
Interpretable Machine Learning

for Machine Listening

Saumitra Mishra

Submitted in partial fulfilment of the requirements
of the Degree of Doctor of Philosophy

School of Electronic Engineering and Computer Science
Queen Mary University of London

United Kingdom

January 2020

Statement of Originality

I, Saumitra Mishra, confirm that the research included within this thesis is
my own work or that where it has been carried out in collaboration with, or
supported by others, that this is duly acknowledged below and my contribution
indicated. Previously published material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original,
and does not to the best of my knowledge break any UK law, infringe any
third party’s copyright or other Intellectual Property Right, or contain any
confidential material.

I accept that the university has the right to use plagiarism detection software
to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a
degree by this or any other university.

The copyright of this thesis rests with the author.

Signature: Saumitra Mishra
Date: 08/01/2020

Details of collaboration and publications: see Section 1.5

2

Abstract

Recent years have witnessed a significant interest in interpretable machine
learning (IML) research that develops techniques to analyse machine learning
(ML) models. Understanding ML models is essential to gain trust in their pre-
dictions and to improve datasets, model architectures and training techniques.
The majority of effort in IML research has been in analysing models that clas-
sify images or structured data and comparatively less work exists that analyses
models for other domains. This research focuses on developing novel IML meth-
ods and on extending existing methods to understand machine listening models
that analyse audio. In particular, this thesis reports the results of three studies
that apply three different IML methods to analyse five singing voice detection
(SVD) models that predict singing voice activity in musical audio excerpts.

The first study introduces SoundLIME (SLIME), a method to generate tem-
poral, spectral or time-frequency explanations for predictions of any machine
listening model. The study involves applying SLIME to analyse the trustworthi-
ness of three SVD models for some carefully selected instances. Results indicate
that SLIME effectively identifies that the binary decision tree model is untrust-
worthy and may not generalise. Moreover, the study analyses the behaviour
of SLIME for two input parameters and the results suggest that the choice of
suitable values for those parameters is essential to generate reliable explanations
from SLIME.

The second study introduces a novel method to perform activation max-
imisation (AM), a technique that synthesises examples that maximally acti-
vate the components (neurons, layers) of a deep neural network (DNN). The
method uses a generative adversarial network as a prior in the AM pipeline.
The study involves applying the method to synthesise examples for understand-
ing two DNN-based SVD models. Examples that the method synthesises for
the output layer neurons in both the models exhibit the presence of vocal and
non-vocal characteristics for their respective inputs suggesting that those neu-
rons have learnt to detect high-level class concepts. The study also introduces
and demonstrates a method for quantitatively selecting suitable values for AM
hyper-parameters. The observation about the presence of class characteristics
in the synthesised examples is further supported by the results of an online
perceptual study involving 23 participants.

The third study demonstrates that feature inversion, a method to invert fea-
tures (handcrafted or learned) back to the input space, is an effective method

3

for explaining DNN predictions. The study also involves applying feature in-
version to understand features that each layer of the DNN-based SVD model
preserves. The qualitative analysis of inverted representations corresponding
to the deepest hidden layer suggests that the representations corresponding to
the vocal and non-vocal excerpts contain energy mostly in the higher and lower
frequency regions, respectively.

In conclusion, this thesis contributes to IML research by developing novel
post-hoc analysis methods and to machine listening research by providing effec-
tive tools for investigating and understanding machine listening models. Hope-
fully, insights from model analysis will assist in developing trustworthy ML
models with better generalisation capabilities.

4

Acknowledgements

This research would not have been possible without the help and support of
many people. First and foremost, I would like to thank my supervisor Simon
Dixon for giving me the opportunity to work with him. Over the period of
four years, Simon has been a great mentor, and his helpful suggestions have
assisted me in understanding the different aspects of PhD research. I am very
grateful to him for giving me the freedom to choose my research topic and for
proofreading the manuscripts.

I also want to thank my supervisor Bob L. Sturm for introducing me to
the field of interpretable machine learning, for patiently answering my queries,
and helping me in improving my technical writing skills. His paper on “Horses”
in machine listening has been a great source of inspiration to me.

I am very grateful to my supervisor Emmanouil Benetos for agreeing to
supervise this research during the last years of the PhD. His excellent guidance,
continuous support, and approachability for technical and other discussions have
helped me to accomplish the research goals.

Many thanks to everyone in C4DM for creating a great collaborative re-
search environment that helped me in clarifying my doubts and in coming up
with new research ideas.

I would also like to thank Peter Flach and Sebastian Stober for exam-
ining this thesis and for providing very helpful and insightful comments for the
final version of this thesis.

I am grateful to my father Pramod Kumar Mishra and mother Kavita
Mishra for being my role models, and for motivating me when things went
through a difficult phase. I also want to thank my wife Poornima for support-
ing the decision to leave my job for pursuing my dream and for taking care of
things when I was busy with the research.

Last, but certainly not the least, I thank my son Anant whose jovial nature
has kept me relaxed and happy in the times of stress.

5

Contents

List of Figures 10

List of Tables 20

List of Abbreviations 25

1 Introduction 26
1.1 Motivation . 26
1.2 Aim . 28
1.3 Thesis structure . 29
1.4 Contributions . 31
1.5 Publications . 32

2 Background 35
2.1 Machine learning preliminaries 35

2.1.1 Tree-based models . 36
2.1.2 Convolutional neural networks 36
2.1.3 Generative adversarial networks 37

2.2 Interpretable machine learning 39
2.2.1 What is interpretability? 39
2.2.2 Need for model interpretability 40
2.2.3 Methods for model interpretability 42

2.2.3.1 Methods for designing interpretable models . . . 42
2.2.3.2 Methods for post-hoc interpretability 44

2.2.4 Interpretability in machine listening models 61
2.3 Singing voice detection . 64

2.3.1 Definition . 65
2.3.2 Applications . 66
2.3.3 Common features . 66
2.3.4 Methods . 68
2.3.5 Evaluation metrics . 74

6

2.3.6 Research challenges . 75
2.4 Summary . 76

3 Singing voice detection models 77
3.1 Motivation . 77
3.2 Datasets . 78
3.3 Shallow singing voice detectors 80

3.3.1 Input features . 80
3.3.2 Shallow models . 81
3.3.3 Performance evaluation 83

3.4 Deep singing voice detectors . 84
3.4.1 Input features . 84
3.4.2 Model architecture . 85
3.4.3 Model training . 86
3.4.4 Post-processing . 87
3.4.5 Performance evaluation 87

3.5 Conclusion . 88

4 SoundLIME 90
4.1 Introduction . 91
4.2 Interpretable explanations for machine

listening . 93
4.2.1 Extending LIME to machine listening 93

4.3 Demonstration . 95
4.3.1 Explaining predictions of the shallow vocal detectors . . . 96
4.3.2 Explaining predictions of the deep vocal detector 98
4.3.3 Discussion on the number of synthetic samples (Ns) . . . 102

4.4 Analysing the robustness of SLIME 105
4.4.1 Selecting an appropriate Ns 105
4.4.2 Analysing sensitivity to the masking content 107
4.4.3 Generating reliable explanations 113

4.5 Summary and conclusion . 117
4.6 Reproducibility . 119

5 Activation maximisation 120
5.1 Introduction . 121
5.2 Method . 123

5.2.1 Vanilla activation maximisation 123
5.2.2 GAN-based prior . 124
5.2.3 Example generation . 125
5.2.4 Hyper-parameter optimisation 125

7

5.3 Experiments . 126
5.3.1 Choice of machine listening models 127
5.3.2 Choice of response function 127
5.3.3 GAN training . 128
5.3.4 AM Optimisation . 130

5.4 Results . 130
5.4.1 Analysing the output neuron in SVDNet-R1 131

5.4.1.1 Hyper-parameter configuration selection 131
5.4.1.2 Qualitative analysis of explanations 137

5.4.2 Analysing the output neurons in SVDNet-R2 140
5.4.2.1 Hyper-parameter configuration selection 141
5.4.2.2 Qualitative analysis of examples 144

5.5 Perceptual study . 148
5.5.1 Goal . 149
5.5.2 Perceptual study design 149

5.5.2.1 Participant questionnaire 149
5.5.2.2 Listening tests 150
5.5.2.3 Audio stimuli . 151

5.5.3 Results . 152
5.5.3.1 Participants . 152
5.5.3.2 Analysis of responses for listening test 1 153
5.5.3.3 Analysis of responses for listening test 2 154

5.6 Summary and conclusion . 158
5.7 Reproducibility . 160

6 Feature inversion 161
6.1 Introduction . 162
6.2 Methodology . 163
6.3 Explaining DNN predictions using feature inversion 165

6.3.1 Intuition . 166
6.3.2 Explanation generation method 166
6.3.3 Feature inverter architecture 168
6.3.4 Feature inverter training 169
6.3.5 Instance-wise explanations for SVDNet 170
6.3.6 Quantitative evaluation of the proposed method 172

6.4 Understanding SVDNet features 175
6.4.1 Feature inverter architectures 176
6.4.2 Training methodology . 178
6.4.3 Quantitative evaluation of the feature inverters 178
6.4.4 Qualitative analysis of the inverted features 180

8

6.4.5 Analysing FC8 features 182
6.5 Summary and conclusion . 184
6.6 Reproducibility . 186

7 Conclusions and future work 187
7.1 Summary . 187
7.2 Potential research directions . 192
7.3 Discussion on interpretable machine learning 195

A Feature inverter architectures 199

B Mel-frequency cepstral coefficients 201
B.1 MFCC extraction . 201
B.2 MFCC inversion . 202

9

List of Figures

2.1 Schematic representation of LIME explaining why a machine learn-
ing system S applies label j to an instance xi with probability
yij . 55

2.2 A high level taxonomy of some interpretable machine learning
methods. 60

2.3 The figure depicts the application of a singing voice detection
(SVD) algorithm for a 10-second musical audio clip (left) from
“01 - A smile on your face.mp3” (time index : 32.0 seconds -
42.0 seconds) in the Jamendo dataset (see chapter 3). The SVD
algorithm segments the input into temporal sections, indicating
the presence or absence of singing voice (right). NV and V refer
to the labels corresponding to the beginnings of non-vocal and
vocal segments, respectively. 65

2.4 Visualisations of some representations from the MFCC extrac-
tion pipeline for a 2-second audio input from the RWC dataset.
(a) Temporal representation, (b) Power spectrogram, (c) Mel-
spectrogram, and (d) Normalised mel-frequency cepstral coeffi-
cients. 68

3.1 Figure depicting ground truth labels (0 : non-vocal, 1 : vocal)
and predictions from the two shallow SVD models for a 100-
second audio segment (time index : 60 seconds - 160 seconds)
from the “04 - Inside.mp3” song in the Jamendo test dataset.
The green coloured step plot depicts ground truth labels, the
grey coloured step plots refer to prediction labels, and the blue
coloured line plot depicts the vocal presence probability that each
model assigns to an input excerpt. 82

10

3.2 High-level architecture of the singing voice detection model intro-
duced by Schlüter and Grill [2015]. Nfm denotes the number of
feature maps in the output of a convolutional layer. Nn denotes
the number of neurons in a fully-connected layer. Conv, MP and
FC refer to the convolutional, max-pooling and fully-connected
layers, respectively. 85

4.1 A binary decision tree for classifying audio using the values of
three MFCC feature dimensions. 91

4.2 The functional block diagram of SLIME depicting the steps in
generating explanation wi for the prediction of an instance xi. . 93

4.3 Input segmentation-based sequence generation for SLIME. (a)
Temporal segmentation of the audio instance xi into four super-
samples (Tni), each of duration 50 ms. (b) Time-frequency seg-
mentation of xi into 8 time-frequency blocks (Bpi). Similarly,
segmenting the magnitude spectrogram in (b) only along the fre-
quency axis will generate spectral segments. 94

4.4 The time-frequency explanation generation from SLIME. (a) mel-
spectrogram representation of a 1.6 second input audio excerpt
from “03 - Say me Good Bye.mp3” in the Jamendo test dataset
(time index: 122.5 seconds - 124.1 seconds, confidence score =
0.96), (b) time-frequency block generation through input segmen-
tation, (c) the positive time-frequency explanation for the input
highlighting the three most influential interpretable components,
(d) the normalised thresholded positive saliency map for explain-
ing the input prediction. 99

4.5 Plotting the influence of the number of samples (Ns) on (a) the
stability of local explanations and, (b) the time SLIME takes
in generating an explanation. Un denotes the number of unique
interpretable components, and Ts denotes the time SLIME takes
(in seconds) in generating an explanation. 104

4.6 Plotting the influence of the number of samples (Ns) on the stabil-
ity of local explanations for audio excerpts from the (a) Jamendo
dataset and (b) RWC dataset. Un denotes the number of unique
interpretable components. 106

4.7 Plotting the influence of the number of samples (Ns) on the time
Ts (seconds) SLIME takes in generating an explanation for audio
excerpts from the Jamendo dataset. 107

11

4.8 Plots depicting how SLIME performs segmentation of the mel-
spectrogram representation of an audio excerpt to generate ten
interpretable components. (A) Temporal segmentation and (B)
spectral segmentation. The colourbar values depict the indices of
the interpretable components. 108

4.9 Plots depicting the influence of different masking contents on the
stability of explanations from SLIME for four cases. (a) and (c)
depict results for the temporal explanations from the Jamendo
and RWC datasets, respectively. (b) and (d) depict results for
the spectral explanations from the Jamendo and RWC datasets,
respectively. Un represents the number of unique interpretable
components in explanations from applying SLIME five times to
the same excerpt. 111

4.10 The violin plots depict the influence of different masking contents
on SLIME explanations for four cases. (a) and (c) depict results
for temporal explanations for the Jamendo and RWC datasets,
respectively. (b) and (d) depict results for the spectral explana-
tions for the Jamendo and RWC datasets, respectively. Nce refers
to the number of common interpretable components between the
explanation with masking content zero and the explanation with
masking content given on the horizontal axis. 112

4.11 Plots depicting the influence of different masking contents on tem-
poral explanations from SLIME for randomly selected instances
from the synthetic dataset. The top plot depicts the distribution
of the number of common interpretable components Nce between
the ground-truth explanation and the temporal explanation gen-
erated with the masking content given on the horizontal axis. The
bottom plot depicts the proportion of instances (audio excerpts)
for different Nce values corresponding to all the four masking
contents. 115

5.1 Overview of the proposed approach for performing vanilla acti-
vation maximisation. A noise vector z is used to generate an
example x, for which a response a ∈ R is calculated with a re-
sponse function fa from all neuron activations of the classifier.
fa can be defined depending on which aspect of the classifier is
of interest; examples include the activation of a certain neuron,
or the average layer activation. z is optimised to maximise the
response a, but also the prior probability pz(z) to favour realistic
outputs. 123

12

5.2 Intuitive explanation for the proposed metric, showing the dis-
tributions of activations fa(·) obtained for input examples from
the dataset (px), of the dataset examples with the highest N re-
sponses fa(·) (p̂x), and of four hypothetical generators, pg1,p

g
4.

The proposed metric determines which generator distribution is
most similar to p̂x to ensure realistic examples. 125

5.3 Mel-spectrogram visualisations demonstrating the effectiveness of
the proposed evaluation metric. Each mel-spectrogram is nor-
malised in scale independently so that red colours show relatively
high and blue colours show relatively low spectral energy. The
leftmost column shows the first output of the GAN fg(z̃i) for four
initial noise vectors z̃1, z̃2, z̃3, and z̃4 (one per row), each sampled
using a different seed. The others show the result of applying the
GAN-based vanilla AM method to maximally activate the out-
put neuron in SVDNet-R1 using three different hyper-parameter
configurations Cmax1 , Cmax2 , and Cmax3 that represent the best,
median, and worst configuration from the set of 27 configurations
according to the evaluation metric, respectively. Seed refers to
the number used to initialise the pseudorandom number generator.133

5.4 Mel-spectrogram visualisations demonstrating the effectiveness of
the proposed evaluation metric. Each mel-spectrogram is nor-
malised in scale independently so that red colours show relatively
high and blue colours show relatively low spectral energy. The
leftmost column shows the first output of the GAN fg(z̃i) for
four noise vectors z̃1, z̃2, z̃3, and z̃4 (one per row), each sampled
using a different seed. The others show the result of applying
the GAN-based vanilla AM method to minimally activate the
output layer neuron in SVDNet-R1 using three different hyper-
parameter configurations Cmin

1 , Cmin
2 , and Cmin

3 that represent
the best, median, and worst configuration from the set of 27 con-
figurations according to the evaluation metric, respectively. Seed
refers to the number used to initialise the pseudorandom number
generator. 136

13

5.5 Visualisations depicting mel-spectrograms that maximally or min-
imally activate the output neuron in the SVDNet-R1 model. Each
mel-spectrogram is normalised in scale independently so that red
colours show relatively high and blue colours show relatively low
spectral energy. The top row represents initial GAN outputs
fg(z̃i) for five initial noise vectors z̃1, z̃2, z̃3, z̃4, and z̃5, each sam-
pled with a different seed. The second and third rows represent
examples synthesised by maximally activating the output neuron
using the configurations Cmax

1 and Cmax
2 from Table 5.3. The last

row depicts mel-spectrograms synthesised by minimally activat-
ing the output neuron using the configuration Cmin

1 from Table
5.3. Seed refers to the number used to initialise the pseudoran-
dom number generator. 138

5.6 The figure depicts the distribution of normalised energy for fre-
quencies > 4000 Hz for each set of 50 examples that maximally
and minimally activate the single output neuron in SVDNet-R1,
respectively. 139

5.7 Mel-spectrogram visualisations demonstrating the effectiveness of
the proposed evaluation metric. Each mel-spectrogram is nor-
malised in scale independently so that red colours show relatively
high and blue colours show relatively low spectral energy. The
leftmost column shows the first output of the GAN fg(z̃i) for four
initial noise vectors z̃1, z̃2, z̃3, and z̃4 (one per row), each sampled
using a different seed. The others show the result of applying the
GAN-based vanilla AM method to maximally activate the non-
vocal (index = 0) and vocal (index = 1) neurons in the output
layer of SVDNet-R2 using three different hyper-parameter con-
figurations CNj

1 , CNj
2 , and CNj

3 that represent the best, median,
and worst configuration from the set of 27 configurations accord-
ing to the evaluation metric, respectively, where j indicates the
neuron index. The two top and bottom rows depict the results
for the non-vocal and vocal neurons, respectively. Seed refers to
the number used to initialise the pseudorandom number generator.142

14

5.8 Mel-spectrogram visualisations illustrating the non-vocal concepts
the output layer neurons learn in two deep SVD models. Each
mel-spectrogram is normalised in scale independently so that red
colours show relatively high and blue colours show relatively low
spectral energy. The top row represents initial GAN outputs
fg(z̃i) for five noise vectors z̃1, z̃2, z̃3, z̃4, and z̃5, each sampled us-
ing a different seed. The middle row depicts examples synthesised
by minimally activating the output neuron in SVDNet-R1 using
Cmin

1 from Table 5.3. The last row depicts mel-spectrograms syn-
thesised by maximally activating the non-vocal neuron (index =
0) in SVDNet-R2 using CN0

1 from Table 5.6. Seed refers to the
number used to initialise the pseudorandom number generator. . 144

5.9 The figure depicts the distribution of normalised energy for fre-
quencies > 4000 Hz for two sets of 50 examples, each correspond-
ing to one of the two neurons in the SVDNet-R2 model. 146

5.10 Mel-spectrogram visualisations illustrating the vocal concepts the
output layer neurons learn in two deep SVD models. Each mel-
spectrogram is normalised in scale independently so that red
colours show relatively high and blue colours show relatively
low spectral energy. The top row represents initial GAN out-
puts fg(z̃i) for five noise vectors z̃1, z̃2, z̃3, z̃4, and z̃5, each sam-
pled using a different seed. The middle row depicts examples
synthesised by maximally activating the output layer neuron in
SVDNet-R1 using Cmax

1 from Table 5.3. The last row depicts
mel-spectrograms synthesised by maximally activating the vocal
output neuron (index = 1) in SVDNet-R2 using CN1

1 from Table
5.6. Seed refers to the number used to initialise the pseudoran-
dom number generator. 146

5.11 The figure depicts the last four yes/no questions in the participant
questionnaire. 150

5.12 The figure depicts the user interface for listening test 1. Each
audio excerpt corresponds to one of the two SVD models. 151

5.13 The figure presents the user interface for listening test 2. 152

15

5.14 The figure depicts response distributions for the first listening
test for ten example pairs synthesised using seeds mentioned on
the horizontal axis. Plot (A) corresponds to pairs with examples
maximally activating the output neuron and the vocal neuron in
SVDNet-R1 and SVDNet-R2, respectively. Plot (B) corresponds
to pairs with examples minimally activating the output neuron
and maximally activating the non-vocal neuron in SVDNet-R1
and SVDNet-R2, respectively. The labels ‘choice 1’, ‘choice 2’,
and ‘choice 3’ refer to the three choices available for each question
and they refer to example 1 in a pair being more, less, or similarly
intelligible as compared to example 2, respectively. 154

5.15 The figure depicts the distribution of the responses from the par-
ticipants for the first question in the second listening test. Plots
(A) and (B) present the response distributions for five exam-
ples that maximally and minimally activate the output neuron in
SVDNet-R1, respectively. The labels ‘choice 1’, ‘choice 2’, ‘choice
3’, and ‘choice 4’ refer to the four choices available for the first
question and they refer to an example containing sound charac-
teristics representative of vocals but not non-vocals, non-vocals
but not vocals, both, and none, respectively. 155

5.16 The figure depicts the distribution of the responses from the par-
ticipants for the second question in the second listening test.
Plots (A) and (B) present the response distributions for five ex-
amples that maximally and minimally activate the output neuron
in SVDNet-R1, respectively. 156

5.17 The figure depicts the average number of participant responses
for each of the five choices mentioned on the horizontal axis. The
error bars represent standard deviation. 157

6.1 Functional block diagram of the feature inversion method. The
method inverts a feature ΦL(xi) from a layer L by training a
feature inverter GL that jointly minimises the input space loss
Ψinput and the feature space loss Ψfeature . ΦL and Θ are the
representation functions of a discriminator D and comparator C,
respectively. 163

6.2 Functional block diagram of the explanation generation step.
Task 1 involves using a feature inverter GL̂ to invert a feature
ΦL̂(xi) from the deepest hidden layer L̂. Task 2 involves using
an explanation generator E and an inverted representation x̂iL̂
to generate an explanation xexpi for the categorisation of input xi. 166

16

6.3 An overview of the model architecture for inverting features from
the FC8 layer of SVDNet. FC, Conv and UConv refer to the
fully-connected, convolutional and up-convolutional layers, re-
spectively. The highlighted components represent the ‘Conv4’
convolutional layer and its input and output feature maps. Due
to space restrictions, the figure shows only one convolutional layer.168

6.4 Normalised log-scaled mel-spectrogram excerpts from the song
“03 - Say me Good Bye.mp3” in the Jamendo test dataset. The
left subplot depicts an excerpt (time index : 1.43 seconds - 3.03

seconds) from the non-vocal category. The right subplot depicts
an excerpt (time index : 33.00 seconds - 34.65 seconds) from the
vocal category. 170

6.5 Visualisations depicting the explanation generation steps for a
randomly selected non-vocal excerpt (time index : 10.00 seconds
- 11.65 seconds) from the song “03 - Say me Good Bye.mp3”
in the Jamendo test dataset. (A) input mel-spectrogram, (B)
inverted representation, (C) binary mask using αth = 0.7, and
(D) explanation. 171

6.6 Explanations for two excerpts from the song “03 - Say me Good
Bye.mp3” in the Jamendo test dataset with the ‘vocal’ and ‘non-
vocal’ categories as separate temporal segments. (A) represents
the input excerpt from 34.00 seconds - 35.65 seconds (confidence
score = 0.80) and (B) its explanation. Similarly, (C) represents
the input excerpt from 112.00 seconds - 113.65 seconds (confi-
dence score = 0.98) and (D) its explanation. 172

6.7 Quantitative evaluation of the proposed explanation method for
a set of randomly selected instances from the Jamendo and RWC
test datasets. For uniform changes in the masking threshold,
subplots (A) and (B) depict variations in the % explanation loss
and % average relative area of explanations, respectively. M1 and
M2 are two approaches to transform inputs fed to SVDNet. The
error bars represent standard deviation. 174

6.8 Feature inverter architecture for the Conv4 layer of the SVD
model. The highlighted components refers to the ‘Conv2’ con-
volutional layer and its input and output feature maps. Conv
and UConv refer to the convolutional and up-convolutional lay-
ers, respectively. 177

17

6.9 Performance evaluation of the feature inverters. The plot depicts
the average normalised reconstruction error (NRE) for all the
feature inverters of the SVDNet model. Layer inverted refers to
the layer of the SVDNet model. The error bars represent standard
deviation. 179

6.10 Feature inversion from successive layers of the deep SVD model.
Each row corresponds to one input excerpt. (A), (B) are re-
spectively non-vocal (time index : 1.43 seconds - 4.65 seconds)
and vocal (time index : 33.0 seconds - 34.65 seconds) excerpts
from “03 - Say me Good Bye.mp3” in the Jamendo test dataset.
Similarly, (C) and (D) are respectively non-vocal (time index :
5.0 seconds - 6.65 seconds) and vocal (time index : 17.00 sec-
onds - 18.65 seconds) excerpts from “RWC- MDB-P-2001-M04/5
Audio Track.aiff” in the RWC test dataset. Columns contain mel-
spectrograms of (from left to right) the input signal and inverted
representations from successive SVDNet layers (as labelled). The
visualisations highlight how the model ignores aspects of the in-
put content as it forms higher-level representations. Inversions
from shallow layers resemble the input, but the reconstruction
quality reduces for deeper layers. Conv, MP and FC refer to the
convolutional, max-pooling and fully-connected layers, respectively.181

6.11 Inversion of FC8 features from inputs with varying strength of
vocals. The first and last two rows depict visualisations for inputs
from the “LizNelson_Rainfall", “AlexanderRoss_VelvetCurtain"
songs in the MedleyDB dataset, respectively. For each song, each
column depicts an input excerpt and its reconstruction using its
FC8 features. For each song, Mixavail , Mix synth

k and Non-vocal
represent an input excerpt extracted (at the same time index)
from the available mix, synthesized mixes and the non-vocal stem,
respectively. Pvocal represents the model’s confidence that an
input excerpt contains vocals. The experiment extracts excerpts
for the first and second song at time offsets 15 seconds and 115

seconds, respectively. 183

18

B.1 Visualisations depicting power spectrograms for a 2 seconds audio
excerpt from the “05-Elles disent.mp3” file in the Jamendo test
dataset (time index: 55.00 seconds - 57.00 seconds). (a) Power
spectrogram of the input excerpt, (b) Power spectrogram of the
signal reconstructed using magnitude spectrogram of the input
excerpt, and (c) Power spectrogram of signal reconstructed using
mel-spectrogram of the input excerpt. 205

19

List of Tables

2.1 Some methods to train interpretable models. 45
2.2 Some methods to analysis the global behaviour of ML models. . 53
2.3 Some methods to analyse the local behaviour of ML models. . . . 62
2.4 Some music information retrieval applications that use singing

voice detection as a preprocessing step. 66
2.5 Summary of the feature engineering-based singing voice detection

methods. MFCCs: mel-frequency cepstral coefficients, PLPCs:
perceptual linear predictive coefficients, LFPCs: log frequency
power coefficients, HMM: hidden Markov model, SVM: support
vector machine, HA-LFPCs: harmonic attenuated log frequency
power coefficients, ∆-MFCCs: first-order derivatives of MFCCs,
LSTM-RNN: unidirectional recurrent neural network with long
short-term memory units. 72

3.1 Overview of the singing voice datasets used for the design and
analysis of the SVD models. Nsongs refers to the number of mu-
sical audio files in a dataset. The duration column mentions the
times calculated by Schlüter [2017, Table 9.1]. 78

3.2 Evaluation results of the three shallow singing voice detection
models over the Jamendo test dataset. Baseline refers to a model
that classifies all inputs to the vocal class. M1 andM2 refer to the
best binary decision tree and random forest models, respectively. 83

3.3 SVDNet model architecture. Conv, MP and FC refer to the con-
volutional, max-pooling and fully-connected layers, respectively.
Input and output shapes represent time × frequency × number
of channels for the Conv layers. Nfm, Nn and Nparams refer to
the number of feature maps, number of neurons and number of
parameters per layer, respectively. 85

3.4 Performance of SVDNet and its variants on the Jamendo test
dataset. 89

20

4.1 Temporal explanations from SLIME for audio instances from “03
- Say me Good Bye.mp3” in the Jamendo test dataset. Index:
instance index; Duration: duration of the vocal segment; Vocal
probability: model confidence about the presence of singing voice;
Temporal explanations: top-3 super-samples maximally influenc-
ing a prediction; Ground truth: super-samples containing singing
voice; BDT: binary decision tree; and RF: random forest. 97

4.2 Average agreement% between positive SLIME explanations and
thresholded positive saliency maps for randomly sampled batches
with Ninstances audio excerpts. 102

4.3 SLIME explanations for randomly selected audio excerpts from
the Jamendo and RWC datasets for five masking contents. In-
dex: instance index; Vocal probability: model confidence about
the presence of singing voice; Explanations: top-3 interpretable
components maximally (positively or negatively) influencing a
prediction; and zero, mindata , mininp , meaninp , and Ng refer to
the masking contents that occlude an input by using the zero
value, minimum bin magnitude across a dataset, minimum bin
magnitude in an input, average bin magnitude in an input and,
Gaussian noise, respectively. 110

5.1 The architecture of the GAN generator. Input and output shapes
are ordered as: time × frequency × number of channels. FC,
ConvT, and Conv refer to the fully-connected, transposed convo-
lutional and convolutional layers, respectively. 128

5.2 The architecture of the GAN discriminator. Input and output
shapes are ordered as: time × frequency × number of channels.
Conv and FC refer to the convolutional and fully-connected lay-
ers, respectively. 129

5.3 The best, median, and worst hyper-parameter configurations ac-
cording to the proposed FID-based evaluation metric, computed
using activations of the inputs synthesised to maximally (or min-
imally) activate the output neuron in SVDNet-R1. For example,
Cmax

1 , Cmax
2 , and Cmax

3 represent the best, median, and worst
configurations for the experiment with label “maximise”. lr, λ,
Nt, and FID indicate the initial learning rate, GAN prior weight,
number of optimisation iterations, and the resulting value of the
evaluation metric, respectively. 131

21

5.4 The pre-sigmoidal activations of the output neuron in SVDNet-
R1 for each mel-spectrogram in Fig. 5.3 and Fig. 5.4. ainp refers
to the activation value for the initial mel-spectrogram (first out-
put from the GAN). a1, a2, and a3 refer to the activation values
for mel-spectrograms synthesised using the best, median, and
worst hyper-parameter configurations, respectively. Seed refers
to the number used to initialise the pseudorandom number gen-
erator. 132

5.5 The pre-sigmoidal activations of the output layer neuron in SVDNet-
R1 for each mel-spectrogram in Fig. 5.5. a1, a2, a3, a4, and a5

refer to activation values corresponding to mel-spectrograms syn-
thesised using noise vectors sampled with seeds 2, 14, 26, 44, and
47, respectively. 140

5.6 The best (CNj
1), median (CNj

2), and worst (CNj
3) hyper-parameter

configurations for maximally activating the neuron with index j
in the output layer of the SVDNet-R2 model. The configurations
are selected using the proposed FID-based evaluation metric. lr,
λ, Nt, and FID indicate the learning rate, GAN prior weight,
number of optimisation iterations, and the resulting value of the
evaluation metric, respectively. 141

5.7 The pre-softmax activations of the non-vocal and vocal neurons
in the output layer of SVDNet-R2 for the corresponding mel-
spectrograms in Fig. 5.7. ainp refers to the activation value for
the initial mel-spectrogram (first output from the GAN). a1, a2,
and a3 refer to the activation values for the mel-spectrograms
synthesised using the hyper-parameter configurations CNj

1 , CNj
2 ,

and CNj
3 , respectively, where j indicates the neuron index. Seed

refers to the number used to initialise the pseudorandom number
generator. 143

5.8 The pre-sigmoidal and pre-softmax activations of the output layer
neuron in SVDNet-R1 and the output layer non-vocal neuron (in-
dex= 0) in SVDNet-R2, respectively for each mel-spectrogram in
Fig. 5.8. a1, a2, a3, a4, and a5 refer to activation values cor-
responding to mel-spectrograms synthesised using noise vectors
sampled with seeds 2, 11, 26, 41, and 47, respectively. fg(z̃i) refers
to the first output from the GAN for an initial noise vector z̃i. . 145

22

5.9 The pre-sigmoidal and pre-softmax activations of the output layer
neuron in SVDNet-R1 and the output layer vocal neuron (in-
dex= 1) in SVDNet-R2, respectively for each mel-spectrogram
in Fig. 5.10. a1, a2, a3, a4, and a5 refer to activation values cor-
responding to mel-spectrograms synthesised using noise vectors
sampled with seeds 4, 14, 16, 31, and 44, respectively. fg(z̃i) refers
to the first output from the GAN for an initial noise vector z̃i. . 147

5.10 The table presents the average number of responses for each of
the three choices in the listening test 1. The vocal and non-vocal
examples represent synthetic examples with vocal and non-vocal
sound characteristics. The numbers within the brackets represent
standard deviation. The labels ‘choice 1’, ‘choice 2’, and ‘choice 3’
refer to the three choices available for each question and they refer
to example 1 in a pair being more, less, or similarly intelligible
as compared to example 2, respectively. 154

5.11 The table presents the average number of responses for each of
the four choices across the two example categories. The maxi-
mally and minimally activating examples represent synthetic ex-
amples that maximise and minimise the output neuron activation
in SVDNet-R1, respectively. The numbers within the brackets
represent standard deviation. The labels ‘choice 1’, ‘choice 2’,
‘choice 3’, and ‘choice 4’ refer to the four choices available for the
first question and they refer to an example containing sound char-
acteristics representative of vocals but not non-vocals, non-vocals
but not vocals, both, and none, respectively. 155

6.1 The architecture of the FC8 feature inverter. Input and out-
put shapes are ordered as: number of channels × time × fre-
quency. FC, Conv and UConv refer to the fully-connected, con-
volutional and up-convolutional layers, respectively. Units refers
to the number of filters in a Conv or UConv layer or the number
of neurons in an FC layer. 169

6.2 The architecture of the FC7 feature inverter. Input and output
shapes are ordered as: number of channels × time × frequency.
FC, Conv and UConv refer to the fully-connected, convolutional
and up-convolutional layers, respectively. Units refer to the num-
ber of filters in a Conv or UConv layer or the number of neurons
in an FC layer. 176

23

6.3 Overview of architectures of all the feature inverters in the SVD
model. Layer: SVDNet layer a feature inverter inverts, Input
shape: input to a feature inverter - ordered as: number of chan-
nels × time × frequency. Nlayers , Nconv and Nparams refer to
the number of layers, the number of convolutional layers and
the number of trainable parameters in a feature inverter, respec-
tively. Conv: convolutional layer, FC: fully-connected layer and
MP: max-pooling layer. 177

A.1 The architecture of the Conv1 feature inverter. 199
A.2 The architecture of the Conv2 feature inverter. 200
A.3 The architecture of the MP3 feature inverter. 200
A.4 The architecture of the Conv4 feature inverter. 200
A.5 The architecture of the Conv5 feature inverter. 200
A.6 The architecture of the MP6 feature inverter. 200

24

List of Abbreviations

AM Activation Maximisation
BDT Binary Decision Tree
CNN Convolutional Neural Network
Conv Convolutional
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DNN Deep Neural Network
ELU Exponential Linear Unit
FC Fully-Connected
FFT Fast Fourier Transform
FN False Negative
FP False Positive
GAN Generative Adversarial Network
ICs Interpretable Components
IDFT Inverse Discrete Fourier Transform
ILSVRC ImageNet Large-Scale Visual Recognition Challenge
IML Interpretable Machine Learning
LIME Local Interpretable Model-Agnostic Explanations
LSTM Long Short-Term Memory
MFCC Mel-Frequency Cepstral Coefficient
MIR Music Information Retrieval
ML Machine Learning
MP Max-Pooling
NRE Normalised Reconstruction Error
RF Random Forest
RNN Recurrent Neural Network
RWC-MDB Real World Computing Music Database
SA Sensitivity Analysis
SLIME Sound LIME
STFT Short-Time Fourier Transform
SVD Singing Voice Detection
SVM Support Vector Machine
TN True Negative
TP True Positive
UConv Up-Convolutional

25

Chapter 1

Introduction

1.1 Motivation

Machine learning (ML) involves developing computational models using learning
algorithms that automatically extract meaningful information from data [Bishop,
2007]. These models have recently demonstrated remarkable success in sev-
eral complex real-world applications (e.g., image classification, speech recogni-
tion) [LeCun et al., 2015, Goodfellow et al., 2016], encouraging their adoption in
safety-critical applications (e.g., finance, healthcare). The recent success of ML
models is due to several reasons. Some prominent ones include the use of highly
expressive models with strong generalisation capability, improved training algo-
rithms, and the availability of large datasets, specialised computing resources
(graphics processing units) and open-sourced ML libraries (e.g., Tensorflow) for
model training. However, despite all their successes, the majority of ML models
are “black-boxes”, as theoretically and empirically we know very little about the
process by which they form their predictions.

Understanding the behaviour of ML models, referred to as model inter-
pretability, is important due to several reasons, one of which is the problem of
incomplete model specifications. ML models often need to satisfy some auxiliary
criteria (e.g., trust, robustness), in addition to achieving the desired predic-
tion performance [Doshi-Velez and Kim, 2017]. However, as quantifying these
criteria is often ambiguous, model interpretability provides an alternate way
to validate whether ML models satisfy the desired auxiliary criteria. For ex-
ample, ML models may exploit confounders in a dataset and behave correctly
for the wrong reasons [Rodríguez-Algarra et al., 2016]. Such behaviour limits
their performance in the real world where such confounders are absent. We can
use model interpretability techniques to determine whether confounders influ-
ence the predictions of a model and hence, verify its trustworthiness [Guidotti

26

et al., 2019]. Similarly, researchers have demonstrated that attacking deep neu-
ral networks (DNNs) with carefully generated inputs, called “adversarial exam-
ples”, changes their predictions from correct to incorrect [Szegedy et al., 2014,
Goodfellow et al., 2015, Kereliuk et al., 2015]. Such behaviour may be danger-
ous to a system (e.g., autonomous vehicle) if its decision making depends on
DNN predictions [Papernot et al., 2017]. Model interpretability may provide
an understanding about the behaviour of DNNs for adversarial examples that
in-turn may suggest ways to make DNNs robust against adversarial perturba-
tions. Additionally, model interpretability will help in debugging ML models,
fixing dataset artefacts [Ribeiro et al., 2016b], and in refining model architec-
tures [Zeiler and Fergus, 2014]. Thus, there is an urgent need for interpretability
in ML models.

Interpretable machine learning (IML) is the field of machine learning that
designs methods for model interpretability. There exist two main ways to empir-
ically analyse the behaviour of ML models: by designing inherently interpretable
models or by analysing pre-trained models. The first model analysis approach
is a promising research direction, and in some applications (e.g., safety-critical
applications), it is essential to use interpretable models. However, the inter-
pretable models are often less accurate than the black-box models as generally
the training of ML models involves a trade-off between model accuracy and
interpretability [Ribeiro et al., 2016a].

The second model analysis approach involves the post-hoc analysis of pre-
trained models [Lipton, 2016] and includes methods from two categories [Mon-
tavon et al., 2018]. The first category of methods focuses on analysing the global
behaviour of ML models, and the insights from the global analysis generalise
across input instances. For example, irrespective of the class label associated
with an input image, shallow layers of image classification DNNs show sensitiv-
ity to low-level structures (e.g., edges) [Zeiler and Fergus, 2014]. There exist
several methods for global analysis. For example, activation maximisation syn-
thesises examples in the input space (e.g., images) to maximally activate DNN
components (e.g., neurons, layers) [Olah et al., 2017, Erhan et al., 2009].

The second category of post-hoc methods limits the analysis to individual
examples (local analysis) and focuses on identifying input features that highly
influence model predictions. The vast majority of such methods use variants of
sensitivity analysis (SA) to capture the effect of modifying a feature or a group
of features on the final prediction. For example, the methods using gradient-
based sensitivity analysis for DNNs produce saliency maps that highlight the
influence of each input feature towards a prediction [Simonyan et al., 2014].
Similarly, another method generates local explanations by using SA to approx-
imate the non-linear decision boundary in the neighbourhood of an instance by

27

an interpretable model [Ribeiro et al., 2016b].
Thus, the post-hoc analysis methods assist in gaining insight into the be-

haviour of ML models without imposing any restrictions on their predictive
performance. This model analysis category is the focus of this thesis. Post-hoc
interpretability also involves several challenges. For example, some local ex-
planation methods may generate unreliable, inconsistent, and uninterpretable
(noisy) explanations [Adebayo et al., 2018, Kindermans et al., 2017, Smilkov
et al., 2017]. Moreover, there is a lack of metrics to quantitatively evaluate
novel methods and to compare different methods for benchmarking [Doshi-Velez
and Kim, 2017]. This makes qualitative evaluation the preferred approach, de-
spite it being subjective, slow, and unscalable. Additionally, the majority of
post-hoc analysis methods were proposed and demonstrated for image classifi-
cation models or for models trained with structured data. This makes it less
evident whether those methods would generalise to other domains (e.g., audio,
text). This thesis aims to address the above challenges in the context of machine
listening models that automatically analyse sounds (e.g., speech, music) using
computational models to extract meaningful information.

1.2 Aim

This thesis aims to address some key challenges associated with post-hoc inter-
pretability techniques and focuses on both the design and validation of novel
techniques and on their application to analyse the behaviour of machine listen-
ing models. The models this thesis uses for experiments aim to perform singing
voice detection (SVD) that involves detecting the presence of vocals (singing
voice) in short-duration musical audio frames (or excerpts) [Humphrey et al.,
2019]. The description below highlights some of the key research questions this
thesis aims to answer.

Will existing post-hoc interpretability techniques generalise to ma-
chine listening models? Section 1.1 mentioned that the majority of post-
hoc interpretability techniques were initially demonstrated for the state-of-the-
art image classification DNNs (e.g., AlexNet [Krizhevsky et al., 2012]) or for
the models trained with structured data [Baehrens et al., 2010, Strumbelj and
Kononenko, 2010]. Thus, the application of these methods to machine listening
models raises some intriguing questions. For example, will the extension of a
method to machine listening require major modifications in the explanation gen-
eration pipeline? Are the generated explanations (qualitatively) interpretable,
or do they require further processing to extract meaningful information? This
thesis analyses these questions by applying three popular post-hoc interpretabil-
ity techniques to analyse the behaviour of five different SVD models.

28

Can we design reliable local explanation methods that are better
suited to analyse machine listening models? The majority of existing
local explanation methods highlight the influence of each feature in a model
prediction. Such explanations will be interpretable if the input features are in-
terpretable [Ribeiro et al., 2016a]. However, in machine listening the features
for model training (e.g., mel-frequency cepstral coefficients) very often are diffi-
cult to interpret in terms of the underlying physical properties of audio signals.
The issue of feature interpretability is less severe for machine listening models
that use feature learning [Humphrey et al., 2012] as explanations highlight the
influence of each spectrogram bin. However, recent research has questioned the
reliability of these explanations (see Section 1.1). This thesis aims to address
these challenges by asking the following questions. What type of local expla-
nation methods are suitable for machine listening? How can we design and
validate the performance of those methods?

What features do the components (layers, neurons) capture in
machine listening models trained using feature learning? The analysis
of image classification DNNs has demonstrated that those models learn features
hierarchically. The results demonstrated that a convolutional neural network
(CNN) combines low-level features (e.g., edges, gradients) to construct mid-level
features (e.g., textures, contours) and further combines mid-level features to
construct high-level features (e.g., object parts) [Zeiler and Fergus, 2014, Nguyen
et al., 2016a]. Motivated by these results, this thesis analyses the deep SVD
models globally and aims to answer the following questions. Similar to image
classification DNNs, do the SVD models also learn high-level class concepts
in their output layer neurons? What input features does each layer preserve
in a CNN-based SVD model? Can we gain an insight into how a CNN-based
SVD model differentiates between the two classification categories (vocals and
non-vocals)?

1.3 Thesis structure

• Chapter 2 provides a literature survey of the two research topics (IML
and SVD) that are the focus of this thesis. For IML, the chapter defines
key terminologies, discusses the motivations for analysing ML models,
provides a detailed survey of different approaches to model interpretability,
and describes existing research for analysing machine listening models.
For SVD, the chapter defines the use case, highlights its key applications,
discusses different approaches to design SVD models, and highlights key
research challenges for SVD.

29

• Chapter 3 introduces the four singing voice datasets that this thesis uses
for the design and analysis of SVD models. Moreover, the chapter de-
scribes the five SVD models this thesis uses for experiments. Two SVD
models (referred to as shallow SVD models) are based on the feature en-
gineering approach [Lehner et al., 2013], and the other three SVD models
(referred to as deep SVD models) are based on the feature learning ap-
proach [Schlüter and Grill, 2015]. The chapter describes the input features,
architecture, training methodology, and performance of each SVD model
on benchmarked publicly available datasets.

• Chapter 4 introduces SoundLIME (SLIME), a method for the local anal-
ysis of any (shallow or deep) machine listening model and demonstrates
its effectiveness by using it to analyse the local behaviour of three SVD
models (two shallow models and a state-of-the-art deep model). More-
over, the chapter describes experiments that quantitatively analyse the
behaviour of the proposed explanation method for different settings of
two input parameters. Finally, the chapter introduces a novel technique
to generate reliable explanations from the proposed explanation method
and demonstrates the technique for a synthetic dataset.

• Chapter 5 introduces a novel method for analysing the global behaviour
of machine learning models. Specifically, the chapter proposes a new ap-
proach for activation maximisation (AM) and suggests to use a generative
adversarial network (GAN) as a prior in the AM pipeline. Moreover, the
chapter introduces a novel method to quantitatively select suitable hyper-
parameter configurations for AM. The chapter describes experiments that
demonstrate the proposed methods for two deep SVD models and uses
the results to analyse the concepts the output layer neuron(s) capture in
both the SVD models. Additionally, the chapter presents a perceptual
study to further analyse the observations from the qualitative analysis of
synthesised examples corresponding to the two SVD models.

• Chapter 6 presents feature inversion, a method to map DNN features
back to the input space and describes the feature inversion approach
used in this thesis. The chapter proposes a novel feature inversion-based
approach for explaining CNN predictions and demonstrates it by quali-
tatively analysing the behaviour of a state-of-the-art deep SVD model.
Moreover, the chapter quantitatively evaluates the performance of the
proposed method. Additionally, the chapter uses feature inversion to vi-
sualise and understand the input content preserved by each layer in the
SVD model, aiming to gain an insight into the decision-making process of
the model.

30

• Chapter 7 provides a summary of the key results from the experiments
in each chapter and highlights the contributions this thesis makes to inter-
pretable machine learning and machine listening research. Moreover, the
chapter presents some ideas to extend this research and provides a general
discussion on existing challenges and potential research directions in IML.

1.4 Contributions

The content below mentions the key research contributions of this thesis in each
chapter.

Chapter 4

• Three interpretable representations (temporal, spectral, and time-frequency)
that assist in extending a local explanation method to machine listening.

• A qualitative and quantitative comparison of SLIME and deconvolutional
network-based saliency maps for a state-of-the-art deep SVD model.

• An analysis of the sensitivity of SLIME explanations to two input param-
eters: the number of perturbed samples in the interpretable space and the
content type of the synthetic components.

• Five content types for perturbing input representations (by occlusion) for
machine listening models.

• A method to generate reliable local explanations.

• A method to synthesise dataset and ground-truth explanations for the
reliability method. The dataset and ground-truth annotations from the
experiments are publicly available1.

Chapter 5

• A method to synthesise examples for maximally (or minimally) activating
DNN components (e.g., layers, neurons).

• A method to quantitatively select suitable hyper-parameter values for AM.

• Qualitative understanding about the concepts captured by the output
layer neurons in two deep SVD models.

1https://github.com/saum25/local_exp_robustness

31

https://github. com/saum25/local_exp_robustness

• Qualitative understanding about the interpretability of concepts captured
by two types of output neurons (a single sigmoidal neuron and two fully
connected neurons) in two deep SVD models.

• A perceptual study that analyses the observations from the qualitative
analysis of the synthesised examples corresponding to the two SVD mod-
els.

Chapter 6

• A method for explaining predictions of any CNN.

• Qualitative and quantitative evaluation of the proposed local explanation
method for a state-of-the-art deep SVD model using two publicly available
benchmarked datasets (Jamendo and RWC).

• Evaluation of the normalised reconstruction error at each layer of the deep
SVD model for the two publicly available datasets.

• Qualitative understanding about the input information (content) preserved
by each layer in the deep SVD model for instances from different datasets.

1.5 Publications

Most of the work presented in this thesis has been presented at international
peer-reviewed conferences and workshops or is under review. The list below
mentions all the publications related to this thesis.

Peer-reviewed publications associated with this thesis

[1] Saumitra Mishra, Bob L. Sturm, and Simon Dixon, “Local Interpretable
Model-Agnostic Explanations for Music Content Analysis”, in Proceedings
of the 18th International Society for Music Information Retrieval Confer-
ence (ISMIR), pages 537–543, Suzhou, China, October 23–27, 2017.

[2] Saumitra Mishra, Bob L. Sturm, and Simon Dixon, “What are You Lis-
tening to?” Explaining Predictions of Deep Machine Listening Systems”,
in Proceedings of the 26th European Signal Processing Conference, pages
2260–2264, Rome, Italy, September 3–7, 2018.

[3] Saumitra Mishra, Bob L. Sturm, and Simon Dixon, “Understanding a
Deep Machine Listening Model Through Feature Inversion”, in Proceed-
ings of the 19th International Society for Music Information Retrieval

32

Conference (ISMIR), pages 755–762, Paris, France, September 23–27,
2018.

[4] Saumitra Mishra, Daniel Stoller, Emmanouil Benetos, Bob L. Sturm,
and Simon Dixon, “GAN-based Generation and Automatic Selection of
Explanations for Neural Networks”, in Proceedings of the International
Conference on Learning Representations (ICLR) Workshop on Safe Ma-
chine Learning, New Orleans, USA, May 6–9, 2019.

[5] Saumitra Mishra, Emmanouil Benetos, Bob L. Sturm, and Simon Dixon,
“Reliable Local Explanations for Machine Listening”, in Proceedings of the
International Joint Conference on Neural Networks (IJCNN) Special Ses-
sion on Explainable Computational/Artificial Intelligence, Glasgow, Scot-
land, UK, July 19–24, 2020.

Chapter 4 includes content from [1] and [5]. [1] introduced SLIME, demon-
strated its effectiveness for machine listening, compared its performance with
saliency maps, and reported preliminary results about the sensitivity of SLIME
explanations. [5] performed further analysis about the sensitivity of SLIME ex-
planations to the two input parameters and introduced a method for generating
reliable explanations from SLIME. Chapter 5 includes content from [4] that in-
troduced the novel methods to perform AM and hyper-parameter selection and
performed preliminary experiments to demonstrate the methods by analysing
the concepts captured by the output layer neuron in a deep SVD model. Chap-
ter 6 includes content from [2] and [3]. [2] introduced the feature inversion-based
local explanation method and (qualitatively and quantitatively) demonstrated
it for a deep SVD model. [3] extended the previous research by first training
feature inverters corresponding to each layer of the SVD model and then qual-
itatively and quantitatively analysing the input content preserved (or lost) at
each layer of the SVD model for two benchmarked datasets.

The thesis author is the main contributor to all above mentioned publica-
tions, including on the design of experiments, generating and analysing results,
and writing and editing papers. Additional contributions from co-authors are
described as follows. Daniel Stoller contributed to [4] by sharing a pre-trained
GAN, writing the section on the design of the GAN, and reviewing the paper
draft. Emmanouil Benetos contributed to papers [4, 5] and Bob L. Sturm and
Simon Dixon contributed to all the papers in a supervisory role that involved
sharing their opinion on research questions, discussing the experimental results,
and reviewing the paper drafts.

33

Other publications

The thesis author contributed to two more papers (during the same period)
presented at international peer-reviewed conferences and workshops. [6] used
SLIME to analyse the predictions of a CNN-based replay spoofing detection
system. The thesis author contributed by adapting SLIME for the spoofing
model, participating in discussions about the intervention experiments, writing
the technical description of SLIME, and reviewing the draft. The thesis omits
the details of [7] as it does not relate to the research in this thesis.

[6] Bhusan Chettri, Saumitra Mishra, Bob L. Sturm, and Emmanouil Bene-
tos, “Analysing the Predictions of a CNN-Based Replay Spoofing Detec-
tion System”, in Proceedings of the IEEE Spoken Language Technology
Workshop (SLT), pages 92–97, Athens, Greece, December 18–21, 2018.

[7] Saumitra Mishra, Sreehari Mohan, Khalid Rajab, Gurpreet Dhillon,
Pier Lambiase, Ross J. Hunter and Elaine Chew, “Atrial Fibrillation Strat-
ification via Fibrillatory Wave Characterization Using the Filter Diagonal-
ization Method”, in Proceedings of the 46th International Conference in
Computing in Cardiology (CinC), Singapore, September 8–11, 2019.

34

Chapter 2

Background

As discussed in chapter 1, this thesis mainly involves two research topics -
interpretable machine learning (IML) and singing voice detection (SVD). This
chapter describes both research topics, highlighting state-of-the-art methods and
key research challenges for each. Such a description will provide the necessary
background for understanding the subsequent chapters of this thesis.

This chapter starts with a brief description of machine learning techniques
relevant to this thesis (section 2.1). The next two sections describe research
in interpretable machine learning (section 2.2) and singing voice detection (sec-
tion 2.3), respectively. The section on IML research defines IML, discusses the
need for model interpretability, and describes the key methods to analyse ma-
chine learning models. The section on SVD research starts by defining SVD
and highlighting some of its applications. It later describes common features
and popular methods to design SVD models and presents metrics commonly
used to evaluate SVD models. The section ends with details about the key
SVD research challenges. Finally, this chapter ends with a summary section
(section 2.4) that highlights the IML and SVD methods that will be useful in
the subsequent chapters of this thesis.

2.1 Machine learning preliminaries

This section briefly describes machine learning techniques used in subsequent
chapters of this thesis. Specifically, the section introduces four machine learning
models - decision trees and random forests (section 2.1.1), convolutional neu-
ral networks (section 2.1.2), and generative adversarial neural networks (sec-
tion 2.1.3).

35

2.1.1 Tree-based models

There exist two main types of tree-based models - a single decision tree or a
group of decision trees whose predictions are computed using ensemble meth-
ods (e.g., bagging [Bishop, 2007]). Tree-based models are popularly used in a
supervised setting across classification and regression tasks.

A decision tree is a hierarchical model that learns by recursively partitioning
the input space into two or more homogenous subsets using the best features
and their best values which the model identifies using some criterion (e.g., min-
imisation of entropy) [Breiman et al., 1984]. One of the key advantages of
decision trees is that they are inherently interpretable and can provide reasons
for their predictions. However, explanations generated by decision trees trained
with uninterpretable features may sometimes be hard to interpret [Mishra et al.,
2017].

A random forest model is an ensemble of decision trees where each tree learns
from a random subset of the training dataset and input features [Breiman, 2001].
The methodology of aggregating estimates from multiple decision trees assists
in mitigating the problem of high variance associated with the decision tree
models. However, the improved performance of random forests comes at the
cost of model interpretability.

Chapter 3 describes the design and evaluation of two tree-based models for
SVD. This thesis refers to these models as ‘shallow SVD models’. Chapter 4
introduces a technique for model analysis and demonstrates it to explain the
predictions of the two shallow SVD models.

2.1.2 Convolutional neural networks

A convolutional neural network (CNN) is a feedforward neural network with a
specialised architecture to process high-dimensional data (e.g., images) [Good-
fellow et al., 2016]. A CNN usually comprises three types of feedforward layers:
convolutional layers that perform the convolutional operation between an input
and a set of learnable filters (kernels), pooling layers that reduce the spatial size
of an input and fully-connected layers that flatten an input to a vector. The
use of specialised layers reduces the number of learnable parameters, helping a
CNN to scale well to high-dimensional data.

CNNs have been successfully demonstrated for several real-world applica-
tions (e.g., image classification, scene segmentation, sentiment classification).
In machine listening, CNNs have been used in a wide variety of tasks (e.g., mu-
sic auto-tagging [Pons et al., 2018], onset detection [Schlüter and Böck, 2014],
spoofing detection [Chettri et al., 2018]). Chapter 3 describes an SVD model
that uses a nine-layered CNN to achieve state-of-the-art performance on bench-

36

marked datasets. The thesis refers to this model and its variants as ‘deep SVD
models’ and analyses their behaviour using different post-hoc analysis methods.

2.1.3 Generative adversarial networks

Generative adversarial networks (GANs) are generative models that consist of
two DNNs, a generator G and a discriminator D, involved in a minimax two-
player game [Goodfellow et al., 2014]. The generator maps a low dimensional
noise vector z to a high dimensional output G(z; θg) (e.g., image). The dis-
criminator is a classifier D(x; θd) that outputs a probability representing that
x came from the data distribution pdata(x) and not from the generator. In the
GAN framework, the goal of the generator is to synthesise samples that can fool
the discriminator and the goal of the discriminator is to be successfully able to
identify whether an input is real or fake. It is expected that after successful
training the samples G generates are close to those sampled from the real data
distribution, making it extremely difficult for D to differentiate between real
and synthetic samples.

Goodfellow et al. [2014] proposed to train both the models simultaneously
using the backpropagation algorithm. Formally, D and G are involved in a
two-player minimax game with value function V (G,D) given as

Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))]. (2.1)
The discriminator and generator try to maximise and minimise the above value
function, respectively. Importantly, in the early stages of GAN training, opti-
mising the above loss function may result in a vanishing gradient problem for
the generator model. In such a scenario Goodfellow et al. [2014] suggested to
train G to maximise log(D(G(z))).

Another way to address the problem of vanishing gradients is by using an al-
ternate loss function called Wasserstein distance (or the earth mover distance).
GANs trained using Wasserstein distance are termed as Wasserstein GANs
(WGANs) [Arjovsky et al., 2017]. In WGANs, the discriminator is termed
as ‘critic’ and it does not classify an input sample into the real and fake cate-
gories. Instead, the critic outputs a scalar that may or may not be less than 1

or greater than 0 and aims to make the output bigger for the real samples than
for the fake samples. The generator and critic aim to maximise the functions
D(G(z)) and D(x) −D(G(z)), respectively. Additionally, for the computation
of Wasserstein distance, the critic model D has to be a 1-Lipschitz function.
WGAN imposes this constraint on D by clipping its weights to fall within a
range controlled by a hyper-parameter. Formally, if wD represents the weights
of the critic model, WGAN performs clipping by using a hyper-parameter c to

37

perform wD ← clip(wD,−c, c).
The WGAN method assists in improving the training stability of GANs.

However, in WGAN, the performance of the critic model is very sensitive to
the hyper-parameter c. Moreover, weight clipping acts as a regulariser, restrict-
ing the capacity of the critic model. Hence, another approach called WGAN-
GP [Gulrajani et al., 2017] proposed to impose the Lipschitz constraint by ap-
plying a gradient penalty. WGAN-GP penalises the critic model if the gradient
norm of its output with respect to input deviates from 1. Formally, the critic
loss function is given as

LD = Ex̃∼pg [D(x̃)]− Ex∼pdata
[D(x)] + λ · Ex̂∼px̂(||∇x̂D(x̂)||2 − 1)2 (2.2)

where x̃ = G(z) for z ∼ pz and x̂ = β · x̃ + (1 − β) · x for β ∈ [0, 1]. The
experiments in Chapter 5 use a GAN trained using the WGAN-GP framework
to understand the features that the output layer neurons in two deep SVD
models have learnt to identify.

In recent years, several variants of the GAN model proposed by Goodfellow
et al. [2014] have been developed to improve the quality of generated samples
and stabilise GAN training. As subjective evaluations can be challenging and
expensive, several quantitative measures have been proposed to evaluate and
compare the performance of GANs. Fréchet Inception Distance (FID) [Heusel
et al., 2017] is one such metric that quantifies the quality of GANs. FID com-
pares the distributions of activations from real and synthetic examples (e.g.,
images). The activations are the output of the pool3 layer in Inception-v3, an
image classification model [Szegedy et al., 2016]. The FID d(., .) is defined as
the distance between two multidimensional Gaussian distributions of activations
from the Inception-v3 model and is given as

d2((mr,Cr), (ms,Cs)) = ||mr −ms||22 + Tr
(
Cr + Cs − 2(CrCs)

1
2

)
, (2.3)

where (mr, Cr) and (ms, Cs) are the mean and covariance corresponding to
the activation distribution of the real and synthetic samples, respectively and
Tr is the trace operator. A lower value of FID is desired and it suggests that the
activation distribution of the synthetic samples is similar to the real samples. In
Chapter 5, the FID is used to quantitatively select the best hyper-parameters
for performing activation-maximisation to understand a DNN.

38

2.2 Interpretable machine learning

In recent years, there has been a lot of interest in analysing the behaviour of
machine learning models. Researchers have designed numerous methods and
demonstrated them for bringing interpretability to different kinds of machine
learning models for a multitude of applications [Montavon et al., 2018, Du et al.,
2018a, Gilpin et al., 2018, Guidotti et al., 2019, Murdoch et al., 2019].

This section provides a detailed survey of the IML research field by defining
key terminologies (section 2.2.1), discussing the need for model interpretability
(section 2.2.2), describing popular IML methods (section 2.2.3), and highlighting
existing research in understanding machine listening models (section 2.2.4).

2.2.1 What is interpretability?

Although numerous papers exist claiming to bring interpretability to machine
learning models, there is a lack of agreement about what interpretability means
in the context of machine learning [Lipton, 2016]. For instance, Miller [2019]
defines interpretability as “the degree to which an observer can understand the
cause of a decision”, which refers to analysing why a machine learning (ML)
model takes a particular decision. On the other hand, Kim et al. [2016] define
interpretability as “the degree to which a user can correctly and efficiently predict
a model’s decisions”, which refers to analysing model’s behaviour for multiple
instances to gain an insight into factors influencing its predictions. We can
gain such an insight even without analysing a model internally, especially if the
model predicts by exploiting confounders in the dataset [Chettri et al., 2018].
Moreover, in a different direction, [Rudin, 2019] argues that interpretability
is domain-dependent and thus providing a single definition for it may not be
appropriate.

This thesis follows the definition from Doshi-Velez and Kim [2017] that de-
fines “interpretability as the ability to explain or present [the behaviour of a
machine learning model] in understandable terms to a human”, which refers
to analysing both why and how a model predicts. Machine learning models
may inherently possess such an ability (this thesis refers to such models as in-
terpretable models, e.g., decision trees) or may require auxiliary methods (e.g.,
saliency maps [Simonyan et al., 2014]) to acquire it1. Moreover, the authors also
noted that the constituents of an explanation are also not formalised. Murdoch
et al. [2019] suggested that an explanation may take different forms depending
on the end-user.

1In literature, researchers refer to such machine learning models as ‘black-box’ models (e.g.,
deep convolutional neural networks) [Rudin, 2019].

39

Using the above definitions, this thesis defines IML as the field of ML research
that involves designing and applying interpretable machine learning models and
post-hoc methods to make black-box models interpretable. Section 2.2.3 pro-
vides more details about these methods.

In the literature, instead of interpretability, some researchers use the term
explainability, and instead of IML, some researchers use explainable ML or ex-
plainable AI (XAI). Moreover, in some works, researchers use the term trans-
parent models instead of interpretable models. There is again no agreement in
the research community on the exact meanings of these terms, and researchers
frequently use them interchangeably [Lipton, 2016, Gilpin et al., 2018, Du et al.,
2018a, Molnar, 2019]. This thesis only uses the terms interpretability, IML, and
interpretable models using the definitions above.

There are some recent efforts in distinguishing IML and other related terms,
but the proposed definitions lack consistency. For instance, Rudin [2019] argues
that IML deals with training inherently interpretable models, while explainable
machine learning involves explaining black-boxes using post-hoc methods. On
the other hand, Gilpin et al. [2018] argue that gaining some insight into a model’s
working is interpretability, while explainability is more complex that involves
analysing multiple aspects of a machine learning model. They mention that
“explainable models are interpretable by default, but the reverse is not always
true.”

2.2.2 Need for model interpretability

The need for interpretability in machine learning arises when a machine learning
model needs to satisfy auxiliary criteria (e.g., robustness) in addition to optimis-
ing pre-defined quantifiable metrics (e.g., classification error). The majority of
auxiliary criteria are not quantifiable2, creating an incompleteness in the prob-
lem specification [Doshi-Velez and Kim, 2017]. For instance, in addition to hav-
ing high accuracy on a test dataset, an ML model might need to be trustworthy
(an auxiliary criterion), but mapping trust to a function for optimisation is an
ambiguous task. One may argue that high accuracy on a test dataset indicates
that the model is trustworthy. However, ML models are capable of reporting
high performance by exploiting artefacts and confounders in datasets [Montavon
et al., 2018, Samek et al., 2019]. In literature, researchers refer such models as
“Horses” [Sturm, 2014] and “Clever Hans predictors” [Lapuschkin et al., 2019].
In such a scenario, interpretability helps to qualitatively verify if the model is
trustworthy by explaining the reasoning behind its predictions that a user can

2Recent research in fairness and privacy in the context of machine learning has formalised
their meanings [Doshi-Velez and Kim, 2017].

40

verify using domain knowledge.
Below we mention some auxiliary criteria that ML models may need to

satisfy and highlight how interpretability may help in fulfilling them. For more
auxiliary criteria, refer to Lipton [2016], Doshi-Velez and Kim [2017].

• Trust: In safety-critical applications (e.g., healthcare), it is essential that
humans trust the ML models they are deploying (or using). One of the
ways to gain trust is by using interpretability to verify that dataset faults
or confounders do not influence the predictions of an ML model [Guidotti
et al., 2019, Du et al., 2018a].

• Fairness: Recent research has shown that ML datasets have inherent bi-
ases, and it is challenging to prevent ML models trained using biased
datasets from being discriminatory [Gilpin et al., 2018]. We can prevent
the use of some features in model training, but it is hard to pre-identify
implicit correlations present in datasets. For instance, Angwin et al. [2016]
show that a tool3 used to identify the risk of a criminal reoffending was
racially biased. Interpretability may help to highlight unfair models by
analysing if a model uses discriminatory features for its predictions.

• Robustness: ML models are non-robust in the sense that their predictions
are sensitive to imperceptible adversarial perturbations [Szegedy et al.,
2014]. Researchers have proposed numerous methods to defend ML mod-
els against adversarial inputs, but none of them guarantees a perfectly
robust ML model. The lack of robustness in ML models is a serious con-
cern when we deploy them in safety-critical applications (e.g., self-driving
cars). However, we argue that using interpretability for analysing adver-
sarial examples would provide further understanding of their character-
istics and behaviour which may assist in developing robust ML models.
For example, visualising the saliency-map-based local explanations (see
Section 2.2.3.2) for DNN predictions corresponding to an input and its
adversarial version would highlight input features that assist the DNN in
differentiating between the two inputs. Recently, Noack et al. [2019] have
demonstrated that constraining image classification DNNs to have inter-
pretable gradients makes them comparatively more robust to adversarial
examples than DNNs trained in a standard manner.

• Legal requirements: A recent European Union regulation, General Data
Protection Regulation (GDPR), now provides users of automated decision-
making systems a right to explanation [Goodman and Flaxman, 2017,

3Correctional Offender Management Profiling for Alternative Sections (COMPAS)

41

Mittelstadt et al., 2019]. Interpretability techniques will help in explaining
predictions of ML models in understandable terms to users.

In addition to handling the problem of incompleteness in specifications, inter-
pretability helps in debugging ML models (e.g., by analysing inputs for which
a model fails to predict accurately [Du et al., 2018a]) and in extracting new
knowledge (e.g., scientific insights, game-playing strategies) previously unknown
to humans [Montavon et al., 2018, Samek et al., 2019].

Interpretability also helps to improve ML datasets by identifying if an ML
model is utilising dataset artefacts for its predictions. For instance, Ribeiro
et al. [2016b] discovered that a deep neural network (DNN) was discriminating
between huskies and wolves by analysing the presence or absence of ice in input
images. One can easily improve such a dataset by adding images containing the
animals in non-snow regions. Similarly, interpretability helps in improving deep
learning architectures. For instance, Zeiler and Fergus [2014] visualised features
from the first two convolutional layers of a state-of-the-art convolutional neural
network (CNN) to discover that larger filter and stride sizes result in poor
learning. They used this insight and reduced the filter and stride sizes resulting
in a then-state-of-the-art image classification model.

2.2.3 Methods for model interpretability

This section discusses methods that aim to analyse the behaviour of machine
learning models. IML is a rapidly developing field, and researchers have pro-
posed numerous methods that claim to bring interpretability to ML models.
Recently, there has been some initial work in creating a taxonomy to group ex-
isting IML methods [Guidotti et al., 2019, Gilpin et al., 2018]. Although there
is a lack of consistency in the proposed taxonomies, broadly, we can categorise
IML methods into two major categories: the first one involves methods that
design interpretable models (e.g., decision trees); and the second one involves
methods that perform post-hoc analysis of trained ‘black-box’ ML models (e.g.,
CNNs). The subsequent sections discuss some methods from each category and
their corresponding sub-categories. We have tried to select a good number of
methods from each category (and sub-category) to provide a detailed overview
of research directions within each category (and sub-category).

2.2.3.1 Methods for designing interpretable models

This category of methods aims to design models that are inherently interpretable
and do not need post-hoc methods to explain their behaviour. Such models usu-
ally require some constraints during their training and these constraints may

42

take different forms (e.g., sparsity, monotonicity, case-based reasoning) depend-
ing on the problem domain [Rudin, 2019]. In literature, some researchers refer
to these models by other names, e.g., transparent boxes [Guidotti et al., 2019],
explanation-producing systems [Gilpin et al., 2018], intrinsically interpretable
models [Du et al., 2018a]. We can analyse the behaviour of these models by
directly inspecting model components (e.g., a path in a decision tree) [Ribeiro
et al., 2016a]. This section presents methods that can be clustered in some
coherent theme.

One category of methods trains rule-based (or logical) models that are com-
posed of a set of (dependent or mutually-exclusive) rules. The most well-known
representative of such models is the decision tree model that consists of if-else
rules [Breiman et al., 1984]. Some recent works have proposed decision lists
that are less complex and more accurate extensions of the decision tree mod-
els (e.g., falling rule lists [Wang and Rudin, 2015], Bayesian rule lists [Letham
et al., 2015]). These models are composed of an ordered sequence of if-then-else
statements, and they take a decision whenever a rule is true. Lakkaraju et al.
[2016] proposed interpretable decision sets that extend decision lists by making
the if-then rules independent, resulting in more interpretable models. Finally,
Wang et al. [2016] also extended decision lists and proposed rule sets that consist
of a small set of short rules, where each rule is a conjunction of conditions.

The second category of methods designs interpretable models using prototype
selection and case-based reasoning. The definition of a prototype is application-
specific. For instance, a prototype can be an average of the instances belonging
to one of the classification categories in the training dataset. These models
predict by measuring the similarity of a test instance with each element in
the prototype set. Kim et al. [2014] trained an interpretable Bayesian case
model (BCM) by first performing unsupervised clustering and then learning
the prototypes (one per cluster) and subspaces. Each subspace is a subset of
features characterising a prototype. The learning of low-dimensional subspaces
relates to encouraging sparsity. The learnt prototypes and subspaces provide
interpretability and assist in generating explanations during inference. In sub-
sequent work, [Kim et al., 2016] extended BCM to learn criticisms that are
counter-examples for each cluster.

The third category of methods uses special architectures or training method-
ologies to make ‘black-box’ deep learning models interpretable. Arguably, the
most popular way to bring some interpretability to DNNs is to use attention
mechanisms that provide a weighting over the input or feature space to help
visualise input sections a model attends to while performing a prediction [Xu
et al., 2015]. Another method used a special prototype layer to train inter-
pretable DNNs for different computer vision applications [Li et al., 2018, Chen

43

et al., 2019]. The prototype layer generates prototypes (e.g., parts of an image)
for each classification category and uses them during inference for case-based
reasoning. The performance of these models was comparable to complex, unin-
terpretable state-of-the-art models. Zhang et al. [2018] proposed interpretable
CNNs by adding a regularisation loss at the deepest convolutional layer that
forces the model to learn disentangled representations resulting in filters that
capture semantically meaningful features. Alvarez-Melis and Jaakkola [2018]
proposed self-explaining neural networks consisting of three components: a deep
encoder, a parametrizer that generates relevance scores and an aggregation func-
tion that combines scores to generate predictions.

There exist some methods that do not fall under the previously defined cat-
egories. For instance, one approach trained interpretable models by adding a
sparsity constraint that encourages a model to use fewer features during infer-
ence [Ustun and Rudin, 2015]. These models generally work well for structured
data. Another approach applied generalised additive models with pairwise in-
teractions for healthcare applications and demonstrated that these interpretable
models perform comparably to state-of-the-art black-box models [Caruana et al.,
2015]. Table 2.1 summarises all the methods and corresponding models we have
discussed so far.

Although interpretable models provide some insight into their behaviour,
avoiding the need for post-hoc methods, these models face multiple challenges
[Ribeiro et al., 2016a]. For instance, if the input features used for model train-
ing are uninterpretable, the explanations (in terms of input features) will also
be uninterpretable [Mishra et al., 2017]. Moreover, there is a trade-off between
model flexibility and model interpretability [Freitas, 2013]. Generally, inter-
pretable models have limited expressive power (complexity of the learnt func-
tions), resulting in poor performance on tasks that use high-dimensional data.
State-of-the-art models for a vast majority of complex machine learning tasks
in multiple domains (e.g., vision, language, audio) are uninterpretable DNNs 4.
These challenges have motivated the use of post-hoc methods to explain machine
learning models that the next section discusses in detail.

2.2.3.2 Methods for post-hoc interpretability

Post-hoc interpretability involves analysing the behaviour of pre-trained ML
models using specialised methods [Lipton, 2016, Ribeiro et al., 2016a]. This
category of model analysis does not put any constraints on ML models during
the training phase. Thus, the methods are useful to analyse the behaviour of any

4Some recent works have demonstrated that using specialised architectures and training
methods we can train interpretable versions of DNNs that perform comparably to state-of-
the-art methods [Rudin, 2019].

44

M
et
ho

ds
M
od

el
s

R
ef
er
en
ce
s

R
ul
e-
ba

se
d

D
ec
is
io
n
tr
ee
s

B
re
im

an
et

al
.
[1
98
4]

R
ul
e
lis
ts

W
an

g
an

d
R
ud

in
[2
01
5]
,
L
et
ha

m
et

al
.
[2
01
5]

D
ec
is
io
n
se
ts

L
ak

ka
ra
ju

et
al
.
[2
01
6]

R
ul
e
se
ts

W
an

g
et

al
.
[2
01
6]

P
ro
to
ty
pe

se
le
ct
io
n
an

d
ca
se
-b
as
ed

re
as
on

in
g

B
ay
es
ia
n
ca
se

m
od

el
K
im

et
al
.
[2
01
4]
,
K
im

et
al
.
[2
01
6]

Sp
ec
ia
lis
ed

ar
ch
it
ec
tu
re
s

A
tt
en
ti
on

-b
as
ed

m
od

el
s

X
u
et

al
.
[2
01

5]

C
as
e-
ba

se
d
re
as
on

in
g
m
od

el
s

L
i
et

al
.
[2
01
8]

C
he
n
et

al
.
[2
01
9]

In
te
rp
re
ta
bl
e
C
N
N
s

Z
ha

ng
et

al
.
[2
01
8]

Se
lf-
ex
pl
ai
ni
ng

ne
ur
al

ne
tw

or
ks

A
lv
ar
ez
-M

el
is

an
d
Ja

ak
ko
la

[2
01
8]

M
is
ce
lla

ne
ou

s
Sp

ar
se

lin
ea
r
m
od

el
s

U
st
un

an
d
R
ud

in
[2
01
5]

G
en
er
al
is
ed

ad
di
ti
ve

m
od

el
s

C
ar
ua

na
et

al
.
[2
01
5]

T
ab

le
2.
1:

So
m
e
m
et
ho

ds
to

tr
ai
n
in
te
rp
re
ta
bl
e
m
od

el
s.

45

black-box ML model (e.g., a neural network) without sacrificing its predictive
capacity. We can categorise methods for post-hoc interpretability into two main
categories: methods that analyse ML models globally, and methods that analyse
ML models locally [Montavon et al., 2018]. Moreover, the methods within each
category can be model-agnostic (applicable to any ML model) or model-specific.
In the following sections, we discuss some leading post-hoc analysis methods.

Methods to analyse ML models globally

The methods from this category aim to understand the global behaviour of any
pre-trained ML model. The global behaviour of an ML model refers to charac-
teristics that are consistent across input instances. For instance, visualisation of
features (latent representations) from an image classification CNN reveals that
the neurons in the first convolutional layer function as edge detectors, capturing
edges in different orientations [Zeiler and Fergus, 2014]. This characteristic of
the image classification model is consistent across input images, providing an
insight into the global behaviour of the model.

Researchers have proposed multiple methods for global analysis that depend
on the ML model and the characteristics we want to analyse. For instance, we
can analyse the global behaviour of ML models that use hand-crafted features
by understanding the influence of each input feature on model performance.
One way to do this uses permutation feature importance, a method that assigns
importance scores to input features by permuting each feature value across a test
dataset, and recording the change in some measure of model performance (e.g.,
classification error). The feature whose value permutations maximally change
the model performance measure has maximum influence on model predictions
[Du et al., 2018a, Molnar, 2019]. This method may help analyse simple ML
models5, but does not scale well to models trained using high-dimensional data.
Moreover, even for simple ML models, this method does not capture correlations
among features, and if we consider them (e.g., by permuting values of pairs of
features), this method becomes unscalable.

One way to analyse the global behaviour of complex ML models is by using
interpretable models (e.g., decision trees) to approximate the global behaviour
of complex ML models. In literature, researchers refer to such interpretable
models as interpretable proxies or surrogate models. Some early efforts from this
category proposed interpretable proxies for neural network models. For instance,
Thrun [1994] used validity interval analysis, a method to analyse the input-
output behaviour of neural networks, to extract if-then rules from a trained
neural network. Similarly, Craven and Shavlik [1995] proposed an algorithm

5Models that use low dimensional features as inputs.

46

that queries a neural network model to construct a decision tree that represents
the concept encoded by the model. Recently, Carmona et al. [2015] extended the
above approaches to interpret a matrix factorisation model using two proxies: a
Bayesian network and simple logic rules. The interpretable proxies may provide
some useful insight into the behaviour of a complex model, but in some cases,
those insights may be unfaithful due to the oversimplification of the complex
model. Moreover, the proxy models may themselves become fairly complex
(e.g., very deep decision trees), and hinder interpretability [Gilpin et al., 2018].

In another direction, there exist methods specific to the ML models we want
to analyse. For instance, researchers have proposed methods to understand
DNNs by analysing their latent representations. These representations refer to
the features that different components (e.g., neurons, layers) of a DNN have
learnt to identify. There are two main ways to perform such an analysis: syn-
thesising examples to maximally activate DNN components (activation maximi-
sation), or mapping latent features back to the input space (feature inversion).
The following sections discuss both the methods in detail.

Activation maximisation Research in neuroscience has demonstrated
the presence of multifaceted “grandmother” cells in the human brain that fire
(get maximally activated) for high-level semantic concepts (e.g., celebrity names)
[Quiroga et al., 2005]. This discovery motivated researchers working on the
analysis of DNNs to assume that similar to the grandmother cells, higher layer
neurons in a DNN capture disentangled representations (semantically meaning-
ful concepts) [Goodfellow et al., 2009, Erhan et al., 2009, Le et al., 2012]. To
understand these concepts, researchers used activation maximisation (AM), a
method that synthesises examples in the input space (e.g., images) to maximally
activate neurons in a DNN [Erhan et al., 2009]. This thesis refers to such AM as
vanilla AM, to differentiate it from its variant that identifies dataset instances
that maximally activate DNN neurons. This thesis refers to this variant as
data-driven AM that analyses a DNN in three steps.

• First, select Nij , the i-th neuron (unit) in the j-th layer of the DNN. We
want to understand features that maximally activate Nij .

• Then, feed input data (e.g., from the training dataset) to the DNN and
record the activation set Aij whose elements akij represent the activation
(output) of Nij for the k-th input.

• Finally, sort Aij and select the top M activations and their corresponding
inputs. Assume that the top M inputs contain some common features
(concepts) that maximally activate Nij . To further investigate the fea-
tures, we can

47

– visually analyse the top-M inputs to identify common concepts [Gir-
shick et al., 2014]. One can reduce the task complexity by using the
receptive field of Nij to restrict the look-up area within each of the
top-M inputs [Zhou et al., 2015].

– segment each of the top-M inputs into semantically meaningful com-
ponents and iteratively remove components to analyse the change in
neuron activation [Zhou et al., 2015].

Researchers have applied data-driven AM to analyse CNNs trained for com-
puter vision applications (e.g., image classification, object detection) [Girshick
et al., 2014, Agrawal et al., 2014]. They discovered that deeper layer neurons
(e.g., from the deepest max-pooling layer) get maximally activated for high-level
semantic concepts (e.g., people, dog faces, buildings), a behaviour that is similar
to the grandmother cells in the human brain. However, they also noted that not
all neurons learn individual concepts, and there were multiple instances where
random linear combinations of neurons also get maximally activated by high-
level concepts in input examples [Szegedy et al., 2014], suggesting that deeper
DNN layers learn both individual and distributed concepts [Zhou et al., 2015].

Data-driven AMmay assist in gaining some insights into the global behaviour
of a DNN, but there are multiple challenges [Nguyen et al., 2016a]. For instance,
this method requires knowledge about the data distribution used to train the
model, which may not be available in some scenarios. Moreover, often high-
dimensional inputs consist of multiple components (e.g., objects in an image)
and using dataset-based AM generally highlights multiple components, making
the identification of semantic concepts challenging. For example, Nguyen et al.
[2016a] noted that if a neuron is maximally activated for an image of a lawn
mower on green grass, this method does not clarify if the neuron is sensitive to
the lawn mower or the green grass or both (context). Due to these challenges,
vanilla AM has often been a better approach to analyse the global behaviour of
DNNs as opposed to data-driven AM as the examples vanilla AM synthesises
will only include features that maximally influence DNN components.

Vanilla activation maximisation synthesises patterns in the input space (e.g.,
images) to maximally activate a neuron in a DNN [Erhan et al., 2009, Simonyan
et al., 2014]. The vanilla AM algorithm considers the task of preferred stimulus
synthesis as an optimisation problem. Thus, for a trained model (e.g., a CNN),
vanilla AM synthesizes an input xij that maximises the activation aij(xij) of
Nij (the ith neuron in the jth layer). To do this, the algorithm starts at some
input x = x0, and then moves in the input space along the direction of the gra-
dient ∂aij(x)/∂x to generate an input xij that maximises the activation value
for Nij . x0 can take multiple forms. For instance, it can be a random input

48

or can be an average of all examples in the training dataset. Researchers have
demonstrated that performing activation maximisation in this way very often
synthesises examples that do not resemble those from the natural data distribu-
tion. For instance, images synthesized using such an unconstrained optimisation
process have unreal properties (e.g., high pixel values, high-frequency patterns,
and no global structure) [Nguyen et al., 2015]. To avoid producing such unre-
alistic inputs, researchers proposed to regularise the objective function of the
vanilla AM algorithm [Yosinski et al., 2015]. Formally, the regularised vanilla
AM optimises

xij = arg max
x

(aij(x)− rα(x)) (2.4)

where rα(x) is a parameterised regularisation function (prior) that aims to keep
the synthesised example (xij) realistic.

Researchers have proposed several hand-crafted regularisers and demon-
strated that iteratively regularising inputs with suitable regularisers helps vanilla
AM to synthesise high-quality examples [Nguyen et al., 2016b, Wei et al., 2015,
Olah et al., 2017]. Some of these regularisers are useful for any data type (e.g.,
L2 norm (Simonyan et al. [2014])), while some regularisers implicitly assume
the input to be an image (e.g., Gaussian blur6 ([Yosinski et al., 2015]), total
variation ([Mahendran and Vedaldi, 2015])).

Hand-crafting regularisers is complex and gets increasingly difficult for high-
dimensional data (e.g., images, audio) where it is ambiguous to define the prop-
erties that separate a realistic input from an unreal one. Thus, to avoid this
complexity, Nguyen et al. [2016a] proposed to replace hand-crafted priors by
the learned priors in vanilla AM and to perform the optimisation in the latent
space of the learned prior. The authors used deep generator networks from
Dosovitskiy and Brox [2016b] as learned priors. The input to these generators
is a d-dimensional latent code that they map to the most-likely synthetic image.
The authors trained the generators using images from the ImageNet training
dataset [Russakovsky et al., 2015] and the training objective comprised of three
loss functions: L2 loss in the input space, L2 loss in the feature space, and
the adversarial loss [Goodfellow et al., 2014]. Formally, if Ω ∈ Rd represents
the latent code, G(Ω) represents the generator output, and aij represents the
activation function of the neuron Nij (the ith neuron at jth layer) we want to
analyse, then the learned prior-based vanilla AM optimises

Ωij = arg max
Ω

(aij(G(Ω))− λ · ‖Ω‖2) (2.5)

6The Gaussian blur regulariser blurs the modified input at each vanilla AM iteration,
reducing the effect of structured high-frequency components generated via gradient ascent.

49

where λ is a scaling constant. Finally, to generate the preferred example xij for
the neuron Nij , the method performs a forward pass through the generator us-
ing the optimised latent code Ωij from Eq. 2.5 , i.e., xij = G(Ωij). Nguyen et al.
[2016a] reported high-quality visualisations using the learned prior-based vanilla
AM. Their analysis of the state-of-the-art image classification models revealed
that the models learn individual class concepts in the output layer neurons.
Moreover, their experiments also confirmed a previous observation that the neu-
rons in image classification models learn features from input images hierarchi-
cally. The lower layer neurons learn low-level features (e.g., vertical/horizontal
lines, textures), middle layer neurons seem to combine low-level features to learn
mid-level features (e.g., object parts), and finally, the deeper layer neurons learn
high-level class concepts (e.g., a dog) [Zeiler and Fergus, 2014]. Chapter 5 de-
scribes experiments that use both the data-driven and vanilla versions of AM
to analyse the behaviour of a machine listening model.

We can also apply vanilla AM to understand features that a group of neurons
or layers in a DNN are sensitive to [Szegedy et al., 2014, Agrawal et al., 2014,
Yosinski et al., 2014, Mordvintsev et al., 2015]. To do this, vanilla AM generates
examples to maximise the sum of activations of a group of neurons or the sum of
all the activations in a layer. Additionally, we can use vanilla AM to understand
the features that a DNN is invariant to by first randomly sampling multiple
initial inputs to the algorithm (e.g., an input image, a latent code) and then
for each initial input synthesising the maximally activating example for further
analysis. For instance, Yosinski et al. [2015] demonstrated that their image
classification CNN was invariant to the orientation of image objects.

Although vanilla AM has been very useful in analysing the global behaviour
of DNNs, sometimes the examples it synthesises for understanding the deeper
layer neurons can be difficult to interpret. This happens as those neurons are
multi-faceted which means they get maximally activated for different represen-
tations of the same feature [Nguyen et al., 2016b, Montavon et al., 2018]. For
example, a face detecting neuron will maximally activate for a human as well as
an animal face. Vanilla activation maximisation can generate many prototypes
that can maximally activate the face detecting neuron, but as the algorithm aims
at finding a single solution, the synthesised example can sometimes become too
complex to interpret.

Feature inversion Another way to analyse the global behaviour of a DNN
is by using feature inversion that maps (inverts) DNN features7 at any layer back
to the input space (e.g., an image) [Mahendran and Vedaldi, 2015, Dosovitskiy
and Brox, 2016a]. Inverting features from each layer of a DNN trained for

7Features refers to the outputs of DNN layers.

50

input classification will highlight the information that the model preserves at
each layer, providing an insight into the input features that the DNN uses for
predictions (see Chapter 6). Additionally, although this thesis describes feature
inversion in the context of DNNs, it is a generic method that one can use to
invert hand-crafted features [Dosovitskiy and Brox, 2016a].

There exist two key methods to perform feature inversion for a DNN. The
first method generates an inverted representation x̂L ∈ Rn from an Lth layer fea-
ture by iteratively minimising the feature space loss between an input x ∈ Rn

(e.g., image) and an intermediate representation x′L ∈ Rn [Mahendran and
Vedaldi, 2015]. The method starts with a randomly sampled x′L and in each
iteration updates it by calculating the gradient of the loss function at x′L. For-
mally, given a DNN with representation function ΦL : Rn → Rd that maps an
n-dimensional input to a d-dimensional feature ΦL(x) at a layer L, the method
inverts ΦL(x) by solving

x̂L = arg min
x′L

‖ΦL(x′L)− ΦL(x)‖22 + β · Ω(x′L) (2.6)

where Ω : Rn → R is a regularisation function and β is a scaling constant. The
regularisation function constrains the optimisation (imposes a data prior) and
limits the search to a valid data manifold. This is crucial as previous research
has shown that unrestricted search may output fooling examples [Nguyen et al.,
2015].

Mahendran and Vedaldi [2015] applied the above method to analyse the be-
haviour of AlexNet, a CNN for image recognition. AlexNet was the winner of the
classification and detection task in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) 2012 [Krizhevsky et al., 2012]. In order to impose a natu-
ral image prior, they proposed two hand-crafted regularisers: α-norm and total
variation norm. Their work demonstrated that the inverted features from the
deepest convolutional layer in AlexNet are visually similar (preserve the spatial
layout and colour) to the input image. They also demonstrated that although
the reconstructions from fully connected layers are visually poor, they still de-
pict the presence of high-level features (e.g., the facial features of an animal).
Their work also highlighted the invariances captured by the AlexNet layers. For
example, the inverted representations from the deepest layer in the model (a
fully connected layer) depicted an object at different locations, orientations and
scales.

Instead of beginning from a randomly sampled x′L, the above method can
use a more structured starting input (e.g., medoids of clusters corresponding to
classification categories). This would make the optimisation task comparatively
less challenging and may generate interpretable visualisations even with weak

51

priors (e.g., L2 norm). For example, Du et al. [2018b] extended the method by
Mahendran and Vedaldi [2015] by replacing the randomly sampled x′L in Eq.
2.6 by x̃L ∈ Rn, a weighted sum of x and a background representation p ∈ Rn.
They define x̃L as

x̃L = x�m + p� (1−m) (2.7)

where � represents the element-wise multiplication, p is a perturbed (e.g.,
blurred) version of the input x and m ∈ [0, 1]n is a weight vector indicating
the significance of each input dimension in generating the feature ΦL(x). They
also propose a new hand-crafted regulariser that uses the weighted sum of fea-
ture maps from intermediate CNN layers.

The methods by Mahendran and Vedaldi [2015] and Du et al. [2018b] are
helpful in understanding features of a DNN. However, they have two limitations:
(1) hand-crafting a prior is challenging as it is hard to define the composition
of a naturally occurring input (e.g., image, audio); and (2) the method needs to
solve Eq. 2.6 for every new feature it needs to invert.

Dosovitskiy and Brox [2016a] proposed the second feature inversion method
that tackles both the above issues and generates visually improved reconstruc-
tions even for the fully connected layers of AlexNet. The method trains a
separate DNN (this thesis refers to it as a “feature inverter”) to invert the fea-
tures from each layer of AlexNet. The method uses an up-convolutional neural
network [Dosovitskiy et al., 2015] as a feature inverter. The method trains a fea-
ture inverter by minimising the input space loss Ψinput , defined as the squared
Euclidean distance between an input image and its inverted representation. Al-
though this method learns a natural image prior implicitly during training and
is expensive only at the training time,8 the inverted representations are blurry
for all the layers. The reason behind this is the way a feature inverter inverts
a feature. A forward pass through AlexNet (or any DNN) maps several inputs
to the same feature. Thus, to invert a feature, a feature inverter generates
an input that is an average of all the inputs that AlexNet maps to the given
feature. This averaging effect results in blurry reconstructions. We can think
of a feature inverter as an approximate inverse of the representation function
ΦL. ΦL is a many-to-one function, as several inputs can have the same feature
representation. This prevents ΦL from having a unique inverse.

In addition to works that propose new methods for feature inversion, there
has been some work in applying feature inversion for high-quality image gener-
ation and for understanding state-of-the-art CNN models. Gatys et al. [2016]
used feature inversion to extract content information from an input image and

8We need to train one feature inverter per layer of a DNN. Once feature inverters are
trained, feature inversion happens in near real time.

52

C
at
eg
or
ie
s

M
et
ho

ds
R
ef
er
en
ce
s

Fe
at
ur
e
im

po
rt
an

ce
P
er
m
ut
at
io
n
fe
at
ur
e
im

po
rt
an

ce
D
u
et

al
.
[2
01
8a
],
M
ol
na

r
[2
01
9]

In
te
rp
re
ta
bl
e
pr
ox
ie
s

If
-t
he
n
ru
le
s

T
hr
un

[1
99
4]
,
C
ar
m
on

a
et

al
.
[2
01
5]

D
ec
is
io
n
tr
ee
s

C
ra
ve
n
an

d
Sh

av
lik

[1
99
5]

B
ay
es
ia
n
ne
tw

or
ks

C
ar
m
on

a
et

al
.
[2
01
5]

M
od

el
sp
ec
ifi
c

V
an

ill
a
ac
ti
va
ti
on

m
ax

im
is
at
io
n

E
rh
an

et
al
.
[2
00
9]
,
Si
m
on

ya
n
et

al
.
[2
01
4]

D
at
a-
dr
iv
en

ac
ti
va
ti
on

m
ax

im
is
at
io
n

G
ir
sh
ic
k
et

al
.
[2
01
4]
,
Z
ho

u
et

al
.
[2
01
5]

Fe
at
ur
e
in
ve
rs
io
n

M
ah

en
dr
an

an
d
V
ed
al
di

[2
01
5]
,
D
os
ov

it
sk
iy

an
d
B
ro
x
[2
01
6a
]

T
ab

le
2.
2:

So
m
e
m
et
ho

ds
to

an
al
ys
is

th
e
gl
ob

al
be

ha
vi
ou

r
of

M
L
m
od

el
s.

53

then combine this information with style information from another image to
perform neural style transfer. Upchurch et al. [2017] performed high-level se-
mantic transformations to an input image by first linearly interpolating deeper
layer feature vectors from a CNN and then by inverting the interpolated features
back to the image space. As discussed above, Mahendran and Vedaldi [2015] and
Dosovitskiy and Brox [2016a] applied feature inversion to understand AlexNet.
For example, Dosovitskiy and Brox [2016a] discovered that AlexNet preserves
the colour and approximate location of an object in its last fully connected layer.
Later, Mahendran and Vedaldi [2016] extended the previous work by applying
feature inversion to understand variants of the VGGNet model [Simonyan and
Zisserman, 2015]. Recently, Carter et al. [2019] used feature inversion to un-
derstand the InceptionV1 model (also called as “GoogLeNet") [Szegedy et al.,
2015]. It is a 22 layer deep CNN that won the classification and detection task
in the ILSVRC 2014 [Russakovsky et al., 2015]. Table 2.2 summarises all the
global analysis methods discussed in this section.

Methods to analyse ML models locally

Another way to bring interpretability to black-box ML models is by generating
explanations for their predictions [Montavon et al., 2018]. These explanations
aim to highlight input features that contributed in favour of (or against) a deci-
sion. For instance, explanations for an image classification CNN highlight image
pixels that influence model predictions. In literature, researchers sometimes re-
fer to these explanations as local explanations as they explain individual model
decisions [Ribeiro et al., 2016b]. These explanations assist in inspecting ML
models by enabling humans to use domain knowledge to verify if a model is giv-
ing the right answers for the right reasons [Sturm, 2014]. This section discusses
some methods to explain ML models locally.

Sensitivity analysis

One of the leading ways to explain decisions of ML models is by using sensi-
tivity analysis (SA) that aims to analyse the sensitivity of model predictions
on input features. SA takes different forms depending on the application, how-
ever, generally, it involves perturbing an input x ∈ Rn by replacing it by x + g,
where g ∈ Rn, and analysing its effect on the model prediction [Strumbelj and
Kononenko, 2010, Krause et al., 2016]. For instance, for an image classifica-
tion DNN that assigns a score SC(x) ∈ R to an input image x indicating its
confidence that x belongs to the category C, SA assigns a relevance score to
each input pixel suggesting that pixels with high relevance scores influence the
prediction maximally.

54

Explanation
• 𝑅"
• 𝑅#
• 𝑅$

(ℰ)
Feature extractor Classifier

.𝑥) 𝐱𝒊 ∈ ℝ.. (𝐶)

LIME

{𝑥)	, ℰ, C}
S

𝑦)4 ∈ [0, 1].

Figure 2.1: Schematic representation of LIME explaining why a machine learn-
ing system S applies label j to an instance xi with probability yij .

Occlusion: One of the ways to perturb an input for SA is by changing
input features in a pre-defined manner and analysing the change in model pre-
diction. For instance, Zeiler and Fergus [2014] proposed to explain predictions of
a DNN by sequentially occluding a group of input pixels using a sliding window
and recording the change in model prediction on feeding the occluded image to
the DNN. The group of input pixels that on occlusion results in the maximum
change in model prediction is then the explanation of the prediction. Zint-
graf et al. [2017] improved this methodology by combining prediction-difference
analysis with conditional sampling and multivariate analysis. However, their
approach is computationally intensive, and the explanations it generates are
sensitive to the number of features it occludes [Ancona et al., 2018].

Sensitivity analysis with model approximation: Ribeiro et al. [2016b]
proposed LIME (local interpretable model-agnostic explanations), a method that
tackles the problem of the number of features to occlude by segmenting inputs
in human interpretable components (e.g., words in a text, super-pixels9 in an
image). LIME uses interpretable components to define interpretable representa-
tions of input data that assist in maintaining interpretability in the generated
explanations. The generated explanations are easier to interpret because they
show a more direct mapping between an input and its prediction. For example,
for an e-mail classification model, LIME generates a list of words in an e-mail
as an explanation for its classification to some category. Similarly, for an im-
age classification model, LIME explains a prediction by identifying influential
super-pixels in the input image.

Fig. 2.1 depicts an overview of what LIME aims to perform. LIME helps
elucidate reasons for a system S applying label j to an input instance xi with
probability yij . LIME explains the prediction by listing three features (e.g.,
super-pixels): R1, R2, and R3, where R1 and R2 influence the prediction pos-
itively (increase the prediction probability), and R3 influences the prediction

9A super-pixel is a group of pixels sharing common characteristics (e.g., same intensity).

55

negatively (decreases the prediction probability).
LIME explains a prediction by approximating a complex model locally by an

interpretable model using binary features that indicate the presence or absence
of interpretable components. The interpretable model provides explanations in
terms of its components. For instance, if the interpretable model is a linear
model then weights and polarity of its features explain a prediction. Moreover,
LIME is model-agnostic and hence useful to explain any ML model.

Formally, let C : Rn → [0, 1] be a classifier, mapping a feature vector xi =

ε(xi) to class label j, with probability yij = C(xi). Define a sequence Xi, which
is composed of elements that are in some sense meaningful to the classification
of xi. For example, for a text classification model, Xi could be the sequence
of unique words in an input and for an image classification model, Xi could
be the sequence of super-pixels in an image. LIME defines an interpretable
space T = {0, 1}|Xi| whose kth dimension corresponds to the kth element of Xi.
Then x′i ∈ T is the interpretable representation of xi. Thus, LIME transforms
an input instance xi to a binary vector x′i whose elements correspond to the
presence and absence of elements of Xi.

LIME defines an (interpretable) explanation as a model g ∈ G, where G
denotes the class of interpretable models (e.g., linear models, decision trees).
LIME learns the model g using a set of perturbed samples z

′

ik and classifier pre-
dictions C(zik), where zik represents the perturbed sample in the input space.
LIME samples in the interpretable space by randomly setting dimensions of x

′

i

to the zero value. Formally, LIME learns g by the optimisation:

arg min
g∈G

(L(C, g, ρxi) + ∆(g)) (2.8)

where L(C, g, ρxi) is a loss function that for an instance xi measures how well
the model g approximates the classifier C in the neighbourhood defined by ρxi ,
and ∆(g) is a measure of model complexity (e.g., sparsity in the linear models).
Thus, LIME minimises the sum of two functions to explain why C maps xi to
class label j. Algorithm 1 presents a version of the LIME algorithm that learns
linear models to explain predictions of input instances. Chapter 4 introduces a
methodology that extends LIME to machine listening models.

Gradient-based sensitivity analysis: Another way to perform SA is by
computing the local gradient of the model function [Baehrens et al., 2010]. This
approach avoids the expensive requirement of input perturbation and provides
an automatic way to understand the sensitivity of model predictions on input
features. Moreover, this local explanation approach is particularly useful for
understanding DNNs as the backpropagation algorithm [Rumelhart et al., 1986,
Goodfellow et al., 2016] can efficiently compute model gradients. Due to this,

56

Algorithm 1: Local explanation generation using LIME

Input: Classifier C, instance xi and its interpretable representation x
′

i

Input: Number of perturbed samples Ns
Input: Weight function ρxi , number of interpretable components in the

explanation Ncomp
Output: Linear model g(z

′

i) with weights w
1 Z ← {};
2 for k ∈ {1, 2, 3,, Ns} do
3 z

′

ik ← sample(x
′

i); // sample randomly around x
′

i

4 Z = Z ∪ 〈C(zik), z
′

ik, ρxi
(zik)〉;

5 end for
6 w← learn_linear_model(Z,Ncomp);
7 return w;

researchers have proposed several methods that perform gradient-based SA to
generate local explanations for DNNs. This section discusses some of them
below.

Simonyan et al. [2014] proposed to compute the magnitude of local gradients
to explain predictions of a DNN. Their method creates a saliency map10 by
assigning a relevance score to each input pixel, suggesting that pixels with a
high relevance score maximally influence a prediction. Formally, if for an input
x, SC(x) denotes the unnormalised class score for the class C, then the relevance
score of the ith pixel RCi (x) for its influence on SC(x) is

RCi (x) =

∣∣∣∣∂SC(x)

∂xi

∣∣∣∣ (2.9)

Although saliency maps provide some information about the local behaviour
of a DNN model, they are very noisy (spatially discontinuous and scattered
[Montavon et al., 2018]) and provide no information about the positive and
negative evidence for a prediction due to the use of the absolute values of gra-
dients [Ancona et al., 2018]. Thus, researchers have proposed several methods
to improve the visualisations provided by saliency maps.

One category of methods focus on controlling gradients during the backward
pass by only backpropagating the positive gradients [Zeiler and Fergus, 2014,
Springenberg et al., 2015]. Zeiler and Fergus [2014] proposed their method by
a different name (Deconvolutional networks (deconvnet)). However, Simonyan
et al. [2014] later demonstrated that the Deconv method is a variant of gradient-
based SA. Springenberg et al. [2015] named their method guided backpropaga-
tion. These methods generate high quality visualisations, but are only useful

10In literature, researchers refer to such maps by different names (e.g., attribution maps,
heat maps).

57

for DNNs with ReLU non-linearity that scales an input x using the function
f(x) = max(0, x) [Krizhevsky et al., 2012]. Similarly, Selvaraju et al. [2017]
proposed a method (they named it Grad-CAM) that first computes the gra-
dient of a class score with respect to the deepest convolutional layer and then
post-processes the gradients (by aggregation and applying ReLU non-linearity)
to generate high-quality class activation maps. However, this method too is
limited to the analysis of CNNs.

Another category of methods focuses on improving saliency maps without
putting any additional restrictions about model architecture. For instance,
Shrikumar et al. [2016] proposed to improve saliency map visualisation by pre-
serving the signs of gradients from Eq. 2.9 and generating the relevance scores
by multiplying the gradients with inputs. Following Ancona et al. [2018], this
thesis refers to their method as gradient × input. The method generates RCi (x)

by

RCi (x) = xi ·
∂SC(x)

∂xi
(2.10)

Sundararajan et al. [2017] extended the above method and proposed inte-
grated gradients by averaging the signed gradients computed both at the input
x, and at other locations in the input space. The authors obtained these lo-
cations by varying x along a linear path starting from a user-defined baseline
(e.g., an average of all inputs in a training dataset). Additionally, the authors
also proposed two properties which they argue the attribution methods must
satisfy.

Smilkov et al. [2017] demonstrated that noise in saliency maps is due to local
variations in model gradients. They proposed a method (they call it Smooth-
Grad) that smoothes noise by first generating multiple inputs by perturbing an
input locally through noise addition (e.g., Gaussian noise) and then averaging
the saliency map from each input, resulting in visually improved saliency maps.
Formally, if RC(x) ∈ Rn represents the saliency map for the classification of
an input x to the category C, then SmoothGrad generates the noise-smoothed
saliency map RCS (x) by

RCS (x) =
1

k
·
k∑
1

RC(x +N (0, σ2)) (2.11)

whereN is the Gaussian distribution with standard deviation σ and k represents
the number of locally perturbed samples.

Although SA helps in gaining some insights about the local behaviour of an
ML model, there are some challenges. For instance, SA does not explain the
score function SC(x), but provides knowledge about its (local) variations for

58

changes in the input features. For instance, as Montavon et al. [2018] noted,
explanations using SA highlight features that make input more or less target
class type, but do not highlight features that make an input belong to the
target class. Thus, researchers have proposed several other methods to explain
ML models locally. The sections below discuss some of them.

Function decomposition

This category of methods focuses on explaining the score function SC(x) by
decomposing it in terms of the sum of the relevance scores for each input fea-
ture. One way to do that is by the Taylor decomposition of the score function
[Montavon et al., 2018] that provides a tractable solution for special cases (e.g.,
deep ReLU networks). The score function for such cases is

SC(x) =
n∑
i=1

RCi (x) (2.12)

where RCi (x) is the product of the input feature and the local gradient evaluated
at that feature (see Eq. 2.10).

Another way to decompose the score function makes use of the network
topology (e.g., the graph structure of DNNs). For instance, layer-wise relevance
propagation (LRP) propagates the relevance of each neuron iteratively in the
backward direction (from the output neuron to the input neuron in a DNN)
using a set of pre-defined rules that follow the relevance conservation property
[Bach et al., 2015].

Miscellanous

This category includes methods that do not come under the previous two cate-
gories. For example, the first method counterfactual explanations, aims to find
the smallest change in the input features of an instance so that the model pre-
diction for that instance changes to a pre-defined output (e.g., another class
label) [Wachter et al., 2017, Sokol and Flach, 2019]. Thus, given an instance
x, a prediction (e.g., classifier) function f , and a pre-defined output y, the
counterfactual explanation e is obtained by the constrained optimisation

arg min
e

max
β

β(f(e)− y)2 + θ(x, e) (2.13)

where θ and β refer to a distance function and a weight parameter, respectively.
Thus, the above optimisation aims to generate a new instance that is close to the
input instance and whose classifier prediction is close to the pre-defined output.

The counterfactual explanations are easy to interpret as they highlight the

59

Interpretable	machine	learning

Inherently interpretable models
• Rule-based
• Prototype selection and case-based reasoning
• Specialised architectures
• Miscellaneous

• Sparse models
• Generalised additive models

Post-hoc explanations

Global behaviour analysis
• Feature importance
• Interpretable proxies
• Model specific

• Activation maximisation
• Feature Inversion

Local behaviour analysis

Sensitivity analysis
• Occlusion
• LIME
• Gradient-based

Miscellaneous
• Counterfactual explanations
• Influence functions
• Shapley values

Function decomposition
• Taylor decomposition
• Layer-wise relevance propagation

Figure 2.2: A high level taxonomy of some interpretable machine learning meth-
ods.

input features required to change a model prediction to a pre-defined output.
However, these explanations have some limitations. For example, for an instance
and pre-defined output, there exist multiple counterfactual explanations that
may contradict with each other. In such a scenario, the process of selecting
suitable counterfactual explanations for further analysis is not evident [Molnar,
2019].

Another way to analyse the local behaviour of ML models is by understand-
ing how the training data instances influence model predictions. For example, to
analyse the influence of an instance in a model prediction, one way is to remove
or perturb the instance, re-train the model and analyse the change in prediction.
However, doing this is expensive and thus Koh and Liang [2017] proposed to
use influence functions that explain how the parameters of a model change when
a training instance changes by a small amount. The authors demonstrated the
versatility of influence functions for linear models and CNNs by using influence
functions to identify dataset examples that maximally influence a prediction, to
fix dataset errors, and to debug ML models.

Shapley values provide another way to explain the predictions of ML mod-
els [Lundberg and Lee, 2017, Merrick and Taly, 2019]. Shapley values come from
game theory and provide a method to fairly distribute the total credit among
players in a cooperative game. In the context of explaining model predictions,
Shapley values provide a way to distribute the difference between a model pre-
diction and a baseline (e.g., average prediction for all instances) fairly among
the input features [Molnar, 2019]. Specifically, the Shapley value of a feature

60

i, denoted φi(v), can be interpreted as the weighted average of the marginal
contribution of the feature to all possible coalitions of features.

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! [v(S ∪ {i})− v(S))] (2.14)

where N is a set of allK input features, S ⊆ N represents a coalition of features,
and v is a function that maps each S to a real value v(S), where v(∅) = 0.

Shapley-value-based feature attribution methods satisfy several desirable ax-
ioms. However, the computation of exact Shapley values is expensive and grows
exponentially with the number of input features [Merrick and Taly, 2019]. There
exist sampling-based approaches for approximating Shapley values, but they do
not scale well to DNNs as they require multiple model evaluations [Ancona et al.,
2019]. Thus, although Shapley values present a theoretically sound methodol-
ogy for assigning attribution scores to input features, they have not been used
for experiments in this thesis as the analysis of deep machine listening models
forms a major part of this work.

Table 2.3 summarises all the local analysis methods discussed in this section.
This section provided a detailed survey of different categories of IML methods
that assist in analysing the behaviour of ML models. Fig. 2.2 summarises the
discussed methods in a high-level taxonomy.

2.2.4 Interpretability in machine listening models

This section discusses some use cases where researchers analysed the machine
listening models using some of the IML techniques from section 2.2.3. Compared
to other domains (e.g., computer vision, text) relatively much less research exists
about analysing the behaviour of machine listening models. However, recent
years have seen an increased interest in applying IML methods to globally and
locally understand machine listening models.

Global analysis

Sturm [2014] proposed to validate the performance of machine listening models
by analysing their behaviour for inputs transformed through label preserving
transformations which they refer to as “irrelevant transformations”. Using the
proposed transformations, they demonstrated that three state-of-the-art music
information retrieval systems reported high performance by exploiting charac-
teristics confounded with the ground truth.

Rodríguez-Algarra et al. [2016] performed intervention experiments to anal-
yse a music genre classification model that uses scattering transform features to
achieve the state-of-the-art performance on a publicly available genre classifica-

61

C
at
eg
or
ie
s

M
et
ho

ds
R
ef
er
en
ce
s

Se
ns
it
iv
it
y
an

al
ys
is

O
cc
lu
si
on

Z
ei
le
r
an

d
Fe

rg
us

[2
01

4]
,
Z
in
tg
ra
f
et

al
.
[2
01
7]

L
IM

E
R
ib
ei
ro

et
al
.
[2
01
6b

]

Sa
lie

nc
y
m
ap

s
Si
m
on

ya
n
et

al
.
[2
01
4]

D
ec
on

vo
lu
ti
on

al
ne
tw

or
ks

Z
ei
le
r
an

d
Fe

rg
us

[2
01
4]

G
ui
de
d
ba

ck
pr
op

ag
at
io
n

Sp
ri
ng

en
be

rg
et

al
.
[2
01
5]

G
ra
d-
C
A
M

Se
lv
ar
aj
u
et

al
.
[2
01
7]

G
ra
di
en
t
*
in
pu

t
Sh

ri
ku

m
ar

et
al
.
[2
01
6]

In
te
gr
at
ed

gr
ad

ie
nt
s

Su
nd

ar
ar
aj
an

et
al
.
[2
01
7]

Sm
oo

th
G
ra
d

Sm
ilk

ov
et

al
.
[2
01
7]

Fu
nc
ti
on

de
co
m
po

si
ti
on

T
ay

lo
r
de
co
m
po

si
ti
on

[M
on

ta
vo

n
et

al
.,
20
18
]

L
ay
er
-w

is
e
re
le
va
nc
e
pr
op

ag
at
io
n

[B
ac
h
et

al
.,
20
15
]

M
is
ce
lla

ne
ou

s
C
ou

nt
er
fa
ct
ua

l
ex
pl
an

at
io
ns

W
ac
ht
er

et
al
.
[2
01
7]
,
So

ko
l
an

d
F
la
ch

[2
01
9]

In
flu

en
ce

fu
nc
ti
on

s
K
oh

an
d
L
ia
ng

[2
01
7]

Sh
ap

le
y
va
lu
es

L
un

db
er
g

an
d

L
ee

[2
01
7]
,
A
nc
on

a
et

al
.
[2
01
9]
,

M
er
ri
ck

an
d
T
al
y
[2
01
9]

T
ab

le
2.
3:

So
m
e
m
et
ho

ds
to

an
al
ys
e
th
e
lo
ca
lb

eh
av
io
ur

of
M
L
m
od

el
s.

62

tion dataset. The authors demonstrated that the model was non-trustworthy
as it predicts by using information from inaudible frequencies (< 20 Hz).

Some researchers focussed on analysing the components (e.g., neurons, ac-
tivation maps, filters) of DNN-based machine listening models. For instance,
Dieleman and Schrauwen [2014] visualised the first convolutional layer filters in
a deep music auto-tagging model trained using raw audio to discover that the
model learns frequency-selective filters in that layer. Similarly, Schlüter and
Böck [2014] analysed a scaled-down version of their deep music onset detection
model by visualising the maximally activated feature maps and corresponding
filters. They discovered some interesting insights into model functioning. They
found that the model differentiates between the percussive and pitched onsets,
and similar to spectral flux methods, it computes spectral differences over time.

The above analysis provides useful insights into the behaviour of both the
machine listening models. However, the insights are restricted to shallow layer
components as they are easier to interpret due to the proximity to input. Deeper
layer components are much harder to interpret as they are multi-faceted [Nguyen
et al., 2016b]. This thesis presents two methods (see Chapter 5 and Chapter 6)
that help to analyse DNNs components without imposing any restriction on
model depth.

Recently, researchers analysed the latent representations from deep machine
listening models using activation maximisation with handcrafted priors. Specif-
ically, Zhang and Duan [2018] performed AM in the input space using the L2

norm of an input as the handcrafted prior to analyse a CNN that performs
sound search by vocal imitation. Similarly, Krug and Stober [2018] performed
AM in the input space using the L1 and L2 norms of an input as the handcrafted
priors to analyse a CNN trained for predicting letters from input speech mel-
spectrograms [Müller, 2015]. They demonstrated that performing AM in the
input space using weak priors does not work well as it produces interpretable
patterns only for lower layers of the CNN model. They proposed a novel global
analysis method, normalised averaging of aligned inputs (NAvAI) that identi-
fies features corresponding to a classification category by processing (aligning,
averaging, and normalising) dataset instances of that category. The use of hand-
crafted priors limits the interpretability of synthesised examples and performing
AM in the input space makes the input optimisation task difficult. Chapter 5
presents a flexible way to perform AM using a learned prior [Nguyen et al.,
2016a].

Krug et al. [2018] proposed time-independent neuron activation profiles
(NAPs) and demonstrated them to analyse the global behaviour of a fully-
convolutional automatic speech recogniser trained to predict graphemes from
input spectrograms. NAPs characterise network responses for groups of input

63

examples and are generated by averaging, normalising, and sorting neuron acti-
vations corresponding to a layer. The authors used NAPs to demonstrate that
the speech recognition model predicts graphemes by using phoneme representa-
tions learnt in its hidden layers.

Local analysis

Some researchers have used saliency maps to identify the influential time-frequency
bins in input audio representations (e.g., spectrograms). For instance, Choi
et al. [2016] used saliency maps generated using the deconvolution method
[Zeiler and Fergus, 2014] to explain predictions of a CNN-based music genre
classification model. Moreover, in addition to visualising influential bins in in-
put spectrograms, they auralised explanations by using the phase information
of each input. Similarly, Schlüter [2016] used the saliency maps generated us-
ing the guided backpropagation method [Springenberg et al., 2015] to perform
weakly-supervised classification of input mel spectrograms into vocal and non-
vocal categories.

Saliency maps are helpful to gain some insight into the local behaviour of a
model, but they are usually noisy [Smilkov et al., 2017]. Thus, to generate inter-
pretable saliency maps, generally, some restriction is required (e.g., restricting
the gradients, making use of special architectures [Zeiler and Fergus, 2014]),
which limits their generalisation. Chapter 4 presents a model-agnostic local
explanation method that aims to tackle these challenges.

This section discussed some machine listening models that researchers have
analysed using IML methods and highlighted the some existing challenges in
analysing those models. The next section introduces the machine listening use
case this thesis uses for the experiments.

2.3 Singing voice detection

This section explains singing voice detection - the machine listening use case this
thesis uses for experiments. Section 2.3.1 defines the SVD task and highlights
why automatic SVD is challenging. Section 2.3.2 lists key SVD applications.
Section 2.3.3 introduces common features used to train SVD models. Section
2.3.4 describes different approaches for SVD. Section 2.3.5 presents common
metrics for evaluating the performance of SVD models. Finally, section 2.3.6
mentions current challenges and highlights future research directions for SVD.

64

SVD	
algorithm

Figure 2.3: The figure depicts the application of a singing voice detection (SVD)
algorithm for a 10-second musical audio clip (left) from “01 - A smile on your
face.mp3” (time index : 32.0 seconds - 42.0 seconds) in the Jamendo dataset
(see chapter 3). The SVD algorithm segments the input into temporal sections,
indicating the presence or absence of singing voice (right). NV and V refer to
the labels corresponding to the beginnings of non-vocal and vocal segments,
respectively.

2.3.1 Definition

Singing voice detection refers to the automatic detection of the presence (or the
absence) of the singing voice (or vocals) in short-duration (e.g., 200 ms) audio
frames (or excerpts) [Humphrey et al., 2019, Lehner et al., 2018]. In litera-
ture, researchers sometimes refer to SVD by other names (e.g., vocal activity
detection, vocal detection). The application of SVD to musical audio recordings
labels the sequence of audio frames into vocal or non-vocal (instrumental mu-
sic) sections. The vocal section indicates the presence of singing voice - either a
capella or mixed with instrumental music. The non-vocal section indicates the
absence of singing voice (or only the presence of instrumental music). Fig. 2.3
depicts the output from an SVD algorithm for a 10-second musical audio.

There exist many speech/music discrimination algorithms that detect the
presence (or the absence) of speech in a musical audio frame. Schlüter and
Sonnleitner [2012] and Papakostas and Giannakopoulos [2018] provide brief
overviews of popular approaches. Although speech and singing voice have the
same constituent, the human voice, popular speech/music discrimination algo-
rithms perform poorly in detecting singing voice, due to fundamental differ-
ences between speech and singing [Berenzweig and Ellis, 2001, Ramona et al.,
2008]. For instance, in comparison to speech, sung vocals have more timbral
and pitch variations. Similarly, vocals have a comparatively higher correlation
with background music than speech signals. Thus, there exists a need to design
algorithms that focus on understanding singing voice and analysing how it dif-
fers from instrumental music. Current SVD algorithms make some assumptions
about inputs and classification labels as mentioned below.

1. Singing voice in musical recordings may come from a single performer
or several participants as in a choir or a mix of lead singer and backing
vocals. An SVD algorithm labels sections containing any of these variants

65

Application Overview References

Singer identification Identify the singer (artist) of
musical audio

Tsai and Wang [2006],
Berenzweig et al. [2002]

Singing voice extraction Extract singing voice from
polyphonic musical audio

Vembu and Baumann [2005]

Lyrics transcription Identify lyrics from musical
audio

Berenzweig and Ellis [2001]

Audio-to-lyrics alignment Time-align musical audio
with its lyrics

Humphrey et al. [2019],
Wang et al. [2004]

Music discovery Search for a particular “type”
of song

Humphrey et al. [2019], Lee
et al. [2018]

Table 2.4: Some music information retrieval applications that use singing voice
detection as a preprocessing step.

of singing voice as vocals.

2. An SVD algorithm maps a temporal segment where a singer breathes
between notes or where there is a short gap between notes to the non-
vocal class.

3. An SVD algorithm focuses only on sung vocals and musical accompani-
ment. Hence, it assumes that an input musical audio does not contain any
speech or rap segments.

4. An SVD algorithm makes no distinction between real and synthesised
vocals.

2.3.2 Applications

Segmenting musical audio into vocal and non-vocal sections has widespread
usage in music information retrieval (MIR) applications. In the majority of
tasks, SVD acts as a preprocessing step, however in some, the SVD output
is of direct use, and no further processing is necessary (e.g., commercial radio
broadcasting [Ramona et al., 2008]). Table 2.4 mentions some MIR applications
that use SVD as a preprocessing step.

2.3.3 Common features

This section briefly describes two features that are commonly used to train
SVD models. Specifically, the section introduces the mel-spectrogram and mel-
frequency cepstral coefficients (MFCCs) that are generally used as input features
for training deep and shallow SVD models, respectively.

66

Mel-spectrogram

A mel-spectrogram is a time-frequency representation of an audio signal ob-
tained by applying a mel-filterbank to summarise the energies across different
frequency bands of a magnitude spectrogram (or a power spectrogram) [Müller,
2015]. The mel-filterbank is a set of triangular band-pass filters distributed
along the mel-frequency scale, which is a perceptual scale of pitch describing
the relationship between fundamental frequency and perceived pitch. The mel-
scale is linear below 1000 Hz and logarithmic for higher frequencies. Thus, a
mel-spectrogram provides more resolution for lower frequencies than higher fre-
quencies. This thesis analyses the behaviour of a CNN-based SVD model that
uses mel-spectrograms as input features (see Chapter 3).

Mel-frequency cepstral coefficients

MFCCs are short-term spectral features that model the spectral envelope of an
audio signal, assisting in capturing the timbral properties of the audio [Müller,
2015, Jensen et al., 2009]. Researchers introduced MFCCs for speech signals
[Davis and Mermelstein, 1980], however, they are also suitable for other types
of audio signals (e.g., music [Jensen et al., 2009, Logan, 2000]). Some applica-
tions of MFCCs include speech recognition and speech synthesis [Jurafsky and
Martin, 2009], musical instrument identification [Sturm et al., 2010], acoustic
scene classification, and audio event detection [Stowell et al., 2015].

Extracting MFCC features from audio involves windowing (typically on the
order of 10-100 msec), a mel-scale based smoothing of the log magnitude spec-
trogram, and a discrete cosine transform (DCT)-based decorrelation of the mel-
spectral vectors. Although MFCC features are pseudo-invertible [Boucheron
and De Leon, 2008], interpreting them in terms of the qualities of the underly-
ing audio is difficult.

Fig. 2.4 depicts some visualisations from the MFCC extraction pipeline for
a 2-second instance from the RWC dataset (see Section 3.2). The power spec-
trogram computation (Fig. 2.4 (b)) uses l = 2048, where l is the FFT size. The
mel-spectrogram computation (Fig. 2.4 (c)) uses a filterbank of 128 filters from
0 Hz to Fs/2 Hz, where Fs represents the sampling frequency. On visually com-
paring the power spectrogram and the mel-spectrogram, it is evident that the
mel-spectrogram is a smoother version of the power spectrogram and the mel-
spectrogram emphasises the lower frequencies. The MFCC matrix (Fig. 2.4(d))
consists of 13 coefficients per audio frame computed using discrete cosine trans-
form (DCT) Type-III [Oppenheim et al., 1999], where k = 0 represents the index
of the zeroth MFCC. Appendix B explains the MFCC extraction and inversion
procedure. This thesis analyses the behaviour of two tree-based SVD models

67

1.5
1.0
0.5
0.0
0.5
1.0
1.5

A
m

p
lit

u
d
e

(a)

0

2000

4000

6000

8000

10000

H
z

(b)
+0 dB

-16 dB

-32 dB

-48 dB

-64 dB

-80 dB

512

1024

2048

4096

8192

H
z

(c)
+0 dB

-16 dB

-32 dB

-48 dB

-64 dB

0 0.5 1 1.5 2
Time (seconds)

0
2
4
6
8

10
12

M
FC

C
s

(d)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.4: Visualisations of some representations from the MFCC extraction
pipeline for a 2-second audio input from the RWC dataset. (a) Temporal rep-
resentation, (b) Power spectrogram, (c) Mel-spectrogram, and (d) Normalised
mel-frequency cepstral coefficients.

that use MFCCs as input features (see Chapter 3).

2.3.4 Methods

This section provides a brief survey of singing voice detection methods high-
lighting the present state-of-the-art. As this thesis does not focus on designing
an improved SVD method, it selects methods with a viewpoint of highlighting
how SVD research has evolved over the years.

Feature engineering-based methods

The majority of methods for designing SVD models fall under this category.
These methods work by first extracting relevant acoustic features from input
musical audio and then by training statistical machine learning classifiers using
the extracted features. This thesis refers to SVD models designed with this
methodology as ‘shallow SVD models’.

The MIR research community has paid considerable attention to hand-
crafting acoustic features that help in discriminating vocals from non-vocals
in musical audio and in selecting suitable machine learning classifiers to use the
extracted features. This section focuses on highlighting leading features and
machine learning algorithms for training shallow SVD models. For a more de-

68

tailed understanding of acoustic features and machine learning algorithms, see
Müller [2015] and Bishop [2007], respectively.

In early efforts for training shallow SVD models, researchers used features
from speech processing. For instance, the approach by Berenzweig and Ellis
[2001] used three types of features: posterior probabilities of phonemes from
a neural network trained for speech recognition, mel-frequency cepstral coeffi-
cients (MFCCs) [Davis and Mermelstein, 1980] and perceptual linear predictive
coefficients (PLPCs). They used these features to train a hidden Markov model
(HMM). Similarly, the SVD method by Nwe and Wang [2004] trained multi-
model HMMs11 using log frequency power coefficients (LFPCs) and the method
by Vembu and Baumann [2005] combined MFCCs, PLPCs and LFPCs to train
support vector machine (SVM) and neural network classifiers.

Later approaches focused on training shallow SVDmodels using hand-crafted
features specific to musical audio. For instance, Nwe et al. [2004] noted that al-
though both singing voice and instrumental music sounds are highly harmonic,
the non-vocal sounds have more regular harmonic patterns compared to vocals.
To utilise this property, they proposed sub-band based harmonic attenuated log
frequency power coefficients (HA-LFPCs) that capture the energy distribution
in sub-bands (different frequency bands) of the harmonically attenuated version
of an input.

Nwe and Li [2007] demonstrated that perceptually motivated features (vi-
brato, harmonic content, singing formant, attack and decay envelope and tim-
bre) are effective in discriminating vocals from non-vocals. Later, Regnier and
Peeters [2009] also confirmed that analysing vibrato (frequency modulation) and
tremolo (amplitude modulation) is useful in SVD. Their method does not train
a model, but instead uses signal processing and simple thresholding (based on
the extent value of vibrato and tremolo) to identify if a partial corresponds to
a vocal sound. Rocamora and Herrera [2007] provide a detailed overview of
then-popular hand-crafted features for SVD.

Ramona et al. [2008] argued that the performance of SVD methods highly
depends on the quality of the extracted features. Their method builds a large
training set by first extracting 116-dimensional features from preprocessed input
musical audio frames over two time scales and then by using a feature selection
algorithm to identify the 40 most discriminative dimensions in each feature
vector. The authors used two time scales: a short time scale that extracts
features from 32 ms frames with 16 ms overlap and a long time scale that extracts
features from 1-second frames with 0.5-second overlap. They trained a one-vs-
one SVM using the training set and post-processed the model predictions using

11The authors train multiple HMM models per classification category resulting in an HMM
model space.

69

two approaches, a median filter and an HMM, where the latter performed better.
Moreover, the authors also noted that the lack of publicly available datasets has
restricted the comparison of different SVD algorithms and hence, they curated
a dataset of 93 full-length songs from the Jamendo free music sharing website12.
They made the dataset and ground truth annotations publicly available. We
provide more details about this dataset in chapter 3, section 3.2.

Mauch et al. [2011] proposed three new acoustic features for SVD using
the extracted predominant melody line: pitch fluctuation, MFCCs of the re-
synthesised predominant voice, and the relative harmonic amplitudes of the
predominant voice. They demonstrated that training shallow SVD models (an
SVM-HMM) using a feature set of four acoustic features (MFCCs and the three
features they proposed) helps to achieve high performance on a dataset of 102

pop music songs, 90 of which are from the publicly available RWC popular mu-
sic dataset [Goto et al., 2002]. Moreover, the authors provided the ground truth
annotations for all of the 100 songs in the RWC popular music dataset. Chap-
ter 3, section 3.2, provides more details about the RWC dataset and reference
annotations.

Lehner et al. [2013] trained a light-weight shallow SVD model only using
MFCCs and their first-order derivatives to achieve high performance on both
the publicly available (Jamendo and RWC) datasets. Specifically, they trained a
random forest classifier [Breiman, 2001] with 128 trees using the first 30 MFCCs
and their first-order derivatives extracted over an 800 ms observation window
to classify a 200 ms audio frame. Moreover, the authors also compared the
performance of their SVD model with three other models on the publicly avail-
able datasets demonstrating that appropriately selected MFCCs are sufficient
in designing an SVD model with performance comparable to high performing
complex models. The authors also noted that SVD models often incorrectly
predict instruments with similar temporal and timbral characteristics as the
singing voice (e.g., string instruments) to the vocal category.

To reduce the number of false positives for the vocal category (instrumental
music sounds categorised as vocals), in subsequent work, Lehner et al. [2014] pro-
posed three new acoustic features that they claim help in reducing the misidenti-
fication of sounds from pitch-continuous and pitch-varying musical instruments
as the singing voice. Specifically, they proposed the fluctogram to characterise
pitch fluctuations, spectral contraction to measure how much spectral energy
lies in the centre and vocal variance to measure variance in the first five MFCCs
(excluding the zeroth MFCC) over 11 audio frames. As the temporal context
is important in SVD, the authors aggregated each of the three features over
40 audio frames to compute their variances. Their SVD model is a random

12http://www.jamendo.com

70

forest trained using 116-dimensional features. In addition to the new audio fea-
tures, the authors use MFCCs and their first-order derivatives and the statisti-
cal means of the spectral flatness feature that estimates noise in an input. The
authors evaluated the post-processed predictions from the SVD model demon-
strating that the new audio features help to reduce the number of false positives
by a considerable amount resulting in improved performance on the Jamendo
and RWC datasets.

In follow-up work, Lehner et al. [2015] noted that including the temporal
context in audio features by calculating variance over successive frames in-
creases latency. Thus, to reduce latency-by-design, they proposed to train a
unidirectional recurrent neural network (RNN) with long short-term memory
(LSTM) units [Hochreiter and Schmidhuber, 1997, Goodfellow et al., 2016] that
aggregates the temporal context in the input features. The authors trained
the LSTM-RNN model using all but vocal variance features from Lehner et al.
[2014], and the feature extraction happens over a smaller observation window
(100 ms) with no temporal summary computation. The use of LSTM-RNN re-
sulted in an SVD model that not only performed better than the one proposed
by Lehner et al. [2014] on the Jamendo and RWC datasets but also reduced the
maximum latency-by-design from 1500 ms to 140 ms.

The current state-of-the-art feature engineering method is the one proposed
by Lehner et al. [2018]. Their method drastically reduces the number of features
from Lehner et al. [2015] by just using 11 fluctogram features (post-processed us-
ing the two reliability indicators: spectral contraction, and spectral dispersion)
and the first-order derivatives of the first 18 MFCCs. They use 29-dimensional
feature vectors per frame to train an LSTM-RNN classifier with one hidden layer
of 55 LSTM units. The authors trained, validated and tested their model’s per-
formance using a much larger and carefully curated dataset to make sure that
its artefacts (e.g., album effect [Flexer and Schnitzer, 2010]) do not affect model
performance. The dataset is available for research by contacting the authors.
Table 2.5 summarises the feature engineering-based SVD methods.

End-to-end learning-based methods

Motivated by the success of deep learning in other pattern recognition tasks
[LeCun et al., 2015], MIR researchers have experimented by training end-to-
end deep learning models for SVD. Such models aim to automatically learn
discriminative features for SVD from low-level input representations (e.g., mel
spectrograms [Müller, 2015]). This thesis calls these models ‘deep SVD models’.

Leglaive et al. [2015] trained a bidirectional LSTM (BLSTM) RNN model
using low-level musical audio features. A BLSTM-RNN predicts by considering

71

M
et
ho

ds
Fe

at
ur
es

C
la
ss
ifi
er
s

B
er
en
zw

ei
g
an

d
E
lli
s
[2
00
1]

P
os
te
ri
or

pr
ob

ab
ili
ti
es

of
ph

on
em

es
,

M
F
C
C
s,

P
L
P
C
s

H
M
M

N
w
e
an

d
W
an

g
[2
00
4]

L
F
P
C
s

M
ul
ti
-m

od
el

H
M
M

V
em

bu
an

d
B
au

m
an

n
[2
00
5]

M
F
C
C
s,

P
L
P
C
s,

L
F
P
C
s

SV
M
,
ne
ur
al

ne
tw

or
ks

N
w
e
et

al
.
[2
00
4]

H
A
-L
F
P
C
s

M
ul
ti
-m

od
el

H
M
M

N
w
e
an

d
L
i
[2
00
7]

V
ib
ra
to
,
si
ng

in
g
fo
rm

an
t,

at
ta
ck

an
d

de
la
y
en
ve
-

lo
pe

,
ti
m
br
e

-

R
eg
ni
er

an
d
P
ee
te
rs

[2
00
9]

V
ib
ra
to
,
tr
em

ol
o

-

R
am

on
a
et

al
.
[2
00
8]

1
1
6
fe
at
ur
es

(e
.g
.,
sp
ec
tr
al

ce
nt
ro
id
,
ze
ro

cr
os
si
ng

ra
te
,
M
F
C
C
s)

SV
M

M
au

ch
et

al
.
[2
01
1]

M
F
C
C
s,

P
it
ch

flu
ct
ua

ti
on

,
re
la
ti
ve

ha
rm

on
ic

am
-

pl
it
ud

es
of

th
e
pr
ed
om

in
an

t
vo
ic
e,

M
F
C
C
s
of

th
e

re
-s
yn

th
es
is
ed

pr
ed
om

in
an

t
vo

ic
e

SV
M
-H

M
M

L
eh
ne
r
et

al
.
[2
01
3]

M
F
C
C
s,

∆
-M

F
C
C
s

R
an

do
m

fo
re
st

L
eh
ne
r
et

al
.
[2
01
4]

F
lu
ct
og
ra
m
,s
pe

ct
ra
lc

on
tr
ac
ti
on

,s
pe

ct
ra
lfl

at
ne
ss
,

vo
ca
l
va
ri
an

ce
,
M
F
C
C
s,

∆
-M

F
C
C
s

R
an

do
m

fo
re
st

L
eh
ne
r
et

al
.
[2
01
5]

F
lu
ct
og
ra
m
,s
pe

ct
ra
lc

on
tr
ac
ti
on

,s
pe

ct
ra
lfl

at
ne
ss
,

M
F
C
C
s,

∆
-M

F
C
C
s

L
ST

M
-R

N
N

L
eh
ne
r
et

al
.
[2
01
8]

F
lu
ct
og
ra
m

po
st
-p
ro
ce
ss
ed

w
it
h
re
lia

bi
lit
y
in
di
ca
-

to
rs
,

∆
-M

F
C
C
s

L
ST

M
-R

N
N

T
ab

le
2.
5:

Su
m
m
ar
y
of

th
e
fe
at
ur
e
en
gi
ne
er
in
g-
ba

se
d
si
ng

in
g
vo
ic
e
de
te
ct
io
n
m
et
ho

ds
.
M
FC

C
s:

m
el
-f
re
qu

en
cy

ce
ps
tr
al

co
effi

ci
en
ts
,P

LP
C
s:

pe
rc
ep
tu
al

lin
ea
r
pr
ed
ic
ti
ve

co
effi

ci
en
ts
,
LF

P
C
s:

lo
g
fr
eq
ue
nc
y
po

w
er

co
effi

ci
en
ts
,
H
M
M
:
hi
dd

en
M
ar
ko
v
m
od

el
,
SV

M
:
su
pp

or
t
ve
ct
or

m
ac
hi
ne
,
H
A
-L
F
P
C
s:

ha
rm

on
ic

at
te
nu

at
ed

lo
g
fr
eq
ue
nc
y
po

w
er

co
effi

ci
en
ts
,

∆
-M

FC
C
s:

fir
st
-o
rd
er

de
ri
va
ti
ve
s
of

M
FC

C
s,

LS
T
M
-R

N
N
:

un
id
ir
ec
ti
on

al
re
cu
rr
en
t
ne
ur
al

ne
tw

or
k
w
it
h
lo
ng

sh
or
t-
te
rm

m
em

or
y
un

it
s.

72

both the present and past temporal context of input features [Goodfellow et al.,
2016]. The input features are log-scaled mel spectrograms [Müller, 2015] that
the authors extract from the vocal and percussive components of input audio.
Their method generates these components by applying double-stage harmonic
percussive source separation (HPSS) to input audio [Tachibana et al., 2010].
The input to the incrementally built three-layer deep BLSTM-RNN model is
an 80-dimensional feature vector, in which the first and the last 40 features
correspond to the vocal and percussive components, respectively. The deep SVD
model even without post-processing the predictions reported better performance
on the Jamendo test dataset than the state-of-the-art shallow SVD methods.

Schlüter and Grill [2015] used mel spectrograms to train a nine layer deep
convolutional neural network (CNN). To tackle the problem of small train-
ing datasets available for SVD, the authors proposed seven data augmentation
methods that they grouped into three categories. The first category consists of
two data-independent methods: removing randomly selected bins and adding
controlled noise in input excerpts. The second category includes four methods
specific to audio data: pitch shifting, time stretching, loudness modification,
and random frequency filtering of input excerpts. The third category includes a
method specific to the binary classification task. The authors proposed to mix
a vocal excerpt with randomly selected non-vocal excerpts, assuming this will
help the CNN to learn invariance to the background music. The authors empir-
ically found that pitch shifting performed best for their case and a CNN model
trained with train and test time data augmentation is the state-of-the-art deep
SVD model. The authors perform training data augmentation by using pitch
shifting of ±30%, time stretching of ±30%, and random frequency filtering of
±10 dB. Similarly, test data augmentation involves averaging model predictions
over inputs and their ±10% and ±20% pitch-shifted versions.

Other methods

The majority of SVD methods require sub-second ground truth annotations to
train shallow or deep SVD models. The process of creating ground truth is time-
consuming, expensive, error-prone and in some cases, subjective. To avoid the
need of sub-second annotations, some recent works in SVD use weakly-labelled
[Schlüter, 2016] or unlabelled data [Pikrakis et al., 2016] to train vocal detection
models that achieve performance on par with models trained using supervised
learning.

Schlüter [2016] proposed a method to train deep SVD models using coarsely
(weakly) annotated datasets. The author used a dataset of 10, 000 30-second
song snippets, each with a single ground truth label indicating the presence or

73

absence of vocals, to train three CNNs using multiple-instance learning [Foulds
and Frank, 2010] and saliency maps [Simonyan et al., 2014]. Their method
trains three CNNs sequentially by training the next CNN using the predictions
or the summarised saliency maps of the previous CNN. The author evaluated
all the CNNs by generating sub-second annotations for three test datasets, two
of which (Jamendo and RWC) are publicly available. The results suggested that
the SVD models trained using the proposed method performed comparably to
an SVD model with the state-of-the-art architecture [Schlüter and Grill, 2015]
trained using sub-second annotations.

Pikrakis et al. [2016] proposed to perform SVD using unsupervised learn-
ing that trains machine learning models using unlabelled data [Bishop, 2007].
Their method uses a sequence of short-term features extracted from input mu-
sical audio to learn a reasonably small dictionary using the K-singular value
decomposition algorithm [Aharon et al., 2006]. The learnt dictionary through
its constituents (atoms) is used to calculate a global threshold for the binarisa-
tion of the feature space. The authors evaluated their method on two publicly
available datasets with different timbral characteristics using two types of fea-
tures: the MFCCs and the bark band representation of a spectrogram [Rabiner
and Schafer, 2010]. The two datasets are “Cante-100” which is a collection of
100 flamenco recordings, and a YouTube playlist of 19 Greek folk music songs.
See Pikrakis et al. [2016] for more details about the datasets, ground truth an-
notations, and hosting repositories. The results suggested that a model trained
using the bark band features with a 2-sparse representation and a dictionary
of 64 atoms performed on par with a model trained using supervised learning
on both the datasets. The authors did not compare the performance of their
models against state-of-the-art method due to the use of different datasets.

2.3.5 Evaluation metrics

Lehner et al. [2013, 2014, 2015] evaluated their SVD models by calculating four
metrics, namely, the % accuracy, precision, recall, and F-score for the vocal
class. They defined the metrics as

%Accuracy = 100 ·
(

TP + TN
TP + FP + TN + FN

)
(2.15)

Precision =
TP

TP + FP
(2.16)

Recall =
TP

TP + FN
(2.17)

F-score = 2 ·
(

Precision · Recall
Precision + Recall

)
(2.18)

74

where TP is the number of true positives, FP is the number of false positives,
TN is the number of true negatives, and FN is the number of false negatives for
the vocal class.

Schlüter and Grill [2015], on the other hand, reported only three metrics for
their SVD model. They calculated the classification error, recall and specificity
for the vocal class. They defined error and specificity as

%Error = 100−%Accuracy (2.19)

Specificity =
TN

TN + FP
(2.20)

Chapter 3 reports the performance of five SVD models used in this thesis using
all six metrics from above. It is important to note that in addition to the above
metrics one could also evaluate the models using threshold-free metrics (e.g.,
area under receiver operating curve, Brier score). However, this thesis does
not include these details as this work in not aimed at performing an exhaustive
evaluation of SVD models, instead, the work focusses on analysing the behaviour
of high performing SVD models.

2.3.6 Research challenges

Although SVD is a well-explored MIR task and researchers have proposed mul-
tiple methods for it, there are still numerous issues with the existing approaches
[Lee et al., 2018]. For instance, the majority of research in SVD uses musical
audio of only a few genres (e.g., popular music) and there has been very limited
work in exploring how well an SVD model generalises to musical genres not
present in the training data [Scholz et al., 2017].

Similarly, recent research has shown that the state-of-the-art shallow and
deep SVD models are susceptible to the loudness level of input musical audio
due to the use of loudness sensitive features (e.g., zeroth MFCC) during model
training [Lehner et al., 2018]. For instance, the authors noted that the number
of false positives for the vocal category increases with increasing the loudness
level of input audio. They demonstrated that using features that are insensitive
to variations in audio loudness level (e.g., Fluctogram features) helps to develop
loudness-invariant SVD models. Recently, Schlüter and Lehner [2018] demon-
strated that using zero-mean convolutions in the first convolutional layer of a
deep CNN forces the model to learn loudness-insensitive features.

75

2.4 Summary

This chapter provided a detailed survey of two research topics that this thesis
deals with: interpretable machine learning, and singing voice detection. IML in-
volves designing methods to analyse the behaviour of machine learning models.
This chapter provided a detailed survey of the IML research field by highlighting
the key definitions, motivating the need for interpretability in ML models, and
describing popular IML methods. IML is a rapidly advancing research field,
hence, describing all existing IML methods is challenging. Due to this, the
methods this chapter described aimed at providing an insight into IML research
directions. Moreover, for some methods, this chapter provides an in-depth sur-
vey as they form the basis of experiments this thesis describes in subsequent
chapters.

This chapter also provided a detailed survey of the singing voice detection
task - a machine listening application that deals with detecting the presence
of vocals within musical excerpts. Specifically, the chapter defined the task,
mentioned its key applications, provided a survey of key methods to train SVD
models, and discussed current research challenges in designing SVD models.

This thesis uses a local explanation method (LIME) and two global anal-
ysis methods (activation maximisation and feature inversion) to analyse the
behaviour of three SVD models. Chapter 3 provides more details about the
SVD models and chapters 4, 5 and 6 describe the experiments that apply IML
methods to analyse of the behaviour of the SVD models.

76

Chapter 3

Singing voice detection
models

This thesis uses SVD as the machine listening use case for experiments (see
Section 1.2). Chapter 2 described the use case and discussed key methods to
develop an SVD model. This chapter discusses in detail the SVD models used
in this thesis. In particular, this chapter discusses five SVD models: two shallow
models and three deep models.

The organisation of the remainder of this chapter is as follows: Section 3.1
discusses the motivation behind the selection of SVD as an exemplar of machine
listening, Section 3.2 introduces the datasets for the training, evaluation, and
analysis of the SVD models. Section 3.3 describes the two shallow SVD models.
Section 3.4 describes the three deep SVD models.

3.1 Motivation

Three main factors guide the selection of SVD as an exemplar for machine listen-
ing - the complexity of the use case, the performance and reproducibility of the
state-of-the-art models and the interpretability of the classification categories.

Use case complexity: SVD is a fairly complex binary classification use
case as sung vocals are highly correlated with background music and can exhibit
several timbral and pitch variations. Moreover, certain musical instruments
(e.g., electric guitars, violin) can mimic the temporal and timbral characteristics
of vocals and negatively influence the precision of the vocal class (high false
positives) [Lehner et al., 2013, 2014]. Finally, SVD datasets can have different
musical textures (e.g., polyphony), further increasing the task complexity.

State-of-the-art models: SVD has been a topic of active research for

77

Dataset Nsongs Duration (hours) Ground truth

Jamendo 93 6.2 subsecond vocal and non-vocal annotations
RWC 100 6.8 subsecond vocal and non-vocal annotations

MedleyDB 122 7.2 vocal and non-vocal stems
ccMixter 50 3.2 vocal and non-vocal stems

Table 3.1: Overview of the singing voice datasets used for the design and analysis
of the SVD models. Nsongs refers to the number of musical audio files in a
dataset. The duration column mentions the times calculated by Schlüter [2017,
Table 9.1].

nearly two decades, leading to the development of different categories of meth-
ods and benchmarked datasets. In recent years, SVD models have become con-
siderably accurate, with the high-performing models achieving accuracy close to
90% on benchmarked datasets. Moreover, multiple recent works have focussed
on model reproducibility by either open-sourcing their implementation [Schlüter
and Grill, 2015] or by explaining their methodology in detail [Lehner et al.,
2013]. Thus, using SVD as a use case provides an opportunity of analysing high
performing models (deep and shallow) that are reproducible with little effort.

Interpretable classes: To validate the behaviour of ML models, we need
to verify whether the understanding from model explanations matches with
our background knowledge. Interpretable classes assist in validating model
behaviour as they help develop an understanding of how a model should be
working. SVD has two highly interpretable classification categories - vocals and
non-vocals and there exists a fair understanding about what distinguishes vocals
from non-vocals. For example, the timbral properties of the singing voice are
different from those of musical instruments.

Thus, we can consider SVD to be sufficiently rich and complex so as to serve
as an exemplar for machine listening. Moreover, the interpretability methods
proposed and demonstrated in subsequent chapters are fairly generic and are
either directly applicable or easily extendible to other machine listening appli-
cations (e.g., multiclass classification). For example, Chettri et al. [2018] used
SLIME (see Chapter 4) to explain the predictions of a spoofing detection model.

3.2 Datasets

This section describes the four singing voice datasets used for the design and
analysis of the five SVD models. Table 3.1 provides an overview of the datasets.

• The Jamendo dataset consists of 93 full-length songs with Creative Com-
mons license that Ramona et al. [2008] collected from the Jamendo free

78

music sharing website1. The musical audio files are stereo, sampled at 44.1

kHz and encoded using the Ogg Vorbis or mp3 standards. Each song is
from a different artist, and the dataset contains songs of multiple genres.

Ramona et al. [2008] partitioned the dataset into subsets of 61 (training),
16 (validation), and 16 (testing) songs, respectively. The dataset is 6.2

hours in duration, of which the training dataset is 4 hours long [Schlüter,
2017]. Each song has subsecond annotations (by the same person) indi-
cating the start and end of the vocal and non-vocal segments. The dataset
and annotations were publicly available2, but the weblink does not seem
to be active now. This thesis uses the Jamendo dataset both for the design
and the analysis of the five SVD models.

• The RWC popular music dataset, introduced by Goto et al. [2002], is
one of the six subsets of the real world computing music database (RWC-
MDB)3. The RWC popular music dataset contains 100 full-length popular
music songs out of which 80 songs are in Japanese, and 20 songs are in
English. The dataset is 6.8 hours in duration [Schlüter, 2017]. A single
artist or a vocal group performed songs in the dataset. In total 15 male
singers, 13 female singers, and 6 vocal groups performed 50, 44, and 6

songs, respectively, resulting in multiple songs per artist.

Mauch et al. [2011] provided manually generated ground truth annota-
tions for the RWC popular music dataset4. This dataset does not come
partitioned into separate subsets for training and evaluating SVD models.
Thus, researchers using this dataset have trained and evaluated their SVD
models by performing 5-fold cross-validation [Mauch et al., 2011, Lehner
et al., 2013, 2014, 2015, Schlüter and Grill, 2015]. This thesis uses a ran-
domly selected subset of 20 songs from the RWC dataset for analysing the
deep SVD models (see Chapter 4 and Chapter 6).

• MedleyDB is a multitrack dataset compiled by Bittner et al. [2014].
It consists of 122 professional or near-professional quality songs collected
from multiple sources and freely available for use under Creative Commons
license. The dataset songs are from 9 different genres, and the number of
songs per genre is variable. The musical audio files are available in WAV
format, sampled at 44.1 kHz with 16 bits per sample. The dataset and
ground truth annotations are publicly available5.

1https://www.jamendo.com
2http://www.enst.fr/˜ramona/icassp08/
3https://staff.aist.go.jp/m.goto/RWC-MDB/
4https://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/
5https://medleydb.weebly.com

79

The dataset provides three types of musical audio recordings for each
song: unprocessed audio tracks, processed stems6, and a multichannel
mix. This thesis only uses a set of 20 randomly selected songs where each
song contains both vocal and non-vocal stems and has no bleed between
tracks. The thesis uses vocal and non-vocal stems and their mixes for
analysing a deep SVD model (see Chapter 6).

• ccMixter collected by Liutkus et al. [2014] is a dataset of 50 full-length
stereo songs processed from the ccMixter database7. The dataset is 3.2

hours in duration, contains songs of multiple genres, and is publicly avail-
able8. Each song in the dataset has three musical audio files in WAV
format: a vocal track, a non-vocal track, and a mix of the vocal and
non-vocal tracks. Similar to MedleyDB, this thesis uses this dataset for
analysing a deep SVD model (see Chapter 4).

3.3 Shallow singing voice detectors

This section describes the two shallow SVD models that Chapter 4 uses for
experiments. The method to design the models adapts the technique proposed
by Lehner et al. [2013]. The thesis uses their technique as it only uses the mel-
frequency cepstral coefficient (MFCC) features [Davis and Mermelstein, 1980]
to train shallow SVD models with performance on public datasets comparable
to more complex methods. This section describes the method to develop the
shallow models in detail. The section first introduces features that the method
extracts from musical audio files and then describes the two shallow SVD models
and their training methodology using the extracted features. Finally, the section
discusses the performance of both models on the Jamendo test dataset.

3.3.1 Input features

The method extracts a 60-dimensional vector from each frame of an input mu-
sical audio file. To do that, it first preprocesses (downsamples and downmixes)
input to 22050 Hz mono audio. Then, it generates a time-frequency represen-
tation from the preprocessed audio by applying a fast Fourier transform (FFT)
to 200 ms audio frames generated using 100 ms hop size and a 200 ms rectan-
gular (boxcar) window. The selection of rectangular window is driven by the
use of the shallow SVD models in an experiment that analyses their behaviour
by generating temporal explanations for their predictions (see Section 4.3.1 for

6A stem combines multiple audio tracks of the same kind. For instance, a drum stem is a
mix of kick drum, snare drum and high hat audio tracks.

7http://www.ccmixter.org
8https://members.loria.fr/ALiutkus/kam/

80

more details). Finally, the method uses a set of 30 mel-filters ranging from 0

Hz to 11025 Hz to extract 30 MFCCs (including the 0th) and their first-order
derivatives from each audio frame.

The shallow SVD models perform classification over a 1-second excerpt.
Hence, the method uses the approach proposed by Rocamora and Herrera [2007]
to calculate the median and standard deviation of 60-dimensional vectors over
ten frames and concatenate the results to generate a 120-dimensional feature.
The method standardises the 120-dimensional feature by using the mean and
standard deviation of features computed over the training dataset. The nor-
malised 120-dimensional feature is an input to the SVD models. The method
uses the LibROSA python package [McFee et al., 2015] for feature extraction.

3.3.2 Shallow models

The method trains two shallow SVD models. The first one is a binary decision
tree (BDT) M1. The method chooses a decision tree model as it is an inter-
pretable model that can explain its predictions. The second SVD model is a
random forest (RF) model M2. The method chooses a random forest model
as Lehner et al. [2013] used an RF model built with 128 trees to achieve high
performance on publicly available datasets.

Training methodology

The method trains the shallow SVD models using features extracted from the
Jamendo training dataset. The method selects model parameters by performing
grid search in the parameter space. The method trains multiple models, one
for each set of parameters and selects one that does not overfit to the training
dataset and achieves the highest accuracy on the Jamendo validation dataset.

Specifically, the selection of the best BDT and RF models involves perform-
ing grid search to select three parameters: the maximum depth of the tree
(dmax), the number of input features to use while searching for the best split
(nfeatures), and the minimum number of samples required for a node to be a leaf
node (nsamples). The set of values of the three parameters used for grid search
is the same for both the models and is mentioned below.

• dmax ∈ {2, 4, 8, 16, 32}

• nfeatures ∈ {5, log2(dfeatures), 8,
√
dfeatures, 11, 14}, where dfeatures represents

the dimensionality of input features

• nsamples ∈ {5, 6, 7, 8, 9, 10}

81

0.0

0.5

1.0
la

b
e
l

(a) ground truth

0.0

0.5

1.0

la
b

e
l

(b) predictions from the decision tree model

0 20 40 60 80 100
Time (seconds)

0.0

0.5

1.0

la
b

e
l

(c) predictions from the random forest model

Figure 3.1: Figure depicting ground truth labels (0 : non-vocal, 1 : vocal) and
predictions from the two shallow SVD models for a 100-second audio segment
(time index : 60 seconds - 160 seconds) from the “04 - Inside.mp3” song in the
Jamendo test dataset. The green coloured step plot depicts ground truth labels,
the grey coloured step plots refer to prediction labels, and the blue coloured line
plot depicts the vocal presence probability that each model assigns to an input
excerpt.

Moreover, to train the RF model, in addition to the previous parameters,
the method performs grid search to select an appropriate number of trees in
the RF model (ntrees). The set of values used for the grid search of ntrees is
{2, 4, 8, 16, 32, 64, 128}. The training procedure selects a split that maximises
information gain and uses entropy as a metric for evaluating the quality of a
split. The best BDT model (M1) is 8 levels deep (dmax) with nfeatures = 11 and
nsamples = 10. The best RF model (M2) is 16 levels deep, has 64 trees in the
forest with nfeatures and nsamples the same as M1. The method trains all the
models using the open-sourced scikit-learn library [Pedregosa et al., 2011].

Post-processing

Each model outputs the probability of a normalised 120-dimensional input fea-
ture containing singing voice. The model predictions are post-processed to re-
duce noise in predictions by applying a median filter with a window length of 7

frames (700 ms). Later, the smoothed predictions are converted to class labels

82

Models Metrics Jamendo dataset

Training Validation Test

Baseline Accuracy 61.1% 63.3% 57.5%

Binary decision tree (M1)

Accuracy 78.7% 75.4% 71.4%
Error 21.3% 24.6% 28.6%

Precision 0.823 0.801 0.722
Recall 0.830 0.794 0.807

Specificity 0.719 0.630 0.577
F-score 0.826 0.784 0.745

Random forest (M2)

Accuracy 91.6% 77.3% 76.3%
Error 8.4% 22.7% 23.7%

Precision 0.907 0.785 0.752
Recall 0.960 0.865 0.876

Specificity 0.846 0.590 0.595
F-score 0.933 0.813 0.794

Table 3.2: Evaluation results of the three shallow singing voice detection models
over the Jamendo test dataset. Baseline refers to a model that classifies all
inputs to the vocal class. M1 and M2 refer to the best binary decision tree and
random forest models, respectively.

by applying a threshold = 0.55. The values for the length of median filter and
class threshold are taken from Lehner et al. [2013]. Figure 3.1 shows ground
truth and predictions from the two shallow SVD models for a 100-second audio
segment from the Jamendo test dataset.

3.3.3 Performance evaluation

The evaluation method evaluatesM1 andM2 on the Jamendo test dataset using
the six evaluation metrics from section 2.3.5. The method computes TP, FP,
TN and FN for input excerpts of 1-second duration.

Table 3.2 reports the evaluation results of the best BDT and RF models.
The table also reports the accuracy of a model (this thesis calls it ‘baseline’) that
by default classifies all inputs to the vocal class. The accuracy of the baseline
model reports the true class distribution within a dataset. For example, the
vocal class occupies 61.1% and 63.3% of the Jamendo training and validation
datasets, respectively. The table also reports the performance of M1 and M2

over the Jamendo training and validation datasets.
The best BDT and RF models achieve an overall accuracy of 71.4% and

76.3%, respectively on the Jamendo test dataset. The vocal class occupies
57.5% of the test dataset, suggesting that these two models have learnt some
representation of singing voice that helps to detect vocals. It is important
to note that researchers have reported designing more accurate shallow SVD
models that achieve comparatively higher performance over the Jamendo test
dataset [Ramona et al., 2008, Lehner et al., 2013, 2014]. However, this thesis

83

does not aim to design the state-of-the-art shallow SVD model, but to analyse
whether the two reasonably accurate shallow SVD models are trustworthy.

3.4 Deep singing voice detectors

This thesis uses the SVD model (calls it ‘SVDNet’) introduced by Schlüter and
Grill [2015]. The thesis chooses SVDNet as its source code is open-sourced9 and
it is state-of-the-art on publicly available datasets. SVDNet is a deep convo-
lutional neural network (CNN) trained using time-frequency representations of
musical audio excerpts. Schlüter and Grill [2015] proposed and applied different
data augmentation techniques (e.g., pitch shifting) to improve the performance
of the trained model. The following sections provide details about SVDNet’s
input features, architecture, training methodology and performance on the Ja-
mendo test dataset.

3.4.1 Input features

The input to SVDNet is a normalised log-scaled mel-spectrogram excerpt of
around 1.6-second duration extracted from a musical audio file. The method
that Schlüter and Grill [2015] used generates an input in six steps.

1. In step one, the method pre-processes audio by downsampling to 22050

Hz and downmixing to mono.

2. In step two, the method computes a short-time Fourier transform (STFT)
using frames of 1024 samples, a Hann window and a hop size of 315 samples
and preserves the magnitudes of the resulting spectrum.

3. In step three, the method generates a mel-spectrogram by applying a
mel-filterbank to summarise the energies across different frequency bands.
The mel-filterbank is a set of band-pass filters distributed along the mel-
frequency scale, which is a perceptual scale of pitch describing the loga-
rithmic relationship between frequency and perceived pitch. The method
uses 80 filters ranging from 27.5 Hz to 8000 Hz.

4. In step four, the method log-scales the mel-spectrogram by applying x→
log(max(x, 10−7)) where x is the magnitude of a bin.

5. In step five, the method normalises each mel-band in the mel-spectrogram
by scaling each bin value by the mean and variance of the corresponding
mel-band calculated over the training set.

9Available at https://github.com/f0k/ismir2015

84

Conv1
MP3 FC9FC7

Conv2

Conv4
MP6

Conv5
FC8

𝑁"# = 64

𝑁"# = 32

𝑁"# = 128

𝑁"# = 64 𝑁$ = 256 𝑁$ = 64

Figure 3.2: High-level architecture of the singing voice detection model intro-
duced by Schlüter and Grill [2015]. Nfm denotes the number of feature maps
in the output of a convolutional layer. Nn denotes the number of neurons in a
fully-connected layer. Conv, MP and FC refer to the convolutional, max-pooling
and fully-connected layers, respectively.

Layer Input shape Filter size Stride Nfm/Nn Output shape Nparams

Conv1 115 × 80 × 1 3 × 3 1 × 1 64 113 × 78 × 64 640
Conv2 113 × 78 × 64 3 × 3 1 × 1 32 111 × 76 × 32 18464
MP3 111 × 76 × 32 3 × 3 3 × 3 - 37 × 25 × 32 -
Conv4 37 × 25 × 32 3 × 3 1 × 1 128 35 × 23 × 128 36992
Conv5 35 × 23 × 128 3 × 3 1 × 1 64 33 × 21 × 64 73792
MP6 33 × 21 × 64 3 × 3 3 × 3 - 11 × 7 × 64 -
FC7 11 × 7 × 64 - - 256 256 × 1 1261824
FC8 256 × 1 - - 64 64 × 1 16448
FC9 64 × 1 - - 1 1 65

Table 3.3: SVDNet model architecture. Conv, MP and FC refer to the convolu-
tional, max-pooling and fully-connected layers, respectively. Input and output
shapes represent time × frequency × number of channels for the Conv layers.
Nfm, Nn and Nparams refer to the number of feature maps, number of neurons
and number of parameters per layer, respectively.

6. Finally, in step six, the method generates excerpts from the normalised
log-scaled mel-spectrograms by iteratively grouping 115 frames (around
1.6 seconds) using a hop size of 1 frame and (if necessary) zero padding.

3.4.2 Model architecture

SVDNet is a nine-layered CNN (see section 2.1.2) whose architecture is inspired
from the VGGNet model [Simonyan and Zisserman, 2015]. VGGNet was the
runner-up in the Imagenet Large-Scale Visual Recognition Challenge (ILSVRC)
2014 [Russakovsky et al., 2015]. It is one of the first models to successfully
demonstrate that deeper CNNs have better prediction capability than shallow
CNNs. It is a 16-layered deep CNN with a uniform architecture that has 3× 3

convolutions and 2× 2 max-pooling throughout the network.
Fig. 3.2 depicts key components of the SVDNet architecture and Table 3.3

provides a detailed description of the SVDNet architecture. The four convo-
lutional layers (Conv1, Conv2, Conv4 and Conv5) perform convolutions using

85

64, 32, 128 and 64 filters, respectively. Each convolutional layer performs con-
volutions using 3 × 3 filters with 1 × 1 stride and no zero padding. The two
max-pooling layers (MP3, MP6) perform 3×3 max-pooling (preserve maximum
value) with 3× 3 stride and no zero padding. The three fully-connected layers
(FC7, FC8 and FC9) follow the last max-pooling layer. FC7 maps the input
feature map to a 256-dimensional vector. FC8 is the deepest hidden layer in
the network and FC9 is the output layer with a single neuron with sigmoid
activation. The sigmoidal neuron outputs the probability of singing voice being
present at the centre of an input audio excerpt by applying the sigmoid function
g(z) = 1/(1 + e−z) to the sum of the weighted sum of FC8 output and bias. All
other layers in SVDNet use the leaky-ReLU non-linearity that scales an input x
using the function f(x) = max(0.01x, x) [Mass et al., 2013]. The total number
of learnable parameters (weights and biases) in SVDNet is 1, 408, 225.

In addition to being a scaled-down version, the SVDNet architecture differs
from VGGNet in several other notable ways. For example, in VGGNet, inputs
and outputs at a convolutional layer have the same spatial size, but in SVDNet
due to the absence of zero padding, the spatial size shrinks progressively. More-
over, the two models differ in the configuration of the max-pooling layer. In
VGGNet, the 2× 2 max-pooling operation is performed with 2× 2 stride, while
SVDNet performs max-pooling by a factor of 3 with 3 × 3 stride. Finally, the
two models also differ in how the number of convolutional filters changes after
max-pooling layers. In VGGNet, the number of convolutional filters doubles af-
ter each max-pooling layer, but in SVDNet, the number of convolutional filters
quadruples after the first max-pooling layer.

3.4.3 Model training

Schlüter and Grill [2015] trained SVDNet using mel-spectrogram excerpts of 115

frames extracted from the Jamendo training dataset and ground-truth labels
denoting the presence or absence of vocals in the central frame. SVDNet is
trained to predict the probability of vocal presence in the central frame of an
excerpt using 57 frames on either side as context.

Before training, the network weights were initialised using random orthog-
onal matrices [Saxe et al., 2014]. The training method trains the network for
a pre-fixed 20 epochs using mini-batches of 32 randomly sampled excerpts by
minimising the binary cross-entropy loss between the ground-truth labels and
network predictions. The parameters are updated using stochastic gradient de-
scent with Nesterov momentum of 0.95 [Sutskever et al., 2013, Bengio et al.,
2013] and an initial learning rate of 0.01 that is scaled by 0.85 after every 2000

updates.

86

The training method employs two methods to prevent overfitting. The
first method sets the ground-truth labels to 0.02 (non-vocal) and 0.98 (vocal).
Schlüter and Grill [2015] empirically discovered this approach to be better than
L2 weight decay [LeCun et al., 1998]. The second method applies 50% dropout
[Hinton et al., 2012, Srivastava et al., 2014] to the inputs of all fully-connected
layers. The training method selects hyper-parameters depending on model per-
formance on a validation set using an optimal threshold.

SVDNet was trained using three data augmentation methods to tackle the
problem of smaller training dataset size. Specifically, the training method uses
pitch shifting (±30%), time stretching (±30%) and random filtering (10 dB) to
train SVDNet.

3.4.4 Post-processing

Given an input excerpt, SVDNet outputs the probability that the central frame
in the excerpt contains singing voice. To reduce noise in SVDNet predictions,
Schlüter and Grill [2015] post-process them by applying an 800 ms long median
filter. The prediction labels are generated using an optimal threshold that is
calculated using the Jamendo validation dataset. The optimal threshold is a
value, from a predefined set of threshold values, that gives the least classification
error on the Jamendo validation dataset. Once the optimal threshold is decided,
SVDNet generates test dataset predictions, post-processes them using a median
filter and applies the threshold to generate prediction labels for each input
excerpt from the Jamendo test dataset.

3.4.5 Performance evaluation

Schlüter and Grill [2015] compared the ground-truth labels with SVDNet pre-
diction labels for the Jamendo test dataset to compute three performance met-
rics for the vocal class: classification error, recall, and specificity. However,
as discussed in section 2.3.5, in addition to the three evaluation metrics used
by Schlüter and Grill [2015], this section also reports the accuracy, precision,
and F-score for the vocal class. The evaluation method computes the six eval-
uation metrics from section 2.3.5 using TP, FP, TN, FN computed for input
mel-spectrogram excerpts of around 1.6-second duration.

The first column in Table 3.4 mentions the performance of SVDNet on the
Jamendo test dataset as reported by Schlüter and Grill [2015]. In the paper,
the authors did not mention what threshold value they used to generate model
predictions. Thus, the evaluation method replicates the prediction pipeline
from the paper that generates predictions for the Jamendo test dataset using

87

the optimal threshold calculated over the Jamendo validation dataset10. The
second column of Table 3.4 (corresponding to the label SVDNet-R0) mentions
the evaluation results. The results suggest that the threshold value 0.66 helps
the model to attain performance very close to what the authors reported in
the paper. From here onwards, the performance of SVDNet (and SVDNet-R0)
refers to the metrics after replicating the prediction pipeline.

The open-source code of SVDNet was developed using the Theano [Al-Rfou
et al., 2016] and Lasagne [Dieleman et al., 2015] libraries. However, some ex-
periments (see Chapter 5) require porting SVDNet to the Tensorflow library
[Abadi et al., 2016]. SVDNet-R1 refers to the best of five models obtained by
training the Tensorflow version of SVDNet. Table 3.4 reports the performance
of SVDNet-R1 on the Jamendo test dataset. Results demonstrate that the new
model is very close in performance to the SVDNet model with performance
metrics differing in the order of 10−1.

An experiment in Chapter 5 requires training another variant of SVDNet
(the thesis calls it ‘SVDNet-R2’) by slightly modifying the architecture of SVD-
Net. The experiment replaces the single sigmoidal neuron in the output layer
of SVDNet by a fully-connected layer with two neurons, each corresponding
to one of the classification categories. The experiment does this to analyse
whether representations that maximally activate the output layer neurons in
SVDNet become more interpretable when a training methodology forces the
model to learn individual class concepts. Additionally, the experiment applies
a softmax layer to convert the vector of scores to a probability distribution over
the classification categories. Similar to SVDNet-R1, the experiment uses the
Tensorflow library for creating the computational graph. The experiment trains
five models; SVDNet-R2 refers to the best of the five models. Table 3.4 reports
the performance of SVDNet-R2 on the Jamendo test dataset. Results suggest
that although the two-neuron model performs worse than one-neuron models,
the decrement in performance is minimal. For example, the classification error
from SVDNet-R2 predictions is only 1.1% larger when compared to SVDNet-R1.

3.5 Conclusion

This chapter presented five SVD models: two shallow models (a binary decision
tree and a random forest) and three deep models (a deep CNN and its variants).
For each model, the chapter discussed in detail its architecture, input features,
training methodology and its performance on the Jamendo test dataset. The
shallow SVD models are reasonably accurate while SVDNet is state-of-the-art

10The evaluation method uses the pre-trained model received through personal communi-
cation with Jan Schlüter.

88

SVDNet SVDNet-R0 SVDNet-R1 SVDNet-R2

Threshold - 0.66 0.50 0.50
Error 8.0% 8.1% 8.4% 9.5%

Precision - 0.901 0.896 0.890
Recall 0.914 0.926 0.925 0.907

Specificity 0.925 0.912 0.908 0.903
F-score - 0.913 0.910 0.898
Platform Theano & Lasagne Theano & Lasagne Tensorflow Tensorflow

Table 3.4: Performance of SVDNet and its variants on the Jamendo test dataset.

on the test dataset. The chapter also introduced four publicly available singing
voice datasets. This thesis uses these datasets for the design, evaluation and
analysis of the SVD models. The following chapters discuss experiments that
use interpretable machine learning algorithms to analyse the behaviour of the
five SVD models presented in this chapter.

89

Chapter 4

SoundLIME

Chapter 2 discussed the two main ways for post-hoc interpretability of ML
models: analysis of the global behaviour of a model, and explanation of the pre-
dictions of a model (local analysis). This chapter focusses on the local analysis
of machine listening models. Specifically, this chapter introduces SoundLIME
(SLIME), a method to generate local explanations for predictions of any ma-
chine listening model, shallow or deep. Moreover, this chapter demonstrates
the effectiveness of SLIME by using it to analyse the local behaviour of three
singing voice detection models: two shallow models, and a state-of-the-art deep
model (see Chapter 3).

This chapter consolidates the work from two conference publications [Mishra
et al., 2017, 2020]. The first publication introduced SLIME and used it to
analyse the local behaviour of the three SVD models [Mishra et al., 2017]. The
second publication reported further experiments to analyse the behaviour of
SLIME for different settings of the input parameters, highlighting an inherent
weakness with the local explanation methods that perform sensitivity analysis
by occluding input segments [Mishra et al., 2020]. Moreover, the publication
also introduced a method to generate reliable explanations from SLIME.

The remainder of this chapter is organised as follows: Section 4.1 discusses
the need for interpretable explanations for analysing machine listening models
and highlights the key contributions of this chapter. Section 4.2 introduces the
SLIME algorithm and describes the three categories of explanations it provides.
Section 4.3 describes the experiments about applying SLIME to explain predic-
tions of the three SVD models. Section 4.4 analyses the behaviour of SLIME
for changes in the input parameters and discusses a method to generate reli-
able explanations from SLIME. Section 4.5 summarises the key results of this
chapter. Finally, section 4.6 mentions the repositories hosting the open-sourced
code and synthetic dataset used in this chapter.

90

MFCC0 <= X

 MFCC3 <= Y

True

MFCC5 <= Z

False

Class = A Class = B Class = A Class = B

True False True
False

Figure 4.1: A binary decision tree for classifying audio using the values of three
MFCC feature dimensions.

4.1 Introduction

Chapter 2 highlighted that one of the key ways to analyse ML models is by
explaining their predictions. Explanations for model predictions are available
either inherently (for interpretable models) or through the use of post-hoc meth-
ods (for black-box models). Local explanations, although useful, may not pro-
vide a clear insight into the behaviour of an ML model. For instance, in cases
where an ML model is learnt using complex uninterpretable features, explain-
ing model predictions in terms of those features may provide a limited under-
standing of the model behaviour. This issue is prevalent in applications using
high-dimensional unstructured data (e.g., audio, text), as for them it is a com-
mon practice to transform input data into a set of low-dimensional features that
are often uninterpretable. The example below discusses such a scenario for a
machine listening system.

Consider a simple machine listening system , the classification component of
which is the binary decision tree shown in Fig. 4.1. The input to this system is
a T -sec audio excerpt, from which the system extracts D mel-frequency cepstral
coefficients (MFCCs) [Davis and Mermelstein, 1980]. The system labels this D-
dimensional feature vector as either “class A” or “class B” based on the values in
specific feature dimensions. The system learns the particular dimensions (e.g.,
MFCC 0) and the thresholds of the decisions (e.g., X) through training.

As a binary decision tree is an interpretable classifier (see Section 2.2.3.1), we
can explain predictions of the machine listening system in terms of the MFCC
coefficients and thresholds. For instance, as shown in Fig. 4.1, if for an instance,
the value of the zeroth MFCC is less than X and that of the third MFCC is less
than Y, then the machine listening system classifies the instance to class A. Such
an explanation helps explain the reasons for a prediction but provides limited
insight into input audio qualities (e.g., energy, frequency content) influencing
the prediction. This happens as the explanations are in terms of MFCCs that

91

provide limited transparency about the audio qualities they represent.
One might still roughly approximate the meaning of particular MFCCs: low

MFCC dimensions (coefficients) relate to broad spectral structures (e.g., for-
mants); high MFCC dimensions relate to fine spectral structures (e.g., pitch
and harmonics); and the zeroth MFCC relates to the energy of a signal. How-
ever, as shown in Fig. 4.1, values along several MFCC dimensions and their
thresholds jointly contribute to a prediction. This combination makes inter-
pretation of local explanations even harder. For instance, it is ambiguous to
understand what audible qualities the combination of the zeroth MFCC with
either the third or the fifth MFCC captures. Thus, though the binary decision
tree has clear decision rules, they are not easy to relate to audible qualities
of inputs. With machine learning systems using black-box classifiers, e.g., deep
neural networks (DNNs) or support vector machines (SVMs), the interpretation
task becomes more challenging due to the lack of inherent interpretability. This
motivates the use of interpretable explanations (see Section 4.2) for analysing
the local behaviour of machine listening systems.

One of our key contributions is to propose and demonstrate a method for
explaining predictions of any machine listening model. Specifically, this chap-
ter describes SLIME, a method that extends a local explanation method (local
interpretable model-agnostic explanations (LIME) [Ribeiro et al., 2016b]) to
machine listening models. SLIME provides three ways to explain a prediction
by pinpointing the time, frequency or time-frequency regions in an input that
contribute most to a decision. This transforms a non-intuitive feature-based
classifier decision into a more intuitive temporal and spectral description. This
chapter discusses experiments that apply SLIME to three SVD models, demon-
strating how the generated explanations are useful in gaining insight into model
behaviour, and in identifying an untrustworthy model that fails to generalise.

Our other key contribution is to analyse the sensitivity of SLIME to changes
in input parameters. This chapter describes experiments demonstrating that
SLIME is sensitive to input parameter settings, an observation extending to
LIME and other local explanation methods that perform sensitivity analysis by
occlusion. Finally, this chapter discusses techniques to generate reliable expla-
nations using SLIME. Some of these techniques apply to methods performing
sensitivity analysis by input occlusion.

92

𝐱"# ∈ {0, 1}|+,|

Input instance
𝑥"

Generate
sequence

Generate
interpretable

representation

Generate
𝑁/	samples

Project each
sample in the
feature space

Generate
labels and
distances

Learn linear
model

𝜒"

𝐳"3# ∈ 0, 1 |+,|

𝐳"𝒌 ∈ ℝ6𝐶(𝐳"3)

𝜌(𝐱", 𝐳"3)
𝐰"

Explanation

Figure 4.2: The functional block diagram of SLIME depicting the steps in gen-
erating explanation wi for the prediction of an instance xi.

4.2 Interpretable explanations for machine

listening

This section describes the methodology to extend the local interpretable model-
agnostic explanations (LIME) method proposed by Ribeiro et al. [2016b] to
work with machine listening models.

4.2.1 Extending LIME to machine listening

Fig. 4.2 depicts the functional block diagram of SLIME. The algorithm con-
sists of two components: the first one (the dotted box in Fig. 4.2) that defines
interpretable sequences for audio is our contribution and the second one that
uses these sequences to explain machine listening models comes from LIME. For
details about the LIME algorithm, see Section 2.2.3.2.

SLIME explains the prediction of an audio instance xi by defining three kinds
of sequences: temporal X ti , spectral X fi and time-frequency X tfi . The algorithm
terms each element of X ti a super-sample (terminology inspired by super-pixels
in images), which the algorithm generates by the temporal partitioning of xi.
For example, SLIME uniformly segments the audio instance in Fig. 4.3 (a) into
four super-samples, each notated Tni . Hence, X ti = (T 1

i , T
2
i , T

3
i , T

4
i). Similarly,

SLIME generates each element of X fi , notated Ami , by segmenting the magni-
tude spectrogram of xi along the frequency axis. The magnitude spectrogram is
the absolute value of the complex short-time Fourier transform matrix [Müller,
2015]. Hence, if SLIME segments the frequency axis into m spectral segments,
X fi = (A1

i , A
2
i , ..., A

m
i). Lastly, SLIME generates each element of X tfi , notated

Bpi , by segmenting the magnitude spectrogram of xi, both along the time and
frequency axes. For example, in Fig. 4.3 (b), SLIME segments the magni-
tude spectrogram of the audio instance non-uniformly into eight time-frequency
blocks. Hence, X tfi = (B1

i , B
2
i ,, B

7
i , B

8
i). SLIME terms the elements of the

93

0.0

0.5

1.0

A
m

p
lit

u
d
e

a) TEMPORAL SEGMENTATION
1.0

0.5

0 0.05 0.1 0.15
Time (seconds)

T1
i

T2
i

T3
i

T4
i

0

512

8192

H
z

0.20

b) TIME-FREQUENCY SEGMENTATION

B2
i

B
1
i

B
4
i

B
3
i

B
6
i

B
7
i

B
8
i

B
5
i

Figure 4.3: Input segmentation-based sequence generation for SLIME. (a) Tem-
poral segmentation of the audio instance xi into four super-samples (Tni), each
of duration 50 ms. (b) Time-frequency segmentation of xi into 8 time-frequency
blocks (Bpi). Similarly, segmenting the magnitude spectrogram in (b) only along
the frequency axis will generate spectral segments.

interpretable sequences as interpretable components. Thus, for the temporal
sequence, each interpretable component is a super-sample, and for the spec-
tral and time-frequency sequences, each interpretable component is a spectral
segment and time-frequency block, respectively.

The next step is to map an input instance xi with a feature representation
xi ∈ Rn to its interpretable representation x′i ∈ {0, 1}|Xi|. SLIME uses each
of the three interpretable sequences to define an interpretable space T (e.g.,
T t is the temporal interpretable space) and an interpretable representation x′i.
This creates three interpretable representations for an input instance xi. SLIME
denotes the temporal, spectral and time-frequency interpretable representations
as xt

′

i , xf
′

i and xtf
′

i , respectively. These representations provide three ways of
understanding a prediction, each highlighting the temporal, spectral or time-
frequency segments in an instance maximally influencing its prediction.

To find the temporal explanation, SLIME locally approximates a classifier
C : Rn → [0, 1] with a linear model gt(zt′

i) = wT
t · zt′

i , where zt′

i ∈ T t represents
the temporal interpretable representation of a synthetic sample. g can be any
interpretable model, however, in this thesis g is a linear model. SLIME gener-
ates Ns synthetic samples from T t in a way that depends on xt′

i , i.e., randomly
occluding or setting to zero the dimensions of xt′

i . For example, for the audio
instance in Fig. 4.3 (a), one possible zt′

i = (1, 0, 1, 0). This synthetic sample indi-
cates the absence of super-samples T 2

i and T 4
i . There exist 2Nc unique synthetic

samples for an interpretable sequence with Nc elements. SLIME projects each
synthetic sample zt′

i to the input space, computes the corresponding weighting

94

factor ρxi
(ztik), and generates the prediction C(zt

i). The weighting factor mea-
sures how structurally similar a synthetic sample is to the input audio instance.
SLIME learns the linear model gt by minimising the sum of the squared loss
and model complexity (see Eq. 2.8) over this dataset of synthetic samples and
their probabilities. Formally, denote the temporal interpretable representation
of the kth synthetic sample as zt′

ik and the feature representation of its input
space projection as zt

ik. Define a weight function ρxi
(ztik) : Rn × Rn → R. In

this thesis, the weight function is an exponential kernel (width ω) defined over

a distance function Γ, i.e., ρxi
(ztik) = e

−Γ(xi,z
t
ik)2

ω2 [Ribeiro et al., 2016b]. SLIME
computes the locally-weighted loss as

L(C, g, ρxi
) =

∑
(zt′

ik,z
t
ik)∈Zt

ρxi
(ztik)[C(ztik)− g(zt′

ik)]2 (4.1)

Similarly, SLIME randomly samples xf ′

i and xtf ′

i to learn the spectral and time-
frequency linear models, respectively. Each of these models provides explana-
tions in terms of their learned weights. The magnitudes of the model weights
relate to the importance of interpretable components (e.g., super-samples, time-
frequency blocks) in the classification of xi. Thus, if w1 and w2 denote the
weights corresponding to super-samples T1 and T2, respectively, then |w1| > |w2|
implies super-sample T1 influences the prediction more than T2. Similarly, the
polarity of weights refers to the correlation between an interpretable component
and the classifier prediction. For example, if w1 < 0 and w2 > 0, then the tem-
poral segments T1 and T2 are respectively negatively and positively correlated
with the classifier prediction. The weight function ρxi

controls the influence
of each synthetic sample in the learned model. Thus, a distant sample in the
interpretable space will have a lower contribution to g, facilitating robust learn-
ing. For pseudocode of SLIME, refer to Algorithm 1 corresponding to LIME.
For example, to generate temporal explanations using SLIME, replace x

′

i with
temporal interpretable representation xt

′

i in Algorithm 1.

4.3 Demonstration

This section describes experiments that demonstrate SLIME for analysing the
local behaviour of machine listening models. Specifically, the experiments in-
volve explaining the predictions of three singing voice detection (SVD) models
- two shallow models and one deep model. Chapter 2 defines the singing voice
detection task, and Chapter 3 describes the three SVD models in detail, dis-
cussing their architectures, training methodologies, and performances on the
Jamendo test dataset. Each of these models classifies an audio excerpt into

95

two categories: non-vocal (instrumental music without singing voice) and vocal
(instrumental music with singing voice). This section first describes the exper-
iments to analyse the local behaviour of the shallow models. This section then
explains the experiments about analysing the deep SVD model.

4.3.1 Explaining predictions of the shallow vocal detectors

The two shallow SVD models designed using the binary decision tree and ran-
dom forest classifiers achieve accuracies of 71.4% and 76.3%, respectively, on
the Jamendo test dataset (see Chapter 3, Section 3.3.3). The vocal category
occupies 57.5% of the Jamendo test dataset, which suggests that the two shal-
low SVD models may have learnt some representation of singing voice that helps
them to detect vocals. One way to validate this hypothesis is by analysing if the
models make vocal predictions by utilising information from the vocal content
in an input, i.e., to analyse if the models are trustworthy [Sturm, 2014].

The temporal explanations from SLIME assist in validating the above hy-
pothesis by identifying super-samples (time segments) that maximally influence
a prediction. Thus, to analyse the trustworthiness of the two models, the ex-
periment involves generating temporal explanations for inputs classified to the
vocal category by both the models and validating (for each input) whether the
maximally influencing super-samples contain singing voice.

It is important to revisit that this experiment uses a rectangular window in
the feature extraction pipeline of the SVD models. This is due to the reason that
other window functions (e.g., Hann) will influence the energy of super-samples
in an instance and this may result in the SVD models becoming less sensitive
to the content of super-samples with near-zero energy. The use of rectangular
window avoids this issue.

To generate temporal explanations, SLIME segments a one-second audio
instance uniformly into ten super-samples. SLIME first generates Ns = 1000

synthetic samples in the temporal interpretable space T t. SLIME decides a
suitable value for Ns depending on the stability of explanations (see Section
4.4.1). SLIME then approximates each model’s decision boundary in the neigh-
bourhood of the instance by a linear model that it learns in the temporal in-
terpretable space. SLIME performs this approximation using an exponential
weighting function with ω = 25 and the cosine distance as the distance function
Γ. The minimum number of interpretable components (super-samples) sufficient
to explain a prediction may vary from one instance to the other. This happens
as the selection of influential interpretable components depends on the linear
model weight distribution. However, to reduce the model complexity (∆(g)

in Eq. 2.8), this experiment generates explanations with a pre-fixed number of

96

Index Duration Vocal probability Temporal explanations Ground truth
(seconds) BDT RF BDT RF

41 1.0 0.97 0.85 6, 7, 9 2, 0, 7 0 − 9
178 1.0 0.86 0.86 9, 8, 4 9, 6, 0 0 − 9
58 0.4 0.80 0.76 6, 5, 3 0, 2, 6 0 − 3
124 0.4 0.92 0.84 0, 4, 6 6, 9, 8 6 − 9

Table 4.1: Temporal explanations from SLIME for audio instances from “03 -
Say me Good Bye.mp3” in the Jamendo test dataset. Index: instance index;
Duration: duration of the vocal segment; Vocal probability: model confidence
about the presence of singing voice; Temporal explanations: top-3 super-samples
maximally influencing a prediction; Ground truth: super-samples containing
singing voice; BDT: binary decision tree; and RF: random forest.

super-samples. To do this, SLIME first uses the dataset of synthetic samples and
corresponding model (BDT or RF) predictions to select the top-3 super-samples
(by using the forward selection algorithm) and then learns a linear model using
the selected super-samples [Ribeiro et al., 2016b]. Forward selection is a type
of step-wise regression that assists in feature selection [Hastie et al., 2009].

Table 4.1 reports the temporal explanations generated by SLIME for four in-
stances from the file “03 - Say me Good Bye.mp3” in the Jamendo test dataset.
For each audio instance, the “temporal explanations” column lists the super-
sample indices in decreasing order of their influence on model predictions. The
magnitude of the linear model weights corresponding to each super-sample de-
termines the influence of the super-sample in the prediction. The analysis of
the temporal explanations helps to gain some insight into how the SVD models
form their predictions. For example, both the models classify instance 41 to
the correct category, but the temporal explanations for both the predictions are
very different. Similarly, both the models correctly predict that instance 178

contains singing voice, but again for very different reasons. The auralisation
of all the temporal explanations for instances 41 and 178 reveals an interesting
insight into the BDT model behaviour. The majority of super-samples in the
temporal explanations contain a strong instrumental onset sound in addition to
the singing voice. This is intriguing as it may happen that instead of “listening”
to the singing voice in those super-samples, the BDT model predicts by using
information from the instrumental sounds.

To further investigate the above observation, the experiment applies SLIME
to explain the predictions of audio instances (from the same test file) that con-
tain instrumental music and singing voice in non-overlapping temporal sections.
Instances 58 and 124 are two such instances that contain singing voice in the
first and last 400 ms, respectively. The temporal explanations for the BDT
model predictions for both the instances assist in revealing that although the

97

model is highly confident about the instances containing singing voice, the super-
samples maximally influencing the predictions mostly contain instrumental mu-
sic. Such an observation calls into question the generalisation capability of the
BDT model. The temporal explanations for the RF model predictions for both
the instances suggest that the model is behaving expectedly, as it predicts by
using information from singing voice segments. This experiment demonstrates
the usefulness of SLIME in identifying an untrustworthy model.

Temporal explanations assist in understanding the local behaviour of a ma-
chine listening model, however, there are some limitations. For example, to
generate interpretable temporal explanations, SLIME either requires input au-
dio to be of sufficient temporal duration or requires some restriction on the
number of super-samples in an audio instance. Moreover, for instances contain-
ing singing voice and instrumental music for its complete duration (e.g., instance
41), temporal explanations highlight super-samples that maximally influence a
prediction, however, they provide no information about the content in those
super-samples that affects the prediction. One way to understand this is by
analysing the spectral or time-frequency explanations from SLIME. These ex-
planations highlight the influential spectral regions which may assist in gaining
some more insight into the model behaviour. The next section discusses the
time-frequency explanations in detail.

4.3.2 Explaining predictions of the deep vocal detector

This section demonstrates the time-frequency explanations from SLIME for
analysing the local behaviour of the CNN-based SVDmodel proposed by Schlüter
and Grill [2015] (see Chapter 3). Moreover, this section qualitatively compares
the time-frequency explanations from SLIME with saliency maps that are lo-
cal explanations for DNN predictions generated using gradient-based sensitivity
analysis [Simonyan et al., 2014, Zeiler and Fergus, 2014, Springenberg et al.,
2015] (for more details about saliency maps, see Chapter 2). This section skips
the demonstration of spectral explanations as one can easily generate them by
first segmenting an input time-frequency representation into spectral regions
and then following the time-frequency explanation generation steps.

The deep SVD model assigns predictions to mel-spectrogram excerpts of
around 1.6 seconds duration indicating the probability that the excerpts contain
singing voice. SLIME explains the predictions of the deep SVD model by map-
ping input excerpts to their time-frequency interpretable representations (see
Section 4.2). SLIME performs the mapping by segmenting the time-frequency
axis of input excerpts into six temporal and four spectral segments. Such tem-
poral segmentation keeps the temporal duration of the resulting time-frequency

98

0 0.5 1 1.5

Tim e

512

1024

2048

4096

H
z

Input Mel-spect rogram

0 0.5 1 1.5

Tim e

512

1024

2048

4096

H
z

Tim e-freq segm entat ion

0 0.5 1 1.5

Tim e

512

1024

2048

4096

H
z

Pos. saliency (grd > 0.5)

0 0.5 1 1.5

Tim e

512

1024

2048

4096

H
z

a) b)

c) d)

Top-3 interpretable components from SLIME

Figure 4.4: The time-frequency explanation generation from SLIME. (a) mel-
spectrogram representation of a 1.6 second input audio excerpt from “03 - Say
me Good Bye.mp3” in the Jamendo test dataset (time index: 122.5 seconds
- 124.1 seconds, confidence score = 0.96), (b) time-frequency block generation
through input segmentation, (c) the positive time-frequency explanation for the
input highlighting the three most influential interpretable components, (d) the
normalised thresholded positive saliency map for explaining the input predic-
tion.

99

interpretable components sufficiently long to facilitate their auralisation (after
inversion to the temporal representations, see Appendix B). The duration of the
first five temporal segments is 266 ms each, and that of the last segment is 280

ms. The input segmentation along the frequency axis generates four spectral
segments, each containing 20 spectral bins. Hence, SLIME maps each input
mel-spectrogram excerpt xi to a time-frequency sequence X tfi = (B1

i , ..., B
24
i),

where the jth time-frequency block Bji represents the jth dimension in the
time-frequency interpretable space T tf . Fig. 4.4 (a) and (b) depict the mel-
spectrogram representation and its time-frequency segmentation, respectively,
for an excerpt from “03 - Say me Good Bye.mp3” in the Jamendo test dataset.
The deep SVD model correctly classifies the excerpt to the vocal class with
probability = 0.96.

SLIME generates a time-frequency explanation by synthesising 2000 samples
through random sampling from the interpretable space, approximating the non-
linear decision boundary by a linear model using the L2 norm as the distance
measure, and selecting three interpretable components (time-frequency blocks)
with the top-3 positive weights. This thesis calls such explanations positive
time-frequency explanations as they highlight time-frequency blocks that posi-
tively influence model predictions. Fig. 4.4 (c) depicts the positive explanation
for the prediction of the audio excerpt that contains a mixture of singing voice
and instrumental music in its first 900 ms and only instrumental music in the
last 700 ms. The auralisation of the positive explanation (after inversion to the
temporal domain, see Appendix B) reveals that all the time-frequency blocks in
the explanation contain singing voice. Such an observation raises trust in the
model and its predictions. Moreover, the experiment reveals that all the time-
frequency blocks in the negative explanation have temporal indices greater than
1 second. The negative explanation includes the time-frequency blocks with
top-3 negative weights. This indicates that the time-frequency blocks contain-
ing only instrumental music negatively influence the classifier prediction. This
also seems to be the correct behaviour. Thus, the time-frequency explanations
help to understand what sections in the input are maximally influencing the
prediction.

The experiment also qualitatively compares the time-frequency explanations
from SLIME with saliency maps that, like the time-frequency explanations, are
tools to analyse deep neural network models. Saliency maps highlight the in-
fluence of input dimensions on DNN predictions by using the backpropagation
algorithm [Rumelhart et al., 1986, Goodfellow et al., 2016] to compute the local
gradient of the model function [Simonyan et al., 2014]. For details about dif-
ferent methods to generate saliency maps, refer to Chapter 2, Section 2.2.3.2.
This experiment uses the saliency map generation method from Zeiler and Fer-

100

gus [2014] as the authors demonstrated the method generates high-quality vi-
sualisations for CNNs. The authors introduced their method as a function
decomposition method that uses a deconvolutional network (deconvnet) to map
CNN activations to the input space. However, the method is the same as com-
puting the local gradients of the model function, with an additional constraint
that prevents the negative gradients from backpropagating [Simonyan et al.,
2014, Springenberg et al., 2015]. The experiment compares the positive time-
frequency explanations with the positive saliency maps that highlight the input
dimensions that positively influence the model predictions. The local gradient
of the model function at these dimensions is greater than zero. To highlight the
most influential input dimensions, the experiment refines the positive saliency
maps by selecting dimensions with normalised gradient greater than 0.5. The
experiment generates such maps only for the output layer of the deep SVD
model. Fig. 4.4 (d) shows the thresholded positive saliency map for the input
excerpt in Fig. 4.4 (a).

It is important to note that saliency maps highlight individual dimensions
in an input while the explanations from SLIME are the time-frequency blocks
(a group of input dimensions). One way to compare the two model analysis
approaches is by visually verifying whether the time-frequency blocks high-
lighted by SLIME capture all the input dimensions highlighted by saliency
maps. A visual comparison of the example in Fig. 4.4 shows that the expla-
nations from SLIME include most of the key dimensions highlighted by the
saliency map. Another way to compare the two explanation methods is by
measuring how many dimensions highlighted by a saliency map are enclosed in
the explanation generated by SLIME. Formally, if in a normalised thresholded
saliency map, the total number of non-zero input dimensions = dtotal and the
number of non-zero input dimensions that overlap with SLIME explanations =
doverlap , then the % agreement between the two explanation techniques is given

by %Agreement =

(
doverlap

dtotal

)
· 100. For the audio excerpt in Fig. 4.4, this

agreement is 62.5%.
An experiment expands the above quantitative comparison to a set of 1349

randomly chosen excerpts from the Jamendo test dataset. Specifically, for each
song in the dataset, first, a random integer Nexcerpts ∈ [10, 25] is sampled. This
integer indicates the number of excerpts to be sampled from that song. Then,
Nexcerpts are sampled randomly from different time indices in the song. The
experiment applies this sampling procedure to sample five batches of excerpts
with the total number of excerpts=1349. Further, for each batch of random
excerpts, agreement% is computed between positive SLIME explanations and
positive thresholded saliency maps. Table 4.2 mentions the number of excerpts

101

Batch index Ninstances Average agreement

1 269 44.52%
2 254 46.07%
3 298 48.34%
4 261 45.32%
5 267 48.29%

Table 4.2: Average agreement% between positive SLIME explanations and
thresholded positive saliency maps for randomly sampled batches with Ninstances
audio excerpts.

and the average agreement for each random batch.
The results suggest that on average, the positive explanations from SLIME

achieve 46.50%(±1.55%) numerical agreement when compared with the thresh-
olded (normalised gradient > 0.5) positive saliency maps. Moreover, the instance-
based analysis of the comparison results reveals that for some instances, the nu-
merical agreement is 100%, but there are instances where the agreement is less
than 10%. An explanation for the instances with a poor agreement between the
two methods is that for those instances the decision boundary in their neigh-
bourhood is highly non-linear, and approximating such a boundary with a linear
model will result in poor explanations from SLIME.

This experiment does not perform an exhaustive comparison (by varying
the preset factors, e.g. threshold, the number of interpretable components)
between the two techniques. The above analysis aims to provide an estimate of
the performance of model-agnostic SLIME against a model-dependent technique
for some preset values. It is obvious that the numerical agreement will be high if
the constraints are softer and vice versa. Saliency maps assist in highlighting the
input dimensions that are influential to model predictions, but the explanations
can suffer from the lack of temporal context around the highlighted dimensions.
On the other hand, one can readily invert the explanations from SLIME to an
acoustic form for auralisation, which may provide additional insights into how
a model is forming its prediction for an input.

4.3.3 Discussion on the number of synthetic samples (Ns)

LIME and SLIME generate local explanations using Ns synthetic samples in
the interpretable space T (see Section 4.2.1). For LIME, Ribeiro et al. [2016b]
mention the number of synthetic samples used in their experiments but do
not discuss why those values are suitable for their experiments. A discussion
about the number of synthetic samples Ns is important for two reasons. First,
Ns affects the time Ts LIME (or SLIME) takes to generate an explanation.
Second, Ns influences the stability of local explanations from LIME (or SLIME).

102

Ideally, an explanation should remain the same even on multiple iterations of
applying LIME (or SLIME) to the same instance. The indices and polarity of
interpretable components in an explanation must remain the same, however,
their order or weights may change. However, empirical results demonstrate
that interpretable components in LIME (or SLIME) explanations do change on
multiple iterations. This happens because both the methods sample randomly
in T . Thus, this section seeks to understand the influence of Ns on the stability
of local explanations from SLIME and on the time SLIME takes to generate
each explanation.

The experiment uses the trained model, dataset, and the SLIME setup from
section 4.3.2. The experiment involves first randomly selecting five excerpts from
each audio file in the Jamendo test dataset (see Chapter 3) and then applying
SLIME to explain the prediction of each excerpt in a batch of 80 by highlighting
the top-k interpretable components per explanation (the experiment uses k = 3

and 5). Moreover, the experiment involves iterating this process five times,
each time randomly sampling 80 audio excerpts, and generating explanations
to highlight the top-k interpretable components in each explanation.

This experiment defines the stability of an explanation to be inversely pro-
portional to the number of unique interpretable components Un from the se-
quence X tfi that appear in explanations generated with m iterations. For ex-
ample, if on applying SLIME m = 2 times to an audio excerpt to highlight the
top-3 time-frequency segments in each iteration, the explanations are denoted
as sets ξ1 = {B1, B2, B3} and ξ2 = {B2, B6, B5}, then Un = 5, as B2 appears
twice in the six components. To understand the effect of Ns on the stability
of explanations from SLIME, this experiment generates five explanations for
each of the 80 excerpts in the randomly sampled batches. For each excerpt in
a sampled batch, Un is computed over the aggregated set of five explanations.
Fig. 4.5 (a) reports the results of the experiment. The plot depicts the average
value of Un over the five batches of excerpts for different values of Ns, where
Ns ∈ {100, 250, 500, 1000, 2000, 5000, 10000}. The error bars represent standard
deviation of the mean distribution corresponding to the sampled batches.

The result shows that for both the cases (top-3 and top-5), Un decreases with
increase in Ns, for smaller values of Ns, but nearly stabilises for larger values of
Ns. The result also demonstrates that to generate stable explanations, SLIME
does not need to perform an exhaustive search of the interpretable space T as
although the maximum number of synthetic samples is 224, the explanations
become stable for Ns = 5000 and Ns = 10000 samples for the top-5 and top-3
cases, respectively.

The above experiment also records the average time (Ts) SLIME takes in
generating an explanation for a given Ns. Fig. 4.5 (b) reports the results for

103

0 2000 4000 6000 8000 10000
2

4

6

8

10

12
U

n

(a)
top-5
top-3

0 2000 4000 6000 8000 10000
Ns

0
50

100
150
200
250
300

T s
(s

ec
)

(b)
top-5

Figure 4.5: Plotting the influence of the number of samples (Ns) on (a) the
stability of local explanations and, (b) the time SLIME takes in generating an
explanation. Un denotes the number of unique interpretable components, and
Ts denotes the time SLIME takes (in seconds) in generating an explanation.

the experiment that applies SLIME to the batches of randomly selected audio
excerpts to highlight the five most influential time-frequency segments in each
excerpt. The results for the top-3 case are similar to the top-5 case, hence, for
the better visualisation, the figure shows results only for the top-5 case.

The experiment runs SLIME on a computer with 1.6 GHz Intel Core i5
processor and 8 GB memory. The results show that Ts increases linearly with
Ns, reaching around five minutes for an explanation generated with Ns = 10000.
The reported time includes the time taken for prediction by the CNN model.
Importantly, Ts largely depends on the prediction time of the CNN model and
the sampling time of SLIME, hence, the plot does not report error bars as Ts is
independent of sampled excerpts. These results suggest that selecting a suitable
Ns depends on the trade-off between the stability of an explanation and the time
taken to generate it. In the above experiments, Ns = 1000 seems to be a good
trade-off.

104

4.4 Analysing the robustness of SLIME

This section describes experiments to analyse whether SLIME explanations are
sensitive to the synthetic sample generation process. SLIME samples in the
interpretable space by randomly occluding (masking) one or more interpretable
components in an input. SLIME occludes interpretable components by replac-
ing them with synthetic components. For example, in the previous experiments
(see Section 4.3), SLIME occludes interpretable components by replacing them
with the same size synthetic components with dimensions (e.g., bins in a time-
frequency block, samples in the temporal representation) set to the value zero.
This section analyses if the explanations SLIME generates are sensitive to how
SLIME occludes the interpretable components, i.e., whether SLIME explana-
tions change with changes to the masking content (the content of the synthetic
components). This analysis will be useful not only to SLIME but also to other
methods that use the input occlusion step in their explanation pipeline (see
Zintgraf et al. [2017], Ribeiro et al. [2016b], and Zeiler and Fergus [2014]).

This section first describes the experiment to select an appropriate value for
the number of synthetic samples Ns. This section then describes experiments
to analyse SLIME’s behaviour for five types of input perturbations, each modi-
fying the masking content. Finally, this section introduces and demonstrates a
method for deciding the content of synthetic components.

4.4.1 Selecting an appropriate Ns

The SLIME algorithm is sensitive to the number of synthetic samples it gener-
ates in the interpretable space. Section 4.3.3 demonstrated this for the SVDNet
model (see Chapter 3, Section 3.4.5) using a dataset of 80 randomly selected au-
dio excerpts. In that experiment, SLIME generates stable explanations (Un = 6

and 4 for the top-5 and top-3 cases, respectively) for Ns ≥ 5000. This exper-
iment (analysing the robustness of SLIME) uses the SVDNet-R1 model (see
Chapter 3, Section 3.4.5) and a comparatively much larger dataset of audio
excerpts. Thus, before analysing SLIME’s behaviour for different types of in-
put perturbations, the experiment re-computes an appropriate Ns using the new
model and the new random subset of audio excerpts. The new appropriate value
of Ns will make sure that any changes in SLIME explanations due to different
input perturbation methods are not the results of using an unsuitable Ns.

The experiment applies SLIME to explain the predictions of SVDNet-R1
for a dataset of 25 randomly selected audio excerpts from each audio file in
the Jamendo test dataset. Thus, the dataset size in this experiment is 400 au-
dio excerpts, five times larger than the experiment in Section 4.3.3. SLIME

105

2

4

6

8

10

U
n

(a)

1000 5000 10000 20000 30000 40000 50000 60000 70000
Number of samples (Ns)

4

6

8

10

U
n

(b)

Figure 4.6: Plotting the influence of the number of samples (Ns) on the stability
of local explanations for audio excerpts from the (a) Jamendo dataset and (b)
RWC dataset. Un denotes the number of unique interpretable components.

explains a prediction from SVDNet-R1 temporally by segmenting an input mel-
spectrogram along the x-axis into 10 temporal segments and highlighting the
three most influential interpretable components (top-3) positively or negatively
influencing a prediction. This is another type of temporal explanation where
instead of segmenting an input in the time domain, SLIME segments it tempo-
rally in the time-frequency domain. Thus, for the mel-spectrogram in Fig. 4.4,
this refers to segmenting the time-frequency representation only along the x-
axis (temporal axis). Moreover, SLIME occludes interpretable components by
synthetic components with all bins set to the value zero, does not perform any
normalisation to the synthetic samples, and uses the L2 norm as the distance
measure. Similarly to Section 4.3.3, for each Ns, the experiment computes Un
using an aggregated set of explanations that it generates by applying SLIME
five times to the same audio excerpt. The experiment uses nine different values
of Ns.

Fig. 4.6 (a) depicts the results of the experiment. The results show that
similar to the experiments in Section 4.3.3, SLIME explanations become stable
for higher Ns values. Moreover, for the new model and dataset, an appropriate
value of Ns seems to be ≥ 50000, as for those values the median of the Un
distribution is four with a high likelihood of sampling Un = 3.

The next step is to repeat the above analysis using audio excerpts from
the RWC dataset to analyse if the conclusions from above generalise to other

106

0 1 2 3 4 5 6 7
Number of samples (Ns) 1e4

0

10

20
T s

 (s
ec

on
ds

)

Figure 4.7: Plotting the influence of the number of samples (Ns) on the time
Ts (seconds) SLIME takes in generating an explanation for audio excerpts from
the Jamendo dataset.

datasets. A dataset of 500 audio excerpts is randomly selected from 20 audio
files in the RWC dataset (see Chapter 3). Fig. 4.6 (b) shows the results of
the experiment for the RWC dataset. Similar to Jamendo, an appropriate Ns
value seems to be ≥ 50000. Additionally, for the experiment with the Jamendo
dataset, Fig. 4.7 plots the average time SLIME takes to generate an explana-
tion for different Ns values. The timing information comes from running the
experiments on a Linux machine with Intel(R) Xeon(R) Gold 5122 processor @
3.60GHz and Tesla P100-PCIE-16GB graphical processing unit.

4.4.2 Analysing sensitivity to the masking content

This section describes experiments that analyse if explanations from SLIME
are sensitive to the content of synthetic components. For example, will SLIME
explanations change if instead of occluding the interpretable components with
the zero value (see Section 4.3.2), SLIME uses Gaussian noise? This analysis
will assist in highlighting whether the selection of the content of synthetic com-
ponents is critical in generating reliable explanations using SLIME. Moreover,
the conclusions from this experiment will also apply to other local explanation
methods that similarly perform input occlusion [Ribeiro et al., 2016b, Zeiler and
Fergus, 2014].

SLIME aims to analyse the effect of removing a group of randomly selected
interpretable components on model predictions. However, as machine listening
models predict using fixed-size inputs, SLIME approximates the “removal effect”
by occluding the selected interpretable components with synthetic content, hy-
pothesising that the occluded components have minimal influence on model pre-
dictions [Fong and Vedaldi, 2017]. This section proposes five masking contents
to perform input occlusion and groups them into two categories: (1) contents

107

0 0.5 1 1.5
Time(sec)

512

1024

2048

4096

Fr
eq

(H
z)

(A)

0 0.5 1 1.5
Time(sec)

(B)

0

2

4

6

8

Figure 4.8: Plots depicting how SLIME performs segmentation of the mel-
spectrogram representation of an audio excerpt to generate ten interpretable
components. (A) Temporal segmentation and (B) spectral segmentation. The
colourbar values depict the indices of the interpretable components.

that generate very low energy (near silent) components, and (2) contents that
result in components with non-discriminatory audio features. The first cate-
gory includes three masking contents: (1) the zero value, (2) the minimum bin
magnitude across a dataset (mindata), and (3) the minimum bin magnitude in
an input (mininp). It is conceivable that audio feature extraction from very
low energy components will result in insignificant features, which have mini-
mal influence on model predictions. The second category includes two masking
contents: (1) the average bin value in an input (meaninp), and (2) Gaussian
noise (Ng). These contents generally generate components lacking any domi-
nant structures and thus feature extraction from such components will result in
non-discriminatory audio features with limited influence on model predictions.

This section describes experiments where SLIME explains SVDNet-R1 pre-
dictions by performing input occlusion using the five different masking contents
from above. The experiments aim to analyse if the modification of the content
of the synthetic components changes SLIME predictions. To do that, SLIME
generates top-3 explanations for eight randomly selected audio excerpts from
four audio files in the Jamendo and RWC datasets. The experiment samples a
vocal and a non-vocal instance from each audio file. SLIME generates temporal
explanations for two excerpts from each dataset and generates spectral expla-
nations for the remaining four audio excerpts. The experiment uses Ns = 70000

as it provides stable explanations for the new model (see Section 4.4.1). All
other settings for executing SLIME are same as the ones for Section 4.4.1. For
example, SLIME generates the temporal and spectral explanations by segment-
ing an input mel-spectrogram into ten interpretable components along the time
and frequency axes, respectively. Fig. 4.8 depicts the temporal and spectral
segmentation SLIME performs for an input audio excerpt. Table 4.3 presents

108

the results of the experiments.
All the explanations show the interpretable components (ICs) in the order

of their influence on a prediction. The results suggest that for all the eight
instances, there is little overlap in the explanations generated using different
masking contents. For example, for the first six instances, there are no common
ICs among the explanations generated across all the five masking contents. The
explanations for those instances do include some ICs that are more frequent,
but their influence in a prediction (the occurrence order) keeps changing. For
example, for the instance 1888, the IC with index 6 occurs in four out of the
five explanations, but its location changes from being the most influential com-
ponent (the first component in the explanation) to the relatively less influential
components (the second and third components in the explanation). The spec-
tral explanations for RWC are comparatively more coherent. For example, for
the instance 1578, all the three ICs and their occurrence orders are common be-
tween the explanations generated using the zero and meaninp masking contents,
however, for the same instance, the explanations generated using mindata and
Ng show similar behaviour, but includes new ICs. Similarly, the instance 12794

has one IC common among all the explanations, but with varying importance.
Thus, the results suggest that for the selected audio excerpts the explanations
from SLIME are sensitive to the content of the synthetic components.

The sensitivity of SLIME explanations to the content of synthetic compo-
nents in the above experiment may be the result of an unsuitable Ns, as the
experiment in Section 4.4.1 selects an appropriate Ns only for temporal expla-
nations generated using the zero value as the masking content. To verify this,
the experiment further analyses if Ns = 70000 is also an appropriate value for
the other masking contents and spectral explanations, across both the datasets.
Thus, for an audio excerpt sampled randomly from one of the datasets and a
masking content (e.g., zero), the experiment applies SLIME to first generate
five temporal and five spectral explanations and then calculates Un for each
explanation type by aggregating the corresponding explanations. To limit the
computational time, the experiment executes the above steps for two randomly
selected excerpts from each audio file in the Jamendo and RWC datasets. Thus,
the experiment analyses the explanation stability for 32 and 40 randomly se-
lected instances from the Jamendo and RWC datasets, respectively. The rest of
the settings for executing SLIME are the same as in the experiment in Section
4.4.1.

Fig. 4.9 depicts the results of the above experiment. Fig. 4.9 (a) and (b)
depict the distribution of Un for the temporal and spectral explanations, respec-
tively from Jamendo. Similarly, Fig. 4.9 (c) and (d) depict the distribution of Un
for the temporal and spectral explanations, respectively from RWC. The results

109

D
at
as
et

A
ud

io
fil
e

In
de

x
V
oc
al

pr
ob

ab
ili
ty

E
xp

la
na

ti
on

ty
pe

E
xp

la
na

ti
on

s

ze
ro

m
in

d
a
ta

m
in

in
p

m
ea
n

in
p

N
g

Ja
m
en
do

0
3
-
Sc
ho

ol
.m

p3
4
3
5

0
.0

2
3

te
m
po

ra
l

4
,3
,6

4
,1
,5

1
,3
,5

6
,9
,1

1
,0
,9

Ja
m
en
do

0
3
-
Sc
ho

ol
.m

p3
3
1
6
2

0
.9

1
5

te
m
po

ra
l

1
,4
,3

4
,7
,2

5
,4
,2

5
,7
,8

1
,8
,2

Ja
m
en
do

0
3
-
U
ne

ch
ar
on

ge
.o
gg

1
9
2
9
1

0
.0

1
7

sp
ec
tr
al

4
,6
,8

4
,5
,7

5
,1
,4

6
,8
,3

8
,5
,1

Ja
m
en
do

0
3
-
U
ne

ch
ar
on

ge
.o
gg

1
8
8
8

0
.8

6
1

sp
ec
tr
al

2
,4
,8

6
,2
,3

7
,2
,6

2
,6
,9

7
,6
,1

R
W
C

R
W
C
-M

D
B
-P

-2
00
1-
M
01
/0
16

A
ud

io
T
ra
ck
.a
iff

4
7
3
2

0
.2

3
3

te
m
po

ra
l

1
,5
,0

2
,5
,4

4
,2
,7

1
,0
,8

6
,5
,4

R
W
C

R
W
C
-M

D
B
-P

-2
00
1-
M
01
/0
16

A
ud

io
T
ra
ck
.a
iff

7
0
1

0
.8

7
1

te
m
po

ra
l

5
,1
,8

2
,5
,3

5
,2
,4

1
,2
,0

6
,7
,9

R
W
C

R
W
C
-M

D
B
-P

-2
00
1-
M
04
/4

A
ud

io
T
ra
ck
.a
iff

1
5
7
8

0
.0

1
9

sp
ec
tr
al

7
,8
,9

1
,2
,4

5
,1
,0

7
,8
,9

1
,4
,2

R
W
C

R
W
C
-M

D
B
-P

-2
00
1-
M
04
/4

A
ud

io
T
ra
ck
.a
iff

1
2
7
9
4

0
.9

6
6

sp
ec
tr
al

1
,7
,8

3
,2
,1

1
,2
,6

1
,7
,8

5
,7
,1

T
ab

le
4.
3:

SL
IM

E
ex
pl
an

at
io
ns

fo
rr

an
do

m
ly

se
le
ct
ed

au
di
o
ex
ce
rp
ts

fr
om

th
e
Ja

m
en
do

an
d
RW

C
da

ta
se
ts

fo
rfi

ve
m
as
ki
ng

co
nt
en
ts
.
In
de
x:

in
st
an

ce
in
de
x;

V
oc
al

pr
ob

ab
ili
ty
:
m
od

el
co
nfi

de
nc
e
ab

ou
t
th
e
pr
es
en
ce

of
si
ng

in
g
vo
ic
e;

E
xp

la
na

ti
on

s:
to
p-

3
in
te
rp
re
ta
bl
e
co
m
po

ne
nt
s

m
ax

im
al
ly

(p
os
it
iv
el
y
or

ne
ga
ti
ve
ly
)
in
flu

en
ci
ng

a
pr
ed
ic
ti
on

;
an

d
ze
ro
,
m
in

d
a
ta
,
m
in

in
p
,
m
ea
n

in
p
,
an

d
N

g
re
fe
r
to

th
e
m
as
ki
ng

co
nt
en
ts

th
at

oc
cl
ud

e
an

in
pu

t
by

us
in
g
th
e
ze
ro

va
lu
e,

m
in
im

um
bi
n
m
ag
ni
tu
de

ac
ro
ss

a
da

ta
se
t,

m
in
im

um
bi
n
m
ag
ni
tu
de

in
an

in
pu

t,
av
er
ag
e

bi
n
m
ag
ni
tu
de

in
an

in
pu

t
an

d,
G
au

ss
ia
n
no

is
e,

re
sp
ec
ti
ve
ly
.

110

2

4

6

8

10

U
n

(a)

2

3

4

5

6

7

8

U
n

(b)

zero mindata mininp meaninp Ng

Masking content

2

4

6

8

10

U
n

(c)

zero mindata mininp meaninp Ng

Masking content

2

3

4

5

6

7

8

U
n

(d)

Figure 4.9: Plots depicting the influence of different masking contents on the
stability of explanations from SLIME for four cases. (a) and (c) depict results for
the temporal explanations from the Jamendo and RWC datasets, respectively.
(b) and (d) depict results for the spectral explanations from the Jamendo and
RWC datasets, respectively. Un represents the number of unique interpretable
components in explanations from applying SLIME five times to the same ex-
cerpt.

demonstrate that except for mindata , the explanations for the other masking
contents across both the datasets have Un distributions similar to those for the
zero masking content. For example, Fig. 4.9 (c) suggests that for the temporal
explanations from RWC, the most likely values for Un are 4 or 3, suggesting
that except for mindata , Ns = 70000 is also an appropriate value for the other
masking contents. Interestingly, the explanations for mindata seem unstable
(have high Un values) for all except the spectral explanations for the RWC case
(Fig. 4.9 (d)). This suggests that Ns = 70000 is not an appropriate value for
this masking content and the unsuitable Ns contributed to the sensitivity of
SLIME to mindata . Moreover, the experiment also demonstrates that for all the
other masking contents, Ns = 70000 is an appropriate value and hence, it does
not contribute to the sensitivity of SLIME explanations to the other masking
contents.

The experiment also analyses the effect of masking contents on SLIME expla-
nations on a large scale to verify whether the conclusions about the sensitivity

111

0

1

2

3
N

ce

(a)

0

1

2

3

N
ce

(b)

mininp meaninp Ng

Masking content

0

1

2

3

N
ce

(c)

mininp meaninp Ng

Masking content

0

1

2

3

N
ce

(d)

Figure 4.10: The violin plots depict the influence of different masking contents
on SLIME explanations for four cases. (a) and (c) depict results for temporal
explanations for the Jamendo and RWC datasets, respectively. (b) and (d)
depict results for the spectral explanations for the Jamendo and RWC datasets,
respectively. Nce refers to the number of common interpretable components
between the explanation with masking content zero and the explanation with
masking content given on the horizontal axis.

of SLIME explanations to the content of synthetic components are valid for
other instances. To do that, the experiment first randomly samples 50 audio
excerpts from each audio file in each dataset, generating subsets with 800 and
1000 audio excerpts from the Jamendo and RWC datasets, respectively. The
experiment then generates temporal and spectral explanations for the SVDNet-
R1 predictions for instances in each subset, highlighting the top-3 interpretable
components (positive or negative) maximally influencing the predictions. More-
over, the experiment generates the explanations for the four masking contents
(zero, mininp , meaninp , Ng) that generated stable explanations for Ns = 70000.
The rest of the settings for executing SLIME are the same as in the experiment
in Section 4.4.1.

Fig. 4.10 depicts the results of the experiment, where subplots (a) and (b)
correspond to the temporal and spectral explanations, respectively, for the Ja-
mendo instances and subplots (c) and (d) correspond to the temporal and spec-
tral explanations, respectively, for the RWC instances. Each plot depicts the

112

distribution of the number of common interpretable components (Nce) between
explanations generated using two different masking contents, one of which is
the reference. This experiment uses the masking content zero as the reference
and thus, for each explanation, the experiment computes how many components
remain the same when SLIME replaces the reference masking content with the
other masking contents (e.g., mininp).

The analysis of the above results provides interesting insights into the be-
haviour of SLIME. For example, the explanations generated using meaninp are
closer to those generated using the reference with low likelihood of no overlap
in explanations, although for the temporal explanations for the Jamendo in-
stances case, there exists a fair likelihood of Nce = 1. On the other hand, the
explanations generated using the other masking contents have comparatively
lower overlap with the explanations using the reference masking content. More-
over, for Ng, the likelihood of no overlap in interpretable components is fairly
high. Overall, the results demonstrate that for both the explanation types and
datasets, the explanations from SLIME are sensitive to the content of synthetic
components. This suggests that selecting an appropriate masking content is cru-
cial for generating reliable predictions from SLIME. The next section discusses a
method that assists in identifying the appropriate masking content using audio
stem files.

4.4.3 Generating reliable explanations

The previous section demonstrated that SLIME explanations are sensitive to
the content of the synthetic components. Thus, the generation of reliable expla-
nations from SLIME requires a careful selection of the content of the synthetic
components. This section proposes to select an appropriate masking content for
the local explanations from SLIME in two steps. Step 1 involves using domain
knowledge to select a list of relevant masking contents, as a content suitable for
one domain or explanation type may not be suitable for the other. For example,
the zero value may be a suitable masking content for an RGB image with pixel
values between 0 (lowest intensity) to 255 (highest intensity), but may not be
suitable for a log-scaled spectrogram with values between −min to +max as it
may make quieter sections louder. Step 2 involves using the ground-truth an-
notations in selecting an appropriate masking content from the list of suitable
contents. For example, for the SVD models in this chapter, the ground-truth
indicates which temporal segments in an input audio contain vocals. SLIME can
use this information to select an appropriate masking content for the temporal
explanations by first generating the temporal explanations using all the suitable
masking contents and then selecting the content that generates the temporal

113

explanations with maximum overlap with the ground-truth. For example, the
ground-truth annotations for an input audio denote that temporal segments 2

and 4 contain the singing voice and the remaining temporal segments (1, 3, and
5) contain non-vocals. An SVD model predicts that this input contains vocals
with a confidence score of 0.95. The temporal explanations from SLIME that
highlight the top-2 super-samples positively influencing the prediction for each
of the three suitable masking contents ‘a’, ‘b’, and ‘c’ are {1, 2}, {2, 4}, and
{3, 5}, respectively. The super-samples are the output of the input segmenta-
tion at the ground-truth boundaries. This suggests that the masking content
‘b’ is appropriate as it generates explanations that completely overlap with the
ground-truth.

This section demonstrates the above method for the temporal explanations
of the predictions of the SVDNet-R1 model. However, instead of using audio ex-
cerpts and the ground-truth annotations from the Jamendo and RWC datasets,
the experiment used synthesised audio excerpts and their corresponding ground-
truth annotations. This approach has two main benefits. First, it allows to
synthesise a large dataset for experimentation which is not possible with the
existing datasets as due to the short duration of the model inputs (around 1.6

secs), the majority of audio excerpts contain either vocals or non-vocals, thus,
are not useful for the experiment. Second, the ground-truth annotations for
the Jamendo and RWC datasets may be noisy and thus, using the synthesised
dataset assists in performing more controlled experimentation.

The experiment generates the synthetic dataset using the ccMixter dataset
that includes a vocal and a non-vocal stem for each of the 50 songs it contains
(see Chapter 2). The dataset synthesis involves first randomly selecting ten
mel-spectrogram excerpts from each stem file corresponding to a song. Each
mel-spectrogram excerpt is around 1.6 seconds. In this experiment, the tem-
poral indices of the selected mel-spectrograms are the same for the vocal and
non-vocal stems. For example, the method extracts a mel-spectrogram excerpt
at time index = 20 seconds both from the vocal and non-vocal stems. Thus,
the method samples ten pairs of mel-spectrograms, where each pair contains
mel-spectrograms belonging to the vocal and non-vocal stems and sampled at
the same time index. The method segments each mel-spectrogram in a pair into
ten temporal segments as in Section 4.4.2. The method randomly selects three
temporal segments from the vocal stem and replaces the corresponding temporal
segments in the non-vocal stem using them. The method repeats this process
four times, generating four mel-spectrograms, where each mel-spectrogram con-
tains seven non-vocal segments and three vocal segments. Thus, for each song
in the dataset, the method generates 40 mel-spectrograms and executing the
method on the whole dataset generates 2000 mel-spectrograms and their anno-

114

0

1

2

3

N
ce

zero mininp meaninp Ng

Masking content

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
ra

tio
n

of
 in

st
an

ce
s

Nce = 0
Nce = 1
Nce = 2
Nce = 3

Figure 4.11: Plots depicting the influence of different masking contents on tem-
poral explanations from SLIME for randomly selected instances from the syn-
thetic dataset. The top plot depicts the distribution of the number of common
interpretable components Nce between the ground-truth explanation and the
temporal explanation generated with the masking content given on the horizon-
tal axis. The bottom plot depicts the proportion of instances (audio excerpts)
for different Nce values corresponding to all the four masking contents.

tations that indicate the temporal segments containing vocals. This experiment
aims to analyse only the true positive instances, i.e., those excerpts that contain
vocals and are correctly predicted by the SVDNet-R1 model. Thus, the final
dataset the experiment uses for selecting an appropriate masking content has
656 excerpts.

The experiment uses SLIME to generate the temporal explanations for the
prediction of each excerpt in the synthetic dataset. The temporal explanations
highlight the top-3 interpretable components that positively influence SVDNet-
R1 predictions. The experiment generates the temporal explanations using the
four masking contents (zero, mininp , meaninp , Ng) that resulted in stable ex-
planations for Ns = 70000. The rest of the arguments for executing SLIME are
the same as in Section 4.4.1. The experiment generates four temporal expla-
nations, one corresponding to each masking content, for each audio excerpt in
the synthetic dataset. The experiment selects an appropriate masking content
by computing the number of common interpretable components (Nce) between
the ground-truth explanations and the temporal explanations for each masking
content.

115

Fig. 4.11 depicts the results of the experiment. Fig. 4.11 (top) depicts the
distribution of Nce corresponding to each masking content. Fig. 4.11 (bottom)
presents the proportion of audio excerpts for each Nce corresponding to each
masking content.

The results provide useful insights into the behaviour of SLIME for differ-
ent masking contents, assisting in the selection of an appropriate content. The
results suggest that for around 34% of the instances, the temporal explanations
corresponding to meaninp completely match the ground-truth. The indices of
the interpretable components in the explanations are the same, however, their
order of occurrence may differ. For the masking contents zero, mininp , and
Ng , this number is 23.9%, 7.16%, and 18.44%, respectively. This suggests that
among all the masking contents used in this experiment, meaninp generates the
most accurate temporal explanations. The accuracy of SLIME seems low even
for the best masking content, however, it is important to note that SLIME
learns explanations using model predictions to the perturbed versions of an in-
put. Thus, less accurate model predictions will result in less accurate SLIME
explanations. In this experiment, the predictions from SVDNet-R1 will be less
accurate for the synthetic instances as the model was not trained on the ccMix-
ter dataset, and thus, the synthetic samples are out-of-distribution samples. An
example of the difference in the training and test distributions is the composi-
tion of the vocal category. In the Jamendo dataset used to train the SVDNetR1
model, the vocal category contains both the vocal and non-vocal sounds, how-
ever, in the synthetic dataset, the vocal category contains only the singing voice.
Thus, using the same data distribution may result in more accurate explanations
from SLIME that completely match the ground-truth.

The results also show that the % of instances with temporal explanations
having at least two interpretable components in common with the ground truth
is 80.79%, 62.65%, 83.68%, and 80.03% for the masking contents zero, mininp ,
meaninp , and Ng , respectively. This suggests that zero, meaninp , and Ng per-
form similarly in reliably identifying at least two interpretable components pos-
itively influencing a prediction. Moreover, the % of instances where SLIME
explanations have no overlap with the ground-truth is very low (< 2%) across
all the masking contents.

The experimental results suggest that among the four masking contents,
meaninp is the most accurate in generating temporal explanations that perfectly
match the ground-truth. This suggests that the SVDNet-R1 model is more
sensitive to the other masking contents [Mittelstadt et al., 2019], and hence, the
hypothesis that occluding input components with the other masking contents
is equivalent to removing the corresponding input components, seems weaker
for those contents. The results further show that except for mininp , temporal

116

explanations generated using the other masking contents have at least two input
components overlapping with the ground-truth for around 80% of instances.

4.5 Summary and conclusion

This chapter proposed SLIME, a local explanation generation method that ex-
tends the applicability of LIME [Ribeiro et al., 2016b] to machine listening.
The chapter highlighted the need for interpretable explanations in analysing
machine listening models and discussed how SLIME generates such explana-
tions using three different interpretable representations (temporal, spectral and
time-frequency) of an input.

The chapter described two experiments that demonstrated the effectiveness
of SLIME in understanding machine listening models. The first experiment
used SLIME to analyse the behaviour of two shallow SVD models. The ex-
periment generated temporal explanations for specific instances from the Ja-
mendo dataset, highlighting super-samples maximally influencing their predic-
tions. The results suggested that the explanations help reveal how the BDT
model is making decisions based on content that does not contain singing voice
despite possessing high classification accuracy for the selected instances. Such is-
sues cast doubt on the generalisability of the model. The results also suggested
that the RF model seems more trustworthy as the super-samples maximally
influencing its predictions for the selected instances contain vocals. The sec-
ond experiment used time-frequency explanations from SLIME to validate the
behaviour of the state-of-the-art deep SVD model. The analysis of the time-
frequency explanations for a specific instance suggested that the model seems
trustworthy. The experiment also compared the time-frequency explanations
from SLIME with saliency maps. The results suggested that there exists a fair
agreement in the explanations from both the methods.

The chapter then described two experiments that analysed the robustness of
SLIME to changes in the values of two input parameters. The first experiment
analysed if the SLIME explanations are sensitive to the number of samples (Ns)
SLIME generates in the interpretable space. The results demonstrated that the
SLIME explanations are unstable for lower values of Ns, however, for the higher
values ofNs, SLIME generates stable explanations. The experiment also demon-
strated that sampling a larger number of synthetic samples will linearly increase
the explanation generation time of SLIME. This suggests that the selection of an
appropriate value for Ns should also consider the explanation generation time
from SLIME.

The second experiment analysed if SLIME explanations are sensitive to how
SLIME occludes inputs to generate synthetic samples. SLIME randomly oc-

117

cludes input components by replacing their content with synthetic content. This
experiment analysed if SLIME needs to carefully select the masking content. To
do this, the experiment analysed the temporal and spectral explanations cor-
responding to four proposed masking contents for instances from two different
datasets. The results suggested that SLIME explanations are sensitive to the
masking content and its careful selection is crucial in generating reliable expla-
nations. This is an important result as it suggests that any explanation method
that uses input occlusion in its explanation generation pipeline may also be
sensitive to the masking content.

Finally, the chapter described a method to use the ground-truth annotations
for selecting an appropriate masking content for temporal explanations from
SLIME. An experiment demonstrated the proposed method for instances from
a synthetic dataset. The results suggested that the average bin magnitude of an
input seemed to be an appropriate masking content for temporal explanations as
it generates explanations having at least two interpretable components matching
with the ground-truth for around 84% of the instances. Thus, the experiments
in this chapter suggest that SLIME is an effective method to analyse the local
behaviour of deep and shallow machine listening models.

It is important to note that this chapter used different models in different
experiments. Specifically, the experiments used the two shallow models for
temporal explanations (Section 4.3.1), SVDNet for time-frequency explanations
(Section 4.3.2) and preliminary analysis of Ns (Section 4.3.3), and SVDNet-
R1 for all the other experiments (section 4.4). This happened mainly due to
differences in the motivations behind the experiments. The experiments in
Sections 4.3.1 and 4.3.2 aimed to demonstrate that SLIME can be used to
verify the behaviour of shallow and deep machine listening models. The deep
model SVDNet-R1 was not used for the experiments in Section 4.3.2 because
the model was unavailable when the experiments were performed. Due to the
discontinuation of the Theano framework in 2017, this Tensorflow-based model
was trained for experiments in Chapter 5 and later used for all the experiments
in Section 4.4.

The analysis of instance-based explanations highlighted some challenges as-
sociated with SLIME (e.g., sensitivity to parameters), hence, all the other ex-
periments focussed on understanding the behaviour of SLIME to changes in
parameters. These experiments used only the deep models as they are complex
and state-of-the-art in SVD. The analysis of the robustness of SLIME to shal-
low models is a part of the proposed future work (see section 7.2). Moreover,
SVDNet-R1 was not used for experiments in Section 4.3.3 due to its unavailabil-
ity and SVDNet was not used for experiments in Section 4.4 as it has the same
architecture and very similar performance (see Chapter 3) to that of SVDNet-

118

R1.

4.6 Reproducibility

The code for all the experiments is open-sourced. The below-mentioned Github
repositories contain the code and parameters to reproduce the thesis results,
and steps to generate new results.

• Experiments in Section 4.3. This includes generating the temporal and
time-frequency explanations for the predictions of the SVDmodels - https:
//github.com/saum25/SoundLIME

• Experiments in Section 4.4. This includes the experiments to analyse
the robustness of SLIME and the synthetic dataset and corresponding
ground-truth annotations to generate reliable predictions using SLIME -
https://github.com/saum25/local_exp_robustness

119

https://github.com/saum25/SoundLIME
https://github.com/saum25/SoundLIME
https://github.com/saum25/local_exp_robustness

Chapter 5

Activation maximisation

This chapter focuses on analysing the global behaviour of machine listening
models. Specifically, this chapter discusses activation maximisation (AM), a
global analysis method that synthesises examples in the input space (e.g., im-
ages, spectrograms) to maximally activate components of a DNN (e.g., a neuron,
a layer). This chapter introduces novel methods for AM and for identifying suit-
able AM hyper-parameters that generate interpretable examples. Moreover, the
chapter demonstrates the effectiveness of the proposed methods by using them
to understand the concepts that two deep SVD models learn in their output
layers.

This chapter consolidates the work from a workshop paper [Mishra et al.,
2019] that proposed to use a generative adversarial network (GAN) [Goodfellow
et al., 2014] as a prior in the AM pipeline and introduced a new metric that
uses the Fréchet inception distance (FID) [Heusel et al., 2017] to select suitable
AM hyper-parameters. The paper demonstrated the proposed methods for a
state-of-the-art deep SVD model (SVDNet-R1, see Section 3.4.5). In addition
to the content from the workshop publication, this chapter includes further
experiments to analyse the global behaviour of the single output layer neuron in
SVDNet-R1. Moreover, the chapter also includes a new section that describes
experiments to apply the proposed AM methods to analyse a deep SVD model
(SVDNet-R2, see Section 3.4.5) that is architecturally similar to SVDNet-R1,
but for its output layer that contains two neurons.

The remainder of this chapter is organised as follows: Section 5.1 discusses
the existing challenges in using AM to understand a DNN and highlights our
contributions that aim to address those challenges. Section 5.2 describes our
proposed methods for performing AM and for automatically selecting suitable
hyper-parameters that assist in the generation of interpretable examples. Sec-
tion 5.3 describes experiments that use the proposed methods to understand the

120

concepts that two deep SVD models learn in their output layer neurons. Section
5.4 describes the results of the experiments. Section 5.5 presents a perceptual
study to analyse some observations from the qualitative analysis in earlier sec-
tions. Section 5.6 summarises the key results and highlights the effectiveness
of the proposed methods in globally understanding DNNs. Finally, Section 5.7
mentions the repositories that host the code, trained models, and synthesised
examples for all the experiments in this chapter.

5.1 Introduction

Chapter 4 introduced SLIME, which helps in understanding the behaviour of
a machine listening model by explaining its predictions. The analysis of model
predictions provides useful insights into model behaviour and helps validate
model trustworthiness. However, the local analysis focuses on why a model takes
a specific decision and provides limited insight into the process by which a model
forms its predictions. The understanding of the functioning and interactions of
model components may assist in improving model performance and in verifying
its trustworthiness [Yosinski et al., 2015, Zeiler and Fergus, 2014].

We can analyse components of a DNN using different methodologies (see
Chapter 2). For example, one can use feature inversion to map latent codes to
the input space highlighting the discriminative information a DNN preserves at
its layers [Dosovitskiy and Brox, 2016a, Mahendran and Vedaldi, 2015]. Chapter
6 describes experiments that use this method to understand a deep machine
listening model. In another direction, one can analyse features that different
components of a DNN are sensitive to. One way to do this is by using data-
driven AM that identifies dataset instances that maximally activate different
components in a DNN [Zhou et al., 2015]. Another way is by using vanilla
AM [Erhan et al., 2009] that iteratively optimises synthetic examples initialised
with random noise in the input space (e.g., images) to maximally activate a
neuron or layer in a DNN. Since vanilla AM is data-independent and tends to
focus more on the explanatory input factors, this chapter will pursue a vanilla
AM-based approach for model analysis. It is important to note that the terms
vanilla AM and data-driven AM do not originate from the literature, however,
to differentiate between the two ways of performing AM, this thesis introduces
these terms.

The interpretability of examples generated by vanilla AM depends on two
key factors: optimisation of hyper-parameters and the prior. Generally, inter-
pretable examples are selected for each neuron by performing a grid search in the
hyper-parameter space and visually inspecting each generated example [Nguyen
et al., 2016a], but this is subjective, prohibitively slow and limits the hyper-

121

parameter search space. Also, such an approach is not scalable to analysing
other DNN neurons that may require different hyper-parameter settings.

The use of priors for vanilla AM restricts the input search space to prevent
generating uninformative, adversarial examples. Researchers have proposed sev-
eral hand-crafted priors for effective vanilla AM, synthesising interpretable im-
ages [Yosinski et al., 2015, Nguyen et al., 2016b, Mahendran and Vedaldi, 2015].
In another direction, [Nguyen et al., 2016a] demonstrated that replacing hand-
crafted priors by a learned prior (adversarially trained feature inverter) con-
siderably improves the interpretability of synthesised images. However, their
approach requires training a separate prior for each layer in the classifier, and
appears to rely on the prior and the classifier model having similar architectures.

This chapter aims to tackle these challenges, making the following contribu-
tions:

• To our knowledge, this chapter is the first to use a GAN for example
generation using vanilla AM. The GAN imposes a strong prior and enables
effective AM for any given part of a classifier and even other classifiers with
the same input domain without re-training the generator. The work by
Nguyen et al. [2017] is closest to the proposed approach, in which the
authors use a denoising autoencoder as a prior on the latent code of the
adversarially trained feature inverter.

• This chapter proposes a quantitative measure estimating the interpretabil-
ity of a set of generated examples by adopting the Fréchet inception dis-
tance [Heusel et al., 2017]. The chapter provides evidence for its effective-
ness by qualitatively analysing the synthesised examples.

• The chapter applies the proposed methods to two machine listening mod-
els. One of the models is a state-of-the-art deep audio classification model
that predicts singing voice activity in music excerpts (this chapter refers to
this model as SVDNet-R1) and the other model is a variant of SVDNet-R1
and has two neurons in its output layer. The experiments generate visual-
isations that successfully capture the concepts represented by the ground
truth labels the models were trained to predict. There have been some
recent works in the global analysis of deep audio classification models, but
they either use a different method [Mishra et al., 2018b] or perform vanilla
AM with hand-crafted priors [Zhang and Duan, 2018].

122

z x fa

Noise Generator Example Classifier Calculate

a∇z

a

Response

∇zpz

pz

Gradient

+

(pre-trained) response(pre-trained)

Figure 5.1: Overview of the proposed approach for performing vanilla activation
maximisation. A noise vector z is used to generate an example x, for which
a response a ∈ R is calculated with a response function fa from all neuron
activations of the classifier. fa can be defined depending on which aspect of the
classifier is of interest; examples include the activation of a certain neuron, or
the average layer activation. z is optimised to maximise the response a, but also
the prior probability pz(z) to favour realistic outputs.

5.2 Method

Figure 5.1 provides an overview of the proposed method for performing vanilla
activation maximisation. For a pre-trained neural network classifier1 fc with
M neurons and input x ∈ Rd, the goal of the method is to synthesise examples
that activate a given neuron activation pattern (“classifier response”). Formally,
the method defines fn(x) ∈ RM as the output activations of all M neurons in
the classifier fc for a given input example x. The classifier response the method
aims to explain can then be defined in a general fashion as the output of some
function fa : RM → R that takes all M neuron activations of the classifier as
input. fa can be set to output the activation of a single neuron, or the average
activation of one or multiple layers, but any differentiable function is supported.

5.2.1 Vanilla activation maximisation

We can perform vanilla activation maximisation to find an input example x̂ ∈ Rd

so that the resulting activation fa(·) is maximised:

x̂ = arg max
x

fa(fn(x)) (5.1)

1The models used for experiments in this chapter are classification models, hence in this
chapter, the terms ‘model’ and ‘classifier’ are used interchangeably.

123

Algorithm 2: Activation maximisation using a GAN as a prior
Input: Pre-trained classifier fc with the all neuron activation function

fn and a response function fa
Input: Pre-trained GAN with generator fg
Input: The number of iterations Nt, the regularisation parameter λ,

Adam hyper-parameters - initial learning rate lr, β1, β2, ε
Output: Maximally activating input x̂

1 Sample a k-dimensional noise vector z ∼ N (0k, Ik);
2 for i ∈ {1, 2, 3,, Nt} do
3 a← fa(fn(fg(z)); // compute classifier response
4 C ← a+ λ log pz(z);
5 z ← Adam(∇zC, z, lr, β1, β2, ε);
6 end for
7 x̂← fg(z);
8 return x̂;

We can optimise the above objective using stochastic gradient descent (SGD)
by backpropagating through the classifier layers (see Chapter 2).

5.2.2 GAN-based prior

Vanilla activation maximisation often produces adversarial examples [Nguyen
et al., 2015], which can be very different from inputs encountered during classi-
fier training and testing, are hard to interpret and do not explain the classifier’s
behaviour for real-world inputs. Furthermore, optimising over the input x di-
rectly is often difficult, especially if the dimensionality d is high [Nguyen et al.,
2016a].

The proposed method makes use of a GAN (for more details, see Goodfellow
et al. [2014] and Section 2.1.3), where a generator fg : Rk → Rd is trained
to map a noise vector z ∈ Rk drawn from a known noise distribution pz to a
generated example x, and optimises

ẑ = arg max
z

(fa(fn(fg(z))) + λ log pz(z)). (5.2)

The weighting term λ ≥ 0 is a hyper-parameter controlling the trade-off between
vanilla activation maximisation and the realism of the generated examples. This
chapter refers to λ as regularisation parameter. Note that the method searches
in the low-dimensional noise space for a vector ẑ whose associated generator
output fg(ẑ) produces a high activation, which avoids optimisation issues. To
encourage realistic outputs, the real data density px should ideally be used in
the form of a prior term log px(fg(z)) in (5.2), but the method does not have
access to px. However, assuming a well-trained generator, the method can use

124

Classifier response fa(·)

P
ro

ba
bi

lit
y

px

p̂x

pg1

pg2

pg3

pg4

Figure 5.2: Intuitive explanation for the proposed metric, showing the distribu-
tions of activations fa(·) obtained for input examples from the dataset (px), of
the dataset examples with the highest N responses fa(·) (p̂x), and of four hypo-
thetical generators, pg1,p

g
4. The proposed metric determines which generator

distribution is most similar to p̂x to ensure realistic examples.

log pz(z) instead, since it should be approximately proportional.
To optimise (5.2) with gradient descent, the method requires pz to be a

continuously differentiable distribution. Note that this does not include the
uniform distribution commonly used for training GANs, for example in [Good-
fellow et al., 2014, Radford et al., 2016, Hjelm et al., 2017]. Algorithm 2 presents
the pseudocode of the proposed activation maximisation method.

5.2.3 Example generation

The previous section 5.2.2 demonstrated how one example is generated by the
proposed approach. To generate a set of N examples, the method draws N ran-
dom noise vectors z̃1, . . . , z̃N independently from pz as initialisation points for
SGD. The resulting examples should be diverse, so converging to the same op-
tima of (5.2) independent of initialisation is undesirable. Therefore the method
sets the SGD learning rate lr as well as the number of update steps Nt as hyper-
parameters, since they control the influence of the initialisation points on the
generated examples and thereby the amount of diversity and randomness.

5.2.4 Hyper-parameter optimisation

To optimise the regularisation parameter λ and optimisation parameters lr as
well as Nt, it would be ideal to have human subjects evaluate the usefulness of
the explanations resulting from different configurations, but this is prohibitively
time-intensive. Here usefulness is used in the context of understanding model
behaviour. In other words, are explanations synthesised by hyper-parameter

125

configurations interpretable so as to help understand the global behaviour of
a model. Therefore, this chapter introduces a metric for quickly evaluating a
set of generated explanations, allowing efficient hyper-parameter optimisation.
The following content explains the reasoning of the proposed method using the
hypothetical example in Figure 5.2. The method posits that good interpretabil-
ity requires the generated examples to have a similar distribution of classifier
responses fa(·) as the N samples with the highest response from the dataset
(p̂x in Figure 5.2). This is because unrealistic adversarial examples (generator
1 in Figure 5.2) often lead to large responses. Also, too much weight on the
GAN prior λ or ineffective optimisation (generator 3) leads to examples that
are realistic, but have too low responses compared to real examples. Addition-
ally, the variance of responses should be similar (making generator 2 the best
according to the proposed metric) to ensure a sufficient degree of diversity in
the generated samples (in contrast to generator 4).

To take the average and the variance of the responses into account, the
proposed method adopts the Fréchet Inception Distance (FID) [Heusel et al.,
2017] as the distance metric (see Section 2.1.3). Since the responses fa for each
example are scalar values, the FID reduces to

d2((µr, σr), (µg, σg)) = (µr − µg)2 + σr + σg − 2(σrσg)
1
2 (5.3)

where µr and µg are the means and σr and σg the unbiased sample variance of
the (one-dimensional) real and the generated response distribution, respectively.

The following section 5.3 will qualitatively investigate whether the metric
proposed above adequately reflects the interpretability of a set of generated
examples.

5.3 Experiments

To analyse the effectiveness of the proposed methods (GAN-based vanilla AM
and automatic selection of suitable hyper-parameters) and to investigate whether
approaches based on vanilla AM can transfer to domains other than computer
vision, this chapter applies the proposed methods to machine listening models.
Specifically, this chapter will consider singing voice detection, a binary classifi-
cation task [Lee et al., 2018] where a classifier predicts whether singing voice is
present in a segment of a music recording (see Chapter 2 and Chapter 3).

126

5.3.1 Choice of machine listening models

This chapter selects a state-of-the-art SVD model introduced by Schlüter and
Grill [2015] for experiments. The model (referred to as SVDNet in this thesis) is
an eight-layer CNN that takes a mel-spectrogram of an audio excerpt of around
1.6s duration as input. Using a single neuron with sigmoid activation in the last
layer, the CNN predicts the probability of singing voice being present at the
centre of the input audio excerpt. Chapter 3 provides the architecture, training
details and performance evaluation of SVDNet.

The experiments apply the proposed methods to a replicated version of SVD-
Net, referred in this thesis as SVDNet-R1. As mentioned in Chapter 3, the
performance of SVDNet-R1 is very similar to the one reported by the authors
for SVDNet. Additionally, the experiments apply the proposed methods to a
variant of SVDNet-R1. The variant (referred to as SVDNet-R2 in this thesis)
has two neurons in the output layer, each corresponding to one of the classifi-
cation categories. The softmax layer transforms the output scores of the two
neurons to the classification probabilities. The rest of the architecture, training
and evaluation procedure for SVDNet-R2 remains the same as for SVDNet-R1.
Chapter 3 mentions the performance of SVDNet-R2 on the Jamendo dataset.
The results suggest that the model performs comparably to SVDNet-R1.

5.3.2 Choice of response function

This chapter focuses on analysing the features that the output layer neurons are
sensitive to in both the machine listening models. Similar research in computer
vision has discovered that such neurons learn high-level concepts representative
of their classification categories [Nguyen et al., 2016a, Zeiler and Fergus, 2014].
Thus, for SVDNet-R1, the experiments generate positive and negative exam-
ples that maximally and minimally excite its output layer neuron, respectively.
Compared to using other definitions of fa, this allows us to directly evaluate the
characteristics of our generated examples, as the positive examples should differ
from the negative ones by the presence of singing voice since the model is known
to be accurate at singing voice detection. Similarly, for SVDNet-R2, the exper-
iment generates examples that maximally activate each neuron in its output
layer and analyses whether examples represent high-level class characteristics.

The initial experiments for the SVDNet-R1 model show that maximising
or minimising the predicted probability (post-sigmoid activation for the output
neuron) converges to 0 or 1 after only very few iterations, leading to vanish-
ing gradients due to saturation of the sigmoid non-linearity, effectively halting
optimisation. This indicates an inherent problem of the classifier and not of
the proposed method, as neural networks are well-known to be prone to mak-

127

Layer Input shape Filter size Stride No. of filters/neurons Output shape

FC 128 - - 5120 5120
ConvT 8 × 5 × 128 5 × 10 2 × 2 64 16 × 10 × 64
ConvT 16 × 10 × 64 5 × 20 2 × 2 32 32 × 20 × 32
ConvT 32 × 20 × 32 5 × 20 2 × 2 16 64 × 40 × 16
ConvT 64 × 40 × 16 5 × 20 2 × 2 8 128 × 80 × 8
Conv 128 × 80 × 8 5 × 5 1 × 1 1 128 × 80 × 1

Table 5.1: The architecture of the GAN generator. Input and output shapes
are ordered as: time × frequency × number of channels. FC, ConvT, and Conv
refer to the fully-connected, transposed convolutional and convolutional layers,
respectively.

ing over-confident predictions [Gal and Ghahramani, 2016]. Moreover, earlier
research has shown that maximally activating softmax outputs results in ex-
amples with poor interpretability [Simonyan et al., 2014]. Thus, for both the
models, the experiments maximise and minimise the pre-sigmoid or pre-softmax
activations of the final layer neurons instead.

5.3.3 GAN training

The experiment uses the free music archive (FMA) dataset [Defferrard et al.,
2017] for training the GAN (see Section 2.1.3). The FMA dataset is a collec-
tion of 106, 574 full-length tracks and metadata, available under the creative
commons license extracted from the free music archive library2. The musical
audio files are stereo, sampled at 44.1 kHz, and encoded using the mp3 stan-
dard. The tracks are from 16, 341 artists and 14, 854 albums and arranged in
a hierarchical taxonomy of 161 genres (16 main genres and 145 sub-genres).
The experiment trains the GAN by using only Pop music pieces (around 18, 000

full-length tracks) to reduce the data complexity and to make the song selection
more similar to the one used for training the machine listening models.

The experiment trains the GAN using mel-spectrogram excerpts of around
1.6 seconds duration. The experiment extracts the excerpts from the audio
tracks of the FMA dataset using the pre-processing steps from training the
SVDNet model (see Section 3.4.1, Chapter 3).

For the GAN generator, the experiment chooses a standard normal likeli-
hood N (z|0n; In) for the continuously differentiable noise term pz(z), with a
dimensionality of n = 128. The generator is a CNN with architecture adapted
from the DCGAN [Radford et al., 2016] and is shown in Table 5.1. Thus, there
are no max-pooling layers, instead, following DCGAN, the generator uses multi-
ple strided transposed convolutions with the same 2× 2 stride. This upsamples
the input by a factor of 2 after each transposed convolutional layer. Moreover,

2https://freemusicarchive.org

128

Layer Input shape Filter size Stride No. of filters/neurons Output shape

Conv 128 × 80 × 1 5 × 80 2 × 2 32 64 × 40 × 32
Conv 64 × 40 × 32 5 × 40 2 × 2 64 32 × 20 × 64
Conv 32 × 20 × 64 5 × 20 2 × 2 128 16 × 10 × 128
Conv 16 × 10 × 128 5 × 10 2 × 2 256 8 × 5 × 256
FC 10240 - - 1 1

Table 5.2: The architecture of the GAN discriminator. Input and output shapes
are ordered as: time × frequency × number of channels. Conv and FC refer to
the convolutional and fully-connected layers, respectively.

similar to the DCGAN generator, the number of feature maps at each layer
decreases by a factor of 2, but the two architectures differ in the number of fea-
ture maps at each layer. Finally, the GAN generator used in this chapter uses
non-uniform filters that differ from the uniform 5×5 filters used by the DCGAN
generator. The transposed convolutional layers, as well as the fully-connected
layer, in the GAN generator, have leaky-ReLU non-linearity with scaling factor
= 0.2 [Mass et al., 2013].

The final convolution layer in the GAN generator outputs a 128 × 80 × 1

tensor, which is cropped evenly at the borders to obtain 115 time frames as
required by the machine listening models. The final convolution employs x →
max(x, log

(
10−7

)
) as activation function to ensure the generated spectrogram

magnitudes are in the same interval range as the mel-spectrograms obtained
from preprocessing real audio samples, where x is the bin magnitude. It is
important to note that the DCGAN generator does not use any convolutional
layer, does not perform any output clipping, and uses the ReLU non-linearity
in all but the last layer where it uses the tanh non-linearity.

The discriminator architecture is again similar to the DCGAN [Radford
et al., 2016] and is shown in Table 5.2. The discriminator makes use of multiple
strided 2D convolutions with 2× 2 stride to process the mel-spectrogram input
of size 115 × 80 × 1. The output is a scalar real value used to distinguish real
from generated samples. The convolutional layers have leaky-ReLU activations
(scaling factor = 0.2) and bias. The fully-connected layer has no bias or activa-
tion function. The number of feature maps at each convolutional layer increases
by a factor of 2. Importantly, the GAN discriminator in this chapter differs from
the DCGAN discriminator in the number of feature maps at each layer and in
the use of non-uniform filters that convolve across the full frequency axis. The
DCGAN discriminator uses uniform 5× 5 filters.

The experiment uses theWGAN-GP (Wasserstein GAN with gradient penalty)
objective for training the GAN as in [Gulrajani et al., 2017], with a gradient
penalty weight of 10 (see Section 2.1.3). The training process uses the Adam
optimiser [Kingma and Ba, 2015] with a learning rate of 10−4 to train the gen-

129

erator and discriminator for 600,000 iterations with a batch size of 16.

5.3.4 AM Optimisation

The vanilla AM approach this chapter proposes involves three hyper-parameters:
the initial learning rate lr, the number of iterations Nt, and the prior weight
(regularisation parameter) λ (see Section 5.2.4). The experiments perform a
grid search over the hyper-parameter space, using lr ∈ {0.1, 0.01, 0.001}, λ ∈
{0.1, 0.01, 0.001} and Nt ∈ {100, 500, 1000}, giving 27 possible settings of the
hyper-parameters. The experiments sample N = 50 noise vectors from the
noise distribution pz, resulting in N = 50 examples along with their respective
activation values fa(·) for each setting of the hyper-parameters after applying
the proposed vanilla AM method.

The experiments also feed mel-spectrogram excerpts extracted from the Ja-
mendo training dataset to the machine listening models and record the activa-
tions of the output layer neurons for each excerpt, and select the top N = 50 ex-
cerpts with maximum activation for each output layer neuron. Thus, the exper-
iments select 50 excerpts and their activations for SVDNet-R1 and 100 excerpts
(50 for each of the output layer neurons) and their activations for SVDNet-R2.
Additionally, for the SVDNet-R1 model, the experiment also records 50 excerpts
and their activations that minimally activate the single output layer neuron. The
experiments generate a new excerpt of 115 consecutive mel-spectrogram frames
for every 50 time frames (around 0.7 seconds) in a recording. To perform GAN-
based vanilla AM, the experiments optimise the objective in Equation 5.2 using
the Adam optimiser with β1 = 0.99, β2 = 0.999 and ε = 10−8.

5.4 Results

This section describes the results of the experiments that aim to analyse the
effectiveness of the proposed techniques by applying them to the two deep
SVD models. For each model, this section first describes results examining the
effectiveness of the hyper-parameter selection method (see Section 5.2.4) and
then uses the best hyper-parameter configuration, and the proposed vanilla AM
method (see Section 5.2.2) to qualitatively analyse features that maximally (or
minimally) activate the output layer neurons in both the models. Importantly,
the qualitative analysis includes auralising the synthesised examples which in
this section is done by the author. Here hyper-parameter configuration refers to
the tuple of the three AM hyper-parameters: initial learning rate, regularisation
parameter (GAN prior weight), and number of iterations. The results will in-
clude discussions about the interpretability of the examples synthesised by the

130

Experiment label Configuration label lr λ Nt FID

Maximise
Cmax

1 0.01 0.001 100 1.654

Cmax
2 0.01 0.1 1000 33.087

Cmax
3 0.1 0.001 1000 1557.733

Minimise
Cmin

1 0.001 0.1 1000 0.541

Cmin
2 0.001 0.1 100 16.086

Cmin
3 0.1 0.001 1000 60533.079

Table 5.3: The best, median, and worst hyper-parameter configurations accord-
ing to the proposed FID-based evaluation metric, computed using activations
of the inputs synthesised to maximally (or minimally) activate the output neu-
ron in SVDNet-R1. For example, Cmax

1 , Cmax
2 , and Cmax

3 represent the best,
median, and worst configurations for the experiment with label “maximise”. lr,
λ, Nt, and FID indicate the initial learning rate, GAN prior weight, number of
optimisation iterations, and the resulting value of the evaluation metric, respec-
tively.

proposed methods. Thus, it is important to understand that in the context of
this thesis an example is interpretable if one can recognise sound(s) or sound
characteristics present in it.

5.4.1 Analysing the output neuron in SVDNet-R1

This section describes the results of the experiments to analyse the SVDNet-
R1 model. Specifically, the experiments aim to understand the features that
maximally and minimally activate the output layer neuron in the model. To do
that, the experiments first identify the best hyper-parameter configurations for
maximising and minimising the pre-sigmoidal activation of the output neuron
and then use the selected configurations to synthesise mel-spectrograms that
maximally (or minimally) activate the output neuron.

5.4.1.1 Hyper-parameter configuration selection

This section discusses the results of two experiments that use the FID-based
evaluation metric to rate different hyper-parameter configurations for maximally
and minimally activating the output neuron in SVDNet-R1. Additionally, the
experiments qualitatively analyse whether the metric reflects the interpretability
of the generated examples.

Experiment 1: Maximising the neuron activation

The first experiment iteratively optimises an ith noise vector z̃i by using the
GAN-based vanilla AM method to maximally activate the output neuron. Thus,

131

Experiment label Seed ainp a1 a2 a3

Maximise

4 1.03 7.94 14.47 64.48
10 2.81 9.26 15.43 77.96
21 −0.86 5.51 12.87 20.19
39 1.14 8.09 11.88 87.60

Minimise

7 −3.74 −8.34 −5.06 −565.74
12 −0.49 −4.94 −2.47 −372.81
30 1.81 −4.83 −2.49 −18.95
49 1.53 −5.86 −3.19 −489.47

Table 5.4: The pre-sigmoidal activations of the output neuron in SVDNet-R1
for each mel-spectrogram in Fig. 5.3 and Fig. 5.4. ainp refers to the activation
value for the initial mel-spectrogram (first output from the GAN). a1, a2, and a3

refer to the activation values for mel-spectrograms synthesised using the best,
median, and worst hyper-parameter configurations, respectively. Seed refers to
the number used to initialise the pseudorandom number generator.

for the set of 50 noise vectors for each hyper-parameter configuration (see Sec-
tion 5.3.4), the experiment synthesises 50 mel-spectrograms (one for each noise
vector) and records their pre-sigmoidal activations. The experiment repeats
the above step for each of the 27 hyper-parameter configurations generating
a distribution of 50 activations for each configuration. The experiment uses
the same distribution of seed values for sampling initial noise vectors for each
hyper-parameter configuration. Additionally, the experiment also records acti-
vations of the top 50 input mel-spectrogram excerpts from the Jamendo training
dataset that maximally activate the output neuron. Finally, the experiment uses
Equation 5.3 to compute the FID between the distribution of activations corre-
sponding to the real data and the distribution of activations corresponding to
each hyper-parameter configuration.

Table 5.3 mentions the best (Cmax
1), the median (Cmax

2), and the worst
(Cmax

3) hyper-parameter configurations and their FID scores out of the 27 hyper-
parameter configurations the experiment analyses. The best hyper-parameter
configuration is the one that generates examples with activation distribution
closest (minimum FID) to the activation distribution from the real data. The
experiment further investigates whether FID reflects the interpretability of the
generated examples. In other words, the experiment analyses whether the exam-
ples synthesised using the best configuration are more interpretable than those
synthesised using the worst configuration.

The experiment investigates the above question by visualising and auralis-
ing mel-spectrograms synthesised using each of three hyper-parameter configu-
rations. Specifically, the experiment first samples four noise vectors z̃1, z̃2, z̃3,
and z̃4, each using a randomly selected seed and then uses the best, median
and worst hyper-parameter configurations corresponding to the experiment la-

132

51
2

10
24

20
48

40
96

Seed=4
 Freq(Hz)

f g
(z

i)
C

m
ax

1
C

m
ax

2
C

m
ax

3

51
2

10
24

20
48

40
96

Seed=10
 Freq(Hz)

51
2

10
24

20
48

40
96

Seed=21
 Freq(Hz)

0
0.

5
1

1.
5

Ti
m

e(
se

c)

51
2

10
24

20
48

40
96

Seed=39
 Freq(Hz)

0
0.

5
1

1.
5

Ti
m

e(
se

c)
0

0.
5

1
1.

5
Ti

m
e(

se
c)

0
0.

5
1

1.
5

Ti
m

e(
se

c)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
ig
ur
e
5.
3:

M
el
-s
pe

ct
ro
gr
am

vi
su
al
is
at
io
ns

de
m
on

st
ra
ti
ng

th
e
eff

ec
ti
ve
ne
ss

of
th
e
pr
op

os
ed

ev
al
ua

ti
on

m
et
ri
c.

E
ac
h
m
el
-s
pe

ct
ro
gr
am

is
no

rm
al
is
ed

in
sc
al
e
in
de
pe

nd
en
tl
y
so

th
at

re
d
co
lo
ur
s
sh
ow

re
la
ti
ve
ly

hi
gh

an
d
bl
ue

co
lo
ur
s
sh
ow

re
la
ti
ve
ly

lo
w

sp
ec
tr
al

en
er
gy
.

T
he

le
ft
m
os
t
co
lu
m
n
sh
ow

s
th
e
fir
st

ou
tp
ut

of
th
e
G
A
N
f g

(z̃
i)

fo
r
fo
ur

in
it
ia
ln

oi
se

ve
ct
or
s
z̃ 1
,z̃

2
,z̃

3
,a

nd
z̃ 4

(o
ne

pe
r
ro
w
),
ea
ch

sa
m
pl
ed

us
in
g

a
di
ffe

re
nt

se
ed
.
T
he

ot
he
rs

sh
ow

th
e
re
su
lt

of
ap

pl
yi
ng

th
e
G
A
N
-b
as
ed

va
ni
lla

A
M

m
et
ho

d
to

m
ax

im
al
ly

ac
ti
va
te

th
e
ou

tp
ut

ne
ur
on

in
SV

D
N
et
-R

1
us
in
g
th
re
e
di
ffe

re
nt

hy
pe

r-
pa

ra
m
et
er

co
nfi

gu
ra
ti
on

s
C
m
a
x

1
,C

m
a
x

2
,
an

d
C
m
a
x

3
th
at

re
pr
es
en
t
th
e
be

st
,
m
ed
ia
n,

an
d
w
or
st

co
nfi

gu
ra
ti
on

fr
om

th
e
se
t
of

27
co
nfi

gu
ra
ti
on

s
ac
co
rd
in
g
to

th
e
ev
al
ua

ti
on

m
et
ri
c,

re
sp
ec
ti
ve
ly
.
Se
ed

re
fe
rs

to
th
e
nu

m
be

r
us
ed

to
in
it
ia
lis
e

th
e
ps
eu
do

ra
nd

om
nu

m
be

r
ge
ne
ra
to
r.

133

bel “maximise” from Table 5.3 to generate mel-spectrograms. Figure 5.3 shows
the results of the experiment. For each noise vector z̃i (a row in the figure), the
figure depicts the first GAN output fg(z̃i) and the synthesised mel-spectrograms
after iteratively maximising the output neuron activation for Nt iterations using
the Cmax

1 , Cmax
2 , and Cmax

3 configurations. Table 5.4, experiment label “max-
imise” reports the pre-sigmoidal activations from the output neuron for each
mel-spectrogram in Fig. 5.3.

To auralise the generated examples, the experiment first maps each mel-
spectrogram to the corresponding magnitude spectrogram using the Moore-
Penrose pseudoinverse of the mel-filterbank matrix [Boucheron and De Leon,
2008] and then uses the Griffin-Lim [Griffin and Lim, 1984] and the inverse
discrete Fourier transform (IDFT) [Müller, 2015] algorithms to synthesise the
corresponding phase spectrogram and to map the resulting complex spectro-
gram to the temporal domain. Appendix B.2 mathematically explains the mel-
spectrogram inversion procedure and discusses its lossy nature. Moreover, the
appendix qualitatively demonstrates that although the inversion procedure in-
volves information loss, the synthesised audio is interpretable.

The qualitative analysis of the generated mel-spectrograms in Fig. 5.3 pro-
vides insights into the behaviour of the proposed AM algorithm and the hyper-
parameter selection method. The results demonstrate that expectedly the AM
algorithm is sensitive to hyper-parameter values as for each seed the synthe-
sised examples have different levels of interpretability and maximally activate
the output neuron to very different activation values. For example, for nearly
all the seeds, the best configuration Cmax

1 generates mel-spectrograms having
more harmonic content and high-frequency energy than the initial GAN outputs.
Moreover, all the examples are interpretable with the bin energy distribution
range similar to that in mel-spectrograms used for training the GAN. The re-
sults for seed = 21 seem to slightly deviate from the above behaviour. However,
it is important to note that fg(z̃21) is noisy and the example synthesised using
Cmax

1 cleans up the noise during optimisation.
The median configuration Cmax

2 provides mixed results. For seeds 4 and
21, it generates interpretable audio with increased harmonic content and high-
frequency energy. However, for the other seeds, the examples from Cmax

2 are
sparser and less realistic than those from Cmax

1 . A plausible explanation for
mixed results from Cmax

2 is that the vocal category in the real distribution
contains both vocals and non-vocals. The presence of vocals increases the output
neuron activation and the presence of non-vocals decreases it. Thus, the top
N activations from the real data do not contain very high activations, which
may happen if the vocal category also contains inputs with only vocals. Thus,
depending on the content in fg(z̃i), the median input will provide different types

134

of results, as for some inputs, there will be more scope for optimisation.
Finally, the results demonstrate that the AM algorithm generates adversarial

examples using the worst configuration Cmax
3 [Nguyen et al., 2015]. Such exam-

ples activate the output neuron to very high values (e.g., the activation value
for seed = 39 is 87.60, see Table 5.4), but are extremely sparse with maximum
energies one order of magnitude greater than those in mel-spectrograms used
for GAN training. The example corresponding to seed 21 is the least adversarial
of all, however, its bin energy distribution range is unrealistic, and its temporal
representation is uninterpretable.

Experiment 2: Minimising the neuron activation

To further validate the effectiveness of the proposed hyper-parameter selection
method, this section repeats the previous experiment, but instead of maximising,
it minimises the activation of the output neuron. Thus, for each of the 27 hyper-
parameter configurations, experiment two synthesises 50 mel-spectrograms by
iteratively minimising the pre-sigmoidal activation of the output neuron. More-
over, the experiment selects the top 50 minimally activating excerpts from the
training dataset. Finally, the experiment computes the FID between the acti-
vation distribution from the real dataset and the activation distribution corre-
sponding to each hyper-parameter configuration. Table 5.3, experiment label
“minimise” reports the best (Cmin

1), median (Cmin
2), and worst (Cmin

3) configu-
rations. The best configuration is the one with the smallest FID, suggesting that
the activation distribution for this configuration is very close to the activation
distribution from the real data, assisting in the generation of realistic examples.

Experiment two further analyses the relation between the FID-based met-
ric and example interpretability by visualising and auralising the synthesised
mel-spectrograms. To do that, the experiment uses the Cmin

1 , Cmin
2 , and Cmin

3

configurations to iteratively optimise four different noise vectors to synthesise
mel-spectrograms (three for each noise vector) that minimally activate the out-
put neuron. Fig. 5.4 depicts the results of the experiment. The visualisations
for each noise vector show the initial GAN output, followed by examples synthe-
sised using the best, median and worst configurations, respectively. Table 5.4,
experiment label “minimise” reports the pre-sigmoidal activations for each mel-
spectrogram in Fig. 5.4.

The results demonstrate that for all the four cases, the worst configura-
tion generates adversarial (unrealistic and uninterpretable) examples that min-
imise the neuron activation to very low values (e.g., for seed 7, the activation is
−565.74), but are extremely sparse with the bin energy distribution two orders
of magnitudes higher than for the mel-spectrograms used for GAN training.

135

51
2

10
24

20
48

40
96

Seed=7
 Freq(Hz)

f g
(z

i)
C

m
in

1
C

m
in

2
C

m
in

3

51
2

10
24

20
48

40
96

Seed=12
 Freq(Hz)

51
2

10
24

20
48

40
96

Seed=30
 Freq(Hz)

0
0.

5
1

1.
5

Ti
m

e(
se

c)

51
2

10
24

20
48

40
96

Seed=49
 Freq(Hz)

0
0.

5
1

1.
5

Ti
m

e(
se

c)
0

0.
5

1
1.

5
Ti

m
e(

se
c)

0
0.

5
1

1.
5

Ti
m

e(
se

c)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
ig
ur
e
5.
4:

M
el
-s
pe

ct
ro
gr
am

vi
su
al
is
at
io
ns

de
m
on

st
ra
ti
ng

th
e
eff

ec
ti
ve
ne
ss

of
th
e
pr
op

os
ed

ev
al
ua

ti
on

m
et
ri
c.

E
ac
h
m
el
-s
pe

ct
ro
gr
am

is
no

rm
al
is
ed

in
sc
al
e
in
de
pe

nd
en
tl
y
so

th
at

re
d
co
lo
ur
s
sh
ow

re
la
ti
ve
ly

hi
gh

an
d
bl
ue

co
lo
ur
s
sh
ow

re
la
ti
ve
ly

lo
w

sp
ec
tr
al

en
er
gy
.

T
he

le
ft
m
os
t
co
lu
m
n
sh
ow

s
th
e
fir
st

ou
tp
ut

of
th
e
G
A
N
f g

(z̃
i)

fo
r
fo
ur

no
is
e
ve
ct
or
s
z̃ 1
,z̃

2
,z̃

3
,
an

d
z̃ 4

(o
ne

pe
r
ro
w
),

ea
ch

sa
m
pl
ed

us
in
g
a

di
ffe

re
nt

se
ed
.
T
he

ot
he
rs

sh
ow

th
e
re
su
lt
of

ap
pl
yi
ng

th
e
G
A
N
-b
as
ed

va
ni
lla

A
M

m
et
ho

d
to

m
in
im

al
ly

ac
ti
va
te

th
e
ou

tp
ut

la
ye
r
ne
ur
on

in
SV

D
N
et
-R

1
us
in
g
th
re
e
di
ffe

re
nt

hy
pe

r-
pa

ra
m
et
er

co
nfi

gu
ra
ti
on

s
C

m
in

1
,C

m
in

2
,
an

d
C

m
in

3
th
at

re
pr
es
en
t
th
e
be

st
,
m
ed
ia
n,

an
d
w
or
st

co
nfi

gu
ra
ti
on

fr
om

th
e
se
t
of

27
co
nfi

gu
ra
ti
on

s
ac
co
rd
in
g
to

th
e
ev
al
ua

ti
on

m
et
ri
c,

re
sp
ec
ti
ve
ly
.
Se
ed

re
fe
rs

to
th
e
nu

m
be

r
us
ed

to
in
it
ia
lis
e

th
e
ps
eu
do

ra
nd

om
nu

m
be

r
ge
ne
ra
to
r.

136

On the other hand, in nearly all the cases, the best configuration generates
realistic examples that minimise the neuron activation to a low value. These
examples contain increased harmonic content and more prominent onsets than
their corresponding first GAN outputs. The median configuration synthesises
interpretable examples that seem quite similar to their corresponding first GAN
outputs. However, all the examples have pre-sigmoidal activations more than
those from the best configuration (see Table 5.4), suggesting Cmin

2 is less suitable
than Cmin

1 .
The results from the two experiments demonstrate that the proposed hyper-

parameter selection method effectively identifies the best and worst hyper-
parameter configurations for AM. Moreover, the results also suggest that in
addition to the best configuration, the proposed method also assists in identi-
fying other suitable configurations that may synthesise interpretable examples
for some noise vectors. Although the experiments demonstrated the proposed
hyper-parameter selection method for GAN-based vanilla AM, the proposed
approach is generic and thus applicable to other vanilla AM approaches.

5.4.1.2 Qualitative analysis of explanations

This section discusses the experiment that aims to understand features that the
output layer neuron in the SVDNet-R1 model captures. To do that, the experi-
ment uses the best configurations from the previous activation maximisation and
minimisation experiments (Cmax

1 and Cmin
1 in Table 5.3), to produce positive

and negative examples for the output layer neuron by maximising and min-
imising its pre-sigmoidal activations, respectively. Since the SVDNet-R1 model
aims to distinguish vocals from non-vocals, the experiment in this section in-
vestigates whether the output layer neuron captures high-level class concepts.
In other words, the experiment analyses whether the positive and negative ex-
amples synthesised using the proposed GAN-based vanilla AM method for the
output layer neuron indicate the presence and absence of vocals, respectively.

Figure 5.5 shows the results of the experiment. Each column in the figure
corresponds to a noise vector z̃i, sampled using a random seed. Each column
shows the initial GAN output (row label fg(z̃i)) and three mel-spectrograms
synthesised using the same noise vector as initialisation point. The examples
corresponding to the row labels “Maximise1” and “Minimise”, maximally and
minimally activate the output neuron using the configurations Cmax1 and Cmin1 ,
respectively. The experiment also generates examples to maximally activate the
output neuron using the median configuration Cmax2 (row label “Maximise2”) as
the previous experiment suggested that in some cases Cmax2 generates more
interpretable examples than Cmax1 (see Section 5.4.1.1).

137

51
2

10
24

20
48

40
96

fg(zi)
 Freq(Hz)

Se
ed

=
2

Se
ed

=
14

Se
ed

=
26

Se
ed

=
44

Se
ed

=
47

51
2

10
24

20
48

40
96

Maximise1
 Freq(Hz)

51
2

10
24

20
48

40
96

Maximise2
 Freq(Hz)

0
0.

5
1

1.
5

Ti
m

e(
se

c)

51
2

10
24

20
48

40
96

Minimise
 Freq(Hz)

0
0.

5
1

1.
5

Ti
m

e(
se

c)
0

0.
5

1
1.

5
Ti

m
e(

se
c)

0
0.

5
1

1.
5

Ti
m

e(
se

c)
0

0.
5

1
1.

5
Ti

m
e(

se
c)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
ig
ur
e
5.
5:

V
is
ua

lis
at
io
ns

de
pi
ct
in
g
m
el
-s
pe

ct
ro
gr
am

s
th
at

m
ax

im
al
ly

or
m
in
im

al
ly

ac
ti
va
te

th
e
ou

tp
ut

ne
ur
on

in
th
e
SV

D
N
et
-R

1
m
od

el
.

E
ac
h

m
el
-s
pe

ct
ro
gr
am

is
no

rm
al
is
ed

in
sc
al
e
in
de
pe

nd
en
tl
y
so

th
at

re
d

co
lo
ur
s
sh
ow

re
la
ti
ve
ly

hi
gh

an
d

bl
ue

co
lo
ur
s
sh
ow

re
la
ti
ve
ly

lo
w

sp
ec
tr
al

en
er
gy
.
T
he

to
p
ro
w

re
pr
es
en
ts

in
it
ia
l
G
A
N

ou
tp
ut
s
f g

(z̃
i)

fo
r
fiv

e
in
it
ia
l
no

is
e
ve
ct
or
s
z̃ 1
,z̃

2
,z̃

3
,z̃

4
,
an

d
z̃ 5
,
ea
ch

sa
m
pl
ed

w
it
h
a
di
ffe

re
nt

se
ed
.
T
he

se
co
nd

an
d
th
ir
d
ro
w
s
re
pr
es
en
t
ex
am

pl
es

sy
nt
he

si
se
d
by

m
ax

im
al
ly

ac
ti
va
ti
ng

th
e
ou

tp
ut

ne
ur
on

us
in
g
th
e

co
nfi

gu
ra
ti
on

s
C

m
a
x

1
an

d
C

m
a
x

2
fr
om

T
ab

le
5.
3.

T
he

la
st

ro
w

de
pi
ct
s
m
el
-s
pe

ct
ro
gr
am

s
sy
nt
he
si
se
d
by

m
in
im

al
ly

ac
ti
va
ti
ng

th
e
ou

tp
ut

ne
ur
on

us
in
g
th
e
co
nfi

gu
ra
ti
on

C
m

in
1

fr
om

T
ab

le
5.
3.

Se
ed

re
fe
rs

to
th
e
nu

m
be

r
us
ed

to
in
it
ia
lis
e
th
e
ps
eu
do

ra
nd

om
nu

m
be

r
ge
ne
ra
to
r.

138

0.0 0.5 1.0 1.5 2.0
normalised energy 1e 4

maximise

minimiseex
am

pl
e

ca
te

go
ry

Figure 5.6: The figure depicts the distribution of normalised energy for fre-
quencies > 4000 Hz for each set of 50 examples that maximally and minimally
activate the single output neuron in SVDNet-R1, respectively.

The visualisations for most of the positive examples depict a stronger pres-
ence of harmonic content, a lack of energy in the very low frequency band below
the human voice range, and few transient sounds such as drum hits (visible
as vertical bars), indicating that the positive explanations indeed have many
characteristics typical of vocal content. In contrast, the negative examples have
stronger transients and more bass frequency content, indicating the successful
generation of instrumental examples. Moreover, all the positive examples ex-
cept those corresponding to seed = 47, depict the presence of energy in higher
frequencies (frequency ≥ 4096), and all the negative examples depict the ab-
sence of energy in those frequencies. This also seems a vocal characteristic as
singing voice may contain fricatives that result in energy in higher frequencies.
This observation is further analysed using a dataset of 100 examples, where 50

examples are synthesised by maximally and minimally activating the output
neuron, respectively. The experiment uses seeds ∈ {0,, 49} and generates
two examples for each seed, one by maximising and the other by minimising the
activation of the output neuron. For each example, the normalised energy in
frequencies > 4000 Hz is computed, where normalisation is done using the global
energy level of the example. Fig. 5.6 presents a plot depicting the distribution
of normalised energy for a set of 50 examples corresponding to each example
category. The plot further supports the earlier observation that maximally acti-
vating examples have comparatively more energy in frequencies > 4000 Hz than
the minimally activating examples.

Interestingly, Chapter 6 discusses very similar results from another experi-
ment that uses feature inversion to analyse input content that the deepest hidden
layer preserves in the SVDNet-R1 model. In addition to visualising the synthe-
sised mel-spectrograms, the experiment also auralises temporal signals obtained

139

mel-spectrogram category a1 a2 a3 a4 a5

fg(z̃i) 1.97 2.40 0.00 −0.28 −0.49
Maximise1 8.21 6.88 7.92 6.32 4.29
Maximise2 17.3 15.99 17.04 12.52 6.53
Minimise −5.08 −5.24 −5.94 −4.94 −7.2

Table 5.5: The pre-sigmoidal activations of the output layer neuron in SVDNet-
R1 for each mel-spectrogram in Fig. 5.5. a1, a2, a3, a4, and a5 refer to activation
values corresponding to mel-spectrograms synthesised using noise vectors sam-
pled with seeds 2, 14, 26, 44, and 47, respectively.

by inverting the mel-spectrograms using the steps mentioned in Appendix B.2.
The listening tests also confirm the presence and absence of vocals in the pos-
itive and negative examples, respectively. It is important to note that these
listening tests are informal listening tests carried out by the author. Section 5.5
presents a perceptual study that further analyses these observations.

The above results demonstrate that the proposed GAN-based vanilla AM
approach can generate effective explanations that provide useful insights into
the concepts acquired by deep machine listening models. Moreover, analysis
of explanations for the output neuron confirms that similar to image classi-
fication models, SVDNet-R1 learns high-level class concepts in that neuron.
Furthermore, Table 5.5 demonstrates that the proposed AM method effectively
optimises the pre-sigmoidal activation of the output layer neuron in all the cases.

5.4.2 Analysing the output neurons in SVDNet-R2

The previous experiment demonstrated that the output neuron in the SVDNet-
R1 model captures high-level class concepts. However, as the single neuron needs
to learn about both the classes, the class representations it learns can be fairly
complex, involving the overlap of different inter-class and intra-class concepts.
Such characteristics may affect the interpretability of examples synthesised us-
ing the AM algorithm. On the other hand, if a neuron learns only about a single
class, the examples AM synthesises for that neuron may be more interpretable
than those for the single neuron model. This section focuses on qualitative
interpretability by visualising and auralising the synthesised examples. It anal-
yses this hypothesis by using the proposed AM method (see Section 5.2.2) to
understand the concepts the output neurons capture in the SVDNet-R2 model.
This model differs from the SVDNet-R1 model in only the number of neurons in
its output layer (see Chapter 3). SVDNet-R2 contains two neurons with indices
0 (non-vocal) and 1 (vocal) in its output layer. Thus, the experiment to anal-
yse SVDNet-R2 uses the proposed AM method to synthesise mel-spectrograms
that maximally activate the pre-softmax activations of each neuron indepen-

140

Neuron index Neuron label Configuration label lr λ Nt FID

0 Non-vocal
CN0

1 0.001 0.1 1000 3.894

CN0
2 0.01 0.1 1000 28.596

CN0
3 0.1 0.001 1000 88626.081

1 Vocal
CN1

1 0.01 0.001 100 8.459

CN1
2 0.01 0.1 1000 233.024

CN1
3 0.1 0.001 1000 26751.636

Table 5.6: The best (CNj
1), median (CNj

2), and worst (CNj
3) hyper-parameter

configurations for maximally activating the neuron with index j in the output
layer of the SVDNet-R2 model. The configurations are selected using the pro-
posed FID-based evaluation metric. lr, λ, Nt, and FID indicate the learning
rate, GAN prior weight, number of optimisation iterations, and the resulting
value of the evaluation metric, respectively.

dently. The experiment first uses the hyper-parameter selection method from
section 5.2.4 to select the best hyper-parameter configuration to perform AM for
each neuron and then uses the selected configurations to synthesise examples.

5.4.2.1 Hyper-parameter configuration selection

This section describes the experiments to select the best hyper-parameter con-
figuration to perform AM for each output layer neuron in SVDNet-R2. To do
that, for each output neuron, the experiment follows the procedure mentioned
in Section 5.3.4. The experiment generates 50 examples for each of the 27 hyper-
parameter configurations. The experiment generates each example by iteratively
optimising a noise vector to maximise the pre-softmax activation of the target
neuron. The experiment uses the same distribution of seeds to sample 50 noise
vectors for each configuration. Additionally, the experiment selects the top 50

mel-spectrogram excerpts from the Jamendo training dataset that maximally
activate the target neuron. Finally, for each neuron, the experiment computes
the FID corresponding to each configuration by using activations from the real
and synthesised examples (for that configuration).

Table 5.6 reports the results of the above experiment for both the output
neurons. For each neuron, the table lists the best, median, and worst config-
urations using the FID-based metric, where the best configuration is the one
with the smallest FID. Interestingly, the best, median, and worst configurations
for the vocal neuron are same as those for maximising the neuron activation
in SVDNet-R1, but with different (comparatively much larger) FID scores (see
Table 5.3). Similarly, the best and worst configurations for the non-vocal neuron
are the same as those for minimising the output neuron activation in SVDNet-
R1, but again with different FID scores.

141

51
2

10
24

20
48

40
96

Seed=12
 Freq(Hz)

f g
(z

i)
C

N
j

1
C

N
j

2
C

N
j

3

51
2

10
24

20
48

40
96

Seed=31
 Freq(Hz)

51
2

10
24

20
48

40
96

Seed=10
 Freq(Hz)

0
0.

5
1

1.
5

Ti
m

e(
se

c)

51
2

10
24

20
48

40
96

Seed=49
 Freq(Hz)

0
0.

5
1

1.
5

Ti
m

e(
se

c)
0

0.
5

1
1.

5
Ti

m
e(

se
c)

0
0.

5
1

1.
5

Ti
m

e(
se

c)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
ig
ur
e
5.
7:

M
el
-s
pe

ct
ro
gr
am

vi
su
al
is
at
io
ns

de
m
on

st
ra
ti
ng

th
e
eff

ec
ti
ve
ne
ss

of
th
e
pr
op

os
ed

ev
al
ua

ti
on

m
et
ri
c.

E
ac
h
m
el
-s
pe

ct
ro
gr
am

is
no

rm
al
is
ed

in
sc
al
e
in
de
pe

nd
en
tl
y
so

th
at

re
d
co
lo
ur
s
sh
ow

re
la
ti
ve
ly

hi
gh

an
d
bl
ue

co
lo
ur
s
sh
ow

re
la
ti
ve
ly

lo
w

sp
ec
tr
al

en
er
gy
.

T
he

le
ft
m
os
t
co
lu
m
n
sh
ow

s
th
e
fir
st

ou
tp
ut

of
th
e
G
A
N
f g

(z̃
i)

fo
r
fo
ur

in
it
ia
ln

oi
se

ve
ct
or
s
z̃ 1
,z̃

2
,z̃

3
,a

nd
z̃ 4

(o
ne

pe
r
ro
w
),
ea
ch

sa
m
pl
ed

us
in
g

a
di
ffe

re
nt

se
ed
.
T
he

ot
he
rs

sh
ow

th
e
re
su
lt

of
ap

pl
yi
ng

th
e
G
A
N
-b
as
ed

va
ni
lla

A
M

m
et
ho

d
to

m
ax

im
al
ly

ac
ti
va
te

th
e
no

n-
vo

ca
l(

in
de
x

=
0)

an
d
vo

ca
l
(i
nd

ex
=

1)
ne
ur
on

s
in

th
e
ou

tp
ut

la
ye
r
of

SV
D
N
et
-R

2
us
in
g
th
re
e
di
ffe

re
nt

hy
pe

r-
pa

ra
m
et
er

co
nfi

gu
ra
ti
on

s
C

N
j

1
,C

N
j

2
,

an
d
C

N
j

3
th
at

re
pr
es
en
t
th
e
be

st
,
m
ed
ia
n,

an
d
w
or
st

co
nfi

gu
ra
ti
on

fr
om

th
e
se
t
of

2
7
co
nfi

gu
ra
ti
on

s
ac
co
rd
in
g
to

th
e
ev
al
ua

ti
on

m
et
ri
c,

re
sp
ec
ti
ve
ly
,
w
he
re
j
in
di
ca
te
s
th
e
ne

ur
on

in
de
x.

T
he

tw
o
to
p
an

d
bo

tt
om

ro
w
s
de
pi
ct

th
e
re
su
lt
s
fo
r
th
e
no

n-
vo

ca
l
an

d
vo

ca
l
ne
ur
on

s,
re
sp
ec
ti
ve
ly
.
Se
ed

re
fe
rs

to
th
e
nu

m
be

r
us
ed

to
in
it
ia
lis
e
th
e
ps
eu
do

ra
nd

om
nu

m
be

r
ge
ne
ra
to
r.

142

Neuron index Neuron label Seed ainp a1 a2 a3

0 Non-vocal 12 1.27 5.83 10.7 384.17
31 −1.53 5.9 16.91 497.06

1 Vocal 10 3.54 14.67 26.1 200.10
49 0.33 24.85 37.5 373.82

Table 5.7: The pre-softmax activations of the non-vocal and vocal neurons in the
output layer of SVDNet-R2 for the corresponding mel-spectrograms in Fig. 5.7.
ainp refers to the activation value for the initial mel-spectrogram (first out-
put from the GAN). a1, a2, and a3 refer to the activation values for the mel-
spectrograms synthesised using the hyper-parameter configurations CNj

1 , CNj
2 ,

and CNj
3 , respectively, where j indicates the neuron index. Seed refers to the

number used to initialise the pseudorandom number generator.

The experiment also test whether the conclusion from the analysis of the
SVDNet-R1 model about the relation between the FID-based metric and ex-
ample interpretability extends to another machine listening model. To do that,
for each neuron, the experiment first samples two noise vectors using two ran-
dom seeds and then uses them and the proposed AM method to generate two
examples that maximally activate the target neuron for each of the three con-
figurations. Fig. 5.7 depicts the results of the experiment. The first two rows
depict the results for the non-vocal neuron and the rest for the vocal neuron.
Each row provides visualisations for the first GAN output and the examples cor-
responding to the best, median and worst configurations for the target neuron.
Table 5.7 reports the pre-softmax activations from the corresponding neuron in
the SVDNet-R2 model for each mel-spectrogram in Fig. 5.7. Additionally, the
experiment also auralises all the temporal signals obtained from inverting all
the mel-spectrograms in Fig. 5.7.

The results demonstrate that the worst configuration for each neuron syn-
thesises adversarial examples that activate neurons to very high values, but are
highly sparse, have unnatural bin energy distributions, and are perceptually
uninterpretable. On the other hand, the best configuration for each neuron
synthesises realistic and perceptually interpretable examples. Finally, the me-
dian configuration for each neuron provides mixed results. For example, for the
non-vocal neuron, the median configuration generates interpretable and unin-
terpretable examples for the seeds 12 and 31, respectively. These results suggest
that the proposed hyper-parameter selection method generalises to SVDNet-R2
and the FID-based metric relates to the interpretability of synthesised examples.

143

512

1024

2048

4096

f g
(z

i)
 F

re
q(

Hz
)

Seed = 2 Seed = 11 Seed = 26 Seed = 41 Seed = 47

512

1024

2048

4096

M
in

im
is

e
 F

re
q(

Hz
)

0 0.5 1 1.5
Time(sec)

512

1024

2048

4096

M
ax

im
is

e
 F

re
q(

Hz
)

0 0.5 1 1.5
Time(sec)

0 0.5 1 1.5
Time(sec)

0 0.5 1 1.5
Time(sec)

0 0.5 1 1.5
Time(sec)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.8: Mel-spectrogram visualisations illustrating the non-vocal concepts
the output layer neurons learn in two deep SVD models. Each mel-spectrogram
is normalised in scale independently so that red colours show relatively high and
blue colours show relatively low spectral energy. The top row represents initial
GAN outputs fg(z̃i) for five noise vectors z̃1, z̃2, z̃3, z̃4, and z̃5, each sampled
using a different seed. The middle row depicts examples synthesised by mini-
mally activating the output neuron in SVDNet-R1 using Cmin

1 from Table 5.3.
The last row depicts mel-spectrograms synthesised by maximally activating the
non-vocal neuron (index = 0) in SVDNet-R2 using CN0

1 from Table 5.6. Seed
refers to the number used to initialise the pseudorandom number generator.

5.4.2.2 Qualitative analysis of examples

This section uses the best hyper-parameter configurations from the previous
experiment to synthesise examples that maximally activate the output layer
neurons in the SVDNet-R2 model. The experiment qualitatively analyses the
synthesised examples to validate if the neurons learn high-level class concepts.
Additionally, the experiment qualitatively compares the interpretability of ex-
amples synthesised for each neuron in the SVDNet-R2 model with corresponding
examples for the SVDNet-R1 model.

To synthesise examples for the SVDNet-R2 model, the experiment samples
five noise vectors for each output neuron by using five randomly selected seeds
(a number between 1 and 50). The experiment uses a different distribution
of seeds for each neuron to expand the qualitative analysis to more examples.
The experiment uses the proposed AM method and the best configurations:
CN0

1 for the non-vocal neuron and CN1
1 for the vocal neuron (see Table 5.6),

to iteratively optimise the noise vectors and generate mel-spectrograms that
maximally activate each output neuron independently.

144

Model Mel-spectrogram category a1 a2 a3 a4 a5

SVDNet-R1 fg(z̃i) 1.97 −3.47 0.00 −0.36 −0.49
Minimise −5.08 −6.1 −5.94 −7.98 −7.2

SVDNet-R2 fg(z̃i) −0.78 2.41 −0.93 −0.17 1.38
Maximise 6.6 16.65 4.85 10.22 7.34

Table 5.8: The pre-sigmoidal and pre-softmax activations of the output layer
neuron in SVDNet-R1 and the output layer non-vocal neuron (index= 0) in
SVDNet-R2, respectively for each mel-spectrogram in Fig. 5.8. a1, a2, a3, a4,
and a5 refer to activation values corresponding to mel-spectrograms synthesised
using noise vectors sampled with seeds 2, 11, 26, 41, and 47, respectively. fg(z̃i)
refers to the first output from the GAN for an initial noise vector z̃i.

Fig. 5.8 and Fig. 5.10 depict the results for the non-vocal and vocal neurons
in the SVDNet-R2 model, respectively. In both the figures, each column depicts
the initial GAN output and the examples corresponding to the SVDNet-R1 and
SVDNet-R2 models, respectively. Additionally, for each mel-spectrogram in
both the figures, Table 5.8 and Table 5.9 mention the activations of the non-vocal
and vocal neurons in the SVDNet-R2 model, respectively. Furthermore, the
experiment auralises the mel-spectrograms by inverting them to the temporal
domain using the inversion steps mentioned in Appendix B.2.

The qualitative analysis of results suggests that the non-vocal and vocal
neurons learn high-level class concepts. For example, all mel-spectrograms cor-
responding to the non-vocal neuron depict the presence of very prominent in-
strumental onsets. On the other hand, all mel-spectrograms corresponding to
the vocal neuron depict the presence of vocal characteristics: high harmonic
content, presence of energy in high-frequency regions, and reduced presence of
instrumental onsets. The results also suggests that the proposed AM method
seems to be useful for the analysis of other machine listening models as the
examples it synthesises for analysing the SVDNet-R2 model are interpretable.

Similar to Section 5.4.1.2, this section presents a further investigation of the
above observation that examples corresponding to the two neurons in SVDNet-
R2 differ in the amount of energy in higher frequencies. To do that, first, 50

examples are synthesised using seeds ∈ {0, ..., 49} and the best configurations for
each neuron. Importantly, for each seed, the experiment generates two examples,
one for each output neuron. Later, for each example, normalised energy is
computed for frequencies > 4000 Hz. Fig. 5.9 presents a plot depicting the
distributions of normalised energy for the sets of examples corresponding to
each neuron. The results further support the earlier observation that examples
corresponding to the vocal and non-vocal neurons differ in the amount of energy
in frequencies > 4000 Hz, with vocal examples having more energy in those
frequencies.

145

0.0 0.2 0.4 0.6 0.8 1.0 1.2
normalised energy 1e 3

vocal

non-vocal

ne
ur

on

Figure 5.9: The figure depicts the distribution of normalised energy for frequen-
cies > 4000 Hz for two sets of 50 examples, each corresponding to one of the
two neurons in the SVDNet-R2 model.

512

1024

2048

4096

f g
(z

i)
 F

re
q(

Hz
)

Seed = 4 Seed = 14 Seed = 16 Seed = 31 Seed = 44

512

1024

2048

4096

M
ax

im
is

e1

 F
re

q(
Hz

)

0 0.5 1 1.5
Time(sec)

512

1024

2048

4096

M
ax

im
is

e2

 F
re

q(
Hz

)

0 0.5 1 1.5
Time(sec)

0 0.5 1 1.5
Time(sec)

0 0.5 1 1.5
Time(sec)

0 0.5 1 1.5
Time(sec)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.10: Mel-spectrogram visualisations illustrating the vocal concepts the
output layer neurons learn in two deep SVD models. Each mel-spectrogram is
normalised in scale independently so that red colours show relatively high and
blue colours show relatively low spectral energy. The top row represents initial
GAN outputs fg(z̃i) for five noise vectors z̃1, z̃2, z̃3, z̃4, and z̃5, each sampled us-
ing a different seed. The middle row depicts examples synthesised by maximally
activating the output layer neuron in SVDNet-R1 using Cmax

1 from Table 5.3.
The last row depicts mel-spectrograms synthesised by maximally activating the
vocal output neuron (index = 1) in SVDNet-R2 using CN1

1 from Table 5.6. Seed
refers to the number used to initialise the pseudorandom number generator.

The experiment also (qualitatively) compares the five mel-spectrograms for
the non-vocal neuron in SVDNet-R2 (see Fig. 5.8) with corresponding mel-
spectrograms that minimally activate the output neuron activation in SVDNet-

146

Model Mel-spectrogram category a1 a2 a3 a4 a5

SVDNet-R1 fg(z̃i) 1.03 2.40 2.63 2.03 −0.28
Maximise 7.94 6.88 8.27 9.07 6.32

SVDNet-R2 fg(z̃i) 0.98 1.14 2.30 1.30 −0.04
Maximise 18.14 17.78 12.92 12.13 11.99

Table 5.9: The pre-sigmoidal and pre-softmax activations of the output layer
neuron in SVDNet-R1 and the output layer vocal neuron (index= 1) in SVDNet-
R2, respectively for each mel-spectrogram in Fig. 5.10. a1, a2, a3, a4, and a5 refer
to activation values corresponding to mel-spectrograms synthesised using noise
vectors sampled with seeds 4, 14, 16, 31, and 44, respectively. fg(z̃i) refers to the
first output from the GAN for an initial noise vector z̃i.

R1. Similarly, the experiment compares the five mel-spectrograms for the vocal
neuron in SVDNet-R2 (see Fig. 5.10) with corresponding mel-spectrograms that
maximally activate the output neuron activation in SVDNet-R1. To synthesise
examples for the SVDNet-R1 model, the experiment optimises the noise vec-
tors used for the SVDNet-R2 model by using the best maximisation Cmax

1 and
minimisation Cmin

1 configurations. The comparison of examples from the two
models assists in understanding if using one neuron to learn high-level concepts
corresponding to each class assists in synthesising more interpretable examples.
The experiment hypothesises that using one neuron per class to learn high-level
concepts corresponding to the class may assist the neuron in learning inter-
pretable representations as it needs to focus only on intra-class concepts. The
examples AM synthesises for an output neuron, to gain an insight into how the
neuron represents a class, aims to capture such representations. This suggests
that learning of interpretable class representations by an output neuron may as-
sist in synthesising interpretable examples that may provide more insights into
the invariances and intra-class concepts the neuron learns from data.

Fig. 5.8 and Fig. 5.10 provide visualisations depicting the synthesised mel-
spectrograms for each deep SVD model. Table 5.8 and Table 5.9 mention the
activations for each mel-spectrogram in the two figures. The results of the
comparison between examples for the non-vocal neuron in SVDNet-R2 and ex-
amples that minimise the output neuron activation in SVDNet-R1 suggest that
for seeds 2, 26, 41 and 47 the examples from both the models have nearly the
same characteristics, which seems due to the use of the same hyper-parameter
configurations and noise vectors. However, for some cases, the examples from
SVDNet-R2 seem a more refined version of examples from SVDNet-R1. For
instance, the examples corresponding to seeds 2, 26, and 47 visually differ in
the amount of energy in lower frequencies. Specifically, the normalised energies
(for frequencies < 250 Hz) for the three examples are 0.005, 0.002, 0.006 and
0.006, 0.004, 0.007 for the SVDNet-R2 and SVDNet-R1 models, respectively.

147

However, auralisation of those examples does not highlight major differences.
In some cases, it suggests that the examples from SVDNet-R2 are slightly less
noisy (more interpretable) than examples from SVDNet-R1, but overall, all the
examples have clear instrumental onsets and (pair-wise) perceptually sound very
similar. Interestingly, for seed 11, the example from the SVDNet-R2 model is
comparatively less interpretable to that from the SVDNet-R1 model. The au-
ralisation of the inverted mel-spectrogram corresponding to seed 11 and the
SVDNet-R1 model suggests the presence of multiple instrumental (drum) on-
sets, but the inverted mel-spectrogram corresponding to the SVDNet-R2 model
is harder to interpret. Thus, the previous results suggest that although some
examples from SVDNet-R2 are slightly less noisy than the corresponding ex-
amples from SVDNet-R1, overall the output neuron in SVDNet-R1 can learn
class representations that are similar to those learnt by the non-vocal neuron in
SVDNet-R2.

The experiment further compares the examples synthesised for the vocal
neuron in SVDNet-R2 and examples synthesised to maximally activate the out-
put neuron in SVDNet-R1. The examples synthesised for both the models have
(pair-wise) similar characteristics which again seems to be the influence of us-
ing the same hyper-parameter configurations and noise vectors. However, the
results also highlight some differences in explanations from the two models. For
example, for seeds 4, 14 and 44, the examples from the SVDNet-R2 model are
less noisy versions (have more interpretable vocal content) of the examples from
the SVDNet-R1 model. Moreover, for these seeds, the change in activation
value (final example activation - initial GAN activation) for the SVDNet-R2
model is at least two times higher than for the SVDNet-R1 model suggesting
that SVDNet-R2 can optimise the noise vectors for these seeds much more than
SVDNet-R1. However, overall the differences between the examples from the
two models are not very prominent, suggesting that the output neuron in the
SVDNet-R1 model can learn class representations that are fairly similar to those
learnt by the vocal neuron in the SVDNet-R2 model. Thus, the results from the
example comparison experiment suggest that despite the challenges of learn-
ing inter-class and intra-class concepts, the examples synthesised using AM for
maximising and minimising the single neuron in SVDNet-R1 model are quite
similar in interpretability to those for the SVDNet-R2 model.

5.5 Perceptual study

This section presents a perceptual study that aims to analyse two observations
from the qualitative analysis experiments in Sections 5.4.1.2 and 5.4.2.2. The
section first introduces the goal of the study (Section 5.5.1), then, it describes

148

the design of the study (Section 5.5.2), and finally, it presents the results of the
study and highlights the key conclusions (Section 5.5.3). All participant data is
kept private and secured safely and the study is approved by the Queen Mary
Ethics of Research Committee (Ref: QMERC2447).

5.5.1 Goal

The perceptual study aims to investigate the three questions mentioned below

• Q1: Is the audio synthesised for maximally activating the SVDNet-R1
output neuron less intelligible than the audio synthesised for maximally
activating the vocal output neuron in SVDNet-R2? An audio example
is intelligible if one can recognise sound(s)/sound characteristics present
in it. Additionally, this question is investigated for the non-vocal output
neuron in SVDNet-R2. It is important to note that the study used the
term “intelligible” instead of “interpretable” although with the same defi-
nitions as the former is an established term in the literature, referring to
comprehending audio signals (e.g., speech) [Rennies and Schepker, 2014].

• Q2: Is the output neuron in SVDNet-R1 maximally and minimally acti-
vated by audio containing sound characteristics representative of singing
voice and instrumental music, respectively?

• Q3: Do the proposed AM and hyper-parameter selection methods syn-
thesise “intelligible” audio? Importantly, in this work, the recognition of
sound(s) or their characteristics is agnostic to whether they are natural
or synthetic. For example, a listener should recognise a sound as singing
voice irrespective of whether it sounds natural or synthetic.

5.5.2 Perceptual study design

The perceptual study design involves three key components - a participant ques-
tionnaire, two listening tests, and audio stimuli.

5.5.2.1 Participant questionnaire

Before starting the listening tests, each participant read an information sheet
and provided their consent for participation. Additionally, all participants filled
a questionnaire consisting of six questions that collected information regarding
their age, gender, whether they have any form of hearing impairment, are they
using headphones for the tests, do they have a musical background, and do
they have a machine learning background. The last four questions are yes or
no questions and for the last two questions, the participants were presented

149

Figure 5.11: The figure depicts the last four yes/no questions in the participant
questionnaire.

with definitions for each choice. Fig. 5.11 presents the last four questions in the
questionnaire.

5.5.2.2 Listening tests

The study was conducted online using Gorilla experiment builder3. To partic-
ipate in the study, all participants needed to have access to a computer with
Chrome or Firefox browsers, a decent bandwidth internet and were strongly rec-
ommended to use an earphone/headphone in a quiet environment. The study
involved two listening tests, each around 5− 10 mins and the participants were
encouraged to participate in both the tests. Each test involved listening to sev-
eral audio stimuli (examples) and answering the corresponding questions. Each
audio stimulus was around 1.6 secs and the participants were allowed to listen
to them as many times as they wanted.

Listening test 1 (LT1): This test aimed to answer the first question in
Section 5.5.1. The test presented each participant with ten pairs of audio ex-
amples, each pair containing examples synthesised by performing AM, starting
from the same random seed, with each of the two SVD models. The first five
and the last five pairs of excerpts correspond to the vocal and non-vocal neu-
rons, respectively. Additionally, the test included three pairs of anchors, each

3https://gorilla.sc

150

Figure 5.12: The figure depicts the user interface for listening test 1. Each audio
excerpt corresponds to one of the two SVD models.

containing the same white noise, real vocals, and real non-vocals in both the
excerpts, respectively. Anchors were added to help identify and ignore responses
from participants providing random responses. Thus, in LT1, each participant
listened to 26 (13 pairs of) audio examples, 20 synthetic from AM and 6 real.
The test presented example pairs randomly to the participants. For each pair,
a participant first listened to the two examples and then answered a question
comparing their intelligibility. Fig. 5.12 depicts the user interface for LT1

Listening test 2 (LT2): This test aimed to answer the last two questions in
Section 5.5.1. LT2 required each participant to listen to thirteen audio examples,
ten synthesised using the AM method and three anchors. As in LT1, the three
anchors are white noise, real vocal, and real non-vocal examples, respectively.
In the ten synthetic examples, five maximally activated and the remaining five
minimally activated the output neuron in SVDNet-R1. The examples were
presented one by one, randomly to each participant who answered two questions
for each example. Fig. 5.13 depicts the user interface for LT2.

5.5.2.3 Audio stimuli

The listening tests used two types of audio stimuli - synthesised using AM
and anchors. Specifically, in LT1, examples in each vocal pair were generated
by maximally activating the output neuron and vocal neuron in SVDNet-R1
and SVDNet-R2, respectively. Similarly, examples in each non-vocal pair were
generated by minimally activating the output neuron and maximally activating
the non-vocal neuron in SVDNet-R1 and SVDNet-R2, respectively. Moreover,

151

Figure 5.13: The figure presents the user interface for listening test 2.

in LT1, the ten seeds and hyper-parameters for the AM method are the same as
used in 5.4.2.2. This would help in analysing the observations in that section.

In LT2, the ten synthetic examples were generated by maximally and mini-
mally activating the output neuron in SVDNet-R1 using the five seeds and the
best hyper-parameter configurations from Section 5.4.1.2.

Additionally, each listening test used three anchors - a real vocal, a real
non-vocal, and a white noise example. The vocal and non-vocal examples are
sampled from “03- Say Me Good Bye.mp3” in the Jamendo test dataset and the
white noise example was generated using Audacity4. Both the tests used the
same anchors.

5.5.3 Results

This section presents statistics about the participants and analysis of their re-
sponses to the questions in Section 5.5.1.

5.5.3.1 Participants

The perceptual study was open for participation for around three weeks and
during that time 74 people consented to participate. Out of the people who
consented, 30 participants completed the questionnaire and both the listening
tests. This study uses the responses of only these participants. Moreover,

4https://www.audacityteam.org

152

out of these 30 participants, five reported to not use earphones/headphones
for the tests. To perform a controlled analysis, the responses from these five
participants are not used in further analysis. This also includes a participant
who reported hearing impairment and not using headphones. Additionally, the
responses from two more participants are not used in further analysis as they
responded incorrectly to some of the anchors.

Thus, the analysis of participant responses reported in following sections
uses data from 23 participants (18 males and 5 females) with median and mean
ages 29.0 years and 30.4 (±6.7) years, respectively. All 23 participants reported
possessing some knowledge of machine learning. Importantly, four participants
reported to not possess any musical background, however, as the listening tests
mostly required knowledge of high-level and well-known musical concepts (e.g.,
vocals, non-vocals), the responses from these participants are used in further
analysis.

5.5.3.2 Analysis of responses for listening test 1

This section presents the analysis of LT1 responses that compared the intelli-
gibility of synthetic examples corresponding to the two SVD models. Fig. 5.12
presents the three available choices for each question, Fig. 5.14 depicts the dis-
tribution of responses for each pair with examples synthesised using the seeds
mentioned on the horizontal axis and Table 5.10 presents the average number
of responses for each choice. There are 23 responses (one from each partici-
pant) for each pair. The examples in a pair in Plot (A) maximally activate
the output and vocal neurons in SVDNet-R1 and SVDNet-R2, respectively.
The examples in a pair in Plot (B) minimally and maximally activate the out-
put and non-vocal neurons in SVDNet-R1 and SVDNet-R2, respectively. Sec-
tions 5.4.1.2 and 5.4.2.2 suggested that the examples in plots (A) and (B) contain
sound(s)/sound characteristics representative of vocals and non-vocals, respec-
tively. Table 5.10 denotes them as vocal and non-vocal examples, respectively.

The results show that on average more participants selected choice 3 that
refers to both examples in a pair having similar intelligibility level. Moreover,
the Fleiss’s Kappa coefficient, that measures the level of agreement between
different participants, computed for all the responses across all the examples is
0.23, suggesting a fair agreement between the participants [Fleiss, 1971, Landis
and Koch, 1977].

The analysis of response distributions for the vocal and non-vocal examples
provides further insights. For the vocal and non-vocal examples, on average,
choice 3 and choice 1 recorded the most number of responses, respectively. Thus,
the results suggest that there exists a fair agreement that the examples synthe-

153

4 14 16 31 44
Random seed

0

5

10

15

20

25

30
Re

sp
on

se
s

(A)
Choice 1
Choice 2
Choice 3

2 11 26 41 47
Random seed

0

5

10

15

20

25

30
(B)

Choice 1
Choice 2
Choice 3

Figure 5.14: The figure depicts response distributions for the first listening test
for ten example pairs synthesised using seeds mentioned on the horizontal axis.
Plot (A) corresponds to pairs with examples maximally activating the output
neuron and the vocal neuron in SVDNet-R1 and SVDNet-R2, respectively. Plot
(B) corresponds to pairs with examples minimally activating the output neuron
and maximally activating the non-vocal neuron in SVDNet-R1 and SVDNet-R2,
respectively. The labels ‘choice 1’, ‘choice 2’, and ‘choice 3’ refer to the three
choices available for each question and they refer to example 1 in a pair being
more, less, or similarly intelligible as compared to example 2, respectively.

Choice 1 Choice 2 Choice 3

All examples 6.6(±7.2) 5.8(±3.9) 10.6(±5.8)

Vocal examples 1.2(±1.3) 7.4(±4.9) 14.4(±4.2)

Non-vocal examples 12.0(±6.4) 4.2(±1.9) 6.8(±4.7)

Table 5.10: The table presents the average number of responses for each of the
three choices in the listening test 1. The vocal and non-vocal examples repre-
sent synthetic examples with vocal and non-vocal sound characteristics. The
numbers within the brackets represent standard deviation. The labels ‘choice
1’, ‘choice 2’, and ‘choice 3’ refer to the three choices available for each question
and they refer to example 1 in a pair being more, less, or similarly intelligible
as compared to example 2, respectively.

sised for the single output neuron in SVDNet-R1 are at least as intelligible as
the examples synthesised for the two output neurons in SVDNet-R2.

5.5.3.3 Analysis of responses for listening test 2

LT2 required the participants to listen to thirteen examples and answer two
questions for each one of them. This section presents an analysis of the responses
for each of the two questions.

154

Ex
am

ple
 1

Ex
am

ple
 2

Ex
am

ple
 3

Ex
am

ple
 4

Ex
am

ple
 5

Maximally activating examples

0

5

10

15

20

25

30
Re

sp
on

se
s

(A)
Choice 1
Choice 2
Choice 3
Choice 4

Ex
am

ple
 1

Ex
am

ple
 2

Ex
am

ple
 3

Ex
am

ple
 4

Ex
am

ple
 5

Minimally activating examples

0

5

10

15

20

25

30
(B)

Choice 1
Choice 2
Choice 3
Choice 4

Figure 5.15: The figure depicts the distribution of the responses from the par-
ticipants for the first question in the second listening test. Plots (A) and (B)
present the response distributions for five examples that maximally and mini-
mally activate the output neuron in SVDNet-R1, respectively. The labels ‘choice
1’, ‘choice 2’, ‘choice 3’, and ‘choice 4’ refer to the four choices available for the
first question and they refer to an example containing sound characteristics rep-
resentative of vocals but not non-vocals, non-vocals but not vocals, both, and
none, respectively.

Choice 1 Choice 2 Choice 3 Choice 4

Maximally activating examples 12.0(±7.3) 3.8(±6.8) 6.2(±2.3) 1.0(±0.7)

Minimally activating examples 0.6(±1.3) 17.4(±7.1) 2.2(±3.8) 2.8(±3.1)

Table 5.11: The table presents the average number of responses for each of the
four choices across the two example categories. The maximally and minimally
activating examples represent synthetic examples that maximise and minimise
the output neuron activation in SVDNet-R1, respectively. The numbers within
the brackets represent standard deviation. The labels ‘choice 1’, ‘choice 2’,
‘choice 3’, and ‘choice 4’ refer to the four choices available for the first question
and they refer to an example containing sound characteristics representative of
vocals but not non-vocals, non-vocals but not vocals, both, and none, respec-
tively.

Question 1 aimed to understand whether examples that maximally or min-
imally activate the output neuron in SVDNet-R1 contain sound characteris-
tics corresponding to the vocals and non-vocals, respectively. The participants
needed to select one out of the four available choices (see Fig. 5.13). Fig. 5.15
presents the distribution of responses for each of the ten synthetic examples and
Table 5.11 presents the average number of responses for each choice across the

155

Ex
am

ple
 1

Ex
am

ple
 2

Ex
am

ple
 3

Ex
am

ple
 4

Ex
am

ple
 5

Maximally activating examples

0

5

10

15

20

25

30

35
Re

sp
on

se
s

(A)
Highly intelligible
Fairly intelligible
Neutral
Fairly unintelligible
Highly unintelligible

Ex
am

ple
 1

Ex
am

ple
 2

Ex
am

ple
 3

Ex
am

ple
 4

Ex
am

ple
 5

Minimally activating examples

0

5

10

15

20

25

30

35
(B)

Highly intelligible
Fairly intelligible
Neutral
Fairly unintelligible
Highly unintelligible

Figure 5.16: The figure depicts the distribution of the responses from the par-
ticipants for the second question in the second listening test. Plots (A) and
(B) present the response distributions for five examples that maximally and
minimally activate the output neuron in SVDNet-R1, respectively.

two example categories - maximally activating examples and minimally activat-
ing examples.

The results show that on average the participants selected choices 1 and 2 the
most for the maximally and minimally activating examples, respectively. This
further supports the observation in Section 5.4.1.2 that examples maximally and
minimally activating the output neuron in SVDNet-R1 contain sound charac-
teristics representative of vocals and non-vocals, respectively. It is important to
note that both choices 1 and 3 correspond to the presence of vocals, thus, on
average the number of participants that identified maximally activating exam-
ples to contain vocal characteristics is even higher. Interestingly, despite most
of the training excerpts containing vocals in the presence of instrumental music,
the selection of choice 1 in nearly half of the responses suggests that the neuron
has learned some representation of only vocals.

The Fleiss’s Kappa coefficients corresponding to the responses for the max-
imally and minimally activating examples are 0.22 and 0.25, respectively, sug-
gesting fair agreement between the participants. However, if the responses for
choices 1 and 3 are combined as they both refer to vocal characteristics, then the
Kappa value is 0.65 and 0.57 for the maximally and minimally activating exam-
ples, respectively, suggesting that the participants have a borderline substantial
agreement.

Question 2 aimed to understand how intelligible examples synthesised

156

High
ly i

nte
llig

ible

Fai
rly

 in
tel

ligi
ble

Neu
tra

l

Fai
rly

 un
int

elli
gib

le

High
ly u

nin
tel

ligi
ble

0

2

4

6

8

10

12

Nu
m

be
r o

f r
es

po
ns

es

all examples
maximally activating examples
minimally activating examples

Figure 5.17: The figure depicts the average number of participant responses
for each of the five choices mentioned on the horizontal axis. The error bars
represent standard deviation.

by the proposed AM method are. Thus, the participants were asked to rate
the intelligibility of each of the ten examples from above on a five-point Lik-
ert scale [Likert, 1932] from “Highly intelligible” to “Highly unintelligible” (see
Fig. 5.13). Fig. 5.16 plots the response distribution across all the examples and
Fig. 5.17 plots the average number of responses for each of the five choices.

The results show that on average the participants found the examples to be
fairly unintelligible, suggesting that in each example they were able to recognise
very few sounds and have low confidence in their answer for question 1. Impor-
tantly, there exists variability in participant responses across different examples.
This can be understood from the response distributions of the minimally acti-
vating examples 4 and 5 in Fig. 5.16 where the choices highly unintelligible and
fairly intelligible received the most number of responses, respectively. More-
over, even for the same example, there seems a very low agreement between the
participants. For example, in the maximally activating example 2, the num-
ber of responses for the choices neutral and fairly unintelligible are quite close.
The lack of agreement between the participants becomes further evident by the
Kappa coefficient values −0.03, 0.06, and 0.03 for the maximally activating,
minimally activating, and all the examples, respectively, suggesting borderline
poor agreement. Thus, further analysis would be required to better understand
the reasons behind poor agreement between the participants for rating the in-
telligibility of the synthetic examples.

157

5.6 Summary and conclusion

This chapter discussed a method to analyse the global behaviour of DNNs.
Specifically, the chapter discussed vanilla AM, a method to synthesise examples
in the input space by iteratively optimising noise to maximally activate the
activations of DNN components (layers, neurons). The chapter presented a
new method for AM that uses a GAN as a regulariser in the AM pipeline
that aims to keep the synthesised examples realistic. The proposed method
performs optimisation in the latent space of the GAN to select a latent code
whose corresponding example from the GAN maximally activates the DNN
components.

The chapter also proposed a novel method for quantitatively selecting suit-
able hyper-parameter settings for AM. The method uses the FID score as a
metric for automatically evaluating the usefulness of a set of generated expla-
nations. The FID measures the distance between the activation distribution
of a set of synthetic examples (from AM) corresponding to a hyper-parameter
configuration and the activation distribution of a set of real examples. A lower
value of the FID suggests that the two distributions are similar.

The chapter discussed experiments to analyse the effectiveness of the pro-
posed methods. The experiments applied the methods to understand the con-
cepts the output layer neurons encode in two pre-trained deep SVD models.
The first SVD model is a state-of-the-art DNN with a single sigmoidal output
neuron, while the second SVD model is architecturally similar to the first model,
but for its output layer that has two neurons followed by a softmax layer.

The experiments first applied the proposed methods to synthesise exam-
ples (mel-spectrograms) that maximally and minimally activate the output
layer neuron in the first SVD model. To do that, the experiments first vali-
dated whether the hyper-parameter selection method helps in identifying suit-
able hyper-parameter configurations for AM. The qualitative analysis of the
results for 27 configurations suggests that the FID score can effectively rank
the configurations in the order of the interpretability of the examples they syn-
thesise. Specifically, the results suggested that the method effectively identifies
unsuitable configurations that may generate adversarial examples and suitable
configurations that are likely to synthesise realistic examples. The results also
suggest that some configurations (with smaller FID and close to the best config-
uration) may synthesise interpretable examples for some noise vectors. Thus,
in addition to selecting the best configuration, it may be helpful to select some
other configurations close to the best configuration, but even then the proposed
method drastically reduces the hyper-parameter search space.

The chapter further discussed experiments that use the best configurations

158

from the above experiment to synthesise examples that maximally and mini-
mally activate the single neuron in the first model. The analysis of the results
suggests that similar to image classification models, the neuron in SVDNet-R1
is able to capture high-level class concepts. Specifically, examples synthesised to
maximise the activation of the output neuron depict the presence of vocal char-
acteristics (e.g., highly harmonic) and the examples synthesised to minimise the
output neuron activation depict the presence of non-vocal characteristics (e.g.,
instrumental onsets).

The chapter also described experiments that apply the proposed methods
for hyper-parameter configuration selection and AM to the second deep SVD
model (SVDNet-R2) to test if the methods generalise to the new model that
is 1.1% less accurate than the first model. The experiments first analysed if
the FID score reflects the interpretability of a set of synthesised examples and
then used the best configuration corresponding to an output neuron to synthe-
sise examples that maximally activate its pre-softmax activation. The results
suggest that both the proposed methods generalise well to the new model. The
hyper-parameter selection method effectively identifies the best and worst con-
figurations for both the output neurons. Moreover, the analysis of the exam-
ples that the AM method synthesises suggests that each output neuron learns
high-level class concepts. Importantly, the two SVD models differ minimally
in their architectures, thus, further experiments with models with different ar-
chitectures would be required to better understand the generalisability of the
proposed methods.

The chapter discussed experiments that analysed if examples synthesised for
the second model are more interpretable than the examples synthesised for the
first model. To do that, the experiment qualitatively compared the synthesised
mel-spectrograms for an output neuron in the second model with the synthe-
sised mel-spectrograms for the corresponding setting (minimise or maximise) of
the output neuron in the first model. The analysis of results suggests that as
compared to the examples from the first model, some examples from the second
model visually seem more refined with important input characteristics (onsets,
harmonics) more visually prominent. The listening tests also suggest that some
examples from the second model are less noisy (more interpretable) than those
from the first model. However, it is important to note that these observations
do not always hold and overall the single output neuron in the first model seems
to learn representations that are fairly similar to the representations learnt by
the two neurons in the second model.

Finally, the chapter presented a perceptual study to further analyse some
observations from the qualitative analysis of the two SVD models. The study
consisted of two listening tests that required the participants to listen to 1.6

159

second audio examples and answer corresponding questions. The analysis of
responses from 23 participants further supports the two observations from the
qualitative analysis of the models:

• Maximally and minimally activating examples corresponding to the output
neuron in SVDNet-R1 contain sounds with vocal and non-vocal charac-
teristics, respectively.

• The examples synthesised for maximally or minimally activating the out-
put neuron in SVDNet-R1 are at least as intelligible as the corresponding
examples for SVDNet-R2.

Importantly, the analysis of responses for the intelligibility level of the exam-
ples synthesised by the proposed method suggests that the participants found
the examples to be fairly unintelligible, but due to poor agreement between
the participants, further analysis would be required to better understand the
responses.

Thus, the experiments in this chapter demonstrate that the proposed AM
method assists in providing some insights into the global behaviour of machine
listening models.

5.7 Reproducibility

The code for all the experiments is available on request. The below mentioned
(private) Github repository contains the code, parameters to reproduce the the-
sis results, and steps to generate new results. Moreover, all the experimental
results are available at a public Github repository whose details are mentioned
below.

• https://github.com/saum25/AM_synthesis includes the code to per-
form activation maximisation/minimisation using the GAN-based prior
and the code to evaluate the hyper-parameter configurations using the
FID-based metric.

• https://github.com/saum25/AM_synthesis_thesis_results includes
all the experimental results from this chapter. Moreover, for each seed used
in the experiments, the repository provides both the time-frequency and
the temporal representations (after inversion and phase reconstruction) of
the synthesised mel-spectrogram.

160

https://github.com/saum25/AM_synthesis
https://github.com/saum25/AM_synthesis_thesis_results

Chapter 6

Feature inversion

Until now, this thesis discussed methods that help in analysing DNNs by either
explaining their predictions (see Chapter 4) or by analysing their components
(see Chapter 5). This chapter presents a method that helps in understand-
ing DNNs in both ways. Specifically, the chapter presents feature inversion, a
method that analyses DNNs by mapping their latent features back to the input
space. The chapter demonstrates the effectiveness of the method by using it
to understand a state-of-the-art deep machine listening model (SVDNet) from
Chapter 3.

This chapter consolidates the work from two conference publications. The
first one showed the effectiveness of feature inversion in explaining predictions
from the SVDNet model [Mishra et al., 2018a], while the second one applied
feature inversion to understand how the SVDNet model discriminates between
the vocal and non-vocal categories [Mishra et al., 2018b]. In addition to the
content from the two publications, this chapter includes new figures, plots and
a new subsection about analysing the conclusions from Mishra et al. [2018b].

The remainder of this chapter is organised as follows: Section 6.1 high-
lights how feature inversion complements SLIME and AM methods in under-
standing deep machine listening models. Section 6.2 introduces feature inver-
sion and presents the methodology for feature inversion. Section 6.3 describes
experiments demonstrating the effectiveness of feature inversion in generating
instance-wise explanations. Section 6.4 describes experiments employing fea-
ture inversion for understanding the latent features of SVDNet. Section 6.5
summarises the key results and highlights the effectiveness of feature inversion
in understanding machine listening models. Finally, for reproducibility, Section
6.6 mentions the repositories hosting the source code of all the experiments in
this chapter.

161

6.1 Introduction

As discussed in Chapter 2, researchers have proposed several post-hoc methods
to analyse the behaviour of a DNN [Montavon et al., 2018]. One category of
methods focuses on explaining predictions of a DNN by identifying input dimen-
sions [Simonyan et al., 2014] or input regions (a group of contiguous dimensions)
[Zeiler and Fergus, 2014] that contribute in favour of (or against) a prediction.
Chapter 4 discussed why explaining a prediction in terms of input regions is
more interpretable for machine listening models. The chapter demonstrated
that SLIME tackles some of the key challenges that gradient-based methods
face. However, SLIME requires information about the number of interpretable
components and a segmentation methodology (e.g., uniformly segmenting input
into N time-frequency blocks). Moreover, the explanations that SLIME gen-
erates may highlight non-contiguous components (regions), which sometimes
makes their interpretation challenging.

Additionally, as Chapter 5 discussed, analysing a DNN by explaining its pre-
dictions may help to understand how a model discriminates between the clas-
sification categories, but it provides no insights into how a DNN hierarchically
maps input features into discriminative representations. Activation maximisa-
tion aims to tackle this problem by helping to visualise features that neurons
(or a group of neurons) in a DNN have learnt to identify [Yosinski et al., 2015].
However, often for deeper layers, synthesised examples are difficult to interpret
due to the multi-faceted nature of neurons [Nguyen et al., 2016b].

This chapter introduces feature inversion and demonstrate its effectiveness
to tackle the above challenges. Feature inversion aims to highlight the input
content (features) preserved by any layer in a DNN model by inverting the
corresponding feature [Mahendran and Vedaldi, 2015]. One of the key contribu-
tions of this chapter is to demonstrate that feature inversion can explain DNN
predictions, making it a versatile method that can explain a DNN as well as
its predictions. Using feature inversion to explain predictions tackles the chal-
lenges that SLIME faces as the proposed method does not need any auxiliary
information and will generate contiguous regions as explanations1. Moreover,
the method generates an explanation significantly more quickly than SLIME.

The other key contribution of this chapter is to apply feature inversion to
understand how a state-of-the-art machine listening model [Schlüter and Grill,
2015] discriminates between the classification categories. The SVDNet model
is a binary classifier that classifies a mel-spectrogram excerpt of around 1.6

seconds duration into ‘vocal’ or ‘non-vocal’ categories. Chapter 3 described the
1[Ribeiro et al., 2016b] earlier proposed homologous “super-pixel”-based explanations for

images.

162

Φ"(𝑋%)
Inverted

Representation

𝑋'%"
Feature

Discriminator
D𝑋%

Input

Ψ%)*+,

Θ(𝑋'%")

Ψ./0,+1/

Feature	Inverter
𝐺"

Comparator
C

Θ(𝑋%)

Figure 6.1: Functional block diagram of the feature inversion method. The
method inverts a feature ΦL(xi) from a layer L by training a feature inverter
GL that jointly minimises the input space loss Ψinput and the feature space loss
Ψfeature . ΦL and Θ are the representation functions of a discriminator D and
comparator C, respectively.

architecture, training, and evaluation of the SVDNet model.

6.2 Methodology

Feature inversion aims to map the feature generated at any layer of a DNN back
to a plausible input. Each layer in a DNN maps an input feature to an output
feature and in the process ignores the input content that does not seem relevant
to the classification task. Thus, the inversion of a feature from any layer of a
DNN will highlight the input content preserved by that layer.

Fig. 6.1 provides an overview of the feature inversion method this chap-
ter uses. The method uses the approach of Dosovitskiy and Brox [2016a] but
with some modifications. Their method inverts features from a DNN layer by
training an up-convolutional neural network (this thesis calls it a ‘feature in-
verter’). The method trains this feature inverter by minimising the input space
loss Ψinput , defined as the squared Euclidean distance between an input image
and its inverted representation. Although this approach has some benefits, the
reconstructions it generates are blurry due to the effect of input averaging (see
Chapter 2). Hence, to reduce the effect of input averaging the feature inversion
method in this chapter modifies the loss function of the method proposed by
Dosovitskiy and Brox [2016a].

Recent works demonstrate that minimising loss in the perceptual space helps
to reduce the over-smoothness problem for image generation models [Dosovitskiy

163

and Brox, 2016b, Snell et al., 2017]. This chapter extends this idea to machine
listening. Thus, in addition to the input space loss Ψinput , the feature inversion
method also calculates the feature space loss Ψfeature . The method defines the
total loss Ψ as:

Ψ = λinputΨinput + λfeatureΨfeature (6.1)

where λinput and λfeature weight the losses of the input space and feature space.
Thus, the method trains a feature inverter (up-convolutional neural network)
GL to invert a feature ΦL(xi) by jointly minimising the input space and feature
space losses. To evaluate Ψfeature , the method uses the approach from Doso-
vitskiy and Brox [2016b] who use a comparator C to map an input xi and its
inverted representation x̂iL to the feature space. A comparator is a discrim-
inative model that may be pre-trained or learned and may or may not be of
the same depth as the discriminator D (the model whose features the feature
inversion method inverts). The feature inversion method can even use D as a
comparator by extracting feature vectors at a layer of D (e.g., Dosovitskiy and
Brox [2016b] use the deepest convolutional layer of AlexNet as a comparator for
inverting AlexNet).

Formally, given an input excerpt xi ∈ Rn and a representation function
ΦL : Rn → Rd that maps xi to a d-dimensional feature ΦL(xi) at a layer L
of a discriminator D, the feature inversion method trains a feature inverter
GL that maps ΦL(xi) to an inverted representation x̂iL ∈ Rn. In order to
do that, the method calculates Ψinput and Ψfeature . Given a comparator C
with a representation function Θ : Rn → Rd′ , the method defines Ψfeature as
the squared Euclidean distance between Θ(xi) and Θ(x̂iL), where x̂iL is an
inverted representation for an input xi at layer L and d′ is the dimensionality
of the feature space for C. Similarly, the method defines Ψinput as the squared
Euclidean distance between xi and x̂iL. The method trains an up-convolutional
neural network GL(ΦL(xi); w) with parameters w by the optimisation

w∗ = arg min
w

∑
i

(‖xi −GL{ΦL(xi); w}‖22

+ ‖Θ(xi)−Θ(GL{ΦL(xi); w})‖22) + γ · ‖w‖22 (6.2)

where γ > 0 is the regularisation constant. Once the method trains GL, it can
invert any feature ΦL(xi) by a forward pass through GL:

x̂iL = GL(ΦL(xi); w
∗) (6.3)

Algorithm 3 presents the pseudocode of training an Lth layer feature inverter
GL. The following sections describe two experiments that use the above feature

164

Algorithm 3: Training an Lth layer feature inverter GL
Input: Discriminator D with the Lth layer representation function ΦL,

comparator C with representation function Θ, and an Lth layer
feature inverter GL with initial parameters w0

Input: Input batch size m, number of training batches t, number of
epochs N , regularisation constant γ, input and feature space
loss coefficients λinput and λfeature , respectively, Adam
hyper-parameters - initial learning rate α, β1, β2, ε

Output: Final GL parameters w∗

1 for epoch ∈ {1, 2, 3,, N} do
2 Randomly sample t batches, each with m inputs;
3 for batch index b ∈ {1, 2, 3,, t} do
4 Select inputs {xi}mi=1 corresponding to the index b;
5 for input index i ∈ {1, 2, 3,,m} do
6 x̂iL ← GL{ΦL(xi); w};
7 Ψi

input ← ‖xi − x̂iL‖22;
8 Ψi

feature ← ‖Θ(xi)−Θ(x̂iL)‖22;
9 L(i) ← λinputΨ

i
input + λfeatureΨi

feature ;
10 end for

11 w← Adam(∇w(
1

m

∑m
i=1 L

(i) + γ · ‖w‖22),w, α, β1, β2, ε);

12 end for
13 w∗ ← w;
14 end for
15 return w∗;

inversion method. The first experiment demonstrates that feature inversion gen-
erates effective explanations for DNN predictions. The second experiment uses
feature inversion to analyse latent features of a state-of-the-art deep machine
listening model.

6.3 Explaining DNN predictions using feature in-

version

This section proposes and demonstrates a novel method for explaining DNN
predictions. The method uses feature inversion to locate a region in an input
that contributes the most to a prediction. This section first explains the expla-
nation generation method. Then, it describes experiments that involve applying
the proposed method to explain predictions of SVDNet.

165

Feature

Explanation

Inverted
Representation

𝑋"
#$%

𝑋"
Input

Task	2

Feature	Inverter
𝐺'(

Explanation	Generator
E

Task	1𝑋("'(Φ'((𝑋")

Figure 6.2: Functional block diagram of the explanation generation step. Task 1
involves using a feature inverter GL̂ to invert a feature ΦL̂(xi) from the deepest
hidden layer L̂. Task 2 involves using an explanation generator E and an in-
verted representation x̂iL̂ to generate an explanation xexpi for the categorisation
of input xi.

6.3.1 Intuition

It is conceivable that a DNN predicts (classifies) by using latent features from
its deepest hidden layer. A DNN generates these features automatically from
inputs and there is limited understanding about what those features represent.
However, inversion of a feature from the deepest hidden layer will highlight a
region in the input space that a DNN considers important for prediction, sug-
gesting that the discriminative feature is prominently present in the highlighted
region of input. For example, if an image recognition model classifies an image
to the ‘Cat’ class by looking at the face of the cat (assumption), then an inverted
representation from the deepest hidden layer feature should highlight the cat’s
face more prominently (explanation) than other image components. Thus, to
explain a DNN prediction, the explanation method proposes to invert a feature
at its deepest hidden layer and convert the inverted representation to a binary
mask that masks the input. The unmasked section in the input will highlight a
region that influences a model prediction.

6.3.2 Explanation generation method

The proposed explanation method consists of two steps.

• Step 1 involves training a feature inverter GL̂ that maps a feature ΦL̂(xi)

from the deepest hidden layer L̂ to an inverted representation x̂iL̂.

166

Algorithm 4: The explanation generation step
Input: Pre-trained discriminator D with the deepest layer

representation function ΦL̂ and pre-trained feature inverter GL̂
with parameters w∗ for inverting the deepest layer L̂ in D

Input: Input xi and thresholding constant αth
Output: Explanation xexpi for the prediction of xi

1 x̂iL̂ ← GL̂(ΦL̂(xi); w
∗); // generate inverted representation x̂iL̂

2 xbi ← normalise_and_threshold(x̂iL̂, αth); // binary mask
3 xexpi ← xi � xbi ;
4 return xexpi ;

• Step 2 is the explanation generation step. It involves using GL̂ to explain
why D (a DNN) classified xi to the category C. Fig. 6.2 depicts the two
tasks in the explanation generation step. Task 1 generates an inverted
representation x̂iL̂ using GL̂ by

x̂iL̂ = GL̂(ΦL̂(xi); w
∗) (6.4)

Task 2 involves feeding an input excerpt xi and its inverted representa-
tion x̂iL̂ to an explanation generator E that generates an explanation.
E firstly normalises x̂iL̂ to the range [0, 1] and then thresholds the nor-
malised output using a thresholding constant αth generating a binary mask
xbi ∈ {0, 1}n. If a normalised bin value is less than αth then the method
sets it to 0 else sets it to 1. The method uses this thresholding approach
as it seems reasonable to assume that magnitude of a bin in the inverted
representation relates to its importance in the discrimination task. Then,
E generates an explanation xexpi by masking xi.

xexpi = xi � xbi (6.5)

where � refers to element-wise multiplication. The non-zero (unmasked)
dimensions in xexpi highlight the input region influencing the prediction.
Algorithm 4 presents the pseudocode of the explanation generation step.
The pseudocode for training GL̂ can be obtained by replacing L by L̂ in
Algorithm 3.

This section now describes an experiment that demonstrates the proposed
explanation generation method to explain predictions of SVDNet, a state-of-
the-art deep SVD model. To do that, the experiment first trains a feature
inverter for the FC8 layer. Later, it uses the feature inverter to explain SVDNet
predictions. Finally, it qualitatively and quantitatively verifies the reliability of

167

64 256

FC1

FC2

64

8

16

16 32
32

8

64

128

1

Uconv11Conv4

648

FC8 feature, dimensionality = 64

Uconv9Uconv7Uconv5Uconv3

128

643216
8

8

Upsampling by 2
Input feature

map
Output feature

map

Figure 6.3: An overview of the model architecture for inverting features from
the FC8 layer of SVDNet. FC, Conv and UConv refer to the fully-connected,
convolutional and up-convolutional layers, respectively. The highlighted compo-
nents represent the ‘Conv4’ convolutional layer and its input and output feature
maps. Due to space restrictions, the figure shows only one convolutional layer.

the generated explanations.

6.3.3 Feature inverter architecture

The experiment trains a feature inverter GL̂ (an up-convolutional neural net-
work [Dosovitskiy and Brox, 2016a]) to invert features from the FC8 layer (deep-
est hidden layer) of SVDNet. The architecture of AlexNet-FC8 feature inverter
in Dosovitskiy and Brox [2016a] inspires the design of the feature inverter in
this section, but the experiment adapts the architecture to suit SVDNet.

The feature inverter inverts a 64-dimensional feature by systematically up-
sampling it. GL̂ uses ‘up-convolutional layers’ (also referred to as ‘deconvo-
lutional layers’ or ‘transposed convolutional layers’) [Dosovitskiy et al., 2015,
Dosovitskiy and Brox, 2016a, Dosovitskiy et al., 2017] to perform upsampling
and strided convolution using 4× 4 filters with 2× 2 stride and 1× 1 cropping.
This configuration of up-convolutional layers (this chapter calls them ‘UConv’)
upsamples an input feature map by 2.

The experiment also adds one convolutional layer (Conv) after every UConv
layer, as suggested in Dosovitskiy et al. [2017]. This increases model capacity
and generates visually improved inverted representations. The convolutional
layers perform convolutions using 3× 3 filters with 1× 1 stride and 1× 1 zero-
padding.

The network uses batch normalisation layers to make sure the input to each
layer follows a standard normal distribution [Ioffe and Szegedy, 2015]. The
network employs exponential linear unit (ELU) non-linearities (y(x) = (x >

0)?x : ex − 1) to process the output of each neuron [Clevert et al., 2016]. GL̂
generates an output of 128×128 spatial size and later crops it to match the input

168

Layer Input shape Units Filter Stride Output shape

FC1 64 × 1 64 - - 64 × 1
FC2 64 × 1 256 - - 256 × 1

Reshape 256 × 1 - - - 16 × 4 × 4
UConv3 16 × 4 × 4 64 4 × 4 2 × 2 64 × 8 × 8
Conv4 64 × 8 × 8 64 3 × 3 1 × 1 64 × 8 × 8
UConv5 64 × 8 × 8 32 4 × 4 2 × 2 32 × 16 × 16
Conv6 32 × 16 × 16 32 3 × 3 1 × 1 32 × 16 × 16
UConv7 32 × 16 × 16 16 4 × 4 2 × 2 16 × 32 × 32
Conv8 16 × 32 × 32 16 3 × 3 1 × 1 16 × 32 × 32
UConv9 16 × 32 × 32 8 4 × 4 2 × 2 8 × 64 × 64
Conv10 8 × 64 × 64 8 3 × 3 1 × 1 8 × 64 × 64
UConv11 8 × 64 × 64 1 4 × 4 2 × 2 1 × 128 × 128

Slice 1 × 128 × 128 - - - 1 × 115 × 80

Table 6.1: The architecture of the FC8 feature inverter. Input and output
shapes are ordered as: number of channels × time × frequency. FC, Conv and
UConv refer to the fully-connected, convolutional and up-convolutional layers,
respectively. Units refers to the number of filters in a Conv or UConv layer or
the number of neurons in an FC layer.

excerpt size (115 × 80). The number of learnable parameters for this network
is 131201. Fig. 6.3 depicts an overview of the feature inverter architecture and
Table 6.1 provides additional details.

6.3.4 Feature inverter training

The experiment trains the feature inverter by using 64-dimensional FC8 features.
SVDNet extracts one feature per input audio excerpt (normalised log-scaled mel-
spectrogram of about 1.6 sec, see section 3.4.1). The experiment generates audio
excerpts from the Jamendo training dataset using a hop size of 10 frames (140

ms). Fig. 6.4 shows two audio excerpts, one from each classification category,
from the Jamendo test dataset. The experiment does not use any of the data
augmentation methods from Schlüter and Grill [2015] and trains the feature
inverter on a dataset size of about 100k features (vectors).

The experiment uses SVDNet truncated at the Conv5 layer as the compara-
tor, i.e., it encodes the input excerpt and its inverted representation using the
Conv5 features. The experiment initialises the feature inverter weights using
He normal initialisation [He et al., 2015]. For a mini-batch of 32 randomly se-
lected excerpts, the training objective jointly minimises the input and feature
space losses using Eq. 6.2 and updates model parameters using Adam [Kingma
and Ba, 2015]. Table 6.1 shows the input and output shapes without the batch
size dimension. During training the input and output shapes in Table 6.1 are
extended by batch size as an additional dimension. The experiment sets the
scaling factors λinput = λfeature = 1 (See Eq. 6.1). The training procedure
starts training with an initial learning rate of 0.001 and decreases it by 50%

169

0 0.5 1 1.5
Time(sec)

512

1024

2048

4096

Fr
e
q

(H
z)

Non-vocal excerpt

0 0.5 1 1.5
Time(sec)

Vocal excerpt

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.4: Normalised log-scaled mel-spectrogram excerpts from the song “03 -
Say me Good Bye.mp3” in the Jamendo test dataset. The left subplot depicts an
excerpt (time index : 1.43 seconds - 3.03 seconds) from the non-vocal category.
The right subplot depicts an excerpt (time index : 33.00 seconds - 34.65 seconds)
from the vocal category.

when the training loss does not change for 2 consecutive epochs.
To prevent overfitting, the experiment uses L2 weight decay with γ = 10−4

(See Eq. 6.2) and runs the optimisation to a fixed number of weight updates
(30 epochs). The experiment selects a feature inverter that gives the lowest
loss on the Jamendo validation subset. It is important to note that the hyper-
parameters and training methodology were identified using two approaches -
by performing grid search in the hyper-parameter space and by adopting some
values from previous works. For example, to decide the SVDNet layer features
to be used for computing the feature space loss, grid search was performed using
the SVDNet layer features. Similarly, suitable scaling factors and learning rate
were identified using grid search. However, the mini-batch size and the approach
to train the model for a fixed number of weight updates were used from Schlüter
and Grill [2015].

6.3.5 Instance-wise explanations for SVDNet

This section uses the trained feature inverter GL̂ to explain SVDNet predictions
using the methodology described in Section 6.3.2. Fig. 6.5 shows visualisations
from the explanation generation step for an excerpt from the Jamendo test
dataset. SVDNet correctly classifies this excerpt to the ‘non-vocal’ category
with 95.16% confidence. The experiment uses GL̂ to identify the input re-
gion influencing this prediction. The explanation method first normalises and
thresholds the inverted representation (from the FC8 feature) to generate a bi-
nary mask using αth = 0.7. Then, it generates the explanation by applying the
mask to the input mel-spectrogram excerpt. The explanation suggests that the

170

0 0.5 1 1.5

512

1024

2048

4096

Fr
e
q
(H
z)

(A)

0 0.5 1 1.5

(B)

0 0.5 1 1.5
Time(sec)

512

1024

2048

4096

Fr
e
q
(H
z)

(C)

0 0.5 1 1.5
Time(sec)

(D)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.5: Visualisations depicting the explanation generation steps for a ran-
domly selected non-vocal excerpt (time index : 10.00 seconds - 11.65 seconds)
from the song “03 - Say me Good Bye.mp3” in the Jamendo test dataset. (A)
input mel-spectrogram, (B) inverted representation, (C) binary mask using
αth = 0.7, and (D) explanation.

information in the lower frequency region (approximately between 150 Hz and
1024 Hz) influences the prediction of the selected excerpt.

We can use instance-wise explanations to verify the trustworthiness of a
model. For example, consider the instance shown in Fig. 6.6 (A) that has
the vocal and non-vocal sections located in non-overlapping temporal segments
(about 0.9 sec singing voice followed by about 0.7 sec instrumental music). SVD-
Net classifies this instance to the vocal category with 80% confidence. Fig. 6.6
(B) depicts the explanation (using αth = 0.7) for this prediction. The expla-
nation shows that frequencies in the range 300 Hz - 1500 Hz in the first one
second of the excerpt contribute most to the classifier’s prediction. Similarly,
the instance in Fig. 6.6 (C) has about 0.4 sec instrumental music followed by
about 1.1 sec singing voice. SVDNet classifies this instance to the vocal cate-
gory with 98% confidence. The explanation in Fig. 6.6 (D) (using αth = 0.7)

171

512

1024

2048

4096
Fr
e
q
(H
z)

(A) (B)

0 0.5 1 1.5
Time(sec)

512

1024

2048

4096

Fr
e
q
(H
z)

(C)

0 0.5 1 1.5
Time(sec)

(D)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.6: Explanations for two excerpts from the song “03 - Say me Good
Bye.mp3” in the Jamendo test dataset with the ‘vocal’ and ‘non-vocal’ cate-
gories as separate temporal segments. (A) represents the input excerpt from
34.00 seconds - 35.65 seconds (confidence score = 0.80) and (B) its explanation.
Similarly, (C) represents the input excerpt from 112.00 seconds - 113.65 seconds
(confidence score = 0.98) and (D) its explanation.

shows that frequencies in the range 2048 Hz - 8000 Hz in the last one second
of the excerpt contribute most to the prediction. In other words, in both cases,
the model is using information from the vocal segments to categorise inputs to
the vocal category. Such an understanding assists in gaining trust in a model’s
predictions.

6.3.6 Quantitative evaluation of the proposed method

Researchers often verify their explanation methods using qualitative approaches.
For example, an explanation method ‘A’ is better than a method ‘B’ if the for-
mer generates comparatively cleaner saliency maps. However, recent works have
stressed the importance of the quantitative evaluation of explanation methods
[Samek et al., 2017, Doshi-Velez and Kim, 2017]. This section reports the results
of the quantitative evaluation of the explanation method. The experiment eval-
uates the method by adapting the region perturbation method from Samek et al.
[2017] to suit the region-based explanations. The experiment hypothesis that if
an explanation method accurately identifies the influential region in an input,

172

then masking (removing) the remaining input, should not affect the prediction.
It means that the prediction probability may change, but the prediction label
should remain the same. Thus, for each input excerpt, the evaluation method
feeds the masked representation xexpi (see Equation 6.5) to SVDNet and checks
whether this modifies the prediction label for the input.

Formally, for a set of N randomly selected input excerpts, the evaluation
method considers the initial class labels assigned by SVDNet as the ground
truth. It then feeds the masked representations, one from each input, and cal-
culates the number of excerpts NE for which SVDNet changes its predictions
(this chapter calls this approach ‘M1’). Importantly, the evaluation method
considers initial model predictions irrespective of their category (e.g., vocal)
or their prediction type (e.g., true positive). The evaluation method defines a
metric that quantifies how accurately the explanation method identifies input
regions that are the most influential to model predictions. The metric, percent-

age explanation loss is given by Eloss = 100 ·
(
NE
N

)
. For example, say for

N = 4 excerpts the sequence of predictions from SVDNet is (0, 1, 1, 0), where
0 and 1 correspond to the ‘non-vocal’ and ‘vocal’ categories, respectively. If
after feeding the masked versions of inputs to SVDNet, the new sequence of
predictions is (0, 0, 1, 0), then, NE = 1 and Eloss = 25%.

The experiment also evaluates the explanation method using an approach
‘M2’ that for every input xi first inverts the binary mask xbi (see Section 6.3.2)
by swapping ones with zeros and vice-versa and then uses the inverted mask
to generate an SVDNet prediction as discussed above. Such an analysis helps
in understanding the influence of input regions that the explanation method
identifies as non-important towards model predictions.

Fig. 6.7(A) reports the quantitative evaluation results for a set of 5868 ran-
domly chosen excerpts from the Jamendo test dataset. The experiment creates
the set by first randomly selecting a reading offset between the time indices
5 seconds and 20 seconds and then starting from the reading offset it selects
around 200 excerpts per audio file with a hop size of 0.5 seconds. The ‘red’
and ‘green’ line plots depict the change in % Eloss with uniform variations in
the masking threshold for M1 and M2 approaches, respectively. The subplot
(A) shows that for MJamendo

1 , the explanation loss gradually increases from 0%

(αth = 0, no input masking) to a maximum value of 58.41% (αth = 1, full input
masking). Moreover, for αth ≤ 0.5, the explanation loss is ≤ 15.89% suggesting
that the explanation method identifies influential input regions with a fair de-
gree of accuracy. The variation in % Eloss for MJamendo

2 is nearly the opposite
of MJamendo

1 . For example, for αth ≤ 0.5, the explanation loss is ≥ 34.16%

suggesting that feeding input regions that the explanation method identifies as

173

0

20

40

60

80

100
e
x
p
la

n
a
ti

o
n
 l
o
ss

 [
%

]
(A)

MJamendo
1

MJamendo
2

MRWC
1

MRWC
2

0.0 0.2 0.4 0.6 0.8 1.0
masking threshold

0

20

40

60

80

100

120

a
v
e
ra

g
e
 r

e
la

ti
v
e
 a

re
a
 [

%
]

(B)

MJamendo
1

MJamendo
2

MRWC
1

MRWC
2

Figure 6.7: Quantitative evaluation of the proposed explanation method for a
set of randomly selected instances from the Jamendo and RWC test datasets.
For uniform changes in the masking threshold, subplots (A) and (B) depict
variations in the % explanation loss and % average relative area of explanations,
respectively. M1 andM2 are two approaches to transform inputs fed to SVDNet.
The error bars represent standard deviation.

non-important flips predictions for a larger number of inputs.
Fig. 6.7(A) also shows that the choice of αth influences the loss resulting

from an explanation. For example, for MJamendo
1 , αth ≥ 0.7 results in less ac-

curate explanations (Eloss ≥ 34.24%), while αth ≤ 0.4 generates fairly accurate
(Eloss ≤ 13.41%) explanations. To decide an appropriate value of αth , the ex-
periment proposes to use the relative area of an explanation as an additional
constraint. The experiment defines the relative area of an explanation as the ra-
tio of the number of unmasked bins to the total number of bins. In Fig. 6.7(B),
for the same input excerpts that the experiment uses for Fig. 6.7(A), the ex-
periment plots the variation in average relative area as αth changes uniformly.
The experiment uses this information to select a suitable αth . For MJamendo

1 ,
αth = 0.5 seems a fair choice as the explanations have % average relative area
= 56.50% and are fairly accurate (% explanation loss is 15.89%).

The experiment also extends the evaluation of the explanation method to
the RWC dataset (see Section 3.2). The RWC dataset is not pre-split into a
separate test set. Thus, the experiment creates a test set by randomly sampling

174

20 audio files from which it randomly samples 7966 excerpts using the same
methodology as for the Jamendo dataset. The experiments aims to analyse
if the quantitative evaluation results from Jamendo generalise to RWC. Fig.
6.7(A) depicts the evaluation results for the RWC dataset for both M1 and M2

approaches. For lower values of αth (≤ 0.5), the explanation method performs
similarly on RWC, but for higher values of αth , Eloss increases on an average
by 5.04% for MRWC

1 . It seems reasonable to believe that it due to the training
of both the discriminator (SVDNet) and feature inverter only on the Jamendo
dataset. This results in higher reconstruction error between an input and its
inverted representation for the RWC dataset, leading to less accurate explana-
tions. Thus, an accurate inversion model is crucial to achieving low explanation
loss.

ForMRWC
2 , the plot of change in explanation loss for uniform changes in the

masking threshold is similar to the one for Jamendo with some minor variations.
For αth ≤ 0.3, the explanation loss for RWC is higher than Jamendo on an
average by 3.24%, and for αth ≥ 0.4 the explanation loss on RWC is lower than
Jamendo on an average by 2.25%.

Fig. 6.7(B) also depicts that the line plot of average relative area for RWC
is similar in shape to Jamendo for both M1 and M2 approaches. Moreover, the
explanations for MRWC

1 are on an average 2.81% smaller than for MJamendo
1 .

Finally, for the best threshold value from the Jamendo dataset (αth = 0.5), RWC
generates slightly less accurate (Eloss = 17.69%) explanations with % average
relative area = 51.5%. Hence, the results from the quantitative analysis confirm
that for a suitable masking threshold, the explanation method can successfully
recognise an input region that is influential to a classifier’s prediction.

6.4 Understanding SVDNet features

This section describes experiments that use the feature inversion method from
Section 6.2 for understanding the features that each layer of SVDNet extracts
from any input and to gain insight into how SVDNet classifies an input to the
‘vocal’ or ‘non-vocal’ categories. To do that, the experiments train eight fea-
ture inverters, one per layer of the SVD model. This section first explains the
architectures and training details of the feature inverters. Then, the section
discusses experiments that quantify the performance of the feature inverters on
two datasets by calculating the normalised reconstruction error (NRE) defined
as the normalised Euclidean distance between an input and its inverted repre-
sentation. Finally, the section discusses experiments that qualitatively analyse
the inverted features for both the classification categories to understand the
preserved input content at each layer of the model. Similarly, the experiments

175

Layer Input shape Units Filter Stride Output shape

FC1 256 × 1 256 - - 256 × 1
Reshape 256 × 1 - - - 16 × 4 × 4
Uconv2 16 × 4 × 4 64 4 × 4 2 × 2 64 × 8 × 8
Conv3 64 × 8 × 8 64 3 × 3 1 × 1 64 × 8 × 8
Uconv4 64 × 8 × 8 32 4 × 4 2 × 2 32 × 16 × 16
Conv5 32 × 16 × 16 32 3 × 3 1 × 1 32 × 16 × 16
Uconv6 32 × 16 × 16 16 4 × 4 2 × 2 16 × 32 × 32
Conv7 16 × 32 × 32 16 3 × 3 1 × 1 16 × 32 × 32
Uconv8 16 × 32 × 32 8 4 × 4 2 × 2 8 × 64 × 64
Conv9 8 × 64 × 64 8 3 × 3 1 × 1 8 × 64 × 64
Uconv10 8 × 64 × 64 1 4 × 4 2 × 2 1 × 128 × 128
Slice 1 × 128 × 128 - - - 1 × 115 × 80

Table 6.2: The architecture of the FC7 feature inverter. Input and output
shapes are ordered as: number of channels × time × frequency. FC, Conv and
UConv refer to the fully-connected, convolutional and up-convolutional layers,
respectively. Units refer to the number of filters in a Conv or UConv layer or
the number of neurons in an FC layer.

analyse the inverted features for inputs selected from different datasets to test
whether the conclusions from one dataset generalise to the other.

6.4.1 Feature inverter architectures

The experiments train eight up-convolutional neural networks (feature invert-
ers), one per layer of SVDNet, to invert the features generated by it. Section
6.3.3 discussed in detail the architecture of the FC8 feature inverter. This sec-
tion discusses the architectures of the other feature inverters. The experiments
design two categories of architectures, one to invert the fully-connected (FC)
layers and the other to invert the convolutional (Conv) and max-pooling (MP)
layers of SVDNet. Here, “inverting a layer” is another way to refer to the inver-
sion of the features that the layer generates. Similar to the FC8 feature inverter,
the architecture of inversion models by Dosovitskiy and Brox [2016a] inspires
the design of feature inverters for the other layers of the SVD model.

The majority of feature inverters need to upsample an input feature map.
Similar to the FC8 feature inverter architecture, the other feature inverters per-
form upsampling and strided convolution in a single step by using up-convolutional
layers that use 4× 4 filters with 2× 2 stride and 1× 1 cropping and upsample
an input feature map by a factor of 2. The number of Uconv layers depends on
the dimensionality of the layer to be inverted. For example, the feature inverter
to invert the 256-dimensional FC7 layer uses five Uconv layers (see Table 6.2),
while the feature inverter to invert the Conv4 layer uses two Uconv layers (see
Fig. 6.8). The feature inverters for the Conv1 and Conv2 layers in the SVD
model do not use the Uconv layers, as for them the model generates features

176

128

23

64

35
70128

1

140

Conv2

128
35

Conv4 feature
Shape = 128 x 35 x 23

Uconv5Uconv4Conv3Conv1

9246
2323

35

Input feature
map

Output feature
map Upsampling by 2

Figure 6.8: Feature inverter architecture for the Conv4 layer of the SVD model.
The highlighted components refers to the ‘Conv2’ convolutional layer and its
input and output feature maps. Conv and UConv refer to the convolutional
and up-convolutional layers, respectively.

Layer Input shape Nlayers Nconv Nparams

FC8 64 × 1 11 4 131, 201
FC7 256 × 1 10 4 176, 001
MP6 64 × 11 × 7 5 1 80, 484
Conv5 64 × 33 × 21 5 3 144, 772
Conv4 128 × 35 × 23 5 3 576, 260
MP3 32 × 37 × 25 6 4 45, 892
Conv2 32 × 111 × 76 4 4 28, 324
Conv1 64 × 113 × 78 2 2 37, 700

Table 6.3: Overview of architectures of all the feature inverters in the SVD
model. Layer: SVDNet layer a feature inverter inverts, Input shape: input to a
feature inverter - ordered as: number of channels × time × frequency. Nlayers ,
Nconv and Nparams refer to the number of layers, the number of convolutional
layers and the number of trainable parameters in a feature inverter, respectively.
Conv: convolutional layer, FC: fully-connected layer and MP: max-pooling layer.

without using the max-pooling layers.
Similar to the FC8 feature inverter, the experiments increase the capacity

of the other feature inverters by adding convolutional layers; either after every
up-convolutional layer, except the last (for inverting an FC layer) or before the
first up-convolutional layer (for inverting a Conv or MP layer). The number of
convolutional layers used for inverting an FC layer is fixed to 4 as it depends on
the number of UConv layers, but to decide the number of convolutional layers
for inverting a Conv or MP layer, grid search was performed with the number
of convolutional layers ∈ {1, 2, 3, 4, 5}. The convolutional layers perform strided
convolution using 3 × 3 filters with 1 × 1 stride and 1 × 1 zero-padding and
improve the visual appearance of the reconstructions [Dosovitskiy et al., 2017].

Similar to the FC8 feature inverter, all the layers use ELU non-linearity and
batch normalisation layers. Moreover, except for the Conv1 and Conv2 layers,
each feature inverter generates an inverted representation with a larger spatial

177

size and later trims it to match the input excerpt size (115 × 80). The feature
inverters for the Conv1 and Conv2 layers generate an inverted representation of
the same shape as input by symmetrically padding the missing dimensions.

The inverted representations need to have the same size as that of the in-
puts due to their use in computing the input space loss. Moreover, the inverted
representations are also fed to the comparator model that was trained with
excerpts of the same size as that of the inputs. There exist different ways to
match the sizes of inputs and inverted representations. For example, by generat-
ing inverted representations of size smaller than inputs and then downsampling
the inputs to the inverted representation size. However, the approach by Doso-
vitskiy and Brox [2016a] that generates inverted representations of size larger
than the input size and later crops them to match the input size was used as it
generated interpretable visualisations for image classification models.

Table 6.3 provides details about the total number of layers, the number of
Conv layers and the number of learnable parameters in each feature inverter.
Appendix A provides the detailed architecture of the feature inverters for the
convolutional and max-pooling layers.

6.4.2 Training methodology

The experiments train the feature inverter for any SVDNet layer using features
that the layer extracts from normalised log-scaled mel-spectrogram excerpts of
around 1.6 seconds duration. The dimensions of features used to train a feature
inverter depend on the layer to be inverted. For example, the experiments train
the FC7 feature inverter using 256-dimensional features. Similarly, the experi-
ments train the MP3 feature inverter using features of shape 32× 37× 25. The
experiments generate input mel-spectrogram excerpts from the Jamendo train-
ing dataset with a hop size of 10 frames. The rest of the training methodology
remains the same as for training the FC8 feature inverter (See Section 6.3.4).

6.4.3 Quantitative evaluation of the feature inverters

The experiments train eight feature inverters using the Jamendo training dataset
and the architectures and training methodology discussed earlier. The exper-
iments evaluate the performance of each feature inverter on an evaluation set
of 128 mel-spectrogram excerpts. The experiments build the evaluation set by
randomly selecting 8 excerpts from each of the 16 audio files in the Jamendo
test dataset. The experiments quantify the performance of feature inverters by
calculating the average NRE for each feature inverter on the evaluation dataset.

178

Conv1 Conv2 MP3 Conv4 Conv5 MP6 FC7 FC8

Layer inverted

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 N

R
E

Jamendo

RWC

Figure 6.9: Performance evaluation of the feature inverters. The plot depicts
the average normalised reconstruction error (NRE) for all the feature inverters
of the SVDNet model. Layer inverted refers to the layer of the SVDNet model.
The error bars represent standard deviation.

Mahendran and Vedaldi [2015] define NRE as

NRE =
‖xi − x̂iL‖2

Nc
(6.6)

where Nc is a normalising constant computed from the average pairwise Eu-
clidean distance between excerpts in the evaluation set.

The experiments also evaluate the feature inverters on the RWC dataset (see
Chapter 3) to understand whether the results of the quantitative evaluation on
Jamendo extend to the RWC dataset. The RWC dataset, unlike Jamendo, is
not available pre-partitioned into separate subsets. Thus, to evaluate the feature
inverters, the experiments first build an RWC test dataset by randomly selecting
20 audio files from a set of 100 and then using them to build an evaluation
dataset of 160 randomly selected excerpts (8 excerpts per audio file). Moreover,
in order to evaluate the feature inverters on a larger evaluation dataset, the
experiments randomly sample 10 different evaluation sets from each dataset,
calculate the average NRE for each and then take an average. Thus, effectively
the experiments evaluate the feature inverters on evaluation datasets of size
1280 (Jamendo) and 1600 (RWC) excerpts.

Fig. 6.9 shows the results of the evaluation. For both the datasets, the
reconstruction error is largest for the FC8 layer (the deepest layer in SVDNet)
and consistently decreases for representations inverted from shallower layers.
This is predictable as the dimensionality of the features in shallow layers is larger
than in deep layers, assisting them to preserve more information. For instance,

179

if we compare the feature inverter for the deepest max-pooling layer (MP6) to
the one for the first fully-connected layer (FC7), there is a large increase in
the reconstruction error (by nearly 15% for Jamendo and 14% for RWC). This
happens as the dimensionality reduction of features from MP6 to FC7 is about
19 times, compressing a 4928-dimensional feature to 256 dimensions. Similarly,
the results depict a large increase in the average NRE between the feature
inverters for the Conv2 and MP3 layers. This likely occurs due to max-pooling
operation that compresses feature dimensionality by 9 times between the two
layers. The results do not show such a significant change in reconstruction error
between the Conv5 and MP6 layers, which seems due to the smaller feature map
size at the Conv5 layer than at the Conv2 layer.

The results also depict that the feature inverters have larger reconstruction
error on the RWC dataset at all but the first two layers. This is expected since
both the discriminator (the SVD model) and the feature inverters are trained
on the Jamendo dataset leading to some overfitting. One possible explanation
for the comparable average NRE of the Conv1 and Conv2 layers is that these
shallow layers of the model are learning low-level features that are generalisable
across related datasets [Zeiler and Fergus, 2014]. This becomes less so at deeper
layers, where features are likely tuned to specific traits of the training data.

6.4.4 Qualitative analysis of the inverted features

Fig. 6.10 shows visualisations from each layer of the SVD model. The experi-
ments generate these visualisations by selecting four inputs, two from each test
dataset (Jamendo and RWC). Out of the two inputs per dataset, one belongs to
the vocal category and the other to the non-vocal category. The experiments use
the feature inverters to invert the features that SVDNet layers extract from each
input. The results provide some insights into the deep SVD model behaviour.
For instance, reconstructions from the FC8 layer suggest that this layer does
not retain the harmonic structures present in the inputs. Moreover, it appears
that this layer preserves either the high frequency or the low frequency content
of an input. Similarly, FC8 does not preserve any temporal information (mu-
sical onset locations) present in the inputs. Interestingly, for a large number
of inputs (in addition to the four inputs in Fig. 6.10), the results depict that
inverted representations (from this layer) for the vocal category inputs have
energy in higher frequencies while inverted representations for the non-vocal
category inputs have energy in lower frequencies.

Similarly, inverted representations from the FC7 layer suggest that this layer
preserves some harmonic content and approximate onset locations of the inputs.
However, there are some deviations from this behaviour. For instance, in Fig.

180

(A
)

In
p
u
t

C
o
n
v
1

C
o
n
v
2

M
P
3

C
o
n
v
4

C
o
n
v
5

M
P
6

FC
7

FC
8

(B
)

(C
)

(D
)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F
ig
ur
e
6.
10
:
Fe

at
ur
e
in
ve
rs
io
n
fr
om

su
cc
es
si
ve

la
ye
rs

of
th
e
de
ep

SV
D

m
od

el
.
E
ac
h
ro
w

co
rr
es
po

nd
s
to

on
e
in
pu

t
ex
ce
rp
t.

(A
),

(B
)
ar
e

re
sp
ec
ti
ve
ly

no
n-
vo

ca
l
(t
im

e
in
de
x
:
1.
43

se
co
nd

s
-
4.
65

se
co
nd

s)
an

d
vo

ca
l
(t
im

e
in
de
x
:
33
.0

se
co
nd

s
-
34
.6
5
se
co
nd

s)
ex
ce
rp
ts

fr
om

“0
3
-
Sa

y
m
e
G
oo

d
B
ye
.m

p3
”
in

th
e
Ja

m
en
do

te
st

da
ta
se
t.

Si
m
ila

rl
y,

(C
)
an

d
(D

)
ar
e
re
sp
ec
ti
ve
ly

no
n-
vo

ca
l(

ti
m
e
in
de
x
:
5.
0
se
co
nd

s
-

6.
65

se
co
nd

s)
an

d
vo

ca
l(

ti
m
e
in
de
x
:
17
.0
0
se
co
nd

s
-
18
.6
5
se
co
nd

s)
ex
ce
rp
ts

fr
om

“R
W
C
-
M
D
B
-P

-2
00
1-
M
04
/5

A
ud

io
T
ra
ck
.a
iff
”
in

th
e

RW
C

te
st

da
ta
se
t.

C
ol
um

ns
co
nt
ai
n
m
el
-s
pe

ct
ro
gr
am

s
of

(f
ro
m

le
ft
to

ri
gh

t)
th
e
in
pu

t
si
gn

al
an

d
in
ve
rt
ed

re
pr
es
en
ta
ti
on

s
fr
om

su
cc
es
si
ve

SV
D
N
et

la
ye
rs

(a
s
la
be

lle
d)
.
T
he

vi
su
al
is
at
io
ns

hi
gh

lig
ht

ho
w

th
e
m
od

el
ig
no

re
s
as
pe

ct
s
of

th
e
in
pu

t
co
nt
en
t
as

it
fo
rm

s
hi
gh

er
-le

ve
l

re
pr
es
en
ta
ti
on

s.
In
ve
rs
io
ns

fr
om

sh
al
lo
w

la
ye
rs

re
se
m
bl
e
th
e
in
pu

t,
bu

t
th
e
re
co
ns
tr
uc

ti
on

qu
al
it
y
re
du

ce
s
fo
r
de
ep

er
la
ye
rs
.
C
on

v,
M
P

an
d
FC

re
fe
r
to

th
e
co
nv

ol
ut
io
na

l,
m
ax

-p
oo

lin
g
an

d
fu
lly

-c
on

ne
ct
ed

la
ye
rs
,r

es
pe

ct
iv
el
y.

181

6.10 row (B), the harmonic structures are less evident. Similarly, for the input
in Fig. 6.10 row (C), the FC7 feature inverter is unable to reconstruct all the
harmonic and temporal content present in the input. This seems due to the
reason that the experiments do not train the feature inverters on RWC, thus
the reconstruction error is higher for this input, resulting in poor reconstruction.

The results depict that inverted representations from the deepest convolu-
tional layer of the SVDmodel (Conv5) contain more information than those from
the two fully-connected layers. For both the inputs from the Jamendo dataset
(Fig. 6.10 rows (A) and (B)), the model preserves much of the input content
(e.g., the reconstructions capture the harmonic structure and approximately
align the temporal boundaries with the input). This confirms results from the
quantitative evaluation of Conv5 and FC7 feature inverters that showed that
the average NRE for the Conv5 layer feature inverter is about 18% less than for
the FC7 feature inverter. The visualisations for the RWC excerpts (Fig. 6.10
rows (C) and (D)) depict similar results. Finally, reconstructions from all the
other layers follow a similar pattern - moving toward shallower layers, they be-
come visually similar to the input, increasingly showing the presence of finer
harmonic and temporal structures. Moreover, the inversions from Conv1 and
Conv2 are very close to the respective inputs. This suggests that the filters of
the first two convolutional layers act as a bijective map, e.g., performing an in-
vertible frequency transform. Moreover, the visualisations from deeper layers in
the model are more blurry than from shallow layers. This suggests that deeper
layers capture more invariances from data than shallow layers.

6.4.5 Analysing FC8 features

The visualisations from Section 6.4.4 showed that inverted representations from
the FC8 layer corresponding to the vocal and non-vocal category inputs contain
energy in the higher and lower frequencies, respectively. This section describes
an experiment that further analyses this observation. To do this, the experiment
uses a 20 songs subset from the MedleyDB dataset (see Section 3.2). Each song
in the subset contains vocal and non-vocal stems and their mix. The experiment
randomly selects two songs from the subset. For each song, in addition to
the available mix of vocal and non-vocal stems, the experiment creates five
more mixes by first attenuating the vocal stem in multiples of 6 dB and then
by mixing the attenuated vocal stems with the non-vocal stem. This section
calls the available mix ‘Mixavail ’ and the synthesized mixes ‘Mix synth

k ’ where k
∈ {1, 2, 3, 4, 5}. Thus, for instance, Mix synth

3 represents an audio file where the
experiment mixes a non-vocal stem with an 18 dB attenuated vocal stem.

For each of the two songs, the experiment analyses FC8 features from the

182

Inputs

M
ix

a
va
il

 P
vo
ca
l
=

0.
98

M
ix

sy
n
th

1

 P
vo
ca
l
=

0.
97

M
ix

sy
n
th

2

 P
vo
ca
l
=

0.
94

M
ix

sy
n
th

3

 P
vo
ca
l
=

0.
08

M
ix

sy
n
th

4

 P
vo
ca
l
=

0.
03

M
ix

sy
n
th

5

 P
vo
ca
l
=

0.
0
2

N
on
−
vo
ca
l

 P
vo
ca
l
=

0.
0
2

Reconstructions Inputs

M
ix

a
va
il

 P
vo
ca
l
=

0.
99

M
ix

sy
n
th

1

 P
vo
ca
l
=

0.
98

M
ix

sy
n
th

2

 P
vo
ca
l
=

0.
96

M
ix

sy
n
th

3

 P
vo
ca
l
=

0.
48

M
ix

sy
n
th

4

 P
vo
ca
l
=

0.
09

M
ix

sy
n
th

5

 P
vo
ca
l
=

0.
0
6

N
on
−
vo
ca
l

 P
vo
ca
l
=

0.
0
4

Reconstructions

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F
ig
ur
e
6.
11
:
In
ve
rs
io
n
of

FC
8
fe
at
ur
es

fr
om

in
pu

ts
w
it
h
va
ry
in
g
st
re
ng

th
of

vo
ca
ls
.
T
he

fir
st

an
d
la
st

tw
o
ro
w
s
de
pi
ct

vi
su
al
is
at
io
ns

fo
r

in
pu

ts
fr
om

th
e
“L
iz
N
el
so
n_

R
ai
nf
al
l"
,“
A
le
xa

nd
er
R
os
s_

V
el
ve
tC

ur
ta
in
"
so
ng

s
in

th
e
M
ed
le
yD

B
da

ta
se
t,
re
sp
ec
ti
ve
ly
.
Fo

r
ea
ch

so
ng

,e
ac
h

co
lu
m
n
de
pi
ct
s
an

in
pu

t
ex
ce
rp
t
an

d
it
s
re
co
ns
tr
uc
ti
on

us
in
g
it
s
FC

8
fe
at
ur
es
.
Fo

r
ea
ch

so
ng

,M
ix

a
v
a
il
,M

ix
sy

n
th

k
an

d
N
on

-v
oc
al

re
pr
es
en
t

an
in
pu

t
ex
ce
rp
t
ex
tr
ac
te
d
(a
t
th
e
sa
m
e
ti
m
e
in
de
x)

fr
om

th
e
av
ai
la
bl
e
m
ix
,s
yn

th
es
iz
ed

m
ix
es

an
d
th
e
no

n-
vo

ca
ls
te
m
,r
es
pe

ct
iv
el
y.
P

v
o
ca

l

re
pr
es
en
ts

th
e
m
od

el
’s

co
nfi

de
nc
e
th
at

an
in
pu

t
ex
ce
rp
t
co
nt
ai
ns

vo
ca
ls
.
T
he

ex
pe

ri
m
en
t
ex
tr
ac
ts

ex
ce
rp
ts

fo
r
th
e
fir
st

an
d
se
co
nd

so
ng

at
ti
m
e
off

se
ts

15
se
co
nd

s
an

d
11

5
se
co
nd

s,
re
sp
ec
ti
ve
ly
.

183

seven audio files (the six mixes and the non-vocal stem). To do that, the ex-
periment first randomly selects two time indices, one for each of the two songs.
Then, for each of the song, the experiment samples the mel-spectrogram ex-
cerpt corresponding to the selected time index from each of the seven audio
files. Finally, the experiment uses the feature inversion method to analyse the
input information that the FC8 layer preserves for each of the seven audio files
per song. The experiment aims to visualise how the information in the inverted
representations varies as the energy of vocal components reduces progressively.

Fig. 6.11 depicts the results of the experiment. The first two and the last two
rows depict inputs and their reconstructions using the FC8 features from the
first and second song, respectively. Each column depicts an input, the model’s
confidence score that this input contains vocals Pvocal , and the reconstruction of
the input from the FC8 features. The first column in each song corresponds to
visualisations for the excerpt sampled from ‘Mixavail ’ audio file and on moving
from left to right the energy of the vocal component in the excerpt reduces
by 6 dB. The last column in each song corresponds to visualisations from the
non-vocal audio file.

The visualisations from both the songs depict that when the model predicts
an input contains vocals with high confidence (Pvocal ≥ 0.9), all the reconstruc-
tions contain some information in the high frequency regions (frequency ≥ 4096

Hz). On the other hand, such an information is mostly absent in cases when the
model predicts an input contains non-vocals. For the song 2, the reconstruction
from the Mix synth

3 contains some information in high frequency regions, but
the prediction probability suggests that the model is poorly confident about its
prediction. In fact, when the model predicts an input to contain non-vocals
with high confidence (Pvocal ≤ 0.1) the reconstructions have information only
in the low frequency regions (frequency ≤ 1024 Hz). Moreover, for each song,
the visualisations depict that as the energy of the vocal component reduces, the
reconstructions change from containing information both in the low and high
frequency regions to only in the low frequency regions. These results further
support the observations from Section 6.4.4 that inverted representations from
the FC8 layer contain energy in the higher and lower frequencies for the vocal
and non-vocal categories’ inputs, respectively.

6.5 Summary and conclusion

This chapter presented feature inversion - an interpretable machine learning
method that maps DNN features back to the input space. The chapter discussed
an approach of feature inversion that first trains an up-convolutional neural
network (feature inverter) by minimising the input and feature space losses

184

and then uses the feature inverter to invert a DNN feature. The chapter used
the feature inversion method in two ways - to explain DNN predictions and to
analyse DNN features.

The first experiment proposed a novel method that uses feature inversion to
explain predictions of a DNN. The method inverts a feature from the deepest
layer of a DNN and uses the inverted representation to generate a binary mask
to mask the input. The unmasked portion of the input highlights the region in-
fluential to a prediction. The chapter demonstrated the proposed method for a
state-of-the-art deep singing voice detection model. The chapter first discussed
the architecture and training methodology of the deepest layer feature inverter
and then demonstrated the explanation generation process for a randomly se-
lected instance. The chapter used the explanations for some carefully selected
instances to analyse the trustworthiness of the model. In particular, the chapter
generated explanations for instances having vocal and non-vocal components in
separate temporal segments to analyse if the model is predicting by extract-
ing information from the appropriate segments. Finally, the chapter evaluated
the loss associated with the proposed explanation method by generating SVD-
Net predictions for the masked versions of inputs. The evaluation results for
two publicly available datasets suggested that explanations from the proposed
method highlighted influential regions in about 80% (masking threshold = 0.5)
of the randomly chosen inputs.

The results from the first experiment clearly suggest that inverting features
from the deepest layer assists in highlighting the influential regions in inputs.
Although there is some explanation loss, it is reasonable to believe that an
accurate feature inverter and carefully chosen masking threshold will help in
improving the performance of the explanation method. Although there are
other popular approaches for explaining DNN predictions (see Chapter 4), either
they are computationally expensive or use auxiliary information or generate
finer explanations which may not be useful for understanding machine listening
models. The proposed explanation method is computationally expensive in
training the feature inverter, but the explanation generation is very fast as it
requires just a forward pass through the feature inverter.

The second experiment applied the feature inversion method to understand
a machine listening model (SVDNet). Feature inversion helped to understand
the global behaviour of the model by visualising the information preserved by
any layer in the model. The experiment trained eight up-convolutional neural
networks - each to invert features from one of the layers of SVDNet. The
experiment quantitatively analysed the feature inverters for each layer in the
model to understand the change in input reconstruction error across different
layers. The results demonstrated that the average NRE changes by about 15%

185

for the Jamendo and RWC datasets between the MP6 and FC7 layers due to high
dimensionality reduction. Moreover, the experiment qualitatively visualised the
inverted representations to understand the input content preserved by any layer
in the model. The results suggested that the deepest fully-connected layer does
not retain any of the temporal or harmonic structures present in an input. The
experiment further analysed FC8 reconstructions for mixes with varying levels of
vocal content. The results indicated that when the model confidently predicted
the presence of vocals in an input, the FC8 inversions have information in the
high frequency region, a phenomenon not seen for the cases where the model
confidently predicts the absence of vocals. One possible explanation for this
behaviour is the presence of fricatives in singing voice that result in information
in the high frequency regions (frequency ≥ 4096 Hz). Qualitative analysis of
other layers revealed that the FC7 layer preserves some harmonic and temporal
information of an input while the reconstructions from the other layers are
visually similar to the input.

Thus, the results of the experiments in this chapter suggest that feature
inversion is a versatile method that can explain a DNN prediction as well as
analyse its latent features.

6.6 Reproducibility

The code for all the experiments is open-sourced. The below mentioned Github
repositories contain the code and parameters to reproduce the thesis results and
steps to generate new results.

1. Experiment 1 (explaining SVDNet predictions) - https://github.com/
saum25/EUSIPCO-2018

2. Experiment 2 (understanding SVDNet features) - https://github.com/
saum25/ISMIR-2018

186

https://github.com/saum25/EUSIPCO-2018
https://github.com/saum25/EUSIPCO-2018
https://github.com/saum25/ISMIR-2018
https://github.com/saum25/ISMIR-2018

Chapter 7

Conclusions and future work

This thesis presented three methods to analyse the behaviour of machine listen-
ing models. The first method (SLIME) analyses the models locally, the second
method (activation maximisation) analyses the models globally, and the third
method (feature inversion) analyses the models both globally and locally. The
thesis demonstrated the methods for five SVD models that aim to detect the
presence of vocals in musical excerpts. This chapter summarises the key re-
sults from the experiments and highlights the contributions this thesis makes
to interpretable machine learning and machine listening research (Section 7.1).
Moreover, this chapter presents some ideas to extend this research (Section 7.2)
and discusses potential research directions for interpretable machine learning
(Section 7.3).

7.1 Summary

Chapter 2

Chapter 2 provided a survey of IML that involves designing and applying meth-
ods to understand the behaviour of machine learning models. The chapter
defined what interpretability means in the context of this thesis and discussed
scenarios where interpretability is essential (e.g., in tackling the problem of in-
complete model specifications). The chapter described two main categories of
IML methods: methods to design inherently interpretable models and methods
for post-hoc interpretability, and discussed several methods within each cate-
gory. Finally, the chapter discussed some recent work on analysing machine
listening models. The survey provides an understanding of the scope (local or
global), strengths, and weaknesses of different IML methods. Moreover, it in-
forms about the existing approaches to analyse machine listening models and

187

their limitations. This understanding was helpful to identify methods suitable
to answer the research questions outlined in Chapter 1.

Chapter 2 also introduced SVD, the machine listening use case this thesis
used for experiments. The chapter defined the use case, mentioned some of its
applications, discussed different approaches (e.g., feature engineering) to design
SVD models, and highlighted the state-of-the-art methods within each cate-
gory. This thesis selected SVD as it is a well-established MIR task with several
proposed approaches and benchmarked publicly available datasets, the state-
of-the-art model is a fairly sophisticated open-sourced model that reports very
accurate performance on the benchmarked datasets [Schlüter and Grill, 2015],
and the classification categories (vocal and non-vocal) are highly interpretable
and distinct.

Chapter 3

Chapter 3 introduced four datasets and five SVD models that this thesis used
for the experiments in Chapters 4–6. The thesis used Jamendo for both training
and analysing the SVD models and the other three datasets (RWC, MedleyDB,
and ccMixter) only for analysing the SVD models. The chapter also described
the five SVD models: two shallow models (a BDT and an RF model) and three
deep models. The shallow models used the median and standard deviation
of the first 30 MFCCs and their first-order derivatives over 10 audio frames as
features. The chapter described the training methodology of the shallow models
and reported their performance on Jamendo. The classification accuracies of the
RF, BDT, and a baseline model (that classified all inputs as vocals) on the test
dataset are 76.3%, 71.4%, and 57.5%, respectively, suggesting that the shallow
models have learnt some representation of vocals.

Chapter 3 also discussed the state-of-the-art deep SVDmodel (SVDNet) that
assigns scores to mel-spectrogram excerpts of around 1.6 seconds, indicating
its confidence about the presence of vocals in input excerpts. The chapter
described the architecture, training methodology, and performance of the model
on the Jamendo test dataset. The chapter also reported the performance of two
more deep SVD models used in this thesis. The first model (SVDNet-R1) is
a replica of SVDNet but ported and re-trained using Tensorflow. The second
model (SVDNet-R2) was also ported and re-trained using Tensorflow but after
replacing the sigmoidal output neuron in SVDNet-R1 by two fully connected
neurons followed by a softmax layer. SVDNet-R1 and SVDNet-R2 reported
performance similar to SVDNet on the Jamendo test dataset.

188

Chapter 4

Chapter 4 introduced SLIME, a method to generate interpretable explanations
for predictions of shallow and deep machine listening models. SLIME extends
the LIME algorithm [Ribeiro et al., 2016b] to machine listening by defining
temporal, spectral, and time-frequency interpretable representations. These
representations generate explanations highlighting the most influential tempo-
ral, spectral, and time-frequency components in an input. The chapter reported
two experiments that demonstrated the effectiveness of SLIME for validating the
trustworthiness of three SVD models. The first experiment analysed the tempo-
ral explanations for four instances from the Jamendo test dataset to identify that
the BDT model is untrustworthy as it classified two instances to the vocal cate-
gory with high confidence by using information from the non-vocal components.
The second experiment analysed the positive and negative time-frequency ex-
planations for an instance with separate vocal and non-vocal temporal segments
to validate the behaviour of SVDNet for that instance. The chapter also quanti-
tatively compared time-frequency explanations from SLIME with saliency maps
(SMs) [Zeiler and Fergus, 2014] to analyse whether SLIME explanations accu-
rately identified influential input components. The results suggested that there
was a fair numerical agreement between explanations from the two methods.

Chapter 4 also described two further experiments that aimed to analyse
the robustness of SLIME to changes in two input parameters: the number of
perturbed samples Ns and the content of synthetic components. The first exper-
iment demonstrated that SLIME explanations are sensitive to Ns and SLIME
needed high Ns (e.g., Ns ≥ 50000) to generate stable explanations. However, a
large Ns increased the explanation generation time and thus, the selection of a
suitable Ns should consider both the stability of explanations and the explana-
tion generation latency. The second experiment proposed some novel content
types for input perturbation in SLIME and used them to demonstrate that ex-
planations from SLIME are sensitive to the content of synthetic components.
This is an important observation as such behaviour is highly likely to extend
to explanation methods that perturb inputs by occlusion [Zeiler and Fergus,
2014, Ribeiro et al., 2016b]. Finally, the chapter introduced a novel method to
generate reliable explanations from SLIME and demonstrated it for a dataset
synthesised using vocal and non-vocal stems. The method uses the ground-
truth explanations to identify suitable content types for SLIME. The results
suggested that for the temporal explanations corresponding to 656 instances,
among four content types, the average bin magnitude of an input seemed to be
the most suitable content type as it generated explanations with at least two
super-samples common with the ground-truth explanations for around 84% of

189

the instances.

Chapter 5

Chapter 5 presented AM, a method that globally analyses deep machine learning
models. AM synthesises examples in the input space by iteratively optimising
noise vectors to maximally (or minimally) activate DNN components (e.g., neu-
rons). Chapter 5 presented a novel method for AM that uses a GAN as a regu-
lariser in the AM pipeline to ensure that the synthesised examples are realistic.
The proposed method allows to analyse DNN components without retraining
the GAN if the GAN output domain matches the DNN input domain. The
chapter also introduced a novel method that uses the FID metric [Heusel et al.,
2017] to select suitable hyper-parameter configurations for AM. The method
makes the hyper-parameter selection process scalable and assists in effectively
searching the hyper-parameter space for any DNN component. Both proposed
methods are domain-independent and thus applicable to pre-trained DNNs from
any domain (e.g., images, audio, text). Importantly, the interpretability of syn-
thetic examples from the proposed methods also depends on the performance
of the GAN prior. However, training a suitable GAN might be challenging for
certain use cases.

Chapter 5 also described two experiments that demonstrated the proposed
methods for the SVDNet-R1 and SVDNet-R2 models. The first experiment syn-
thesised mel-spectrograms that maximally and minimally activated the output
neuron in the SVDNet-R1 model. The results suggested that the configura-
tion selection method successfully ranked configurations according to the inter-
pretability of the set of examples synthesised by them. Moreover, the method
effectively identified configurations that can potentially synthesise adversarial
examples. The experiment further used the best configurations to synthesise
examples that maximised and minimised the pre-sigmoid activation of the out-
put neuron. The analysis of the synthesised examples demonstrated that the
neuron captured high-level class concepts, i.e., the examples that maximally and
minimally activated its activation contained the presence of interpretable vocal
and non-vocal characteristics. The second experiment used the proposed meth-
ods to synthesise examples that maximally activated each output layer neuron
in the SVDNet-R2 model. The results demonstrated that both the methods
effectively generalised to SVDNet-R2. Moreover, the examples synthesised us-
ing the best configurations demonstrated that both neurons captured high-level
class concepts. Finally, the chapter discussed whether examples synthesised
for SVDNet-R2 were qualitatively more interpretable than those for SVDNet-
R1. The results suggested that although some examples for SVDNet-R2 were

190

comparatively less noisy and resulted in higher activation scores, overall, the
examples synthesised for both the models were perceptually quite similar, sug-
gesting that the single neuron can effectively learn interpretable representations
despite the influence of inter-class complexities.

The chapter also presented a user study that aimed to further analyse some
observations from the qualitative analysis of the two models. The study was
done online, and it consisted of two listening tests that required participants to
listen to several audio examples and answer the corresponding questions. The
analysis of responses from 23 participants further supports two observations
- maximally and minimally activating examples corresponding to SVDNet-R1
contain vocal and non-vocal characteristics, respectively and the examples syn-
thesised for the output neuron in SVDNet-R1 are at least as intelligible as the
corresponding examples for the output neurons in SVDNet-R2. The study also
analysed the intelligibility level of the synthesised examples. The analysis of re-
sponses suggests that the participants found the examples fairly unintelligible,
however, due to poor agreement among the participants, further analysis would
be required to better understand the responses for this question.

Chapter 6

Chapter 6 discussed a method that can both locally and globally analyse deep
machine listening models. Specifically, the chapter presented feature inversion,
a method to map DNN features back to the input space to understand the
information a DNN preserves in each of its layers. The chapter proposed to per-
form feature inversion by training up-convolutional neural networks through the
minimisation of the feature space and input space losses [Dosovitskiy and Brox,
2016b]. Recent works demonstrated feature inversion for the global analysis
of deep image classification models [Mahendran and Vedaldi, 2015, Dosovitskiy
and Brox, 2016a]. This chapter demonstrated that feature inversion is a versatile
method that can analyse DNNs both locally and globally.

This chapter introduced a novel domain-independent method for explain-
ing DNN predictions. The method used feature inversion to invert the deepest
hidden layer feature of a DNN and convert the inverted representation to a
binary mask that is applied to an input. The unmasked input sections high-
light the regions influencing a prediction. The chapter qualitatively validated
the method by explaining SVDNet predictions for two instances with separate
vocal and non-vocal temporal sections. Moreover, the chapter quantitatively
verified whether regions highlighted by the method influence model predictions
by feeding the explanations back to the DNN and analysing the change in pre-
diction label. The results for SVDNet for random instances from Jamendo and

191

RWC suggested that for around 80% of the instances, SVDNet predictions do
not change, demonstrating that feature inversion is an effective method.

Chapter 6 also used feature inversion to quantitatively and qualitatively anal-
yse the input information preserved by each layer in the SVDNet model. The
quantitative analysis computed the average NRE for each layer using random
instances from the Jamendo and RWC datasets and demonstrated that the first
and deepest layers of the model preserved the maximum and minimum infor-
mation from an input. The qualitative analysis demonstrated that the deepest
layer in the model did not preserve any temporal or spectral information from
an input. Moreover, the inverted representations from this layer corresponding
to the vocal and non-vocal excerpts contain energy mostly in the higher and
lower frequency regions, respectively. The experiments further analysed this
observation by qualitatively examining the change in inverted representations
with uniform attenuation of the vocal content in a vocal and non-vocal mix. The
visualisations from the other layers suggested that the FC7 layer preserved some
temporal and harmonic information from the input and the reconstructions from
the other layers were visually similar to the input.

7.2 Potential research directions

This section presents some novel ideas to extend the research in this thesis.
Some of these ideas aim to address the limitations of the presented research,
while the others aim to further validate results from this research by either
performing large-scale experiments or by using alternate approaches.

Chapter 4

• Section 4.4.2 demonstrated that SLIME explanations are sensitive to the
content of the synthetic components. It would be intriguing to examine
if this behaviour extends to other methods that perturb inputs by occlu-
sion [Zeiler and Fergus, 2014]. Moreover, it would be important to validate
the result from Section 4.4.2 for other models and input data domains to
ensure that they do not influence the results.

• SLIME explanations highlightN input components, whereN is pre-defined
and generally small to limit the complexity of explanations. However, ex-
planations generated using this approach may miss some influential com-
ponents (if the number of such components is greater than N) and may
include less influential components (if the number of influential compo-
nents is less than N). Thus, it may be useful to devise a method that

192

can automatically select influential components (e.g., using the weights
SLIME assigns to all input components).

• The experiments in Chapter 4 segmented inputs at pre-defined fixed bound-
aries. This helps to provide some insights into model behaviour, but it may
be more interpretable if SLIME performs segmentation at more meaningful
boundaries (e.g., temporal onset locations, frequency bins corresponding
to harmonic components [Müller, 2015]). Thus, an important future work
could be to propose new interpretable representations for SLIME.

• Another future work can be to design methods for examining the behaviour
of SLIME. This would assist in highlighting scenarios where SLIME de-
picts inconsistent or incorrect behaviour. For example, one can analyse
whether SLIME explanations remain the same if inputs are modified using
label-preserving transformations (e.g., increasing input loudness).

• Section 4.4.3 presented an approach to select the most suitable content
type for SLIME. However, this approach does not work in the absence of
ground-truth annotations. Thus, another future research topic could be
to design more methods for generating reliable predictions from SLIME.

• Section 4.4 analysed SLIME behaviour for the deep SVD models. It would
be interesting to analyse whether the observation that SLIME explana-
tions are sensitive to the two input parameters extends to the shallow
SVD models.

• Another future work could be to analyse the behaviour of SLIME for other
input parameters (e.g., weight function, distance measure).

Chapter 5

• The experiments in Chapter 5 analysed the concepts captured in the out-
put layer neurons. It would be an interesting future work to use the
proposed methods to analyse the concepts captured in other DNN com-
ponents (e.g., neurons in convolutional layers). It would help to analyse
whether deep machine listening models capture features hierarchically.

• The analysis of the responses for the intelligibility level of the synthesised
examples shows that the participants found the examples fairly unintelligi-
ble, but with a poor agreement. It would be interesting to further analyse
the responses to understand the reasons behind the poor agreement. For
example, do the responses differ due to differences in understanding of
intelligibility?

193

• The use of priors (hand-crafted or learned) in the AM pipeline aims to
generate realistic examples. However, it remains unclear how much the
priors influence the content in synthesised examples. Thus, it is intriguing
to analyse whether a strong prior (e.g., a GAN) can highly influence the
content in synthesised examples to such an extent that the examples do
not accurately reflect the features captured by the corresponding DNN
components.

Chapter 6

• The feature inversion method in Chapter 6 uses two loss functions each
computing the squared Euclidean distance in the input space (spectral
domain) and the feature space, respectively. However, some interesting
questions remain. For example, it is not evident how inverted representa-
tions will change on replacing the Euclidean distance by the L1 norm that
encourages sparsity. The L1 norm has been used recently for neural audio
synthesis [Défossez et al., 2018, Engel et al., 2020]. Moreover, although
the spectral domain loss in Chapter 6 can be considered as a variant of
the perceptual loss by Défossez et al. [2018], it would be interesting to in-
vestigate whether the use of sophisticated spectral losses (e.g., multi-scale
spectral loss [Engel et al., 2020]) improves the perceptual quality of the
inverted representations.

• This chapter used a feature inversion method that trains up-convolutional
networks to invert features. This learning of deterministic functions gen-
erates high-quality visualisations but provides limited insights into the in-
variances captured by DNN layers. Thus, potential future research could
be to use the approach of Mahendran and Vedaldi [2015] to understand
the invariances captured by SVDNet layers (e.g, pitch invariance).

• It is important to note that the up-convolutional method implicitly learns
a prior, but the above mentioned method requires priors in the optimisa-
tion objective. Thus, another future work related to the first one could
be to design hand-crafted priors for the audio domain. We can use the
existing priors, but they are either generic (e.g., α-norm) or specifically
designed for images (e.g., total variation norm [Mahendran and Vedaldi,
2015]). Hand-crafted priors will also be useful for AM.

• Another future work could be to compare the inverted representations
from the two feature inversion methods to validate if the conclusions in
Section 6.4.4 for the SVDNet model are consistent. This could be further
analysed quantitatively by computing the amount of energy in different

194

frequency bands to understand if the inverted representations for inputs
from the two categories differ in the amount of energy in different fre-
quency bands.

• The explanation method uses a binary mask created from an inverted rep-
resentation by using a simple normalisation and thresholding procedure.
It could be a useful experiment to modify the way the explanation method
uses an inverted representation and analyse whether the new approach im-
proves the performance (lower explanation loss for the best threshold) of
the explanation method. For example, one can perform normalisation and
thresholding by using reconstruction error values instead of using recon-
structed features themselves. Similarly, one can first multiply the inverted
representation with the input and then normalise and threshold the out-
put.

Finally, from a more general machine listening perspective, it would be interest-
ing to use the proposed methods to analyse models trained for other machine
listening use cases (e.g. onset detection, F0 estimation [Müller, 2015], environ-
mental sound classification [Piczak, 2015]). Moreover, it would be intriguing to
understand the potential of the proposed methods in multi-label classification
scenarios as opposed to single-label classification tasks.

7.3 Discussion on interpretable machine learning

This section presents a general discussion on some of the key challenges in IML
research and highlights how this thesis contributes to addressing some of those
challenges. Thus, this discussion aims to provide further insights into potential
directions in IML research.

Lack of formalism

IML research suffers from a lack of consensus about the definitions of key terms
(See Section 2.2.1). For example, there is a lack of clarity about what “in-
terpretability”, “explainability”, and “transparency” refer to in the context of
machine learning. Researchers have been vocal about the lack of formalism in
IML research [Doshi-Velez and Kim, 2017, Lipton, 2016], and some recent works
have tried to address this issue by defining an IML vocabulary and introduc-
ing taxonomies to categorise IML algorithms [Rudin, 2019, Gilpin et al., 2018].
However, the lack of consensus still prevails. To prevent ambiguity, Section 2.2.1
defined the three terms (interpretability, interpretable models, and IML) used
in this thesis.

195

Interpretable models vs post-hoc interpretability

Chapter 2 presented two main ways for ML interpretability: training inher-
ently interpretable models and generating post-hoc explanations for pre-trained
models. Recent years have witnessed a growing discussion about identifying
the better of the two interpretability approaches. There are diverging opinions
about the two approaches. Rudin [2019] argues that training interpretable mod-
els is a better approach, and we must not use post-hoc explanations for safety
critical applications. Similarly, Ribeiro et al. [2016a] suggest to use interpretable
models even for non safety critical applications, if these models can achieve the
desired performance and use a restricted number of model components (e.g.,
features in a linear model).

However, some works argue in favour of post-hoc explanations, as training
models with an interpretability constraint often restricts their predictive ca-
pacity [Ribeiro et al., 2016a,b]. Thus, the state-of-the-art models for complex
real-world applications (e.g., speech recognition, image classification) are black-
box models (e.g., DNNs). Moreover, using post-hoc explanations is the only
approach if we re-use existing sophisticated models that are highly expensive
to train (e.g., VGGNet). However, recent research has shown that post-hoc
explanations may be unreliable [Kindermans et al., 2017]. Additionally, Chen
et al. [2019] demonstrated using a complex training procedure that interpretable
models can perform on par with state-of-the-art models for complex tasks.

Thus, it seems that both approaches have pros and cons, and this makes
approach selection a context-dependent and subjective task. Moreover, further
research is required for training high-performing interpretable models and im-
proving the reliability of post-hoc explanations. This thesis used the post-hoc
interpretability approach as one of the research objectives involved analysing
the performance of the state-of-the-art SVDNet model.

Global analysis vs local explanations

Chapter 2 discussed approaches for post-hoc interpretability that analyse the
global or the local behaviour of a model. The selection of a post-hoc analysis
approach generally involves multiple factors (e.g., the motivation of analysis,
the end-user of an explanation). Overall, explaining model predictions is com-
paratively simpler and quicker than understanding a model globally. However,
local explanations may be unreliable and inconsistent. On the other hand, the
global analysis is complex and usually time-consuming but provides a detailed
and consistent analysis of model behaviour. This thesis used both approaches
for post-hoc interpretability as the thesis aimed to both verify model trustwor-
thiness and understand how a model constructs its predictions.

196

Timing information

The time taken to generate and analyse post-hoc explanations is an important
metric for the design and selection of analysis methods. Explanation gener-
ation from some methods can be prohibitively slow [Zintgraf et al., 2017] and
some methods may generate complex explanations (e.g., including several rules)
increasing their interpretation time. Despite their importance, research rarely
reports the timing information for the IML methods. This thesis analyses the
timing metric for SLIME and suggests to use the metric as one of the criteria
in selecting a suitable Ns. The other two methods (AM, feature inversion) are
expensive offline but are near real-time online.

Reliability of local explanations

Recent research has demonstrated that some local explanation methods may
generate unreliable and inconsistent explanations [Kindermans et al., 2017].
Similar results have motivated researchers to propose properties (e.g., com-
pleteness, implementation invariance, sensitivity [Sundararajan et al., 2017],
and input invariance [Kindermans et al., 2017]) that should be inherent to every
explanation method. Moreover, some works have stressed the need for quantita-
tive evaluation frameworks to compare the performance of different explanation
methods [Montavon et al., 2018]. However, researchers proposed the above prop-
erties and evaluation metrics for gradient-based attribution methods, and it is
not evident if they are suitable for methods that explain predictions in terms
of input regions (e.g., LIME, Occlusion). Alternatively, one can design novel
metrics reflecting the reliability of explanations for these methods. For example,
SLIME can provide a confidence score reflecting how well it approximated the
non-linear decision boundary by an interpretable model.

This thesis quantitatively evaluated some methods. Chapter 6 performed
a quantitative evaluation to demonstrate the reliability of the proposed local
explanation method. Chapter 4 quantitatively demonstrated that SLIME may
generate unreliable explanations for some content types.

More research questions

In addition to the earlier discussion, there are many more interesting research
questions in IML. Some of the questions are mentioned below.

• Do IML methods designed and demonstrated for one data domain (e.g.,
image) generalise to other domains (e.g., audio)? This research faced this
question and it seems that extending methods to other domains is chal-
lenging at two steps: in setting up the explanation generation pipeline, and

197

in interpreting the generated explanations. For example, SLIME proposed
new interpretable representations to extend LIME. Similarly, to interpret
AM synthesis results, the experiments involved auralisation.

• How can one expand current IML methods or develop novel IML meth-
ods for effectively analysing sequential models (e.g., recurrent neural net-
works)? There exist some methods that aim to analyse these models [Lei
et al., 2016, Li et al., 2016, Karpathy et al., 2015], but their number and
scope are very limited in comparison to existing approaches for analysing
CNNs.

• Explanation methods that perform sensitivity analysis by input pertur-
bation (e.g., by occlusion) use model predictions for instances that (due
to input perturbation) are very different from the training data. An ML
model may behave in an undefined manner for such perturbed samples.
Thus, how can one examine the reliability of such explanations methods?

To summarise, this thesis presented and demonstrated three different post-
hoc analysis methods to investigate the behaviour of machine listening models.
Moreover, some of the presented methods are generic and thus assist in analysing
the behaviour of ML models trained for other domains. Hopefully, this work
would help develop robust and generalisable ML models and motivate further
research in the analysis of machine listening models.

198

Appendix A

Feature inverter architectures

Chapter 6 discussed experiments that used feature inversion to analyse the fea-
tures that each layer of the deep SVD model extracts from any input. The
experiments trained eight feature inverters, one for inverting features from each
layer of SVDNet. The chapter provided an overview of the key architectural
components of feature inverters and discussed in detail the architectures of the
FC8 and FC7 feature inverters. This appendix describes in detail the architec-
tures of feature inverters for inverting the convolutional (Conv1, Conv2, Conv4
and Conv5) and max-pooling (MP6, MP3) layers of SVDNet.

In each of the feature inverter architectures described below, Conv, UConv
and MP refer to the convolutional, up-convolutional and max-pooling layers,
respectively. As discussed in Section 6.4.1, UConv layers perform unpooling (by
a factor of 2) and strided convolution with 1× 1 cropping, Conv layers perform
strided convolution with 1 × 1 zero-padding to keep an output feature map of
the same shape as the input. Moreover, for each feature inverter, the input
and output shapes are ordered as: number of channels × time × frequency.
During training both the input and output shapes get appended by the batch
size dimension that the tables below do not show. Nfilters refers to the number
of Conv or UConv layer filters. The Slice layer crops an upsampled feature map
to the input excerpt shape, and the pad layer symmetrically pads each axis by
Nzeros .

Layer Input shape Nfilters Filter Stride Nzeros Output shape

Conv1 64 × 113 × 78 64 3 × 3 1 × 1 - 64 × 113 × 78
Conv2 64 × 113 × 78 1 3 × 3 1 × 1 - 1 × 113 × 78
Pad 1 × 113 × 78 - - - 1 1 × 115 × 80

Table A.1: The architecture of the Conv1 feature inverter.

199

Layer Input shape Nfilters Filter Stride Nzeros Output shape

Conv1 32 × 111 × 76 32 3 × 3 1 × 1 - 32 × 111 × 76
Conv2 32 × 111 × 76 32 3 × 3 1 × 1 - 32 × 111 × 76
Conv3 32 × 111 × 76 32 3 × 3 1 × 1 - 32 × 111 × 76
Conv4 32 × 111 × 76 1 3 × 3 1 × 1 - 1 × 111 × 76
Pad 1 × 111 × 76 - - - 2 1 × 115 × 80

Table A.2: The architecture of the Conv2 feature inverter.

Layer Input shape Nfilters Filter Stride Output shape

Conv1 32 × 37 × 25 32 3 × 3 1 × 1 32 × 37 × 25
Conv2 32 × 37 × 25 32 3 × 3 1 × 1 32 × 37 × 25
Conv3 32 × 37 × 25 32 3 × 3 1 × 1 32 × 37 × 25
Conv4 32 × 37 × 25 32 3 × 3 1 × 1 32 × 37 × 25
Uconv5 32 × 37 × 25 16 4 × 4 2 × 2 16 × 74 × 50
Uconv6 16 × 74 × 50 1 4 × 4 2 × 2 1 × 148 × 100
Slice 1 × 148 × 100 - - - 1 × 115 × 80

Table A.3: The architecture of the MP3 feature inverter.

Layer Input shape Nfilters Filter Stride Output shape

Conv1 128 × 35 × 23 128 3 × 3 1 × 1 128 × 35 × 23
Conv2 128 × 35 × 23 128 3 × 3 1 × 1 128 × 35 × 23
Conv3 128 × 35 × 23 128 3 × 3 1 × 1 128 × 35 × 23
Uconv4 128 × 35 × 23 64 4 × 4 2 × 2 64 × 70 × 46
Uconv5 64 × 70 × 46 1 4 × 4 2 × 2 1 × 140 × 92
Slice 1 × 140 × 92 - - - 1 × 115 × 80

Table A.4: The architecture of the Conv4 feature inverter.

Layer Input shape Nfilters Filter Stride Output shape

Conv1 64 × 33 × 21 64 3 × 3 1 × 1 64 × 33 × 21
Conv2 64 × 33 × 21 64 3 × 3 1 × 1 64 × 33 × 21
Conv3 64 × 33 × 21 64 3 × 3 1 × 1 64 × 33 × 21
Uconv4 64 × 33 × 21 32 4 × 4 2 × 2 32 × 66 × 42
Uconv5 32 × 66 × 42 1 4 × 4 2 × 2 1 × 132 × 84
Slice 1 × 132 × 84 - - - 1 × 115 × 80

Table A.5: The architecture of the Conv5 feature inverter.

Layer Input shape Nfilters Filter Stride Output shape

Conv1 64 × 11 × 7 64 3 × 3 1 × 1 64 × 11 × 7
Uconv2 64 × 11 × 7 32 4 × 4 2 × 2 32 × 22 × 14
Uconv3 32 × 22 × 14 16 4 × 4 2 × 2 16 × 44 × 28
Uconv4 16 × 44 × 28 8 4 × 4 2 × 2 8 × 88 × 56
Uconv5 8 × 88 × 56 1 4 × 4 2 × 2 1 × 176 × 112
Slice 1 × 176 × 112 - - - 1 × 115 × 80

Table A.6: The architecture of the MP6 feature inverter.

200

Appendix B

Mel-frequency cepstral
coefficients

This appendix describes the steps for extracting the mel-frequency cepstral coef-
ficients (MFCCs) and discusses why inverting the MFCCs (and mel-spectrograms)
back to the temporal representation is a lossy procedure.

B.1 MFCC extraction

The extraction of k MFCCs from input audio consists of six steps.

• Given an input audio x[n], where n represents the sample index, extract
overlapping audio frames of length l1. Apply a window (e.g., Hamming
window) to each audio frame to reduce spectral leakage. Finally, group
all the windowed audio frames in a t× l matrix X, where t represents the
number of audio frames.

• Compute a t× f matrix S (spectrogram), where f represents the number
of frequency bins, by computing the discrete Fourier transform (DFT)
[Müller, 2015] of each frame in X.

• Compute the t× f power spectrogram (periodogram)2 matrix P by com-
puting the power in each frame (row) of the matrix S.

• Compute the t × j log-scaled mel-spectrogram matrix M by first multi-
plying the power spectrogram P with the f × j mel-filterbank matrix W,

1Generally, audio frames are of short duration (e.g., for the speech signal, audio frame
duration is around 20-40 ms).

2Some works compute the magnitude spectrogram instead of the power spectrogram [Lo-
gan, 2000].

201

where the columns in W correspond to the number of filters j, and then
computing the logarithm of the resulting product. The mel-filterbank con-
sists of triangular filters with centre frequencies following the perceptual
mel-scale, that is linear below 1000 Hz and logarithmic for higher frequen-
cies. Thus, a mel-spectrogram provides more resolution for lower frequen-
cies than higher frequencies. The mel-scaling step aims to highlight the
perceptually important frequencies as the perceived pitch follows a non-
linear scale. Similarly, the log-scaling relates to the observation that the
perceived loudness of an audio signal is approximately logarithmic [Logan,
2000].

• Compute the t × j MFCC matrix F by multiplying the log-scaled mel-
spectrogram matrix M by the j × j discrete cosine transform (DCT)
matrix3 Ψ [Oppenheim et al., 1999]. This step aims to decorrelate the
mel-spectral vectors (a row in M) by multiplying each one of them with
the j DCT basis functions.

• Finally, generate a t × k matrix F̃ by selecting k lower-order coefficients
from each audio frame in F. Each row in F̃ contains k MFCCs per audio
frame.

Formally, the computation of the MFCC matrix F is given by

P = |Φ(X)|2 (B.1)

M = loga(PW) (B.2)

F = MΨ (B.3)

F̃ = (fbc)1≤b≤t
1≤c≤k

(B.4)

where Φ represents the frame-wise DFT function, |.| represents the absolute
value function, and fbc represents an element of F in the bth row and the cth
column.

B.2 MFCC inversion

The inversion of MFCCs back to the temporal representation involves the steps
mentioned below.

• The first step aims to map the t×k matrix F̃ with each row representing k
MFCCs in an audio frame, back to the log-scaled mel-spectrogram matrix
M. This involves two sub-steps: the first aims to map F̃ to F, and the

3DCT Type-II and DCT Type-III are the popular choices.

202

second aims to map F to M. We can rewrite the F̃ computation step by
combining Eq. B.3 and Eq. B.4 as

F̃ = MΨ̃ (B.5)

where Ψ̃ represents the j × k DCT matrix with k cosine basis functions.
Ψ is invertible, however, as Ψ̃ is not a square matrix, its inverse Ψ̃−1 does
not exist. However, we can approximate Ψ̃−1 by the k× j Moore-Penrose
pseudoinverse Ψ̃p given by [Boucheron and De Leon, 2008]

Ψ̃p = (Ψ̃>Ψ̃)−1Ψ̃> (B.6)

We can use Ψ̃p to invert F̃ to the t× j mel-spectrogram matrix M̃ as

M̃ = F̃Ψ̃p (B.7)

M̃ = MΨ̃Ψ̃p (B.8)

M̃ ≈M (B.9)

Thus, the inverted mel-spectrogram M̃ differs from the original mel-spectrogram
M. However, as for j = k, M̃ = M, we can achieve a lossless inversion
by preserving the MFCCs per audio frame for k + 1 ≤ c ≤ j, where c
represents the column index in F.

• The second step aims to invert M̃ to the power spectrogram matrix P.

M̃ ≈ loga(PW) (B.10)

M′ = aM̃ ≈ PW (B.11)

The logarithm is an invertible function, thus, no information loss happens
in mapping M̃ to a t× j matrix M′. However, similar to the DCT matrix
in step 1, the filterbank matrix W is not invertible. Thus, using its j × f
Moore-Penrose pesudoinverse matrix Wp, we can invert M′ as

M′ ≈ PW (B.12)

M′Wp ≈ PWWp (B.13)

P̃ = M′Wp ≈ P (B.14)

where Wp = (W>W)−1W>. Thus, the mel-spectrogram inversion step
generates P̃ that is different from the original periodogram matrix P.
Moreover, as discussed above, we can prevent the information loss in the
DCT inversion step (by keeping k = j), but the mel-spectrogram inver-

203

sion step is lossy due to the grouping of frequency bins according to the
perceptual mel-scale.

• The third step inverts the power spectrogram P̃ to the magnitude spectro-
gram |S̃|, where S̃ represents the t× f reconstructed spectrogram matrix.
This step does not result in any information loss as square is an invertible
function, however, P̃ ≈ P results in |S̃| ≈ |S|.

• Finally, the last step maps |S̃| to the time domain representation x̃[n].
To do that, the method requires the phase spectrogram matrix S̃. The
method combines S̃ with |S̃| to generate the reconstructed spectrogram

matrix S̃ (S̃ = |S̃|ej S̃) that on applying the inverse DFT (IDFT) [Müller,
2015] function generates x̃[n]. IDFT generates a t × l matrix X̃ with
each row containing a temporal audio frame of length l samples. The
overlap-add method later combines the reconstructed audio frames in X̃

to generate the temporal audio signal. IDFT is an invertible function,
however, whether any information loss happens in the inversion of the
reconstructed spectrogram to the temporal representation depends on the
phase spectrogram. In the context of this thesis, there are two ways to get
S̃ : by preserving the phase spectrogram of x[n] and reusing it during the

inversion step, i.e., S̃ = S (see Chapter 4), or by synthesising the phase
spectrogram using the inverted magnitude spectrogram |S̃| (see Chapter
5). To synthesise the phase spectrogram, this thesis uses the Griffin-
Lim algorithm [Griffin and Lim, 1984] that starting from a random phase
spectrogram searches for the optimal phase spectrogram by minimising
the mean square error between the modified magnitude spectrogram |S̃|
and the estimated magnitude spectrogram |S̃i| in the ith iteration.

Thus, inverting an MFCC or a mel-spectrogram back to the temporal audio
representation involves information loss. We can reduce the loss by preserv-
ing the original phase spectrogram and by keeping the number of MFCCs per
audio frame and the number of DCT basis functions equal. However, the mel-
spectrogram computation step results in unpreventable information loss due to
the grouping of frequency bins according to the mel-scale.

Fig. B.1 assists in analysing the information loss associated with the mel-
spectrogram inversion and phase spectrogram reconstruction steps. Fig. B.1 (a)
depicts power spectrogram of a 2 seconds excerpt from the Jamendo test dataset.
The power spectrogram computation uses l = 1024 samples and hop length =
315 samples. Fig. B.1 (b) depicts power spectrogram of the signal reconstructed
using magnitude spectrogram of the input excerpt. To plot this, the experiment
first uses the Griffin-Lim and IDFT algorithms to map magnitude spectrogram

204

0

5000

10000

Hz
(a)

0

5000

10000

Hz

(b)

0 0.5 1 1.5 2
Time (seconds)

0

5000

10000

Hz

(c)

+0 dB

-20 dB

-40 dB

-60 dB

-80 dB

Figure B.1: Visualisations depicting power spectrograms for a 2 seconds audio
excerpt from the “05-Elles disent.mp3” file in the Jamendo test dataset (time in-
dex: 55.00 seconds - 57.00 seconds). (a) Power spectrogram of the input excerpt,
(b) Power spectrogram of the signal reconstructed using magnitude spectrogram
of the input excerpt, and (c) Power spectrogram of signal reconstructed using
mel-spectrogram of the input excerpt.

of the input excerpt to a temporal signal4 and then computes power spectrogram
of the temporal signal. Finally, Fig. B.1(c) depicts power spectrogram of the
temporal signal reconstructed using mel-spectrogram of the input excerpt. To
plot this, the experiment first generates mel-spectrogram from the input excerpt
using a filterbank of 80 mel-filters logarithmically distributed between 0 Hz to
11025 Hz and then follows the mel-spectrogram inversion steps to generate a
temporal signal whose power spectrogram is depicted in Fig. B.1(c).

The visualisation of the power spectrograms and auralisation of the tempo-
ral signals suggests that the phase reconstruction step although lossy results in
very minimal information loss (Fig. B.1(a) and (b) are nearly indistinguishable).
However, the mel-spectrogram inversion process involves information loss, es-
pecially for higher frequencies and results in audible artefacts in the inverted
temporal signal. This happens due to the design of mel-filterbank that provides
more frequency resolution at lower frequencies than at higher frequencies. Inter-
estingly, despite the information loss in inverting mel-spectrograms, auralisation
of the inverted temporal signal reveals that the presence of artefacts has limited
effect on the interpretability of the signal.

4The experiment discards the phase spectrogram of the input excerpt.

205

Bibliography

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda B. Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems. arXiv e-prints,
arXiv:1603.04467, 2016.

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz
Hardt, and Been Kim. Sanity Checks for Saliency Maps. In Proceedings of
the 32nd Conference on Neural Information Processing Systems (NeurIPS),
pages 9525–9536. Montréal, Canada, December 3–8 2018.

Pulkit Agrawal, Ross B. Girshick, and Jitendra Malik. Analyzing the Perfor-
mance of Multilayer Neural Networks for Object Recognition. In Proceedings
of the 13th European Conference on Computer Vision (ECCV), pages 329–
344. Zurich, Switzerland, September 6–12 2014.

Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: An Algorithm
for Designing Overcomplete Dictionaries for Sparse Representation. IEEE
Transactions on Signal Processing, 54(11):4311–4322, 2006.

Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller,
Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Ana-
toly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James
Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas
Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier
Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Chris-
tiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron Courville,

206

Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins,
Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira
Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain,
Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe
Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari,
Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex
Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefran-
cois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory
Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mas-
tropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer,
Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Raz-
van Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew
Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier,
François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad
Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieck-
ermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs
van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco Visin,
Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson,
Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, and Ying Zhang. Theano:
A Python Framework for Fast Computation of Mathematical Expressions.
arXiv e-prints, arXiv:1605.02688, May 2016.

David Alvarez-Melis and Tommi S. Jaakkola. Towards Robust Interpretability
with Self-Explaining Neural Networks. In Proceedings of the 32nd Confer-
ence on Neural Information Processing Systems (NeurIPS), pages 7786–7795.
Montréal, Canada, December 3–8 2018.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards Bet-
ter Understanding of Gradient-Based Attribution Methods for Deep Neural
Networks. In Proceedings of the 6th International Conference on Learning
Representations (ICLR). Vancouver, Canada, April 30–May 3 2018.

Marco Ancona, Cengiz Öztireli, and Markus Gross. Explaining Deep Neural
Networks with a Polynomial Time Algorithm for Shapley Value Approxima-
tion. In Proceedings of the 36th International Conference on Machine Learn-
ing (ICML), pages 272–281. Long Beach, California, USA, June 9–15 2019.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Ma-
chine Bias, May 2016. URL https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing. Accessed
October 8, 2019.

207

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative
Adversarial Networks. In Proceedings of the 34th International Conference on
Machine Learning (ICML), pages 214–223. Sydney, Australia, August 6–11
2017.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
and Klaus-Robert Müller. On Pixel-Wise Explanations for Non-Linear Clas-
sifier Decisions by Layer-Wise Relevance Propagation. PloS one, 10(7), 2015.

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja
Hansen, and Klaus-Robert Müller. How To Explain Individual Classification
Decisions. Journal of Machine Learning Research, 11:1803–1831, 2010.

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Ad-
vances in Optimizing Recurrent Networks. In Proceedings of the 38th IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 8624–8628. Vancouver, Canada, May 26–31 2013.

Adam L. Berenzweig and Daniel P. W. Ellis. Locating Singing Voice Segments
within Music Signals. In Proceedings of the IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA), pages 119–122. New
Paltz, New York, USA, October 21–24 2001.

Adam L. Berenzweig, Daniel P. W. Ellis, and Steve Lawrence. Using Voice
Segments to Improve Artist Classification of Music. In Proceedings of the
22nd Audio Engineering Society (AES) Conference: Virtual, Synthetic, and
Entertainment Audio. Espoo, Finland, June 2002.

Christopher M. Bishop. Pattern Recognition and Machine Learning, 5th Edition.
Information Science and Statistics. Springer, 2007.

Rachel M. Bittner, Justin Salamon, Mike Tierney, Matthias Mauch, Chris Can-
nam, and Juan Pablo Bello. MedleyDB: A Multitrack Dataset for Annotation-
Intensive MIR Research. In Proceedings of the 15th International Society for
Music Information Retrieval Conference (ISMIR), pages 155–160. Taipei, Tai-
wan, October 2014.

Laura Boucheron and Phillip De Leon. On the Inversion of Mel-Frequency Cep-
stral Coefficients for Speech Enhancement Applications. In Proceedings of the
IEEE International Conference on Signals and Electronic Systems (ICSES),
pages 485–488. Krakow, Poland, September 14–17 2008.

Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

208

Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

Vicente Iván Sánchez Carmona, Tim Rocktäschel, Sebastian Riedel, and Sameer
Singh. Towards Extracting Faithful and Descriptive Representations of Latent
Variable Models. In AAAI Spring Symposium on Knowledge Representation
and Reasoning: Integrating Symbolic and Neural Approaches. Palo Alto, Cal-
ifornia, USA, March 23–25 2015.

Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris Olah.
Activation Atlas. Distill, 2019.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie
Elhadad. Intelligible Models for Healthcare: Predicting Pneumonia Risk and
Hospital 30-day Readmission. In Proceedings of the 21st ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD),
pages 1721–1730. Sydney, Australia, August 10–13 2015.

Chaofan Chen, Oscar Li, Alina Barnett, Jonathan Su, and Cynthia Rudin.
This Looks Like That: Deep Learning for Interpretable Image Recognition. In
Proceedings of the 33rd Conference on Neural Information Processing Systems
(NeurIPS). Vancouver, Canada, December 8–14 2019.

Bhusan Chettri, Saumitra Mishra, Bob L. Sturm, and Emmanouil Benetos.
Analysing the Predictions of a CNN-Based Replay Spoofing Detection Sys-
tem. In Proceedings of the IEEE Spoken Language Technology Workshop
(SLT), pages 92–97. Athens, Greece, December 18–21 2018.

Keunwoo Choi, György Fazekas, and Mark B. Sandler. Explaining Deep
Convolutional Neural Networks on Music Classification. arXiv e-prints,
arXiv:1607.02444, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accu-
rate Deep Network Learning by Exponential Linear Units (ELUs). In Proceed-
ings of the 4th International Conference on Learning Representations (ICLR).
San Juan, Puerto Rico, May 2016.

Mark W. Craven and Jude W. Shavlik. Extracting Tree-Structured Represen-
tations of Trained Networks. In Proceedings of the 8th Conference on Neural
Information Processing Systems (NeurIPS), pages 24–30. Denver, Colorado,
USA, November 27–30 1995.

Steven B Davis and Paul Mermelstein. Comparison of Parametric Represen-
tation for Monosyllabic Word Recognition in Continously Spoken Sentences.

209

IEEE Transactions on Acoustic, Speech and Signal Processing, 28(4):357–366,
1980.

Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson.
FMA: A Dataset for Music Analysis. In Proceedings of the 18th International
Society for Music Information Retrieval Conference (ISMIR), pages 316–323.
Suzhou, China, October 23–27 2017.

Alexandre Défossez, Neil Zeghidour, Nicolas Usunier, Léon Bottou, and Francis
Bach. SING: Symbol-to-Instrument Neural Generator. In Proceedings of the
32nd Conference on Neural Information Processing Systems (NeurIPS), pages
9055–9065. Montréal, Canada, December 3–8 2018.

Sander Dieleman and Benjamin Schrauwen. End-to-End Learning for Music Au-
dio. In Proceedings of the 39th IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6964–6968. Florence, Italy,
May 4–9 2014.

Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Søn-
derby, Daniel Nouri, Daniel Maturana, Martin Thoma, Eric Battenberg, Jack
Kelly, Jeffrey De Fauw, Michael Heilman, Diogo Moitinho de Almeida, Brian
McFee, Hendrik Weideman, Gábor Takács, Peter de Rivaz, Jon Crall, Gre-
gory Sanders, Kashif Rasul, Cong Liu, Geoffrey French, and Jonas Degrave.
Lasagne: First release, August 2015. URL http://dx.doi.org/10.5281/

zenodo.27878.

Finale Doshi-Velez and Been Kim. Towards a Rigorous Science of Interpretable
Machine Learning. arXiv e-prints, arXiv:1702.08608, 2017.

Alexey Dosovitskiy and Thomas Brox. Inverting Visual Representations with
Convolutional Networks. In Proceedings of the 29th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4829–4837. Las
Vegas, USA, June 2016a.

Alexey Dosovitskiy and Thomas Brox. Generating Images with Perceptual Sim-
ilarity Metrics Based on Deep Networks. In Proceedings of the 30th Confer-
ence on Neural Information Processing Systems (NeurIPS), pages 658–666.
Barcelona, Spain, December 2016b.

Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning to
Generate Chairs with Convolutional Neural Networks. In Proceedings of the
28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1538–1546. Boston, USA, June 2015.

210

http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878

Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim Tatarchenko, and
Thomas Brox. Learning to Generate Chairs, Tables and Cars with Con-
volutional Networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(4):692–705, 2017.

Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for Interpretable Machine
Learning. arXiv e-prints, arXiv:1808.00033, 2018a.

Mengnan Du, Ninghao Liu, Qingquan Song, and Xia Hu. Towards Explanation
of DNN-based Prediction with Guided Feature Inversion. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 1358–1367. London, UK, August 2018b.

Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and Adam Roberts.
DDSP: Differentiable Digital Signal Processing. In Proceedings of the 8th
International Conference on Learning Representations (ICLR). Addis Ababa,
Ethiopia, April 26–May 1 2020.

Dumitru Erhan, Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Vi-
sualising Higher-Layer Features of a Deep Network. Technical Report 1341,
University of Montreal, June 2009.

J. L. Fleiss. Measuring Nominal Scale Agreement Among Many Raters. Psy-
chological Bulletin, 76(5):378–382, 1971.

Arthur Flexer and Dominik Schnitzer. Effects of Album and Artist Filters in
Audio Similarity Computed for Very Large Music Databases. Computer Music
Journal, 34(3):20–28, 2010.

Ruth C. Fong and Andrea Vedaldi. Interpretable Explanations of Black Boxes
by Meaningful Perturbation. In Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), pages 3449–3457. Venice, Italy, October
22–29 2017.

James R. Foulds and Eibe Frank. A Review of Multi-Instance Learning As-
sumptions. Knowledge Engineering Review, 25(1):1–25, 2010.

Alex Alves Freitas. Comprehensible Classification Models: A Position Paper.
SIGKDD Explorations, 15(1):1–10, 2013.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. In Proceedings of the
33rd International Conference on Machine Learning (ICML), pages 1050–
1059. New York, USA, June 19–24 2016.

211

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image Style Transfer
Using Convolutional Neural Networks. In Proceedings of the 29th IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 2414–
2423. Las Vegas, USA, June 2016.

Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and
Lalana Kagal. Explaining Explanations: An Overview of Interpretability of
Machine Learning. In Proceedings of the 5th IEEE International Conference
on Data Science and Advanced Analytics (DSAA), pages 80–89. Turin, Italy,
October 1–3 2018.

Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich Fea-
ture Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the 27th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 580–587. Columbus, USA, June 23–28 2014.

Ian J. Goodfellow, Quoc V. Le, Andrew M. Saxe, Honglak Lee, and Andrew Y.
Ng. Measuring Invariances in Deep Networks. In Proceedings of the 23rd
Conference on Neural Information Processing Systems (NeurIPS), pages 646–
654. Vancouver, British Columbia, Canada, December 7-10 2009.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative
Adverserial Nets. In Proceedings of the 28th Conference on Neural Infor-
mation Processing Systems (NeurIPS), pages 2672–2680. Montréal, Quebec,
Canada, December 8–13 2014.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
Harnessing Adverserial Examples. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR). San Diego, USA, May 7–9
2015.

Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning.
Adaptive Computation and Machine Learning. MIT Press, 2016.

Bryce Goodman and Seth R. Flaxman. European Union Regulations on Algo-
rithmic Decision-Making and a “Right to Explanation”. AI Magazine, 38(3):
50–57, 2017.

Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and Ryuichi Oka. RWC
Music Database: Popular, Classical and Jazz Music Databases. In Proceedings
of the 3rd International Conference on Music Information Retrieval (ISMIR),
pages 287–288. Paris, France, October 2002.

212

Daniel W. Griffin and Jae S. Lim. Signal Estimation From Modified Short-
Time Fourier Transform. IEEE Transactions on Acoustic, Speech, and Signal
Processing, 32(2):236–243, 1984.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. A Survey of Methods for Explaining Black
Box Models. ACM Computing Surveys, 51(5):93:1–93:42, 2019.

Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and
Aaron C. Courville. Improved Training of Wasserstein GANs. In Proceedings
of the 31st Conference on Neural Information Processing Systems (NeurIPS),
pages 5767–5777. Long Beach, California, USA, December 4–9 2017.

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer Series
in Statistics. Springer, 2nd edition, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pages 1026–1034. Santiago, Chile, December 2015.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge
to a Local Nash Equilibrium. In Proceedings of the 31st Conference on Neural
Information Processing Systems (NeurIPS), pages 6626–6637. Long Beach,
California, USA, December 4–9 2017.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Improving Neural Networks by Preventing Co-Adaptation
of Feature Detectors. arXiv e-prints, arXiv:1207.0580, July 2012.

R. Devon Hjelm, Athul Paul Jacob, Tong Che, Kyunghyun Cho, and Yoshua
Bengio. Boundary-Seeking Generative Adversarial Networks. arXiv e-prints,
arXiv:1702.08431, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

Eric J. Humphrey, Juan Pablo Bello, and Yann LeCun. Moving Beyond Feature
Design: Deep Architectures and Automatic Feature Learning in Music Infor-
matics. In Proceedings of the 13th International Society for Music Information
Retrieval Conference (ISMIR), pages 403–408. Porto, Portugal, October 8-12
2012.

213

Eric J. Humphrey, Sravana Reddy, Prem Seetharaman, Aparna Kumar,
Rachel M. Bittner, Andrew Demetriou, Sankalp Gulati, Andreas Jansson,
Tristan Jehan, Bernhard Lehner, Anna Kruspe, and Luwei Yang. An In-
troduction to Signal Processing for Singing-Voice Analysis: High Notes in
the Effort to Automate the Understanding of Vocals in Music. IEEE Signal
Processing Magazine, 36(1):82–94, 2019.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Proceedings of the
32nd International Conference on Machine Learning (ICML), pages 448–456.
Lille, France, July 2015.

Jesper Højvang Jensen, Mads Græsbøll Christensen, Daniel P. W. Ellis, and
Søren Holdt Jensen. Quantitative Analysis of a Common Audio Similarity
Measure. IEEE Transactions on Audio, Speech, and Langauage Processing,
17(4):693–703, 2009.

Dan Jurafsky and James H. Martin. Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall Series in Artificial Intelligence. Prentice
Hall, Pearson Education International, 2nd edition, 2009.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and Understand-
ing Recurrent Networks. arXiv e-prints, arXiv:1506.02078, 2015.

Corey Kereliuk, Bob L. Sturm, and Jan Larsen. Deep Learning, Audio Adver-
saries, and Music Content Analysis. In Proceedings of the IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), pages
1–5. New Paltz, New York, USA, October 18–21 2015.

Been Kim, Cynthia Rudin, and Julie A. Shah. The Bayesian Case Model:
A Generative Approach for Case-Based Reasoning and Prototype Classifica-
tion. In Proceedings of the 28th Conference on Neural Information Processing
Systems (NeurIPS), Montreal, Quebec, Canada, pages 1952–1960, December
8–13 2014.

Been Kim, Oluwasanmi Koyejo, and Rajiv Khanna. Examples Are Not Enough,
Learn to Criticize! Criticism for Interpretability. In Proceedings of the
30th Conference on Neural Information Processing Systems (NeurIPS), pages
2280–2288. Barcelona, Spain, December 5–10 2016.

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber,
Kristof T. Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. The
(Un)reliability of Saliency Methods. arXiv e-prints, arXiv:1711.00867, 2017.

214

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. In Proceedings of the 3rd International Conference on Learning
Representations (ICLR). San Diego, USA, May 2015.

Pang Wei Koh and Percy Liang. Understanding Black-Box Predictions via
Influence Functions. In Proceedings of the 34th International Conference on
Machine Learning (ICML), pages 1885–1894. Sydney, Australia, August 6–11
2017.

Josua Krause, Adam Perer, and Kenney Ng. Interacting With Predictions:
Visual Inspection of Black-Box Machine Learning Models. In Proceedings of
the CHI Conference on Human Factors in Computing Systems, pages 5686–
5697. San Jose, USA, May 7–12 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet Classi-
fication with Deep Convolutional Neural Networks. In Proceedings of the
26th Conference on Neural Information Processing Systems (NeurIPS), pages
1106–1114. Lake Tahoe, USA, December 2012.

Andreas Krug and Sebastian Stober. Introspection for Convolutional Automatic
Speech Recognition. In Proceedings of the EMNLP Workshop on Analysing
and Interpreting Neural Networks for NLP, pages 187–199. Brussels, Belgium,
November 1 2018.

Andreas Krug, René Knaebel, and Sebastian Stober. Neuron Activation Profiles
for Interpreting Convolutional Speech Recognition Models. In Proceedings of
the NeurIPS Workshop on Interpretability and Robustness in Audio, Speech
and Language. Montréal, Canada, December 8 2018.

Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. Interpretable Deci-
sion Sets: A Joint Framework for Description and Prediction. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 1675–1684. San Francisco, California, USA,
August, 13–17 2016.

J. R. Landis and G. G. Koch. The Measurement of Observer Agreement for
Categorical Data. Biometrics, 33(1):159–174, 1977.

Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Mon-
tavon, Wojciech Samek, and Klaus-Robert Müller. Unmasking Clever Hans
Predictors and Assessing What Machines Really Learn. Nature Communica-
tions, 10(1):1096, 2019.

215

Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Greg Cor-
rado, Kai Chen, Jeffrey Dean, and Andrew Y. Ng. Building High-Level Fea-
tures Using Large Scale Unsupervised Learning. In Proceedings of the 29th
International Conference on Machine Learning (ICML). Edinburg, Scotland,
UK, June 26–July 1 2012.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Ef-
ficient BackProp. In Neural Networks: Tricks of the Trade, pages 9–50.
Springer, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep Learning. Nature,
521(7553):436 – 444, 2015.

Kyungyun Lee, Keunwoo Choi, and Juhan Nam. Revisiting Singing Voice De-
tection: A Quantitative Review and the Future Outlook. In Proceedings of
the 19th International Society for Music Information Retrieval Conference
(ISMIR), pages 506–513. Paris, France, September 23–27 2018.

Simon Leglaive, Romain Hennequin, and Roland Badeau. Singing Voice De-
tection with Deep Recurrent Neural Networks. In Proceedings of the 40th
IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 121–125. South Brisbane, Queensland, Australia, April
2015.

Bernhard Lehner, Reinhard Sonnleitner, and Gerhard Widmer. Towards Light-
Weight, Real-Time-Capable Singing Voice Detection. In Proceedings of the
14th International Society for Music Information Retrieval Conference (IS-
MIR), pages 53–58. Curitiba, Brazil, November 2013.

Bernhard Lehner, Gerhard Widmer, and Reinhard Sonnleitner. On the Reduc-
tion of False Positives in Singing Voice Detection. In Proceedings of the 39th
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7480–7484. Florence, Italy, May 2014.

Bernhard Lehner, Gerhard Widmer, and Sebastian Böck. A Low-Latency, Real-
Time-Capable, Singing Voice Detection Method with LSTM Recurrent Neural
Networks. In Proceedings of the 23rd European Signal Processing Conference
(EUSIPCO), pages 21–25. Nice, France, August 2015.

Bernhard Lehner, Jan Schlüter, and Gerhard Widmer. Online, Loudness-
Invariant Vocal Detection in Mixed Music Signals. IEEE/ACM Transactions
on Audio, Speech, and Langauage Processing, 26(8):1369–1380, 2018.

Tao Lei, Regina Barzilay, and Tommi S. Jaakkola. Rationalizing Neural Pre-
dictions. In Proceedings of the Conference on Empirical Methods in Natural

216

Language Processing (EMNLP), pages 107–117. Austin, Texas, November 1–5
2016.

Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, and David Madigan.
Interpretable Classifiers Using Rules and Bayesian Analysis: Building a Better
Stroke Prediction Model. The Annals of Applied Statistics, 9(3):1350–1371,
2015.

Jiwei Li, Xinlei Chen, Eduard H. Hovy, and Dan Jurafsky. Visualizing and
Understanding Neural Models in NLP. In Proceedings of the 15th Annual
Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (NAACL HLT), pages
681–691. San Diego, California, USA, June 12–17 2016.

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep Learning for Case-
Based Reasoning Through Prototypes: A Neural Network That Explains Its
Predictions. In Proceedings of the 32nd Conference on Artificial Intelligence
(AAAI), pages 3530–3537. New Orleans, Louisiana, USA, February 2–7 2018.

R. Likert. A Technique For The Measurement Of Attitudes. Archives of Psy-
chology, 1932.

Zachary C. Lipton. The Mythos of Model Interpretability. In Proceedings of the
International Conference on Machine Learning (ICML) Workshop on Human
Interpretability in Machine Learning. New York, USA, June 2016.

Antoine Liutkus, Derry Fitzgerald, Zafar Rafii, Bryan Pardo, and Laurent
Daudet. Kernel Additive Models for Source Separation. IEEE Transactions
on Signal Processing, 62(16):4298–4310, 2014.

Beth Logan. Mel Frequency Cepstral Coefficients for Music Modeling. In Pro-
ceedings of the 1st International Symposium for Music Information Retrieval
(ISMIR). Plymouth, Massachusetts, USA, October 23–25 2000.

Scott M. Lundberg and Su-In Lee. A Unified Approach to Interpreting Model
Predictions. In Proceedings of the 31st Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 4765–4774. Long Beach, California, USA,
December 4–9 2017.

Aravindh Mahendran and Andrea Vedaldi. Understanding Deep Image Repre-
sentations by Inverting Them. In Proceedings of the 28th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5188–5196. Boston,
USA, June 2015.

217

Aravindh Mahendran and Andrea Vedaldi. Visualizing Deep Convolutional Neu-
ral Networks Using Natural Pre-images. International Journal of Computer
Vision, 120(3):233–255, 2016.

Andrew L. Mass, Awni Y. Hannun, and Andrew Y. Ng. Rectifier Nonlinearities
Improve Neural Network Acoustic Models. In Proceedings of the ICML Work-
shop on Deep Learning for Audio, Speech and Language Processing. Atlanta,
USA, June 2013.

Matthias Mauch, Hiromasa Fujihara, Kazuyoshi Yoshii, and Masataka Goto.
Timbre and Melody Features for the Recognition of Vocal Activity and In-
strumental Solos in Polyphonic Music. In Proceedings of the 12th International
Society for Music Information Retrieval Conference (ISMIR), pages 233–238.
Miami, Florida, USA, October 2011.

Brian McFee, Colin Raffel, Dawen Liang, Daniel P. W. Ellis, Matt McVicar,
Eric Battenberg, and Oriol Nieto. Librosa: Audio and Music Signal Analysis
in Python. In Proceedings of the 14th Python in Science Conference (SCIPY),
pages 18–25. Austin, Texas, USA, July 2015.

Luke Merrick and Ankur Taly. The Explanation Game: Explaining Ma-
chine Learning Models with Cooperative Game Theory. arXiv e-prints,
arXiv:1909.08128, 2019.

Tim Miller. Explanation in Artificial Intelligence: Insights from the Social
Sciences. Artificial Intelligence, 267:1–38, 2019.

Saumitra Mishra, Bob L. Sturm, and Simon Dixon. Local Interpretable Model-
Agnostic Explanations for Music Content Analysis. In Proceedings of the 18th
International Society for Music Information Retrieval Conference (ISMIR),
pages 537–543. Suzhou, China, October 2017.

Saumitra Mishra, Bob L. Sturm, and Simon Dixon. “What are You Listening
to?” Explaining Predictions of Deep Machine Listening Systems. In Proceed-
ings of the 26th European Signal Processing Conference, pages 2260–2264,
Rome, Italy, September 2018a.

Saumitra Mishra, Bob L. Sturm, and Simon Dixon. Understanding a Deep Ma-
chine Listening Model Through Feature Inversion. In Proceedings of the 19th
International Society for Music Information Retrieval Conference (ISMIR),
pages 755–762, Paris, France, September 2018b.

Saumitra Mishra, Daniel Stoller, Emmanouil Benetos, Bob L. Sturm, and Simon
Dixon. GAN-based Generation and Automatic Selection of Explanations for

218

Neural Networks. In Proceedings of the International Conference on Learning
Representations (ICLR) Workshop on Safe Machine Learning. New Orleans,
USA, May 6–9 2019.

Saumitra Mishra, Emmanouil Benetos, Bob L. Sturm, and Simon Dixon. Re-
liable Local Explanations for Machine Listening. In Proceedings of the In-
ternational Joint Conference on Neural Networks (IJCNN) Special Session
on Explainable Computational/Artificial Intelligence. Glasgow, Scotland, July
19–24 2020.

Brent D. Mittelstadt, Chris Russell, and Sandra Wachter. Explaining Explana-
tions in AI. In Proceedings of the 2nd ACM Conference on Fairness, Account-
ability, and Transparency (FAT*), pages 279–288. Atlanta, Georgia, USA,
January 29–31 2019.

Christoph Molnar. Interpretable Machine Learning: A Guide for Making
Black Box Models Explainable, 2019. URL https://christophm.github.

io/interpretable-ml-book/. Accessed December 17, 2019.

Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for
Interpreting and Understanding Deep Neural Networks. Digital Signal Pro-
cessing, 73:1–15, 2018.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going
Deeper into Neural Networks, June 2015. URL https://ai.googleblog.

com/2015/06/inceptionism-going-deeper-into-neural.html. Accessed
October 15, 2019.

Meinard Müller. Fundamentals of Music Processing - Audio, Analysis, Algo-
rithms, Applications. Springer, 2015.

W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin
Yu. Interpretable Machine Learning: Definitions, Methods, and Applications.
arXiv e-prints, arXiv:1901.04592, 2019.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep Neural Networks are
Easily Fooled: High Confidence Predictions for Unrecognizable Images. In
Proceedings of the 28th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 427–436. Boston, USA, June 2015.

Anh Mai Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff
Clune. Synthesizing the Preferred Inputs for Neurons in Neural Networks Via
Deep Generator Networks. In Proceedings of the 30th Conference on Neu-
ral Information Processing Systems (NeurIPS), pages 3387–3395. Barcelona,
Spain, December 5–10 2016a.

219

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted Feature Visual-
ization: Uncovering the Different Types of Features Learned By Each Neuron
in Deep Neural Networks. In Proceedings of the International Conference
on Machine Learning (ICML) Workshop on Visualization for Deep Learning.
New York, USA, June 2016b.

Anh Mai Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason
Yosinski. Plug & Play Generative Networks: Conditional Iterative Genera-
tion of Images in Latent Space. In Proceedings of the 30th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3510–3520. Hon-
olulu, USA, July 21–26 2017.

Adam Noack, Isaac Ahern, Dejing Dou, and Boyang Li. Does Interpretabil-
ity of Neural Networks Imply Adversarial Robustness? arXiv e-prints,
arXiv:1912.03430, 2019.

Tin Lay Nwe and Haizhou Li. Singing Voice Detection Using Perceptually-
Motivated Features. In Proceedings of the 15th ACM International Conference
on Multimedia (ACMMM), pages 309–312. Augsburg, Germany, September
24–29 2007.

Tin Lay Nwe and Ye Wang. Automatic Detection of Vocal Segments in Popular
Songs. In Proceedings of the 5th International Conference on Music Informa-
tion Retrieval (ISMIR). Barcelona, Spain, October 10–14 2004.

Tin Lay Nwe, Arun Shenoy, and Ye Wang. Singing Voice Detection in Popular
Music. In Proceedings of the 12th ACM International Conference on Multi-
media (ACMMM), pages 324–327. New York, USA, October, 10–16 2004.

Christopher Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature Vi-
sualization. Distill, 2017.

Alan V. Oppenheim, John R. Buck, and Ronald W. Schafer. Discrete-Time
Signal Processing. Prentice-Hall, 2nd edition, 1999.

Michalis Papakostas and Theodoros Giannakopoulos. Speech-Music Discrimina-
tion Using Deep Visual Feature Extractors. Expert System with Applications,
114:334–344, 2018.

Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami. Practical Black-Box Attacks against
Machine Learning. In Proceedings of the ACM on Asia Conference on Com-
puter and Communications Security (AsiaCCS), pages 506–519. Abu Dhabi,
United Arab Emirates, April 2–6 2017.

220

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Karol J. Piczak. Environmental Sound Classification with Convolutional Neu-
ral Networks. In Proceedings of the 25th IEEE International Workshop on
Machine Learning for Signal Processing, pages 1–6. Boston, USA, September
17–20 2015.

Aggelos Pikrakis, Yannis Kopsinis, Nadine Kroher, and José Miguel Díaz-Báñez.
Unsupervised Singing Voice Detection Using Dictionary Learning. In Proceed-
ings of the 24th European Signal Processing Conference (EUSIPCO), pages
1212–1216. Budapest, Hungary, August 29–September 2 2016.

Jordi Pons, Oriol Nieto, Matthew Prockup, Erik M. Schmidt, Andreas F.
Ehmann, and Xavier Serra. End-to-end Learning for Music Audio Tagging
at Scale. In Proceedings of the 19th International Society for Music Informa-
tion Retrieval Conference (ISMIR), pages 637–644. Paris, France, September
23–27 2018.

R. Quian Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant
Visual Representation by Single Neurons in the Human Brain. Nature, 435
(7045):1102–1107, 2005.

Lawrence Rabiner and Ronald Schafer. Theory and Applications of Digital
Speech Processing. Prentice Hall Press, Upper Saddle River, NJ, USA, 1st
edition, 2010.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. In
Proceedings of the 4th International Conference on Learning Representations
(ICLR). San Juan, Puerto Rico, May 2–4 2016.

Mathieu Ramona, Gaël Richard, and Bertrand David. Vocal Detection in Mu-
sic Using Support Vector Machines. In Proceedings of the 33rd IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 1885–1888. Las Vegas, Nevada, USA, April 2008.

Lise Regnier and Geoffroy Peeters. Singing Voice Detection in Music Tracks
Using Direct Voice Vibrato Detection. In Proceedings of the 34th IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 1685–1688. Taipei, Taiwan, April 19–24 2009.

221

Jan Rennies and Henning Schepker. Listening Effort and Speech Intelligibility
in Listening Situations Affected by Noise and Reverberation. The Journal of
the Acoustical Society of America, 136(5), 2014.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Model Agnostic In-
terpretability of Machine Learning. In Proceedings of the International Con-
ference on Machine Learning (ICML) Workshop on Human Interpretability
in Machine Learning. New York, USA, June 2016a.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should I Trust
You?”: Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 1135–1144. San Francisco, USA, August 2016b.

Martín Rocamora and Perfecto Herrera. Comparing Audio Descriptors for
Singing Voice Detection in Music Audio Files. In 11o Simpósio Brasileiro
de Computação Musical (SBCM). Sao Paulo, Brazil, September 2007.

Francisco Rodríguez-Algarra, Bob L. Sturm, and Hugo Maruri-Aguilar.
Analysing Scattering-Based Music Content Analysis Systems: Where’s the
Music? In Proceedings of the 17th International Society for Music Informa-
tion Retrieval Conference (ISMIR), pages 344–350. New York, USA, August
7–11 2016.

Cynthia Rudin. Stop Explaining Black Box Machine Learning Models for High
Stakes Decisions and Use Interpretable Models Instead. Nature Machine In-
telligence, 1(5):206–215, 2019.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
Representations by Back-Propagating Errors. Nature, 323(6088):533–536,
1986.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Fei-Fei Li. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin,
and Klaus-Robert Müller. Evaluating the Visualization of What a Deep Neu-
ral Network has Learned. IEEE Transactions on Neural Networks and Learn-
ing Systems, 28(11):2660–2673, November 2017.

Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and
Klaus-Robert Müller, editors. Explainable AI: Interpreting, Explaining and

222

Visualizing Deep Learning, volume 11700 of Lecture Notes in Computer Sci-
ence. Springer, 2019.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact Solutions
to the Nonlinear Dynamics of Learning in Deep Linear Neural Networks. In
Proceedings of the 2nd International Conference on Learning Representations
(ICLR). Banff, Canada, April 2014.

Jan Schlüter. Learning to Pinpoint Singing Voice from Weakly Labeled Exam-
ples. In Proceedings of the 17th International Society for Music Information
Retrieval Conference (ISMIR), pages 44–50. New York, USA, August 7–11
2016.

Jan Schlüter. Deep Learning for Event Detection, Sequence Labelling and Sim-
ilarity Estimation in Music Signals. PhD thesis, Johannes Kepler University
Linz, July 2017.

Jan Schlüter and Sebastian Böck. Improved Musical Onset Detection with
Convolutional Neural Networks. In Proceedings of the 39th IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 6979–6983. Florence, Italy, May 4–9 2014.

Jan Schlüter and Thomas Grill. Exploring Data Augmentation for Improved
Singing Voice Detection with Neural Networks. In Proceedings of the 16th
International Society for Music Information Retrieval Conference (ISMIR),
pages 121–126. Málaga, Spain, October 2015.

Jan Schlüter and Bernhard Lehner. Zero-Mean Convolutions for Level-Invariant
Singing Voice Detection. In Proceedings of the 19th International Society
for Music Information Retrieval Conference (ISMIR), pages 321–326. Paris,
France, September 23–27 2018.

Jan Schlüter and Reinhard Sonnleitner. Unsupervised Feature Learning for
Speech and Music Detection in Radio Broadcasts. In Proceedings of the 15th
International Conference on Digital Audio Effects (DAFx), pages 369–376.
York, UK, September 17–21 2012.

Florian Scholz, Igor Vatolkin, and Günter Rudolph. Singing Voice Detection
Across Different Music Genres. In Proceedings of AES International Confer-
ence on Semantic Audio. Erlangen, Germany, June 22–24 2017.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual Explanations
from Deep Networks via Gradient-Based Localization. In Proceedings of the

223

IEEE International Conference on Computer Vision (ICCV), pages 618–626.
Venice, Italy, October 22–29 2017.

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje.
Not Just a Black Box: Learning Important Features Through Propagating
Activation Differences. arXiv preprint, arXiv:1605.01713, 2016.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR). San Diego, USA, May 2015.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Con-
volutional Networks: Visualising Image Classification Models and Saliency
Maps. In Proceedings of the 2nd International Conference on Learning Rep-
resentations (ICLR), Workshop Track. Banff, Canada, April 2014.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin
Wattenberg. Smoothgrad: Removing Noise by Adding Noise. arXiv e-prints,
arXiv:1706.03825, 2017.

Jake Snell, Karl Ridgeway, Renjie Liao, Brett D. Roads, Michael C. Mozer, and
Richard S. Zemel. Learning to Generate Images with Perceptual Similarity
Metrics. In Proceedings of the 24th IEEE International Conference on Image
Processing (ICIP), pages 4277–4281. Beijing, China, September 2017.

Kacper Sokol and Peter A. Flach. Counterfactual Explanations of Machine
Learning Predictions: Opportunities and Challenges for AI Safety. In Pro-
ceedings of the Workshop on Artificial Intelligence Safety 2019 co-located with
the 33rd AAAI Conference on Artificial Intelligence 2019 (AAAI). Honolulu,
Hawaii, January 27 2019.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A.
Riedmiller. Striving for Simplicity: The All Convolutional Net. In Proceed-
ings of the 3rd International Conference on Learning Representations (ICLR),
Workshop Track. San Diego, USA, May 7-9 2015.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Research, 15(1):1929–1958,
2014.

Dan Stowell, Dimitrios Giannoulis, Emmanouil Benetos, Mathieu Lagrange,
and Mark D. Plumbley. Detection and Classification of Acoustic Scenes and
Events. IEEE Transactions on Multimedia, 17(10):1733–1746, 2015.

224

Erik Strumbelj and Igor Kononenko. An Efficient Explanation of Individual
Classifications Using Game Theory. Journal of Machine Learning Research,
11:1–18, 2010.

Bob L. Sturm. A Simple Method to Determine if a Music Information Retrieval
System is a “Horse”. IEEE Transactions on Multimedia, 16(6):1636–1644,
2014.

Bob L. Sturm, Marcela Morvidone, and Laurent Daudet. Musical Instrument
Identification Using Multiscale Mel-Frequency Cepstral Coefficients. In Pro-
ceedings of the 18th European Signal Processing Conference (EUSIPCO),
pages 477–481. Aalborg, Denmark, August 23–27 2010.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for
Deep Networks. In Proceedings of the 34th International Conference on Ma-
chine Learning (ICML), pages 3319–3328. Sydney, Australia, August 6–11
2017.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the
Importance of Initialization and Momentum in Deep Learning. In Proceedings
of the 30th International Conference on Machine Learning (ICML), pages
1139–1147. Atlanta, USA, June 2013.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing Properties of Neural
Networks. In Proceedings of the 2nd International Conference on Learning
Representations (ICLR). Banff, Canada, April 14–16 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going Deeper with Convolutions. In Proceedings of the 28th IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9.
Boston, USA, June 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the 29th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2818–2826. Las Vegas, USA, June 26–July 1 2016.

Hideyuki Tachibana, Takuma Ona, Nobutaka Ono, and Shigeki Sagayama.
Melody Line Estimation in Homophonic Music Audio Signals Based on
Temporal-Variability of Melodic Source. In Proceedings of the 35th IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 425–428. Dallas, Texas, USA, March 14–19 2010.

225

Sebastian Thrun. Extracting Rules from Artificial Neural Networks with Dis-
tributed Representations. In Proceedings of the 7th Conference on Neural In-
formation Processing Systems (NeurIPS), pages 505–512. Denver, Colorado,
USA, 1994.

Wei-Ho Tsai and Hsin-Min Wang. Automatic Singer Recognition of Popular
Music Recordings via Estimation and Modeling of Solo Vocal Signals. IEEE
Transactions on Audio, Speech, and Langauage Processing, 14(1):330–341,
2006.

Paul Upchurch, Jacob R. Gardner, Geoff Pleiss, Robert Pless, Noah Snavely,
Kavita Bala, and Kilian Q. Weinberger. Deep Feature Interpolation for Image
Content Changes. In Proceedings of the 30th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6090–6099. Honolulu, USA,
July 2017.

Berk Ustun and Cynthia Rudin. Supersparse Linear Integer Models for Opti-
mized Medical Scoring Systems. Machine Learning, 102(3):349–391, 2015.

Shankar Vembu and Stephan Baumann. Separation of Vocals from Polyphonic
Audio Recordings. In Proceedings of the 6th International Conference on Mu-
sic Information Retrieval (ISMIR), pages 337–344. London, UK, September
2005.

Sandra Wachter, Brent D. Mittelstadt, and Chris Russell. Counterfactual Ex-
planations without Opening the Black Box: Automated Decisions and the
GDPR. arXiv e-prints, arXiv:1711.00399, 2017.

Fulton Wang and Cynthia Rudin. Falling Rule Lists. In Proceedings of the 18th
International Conference on Artificial Intelligence and Statistics (AISTATS).
San Diego, California, USA, May 9–12 2015.

Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl,
and Perry MacNeille. Bayesian Rule Sets for Interpretable Classification.
In Proceedings of the IEEE 16th International Conference on Data Mining
(ICDM), pages 1269–1274. Barcelona, Spain, December, 12-15 2016.

Ye Wang, Min-Yen Kan, Tin Lay Nwe, Arun Shenoy, and Jun Yin. Lyric-
Ally: Automatic Synchronization of Acoustic Musical Signals and Textual
Lyrics. In Proceedings of the 12th ACM International Conference on Multi-
media (ACMMM), pages 212–219. New York, USA, October 2004.

Donglai Wei, Bolei Zhou, Antonio Torralba, and William T. Freeman.
Understanding Intra-Class Knowledge Inside CNN. arXiv e-prints,
arXiv:1507.02379, 2015.

226

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhutdinov, Richard Zemel, and Yoshua Bengio. Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention. In Proceedings of
the 32nd International Conference on Machine Learning (ICML), pages 2048–
2057. Lille, France, July 6–11 2015.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How Transferable
Are Features in Deep Neural Networks? In Proceedings of the 28th Confer-
ence on Neural Information Processing Systems (NeurIPS), pages 3320–3328.
Montréal, Quebec, Canada, December 8–13 2014.

Jason Yosinski, Jeff Clune, Anh Mai Nguyen, Thomas J. Fuchs, and Hod Lipson.
Understanding Neural Networks Through Deep Visualization. In Proceedings
of the 32nd International Conference on Machine Learning (ICML), Deep
Learning Workshop. Lille, France, July 2015.

Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolu-
tional Networks. In Proceedings of the 13th European Conference on Computer
Vision (ECCV), pages 818–833. Zurich, Switzerland, September 2014.

Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable Convo-
lutional Neural Networks. In Proceedings of the 31st IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 8827–8836. Salt
Lake City, USA, June 18–22 2018.

Yichi Zhang and Zhiyao Duan. Visualization and Interpretation of Siamese
Style Convolutional Neural Networks for Sound Search by Vocal Imitation. In
Proceedings of the 43rd IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 2406–2410. Calgary, Canada, April
15–20 2018.

Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Torrabla.
Object Detectors Emerge in Deep Scene CNNs. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR). San Diego,
USA, May 7–9 2015.

Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, and Max Welling. Visualizing
Deep Neural Network Decisions: Prediction Difference Analysis. In Proceed-
ings of the 5th International Conference on Learning Representations (ICLR).
Toulon, France, April 24–26 2017.

227

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Aim
	Thesis structure
	Contributions
	Publications

	Background
	Machine learning preliminaries
	Tree-based models
	Convolutional neural networks
	Generative adversarial networks

	Interpretable machine learning
	What is interpretability?
	Need for model interpretability
	Methods for model interpretability
	Methods for designing interpretable models
	Methods for post-hoc interpretability

	Interpretability in machine listening models

	Singing voice detection
	Definition
	Applications
	Common features
	Methods
	Evaluation metrics
	Research challenges

	Summary

	Singing voice detection models
	Motivation
	Datasets
	Shallow singing voice detectors
	Input features
	Shallow models
	Performance evaluation

	Deep singing voice detectors
	Input features
	Model architecture
	Model training
	Post-processing
	Performance evaluation

	Conclusion

	SoundLIME
	Introduction
	Interpretable explanations for machinelistening
	Extending LIME to machine listening

	Demonstration
	Explaining predictions of the shallow vocal detectors
	Explaining predictions of the deep vocal detector
	Discussion on the number of synthetic samples (Ns)

	Analysing the robustness of SLIME
	Selecting an appropriate Ns
	Analysing sensitivity to the masking content
	Generating reliable explanations

	Summary and conclusion
	Reproducibility

	Activation maximisation
	Introduction
	Method
	Vanilla activation maximisation
	GAN-based prior
	Example generation
	Hyper-parameter optimisation

	Experiments
	Choice of machine listening models
	Choice of response function
	GAN training
	AM Optimisation

	Results
	Analysing the output neuron in SVDNet-R1
	Hyper-parameter configuration selection
	Qualitative analysis of explanations

	Analysing the output neurons in SVDNet-R2
	Hyper-parameter configuration selection
	Qualitative analysis of examples

	Perceptual study
	Goal
	Perceptual study design
	Participant questionnaire
	Listening tests
	Audio stimuli

	Results
	Participants
	Analysis of responses for listening test 1
	Analysis of responses for listening test 2

	Summary and conclusion
	Reproducibility

	Feature inversion
	Introduction
	Methodology
	Explaining DNN predictions using feature inversion
	Intuition
	Explanation generation method
	Feature inverter architecture
	Feature inverter training
	Instance-wise explanations for SVDNet
	Quantitative evaluation of the proposed method

	Understanding SVDNet features
	Feature inverter architectures
	Training methodology
	Quantitative evaluation of the feature inverters
	Qualitative analysis of the inverted features
	Analysing FC8 features

	Summary and conclusion
	Reproducibility

	Conclusions and future work
	Summary
	Potential research directions
	Discussion on interpretable machine learning

	Feature inverter architectures
	Mel-frequency cepstral coefficients
	MFCC extraction
	MFCC inversion

