, and Language Processing, 18(6):1116–1126, 2010.

Kazuyoshi Yoshii and Masataka Goto. A Nonparametric Bayesian Multipitch Ana-

205

lyzer Based on Infinite Latent Harmonic Allocation. IEEE Transactions on Audio,

Speech, and Language Processing, 20(3):717–730, 2012.

Takuya Yoshioka, Tetsuro Kitahara, Kazunori Komatani, Tetsuya Ogata, and Hi-

roshi G Okuno. Automatic Chord Transcription with Concurrent Recognition of

Chord Symbols and Boundaries. In Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), pages 100–105, 2004.

Matthew D Zeiler. ADADELTA: An Adaptive Learning Rate Method. arXiv preprint

arXiv:1212.5701, 2012.

Xinquan Zhou and Alexander Lerch. Chord Detection Using Deep Learning. In

Proceedings of the 16th International Society for Music Information Retrieval Con-

ference (ISMIR), volume 53, pages 52–58, 2015.

206

