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Abstract

This thesis is concerned with the automatic transcription of chords from audio, with an emphasis

on modern popular music. Musical context such as the key and the structural segmentation aid

the interpretation of chords in human beings. In this thesis we propose computational models

that integrate such musical context into the automatic chord estimation process.

We present a novel dynamic Bayesian network (DBN) which integrates models of met-

ric position, key, chord, bass note and two beat-synchronous audio features (bass and treble

chroma) into a single high-level musical context model. We simultaneously infer the most prob-

able sequence of metric positions, keys, chords and bass notes via Viterbi inference. Several

experiments with real world data show that adding context parameters results in a significant

increase in chord recognition accuracy and faithfulness of chord segmentation. The proposed,

most complex method transcribes chords with a state-of-the-art accuracy of 73% on the song

collection used for the 2009 MIREX Chord Detection tasks. This method is used as a baseline

method for two further enhancements.

Firstly, we aim to improve chord confusion behaviour by modifying the audio front end

processing. We compare the effect of learning chord profiles as Gaussian mixtures to the effect

of using chromagrams generated from an approximate pitch transcription method. We show

that using chromagrams from approximate transcription results in the most substantial increase

in accuracy. The best method achieves 79% accuracy and significantly outperforms the state of

the art.

Secondly, we propose a method by which chromagram information is shared between

repeated structural segments (such as verses) in a song. This can be done fully automatically

using a novel structural segmentation algorithm tailored to this task. We show that the technique

leads to a significant increase in accuracy and readability. The segmentation algorithm itself

also obtains state-of-the-art results. A method that combines both of the above enhancements

reaches an accuracy of 81%, a statistically significant improvement over the best result (74%)

in the 2009 MIREX Chord Detection tasks.
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Introduction 1
This thesis is concerned with the automatic transcription of chords from audio. In this chapter

we explain the motivations and aim of our work (Sections 1.1 and 1.2) and provide an overview

of the material presented in the thesis and its unique contributions (Section 1.3). Section 1.4

concludes the chapter with a list of our own publications relating to the thesis.

1.1 Motivation

Automatic chord detection systems analyse a piece of music, either in symbolic form or in

the form of digital audio, and output a sequence of labels that describe the chords and chord

changes in the piece. Our work focuses on the audio domain. We identify three different moti-

vations for research in automatic chord detection from audio. Firstly, good chord labels of large

collections of music are expected to aid music information retrieval tasks such as cover song

retrieval. Secondly, since automatic chord detection aims at the imitation of human perception

and cognition of harmony, it can be intrinsically motivated as a pure research problem. Thirdly,

reliable computational methods can assist musicians and musicologists in the labour-intensive

chord transcription task. The rest of this section clarifies these three aspects.

A Basis for Music Information Retrieval

The interdisciplinary field of music information retrieval (MIR) research aims at enabling ac-

cess, comparison and search of music or collections of music by means of computer systems.

Much of the data used to access music nowadays is metadata such as information on the title

or composer of a piece of music. A growing part of MIR is content-based MIR, i.e. computer

systems that base their recommendations at least partly on data that has been extracted automat-

ically from the music itself. So far, mainly low-level features such as mel frequency cepstral

coefficients and chroma vectors have been used. Casey et al. (2008) give a comprehensive

overview of content-based music information retrieval problems and emphasise the great im-

portance of automatically extracted high-level descriptors such as structure, lyrics, chords and
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others. In fact, several MIR tasks have successfully used manually extracted chord labels, e.g.

for composer retrieval (Ogihara and Li, 2008). Chord labels retrieved from audio have been

used for genre classification (Anglade et al., 2009) and cover song retrieval (Bello, 2007). A

different flavour of content-based MIR is the use of automatically extracted data for systematic

musicological studies, and chord labels can open up new areas of research which otherwise

would be too labour-intensive.

A Pure Research Problem

The transcription of chords is also interesting as an exercise in computer science or artificial

intelligence. We can formulate the pure research question: is it possible to model human per-

ception and reasoning well enough to generate similar chord transcriptions to those produced by

highly-trained musicians? The behaviour of computer systems that perform chord transcription

could also allow conclusions about the way humans perceive music, which would be worth-

while given how little we understand of human music perception. The research question could

be: can methods of machine listening indicate how music is processed in humans?

Working towards Reliable Chord Transcription Aimed at Musicians

Automatic chord transcription can assist a human transcriber in performing the task of transcrib-

ing musical pieces more accurately and more quickly. The transcription has to be good enough

for a musician to play along to the piece with his guitar or other instrument. The combination

of two facts makes the automatic transcription of modern popular music and jazz a worthwhile

engineering project: this music is so strongly based on chord progressions that often the chords

alone provide enough information to perform a recognisable version of a song. On the other

hand even these chords are usually published only for relatively few, very popular songs, as an

afterthought to the actual recording. This scarcity of supply is contrasted by a great demand for

chord transcriptions by (hobby) musicians and a vivid exchange of tens of thousands of home-

made chord transcriptions on internet sites like “Ultimate Guitar”1 and “E-Chords”2. However,

even on websites with a very active community, it may be hard to find less popular songs, and

an automatic tool could provide a welcome alternative.

1.2 Research Goal

The three kinds of motivation we have seen are, of course, strongly connected. However, it

is the last one that has mainly driven the research for this thesis: methods for reliable chord

1http://www.ultimate-guitar.com
2http://www.e-chords.com/
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transcription for musicians. With this motivation comes the main focus on modern popular

music for the reasons described in Section 1.1. The main goal of the work in this thesis is to

develop reliable methods for automatic chord transcription from real-world audio, with a focus

on modern popular music. We intentionally use the term chord transcription, rather than chord

extraction or chord detection, because it draws the parallel to the human activity which we

measure our work by.

The concentration on this one motivation has a reason. Clearly, the features extracted by

our methods can be used for different kinds of music and further processing in an MIR task, as

is demonstrated in a recent collaboration (Anglade et al., 2010), but there is evidence suggesting

that the optimal feature for retrieval is not always the optimal transcription in musical terms,

and vice versa (Noland, 2009, Chapter 6). We believe that developing algorithms with the dual

goal of transcription and retrieval performance could have compromised our focus.

The stated goal is a practical one. As a result, this thesis describes a collection of tech-

niques derived from different disciplines that aid automatic chord transcription. We use music

theory, theory of music perception, digital signal processing and probability theory, but all with

the engineering approach of aiming at improving automatic chord transcription.

1.3 Contributions and Thesis Structure

This thesis treats low-level and high-level aspects of automatic chord transcription, and also

considers the global song level structure. The main contributions can be found in Chapters 4, 5

and 6. The three chapters cover different levels of musical abstraction, as shown in Figure 1.1a:

Chapter 4 describes the core concept: a probabilistic network to model local dependencies be-

tween a chord that occurs in a piece of music and its high-level context: the key, the metric

position, the bass note, and their connection to the low-level features. Taking this model as a

point of departure, Chapter 5 is concerned with the improvement of the interface between the

low-level audio features and the higher-level model: the front-end. We compare a statistical

learning approach and an approach using an alternative chroma feature. Chapter 6 is concerned

with the global song level and proposes a method to improve chord transcription algorithms

by exploiting the repetition structure of songs. In Chapter 6 we also present our most success-

ful chord transcription method, which combines the proposed techniques from all three main

chapters. The dependencies of the chapters are depicted in Figure 1.1b.

Figure 1.1a shows the abstraction from the audio signal: Chapter 4 defines the central

mid/high-level probabilistic model; Chapter 5 contributes improvements in the low-level front
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global song level

mid/high-level:
local musical context

low-level: audio features

{


Chapter 6

Chapter 4

Chapter 5

(a) Level of abstraction.

Chapter 4
probabilistic model

Chapter 5
improving
the front end

Chapter 6
using repetition
cues

A
A
A
AAU

�
�
�
���

-

(b) Dependencies.

Figure 1.1: Two aspects of the main chapters: the main chapters’ contributions, by level of
abstraction from the audio signal (Figure 1.1a), and dependencies of the methods proposed in
the three main chapters (Figure 1.1b).

end and its representation in the probabilistic model; Chapter 6 explores improvements through

repetition cues on the global song level. Figure 1.1b shows dependencies of the methods pro-

posed in the three main chapters: both Chapter 5 and Chapter 6 rely on the probabilistic model

proposed in Chapter 4. While the main experiments in Chapter 6 do not depend on the methods

in Chapter 5, an additional experiment is conducted that combines the proposed techniques of

all three main chapters in Chapter 6.

The following paragraphs summarise each chapter.

Chapter 1: Introduction

In this chapter we identify motives for research in chord detection and define the aim of chord

transcription from audio. The thesis’ main contributions are discussed.

Chapter 2: Background

This chapter gives an introduction to chords from the perspective of music theory, including

some excursions to music perception, and presents metrics for the evaluation of automatically

generated chord sequences. The chapter’s focus is the section on related work (Section 2.2),

with separate reviews of chord models, the calculation of chromagrams, and musical context

models.

Chapter 3: Beat-synchronous Bass and Treble Chromagrams

This chapter provides a technical description of the baseline chroma extraction method we

use. The three parts of the procedure: note salience computation, chroma wrapping, and beat-

synchronisation are discussed in detail.
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Chapter 4: A Model for Chord Transcription

In this chapter we propose and evaluate the musical probabilistic model for chord extraction

that is central to this thesis. The novelty of the approach is that it integrates into a single

dynamic Bayesian network (DBN) pieces of musical context that had previously been assessed

only separately: key, chord, metric position and bass pitch class are estimated simultaneously.

We show that thus increasing the amount of context significantly improves chord transcription

performance, and the most complex of the proposed models shows state of the art performance.

Chapter 5: Improving the Front End through Statistical Training and Approximate Tran-

scription

This chapter addresses a remaining problem of the DBN presented in Chapter 4: the confusion

of some musically unrelated chords. We hypothesise that the problem stems from the low-

level front end of the model and propose two different approaches to improve the front-end

processing: by statistical learning of chord profiles, and by approximate transcription using a

non-negative least squares algorithm. Improvements are achieved in both cases. The approxi-

mate transcription approach results in an upward leap in chord extraction accuracy, leading to a

significant difference over state-of-the-art methods.

Chapter 6: Using Repetition Cues to Enhance Chord Transcription

This chapter introduces a simple technique to use repetition on the global song level to improve

existing chord transcription methods. Low-level features are averaged across repetitions in

order to emphasise systematic chordal information. We show that the use of the technique

results in significantly more accurate chord transcriptions compared to the respective baseline

methods discussed in Chapter 4 and Chapter 5. We also discuss that the use of repetition

provides a qualitative improvement of the transcription by ensuring that repeated parts share

the same chord progression.

Chapter 7: Conclusions

This chapter provides a summary of the achievements of this thesis. We end by outlining

planned work and, more generally, what we deem worthwhile future work in the area of chord

transcription.
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1.4 Related Publications by the Author

Of the publications listed below, many have influenced the writing of this thesis. Two papers

are of particular importance because they are the basis for Chapters 4 and 6. They are marked

with asterisks. In both cases, the author was the main contributor to the publications, under

supervision by Simon Dixon. Katy Noland’s contributions are detailed in Chapter 6.

Journal Paper

*3 Matthias Mauch and Simon Dixon: Simultaneous Estimation of Chords and Musical Context

from Audio, to appear in IEEE Transactions on Audio, Speech, and Language Processing.

Peer-Reviewed Conference Papers

Dan Tidhar, Matthias Mauch and Simon Dixon: High-Precision Frequency Estimation for

Harpsichord Tuning Classification, to appear in Proceedings of the 2010 IEEE International

Conference on Acoustics, Speech and Language Processing, 2010.

*4 Matthias Mauch, Katy Noland and Simon Dixon: Using Musical Structure to Enhance Au-

tomatic Chord Transcription, Proceedings of the 10th International Conference on Music Infor-

mation Retrieval, Kobe, Japan, 2009, pages 231–236.

Matthias Mauch and Simon Dixon: A Discrete Mixture Model for Chord Labelling, Proceedings

of the 9th International Conference on Music Information Retrieval, Philadelphia, USA, 2008,

pages 45–50.

Matthias Mauch, Simon Dixon, Christopher Harte, Michael Casey and Benjamin Fields: Dis-

covering Chord Idioms Through Beatles and Real Book Songs, Proceedings of the 8th Interna-

tional Conference on Music Information Retrieval, Vienna, Austria, 2007, pages 255–258.

Other Publications

Matthias Mauch, Chris Cannam, Matthew Davies, Simon Dixon, Christopher Harte, Sefki

Kolozali, Dan Tidhar and Mark Sandler: OMRAS2 Metadata Project 20095, late-breaking ses-

sion at the 10th International Conference on Music Information Retrieval, Kobe, Japan, 2009.

Matthias Mauch, Daniel Müllensiefen, Simon Dixon and Geraint Wiggins: Can Statistical Lan-

guage Models be Used for the Analysis of Harmonic Progressions?, Proceedings of the 10th

International Conference on Music Perception and Cognition, Sapporo, Japan, 2008.

3basis for Chapter 4
4basis for Chapter 6
5http://ismir2009.ismir.net/proceedings/LBD-18.pdf
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Under Review

Amélie Anglade, Emmanouil Benetos, Matthias Mauch and Simon Dixon: Improving music

genre classification using automatically induced harmony-based rules, submitted to the Journal

of New Music Research.

Dan Tidhar, George Fazekas, Matthias Mauch and Simon Dixon: TempEst: Automatic Harp-

sichord Temperament Estimation in a Semantic Web Environment submitted to the Journal of

New Music Research.

Conclusions

After considering the motivations for automatic chord detection, we have stated the goal of this

thesis: to develop reliable methods for automatic chord transcription from real-world audio,

with a focus on modern popular music. We have laid out the structure of the thesis and indicated

the three chapters that contain its main contributions: based on the novel high-level musical

context model (Chapter 4), we explore improvements on the low-level front end (Chapter 5)

and the global song level (Chapter 6). The list of publications shows that the computational

processing of chords has been our main priority over the last few years, and we have indicated

which publications have directly influenced the contents of this thesis.

So far, we have only briefly described the methods we propose to improve chord transcrip-

tion. The literature review in the following chapter brings together all the information needed

to understand how our research goal has motivated the design of our methods, especially the

inclusion of high-level musical context into the chord estimation process.



Background and Related Work 2
A basic understanding of music theory and perception, and the knowledge of related work in

computational harmony analysis are prerequisites to the development of new algorithms for

chord transcription. This chapter reviews both of these aspects. Section 2.1 provides a music-

theoretical definition of chords and introduces related concepts from music theory and music

perception. In Section 2.2 we give a survey of related work in the field of computational chord

transcription and harmony analysis. Section 2.3 presents techniques that have been used to

evaluate automatic chord transcriptions.

2.1 Chords in Music Theory and Practice

To develop a basic understanding of what is required from a transcriber of chords—either hu-

man being or computer program—it is useful to review some background in music theory and

practice, as well as some concepts of music perception and cognition.

2.1.1 Pitch and Pitch Class

Pitch is one of the most important concepts in tonal music, and harmony builds upon the human

ability to perceive pitch. Klapuri (2006a) defines pitch as follows.

Pitch is a perceptual attribute which allows the ordering of sounds on a frequency-

related scale extending from low to high.

An further extensive treatment of musical pitch can be found in (Krumhansl, 1990). Pitch is

approximately proportional to log-frequency. Notes of the chromatic scale in equal tempera-

ment, which divides an octave1 into 12 parts, are also spaced linearly in log-frequency, i.e. the

fundamental frequency fp of a note can be described in terms of the fundamental frequency of

1Notes that are an octave apart have a frequency ratio of 2/1 .
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the previous note as

fp = 2
1/12 fp−1. (2.1)

We will use both words, pitch as a perceptual quality and note as a musical quality, inter-

changeably. Before we see how chords arise from the combination of pitches, let us consider

an important finding of a perceptual study conducted by Shepard (1964, page 159): human

beings are able to separately consider pitch class, which refers to note names with no octave

information, and pitch height, which is proportional to the fundamental frequency of a note. In

particular they are able to perceive notes that are in octave relation as equivalent, a phenomenon

called octave equivalence2. For chords, this has a peculiar consequence: “Transposition of one

of the voices of a chord through an octave can make very little difference to the sound of the

chord” (Parncutt, 1989). Parncutt (1989, Chapter 4) defines perceptual models of pitch and

chroma salience, which express the probability that a pitch or pitch class is noticed over a mu-

sical element or passage. The perceptual concept of octave equivalence is mirrored by the use

of chords in music and music theory. Although for the particular arrangement the voicing may

be important, in terms of chord label all note combinations that have the same pitch classes are

considered equivalent—with the possible exception of the position of the bass note. We will

see how this “vertical” pitch abstraction affects chord syntax in Section 2.1.3. Before doing so

let us get a clear idea of what we actually mean by chord.

2.1.2 Chords and Simultaneities

The Harvard Dictionary of Music (Randel, 2003) defines chord as follows:

Chord. Three or more pitches sounded simultaneously or functioning as if sounded

simultaneously. [...]

Like many definitions of real-world concepts, this one is rather vague and allows many interpre-

tations. The last part of the definition raises the next question: in a piece of music, what pitches

are “functioning as if sounded simultaneously”? It is a well-established fact that the notes of

a chord do not necessarily have to be played simultaneously since human beings are able to

perform successive interval abstraction (Deutsch, 1969), which allows them to perceptually in-

tegrate sequentially played notes, and hence to perceive them as intervals and chords. Ulrich

(1977) remarks: “[...] some chords are played with notes omitted. In such cases the sense of
2Deutsch and Boulanger (1984) discuss situations in which octave equivalence does not hold. The ability to

distinguish between pitch class and pitch height does not exclude the ability to take pitch height into account.
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(a) “Great King Rat” (Mercury) taken from Queen:
off the record, EMI Music Publishing / International
Music Publications, 1988.

(b) “Let It Be” (Lennon/McCartney) taken from The
Beatles – Complete Scores, Hal Leonard Publishing
Corporation, 1993.

Figure 2.1: Excerpts from pop music scores. In Figure 2.1a, the thirds of the chords notated
are not always sounded: on the last beat of the first bar, no E is present, and over the whole of
the second bar, no F] is present. Nevertheless the chord annotator has reasonably transcribed
the full chords C and D chords over the staff, using the context knowledge that the segment
is in the key of G major. In Figure 2.1b, non-harmony notes occur: the first of the two beats
annotated as F does indeed contain only notes belonging to that chord (F, A and C). The fol-
lowing two quavers contain non-harmony notes. They could be interpreted as C/3 and Dmin7,
respectively.

harmonic history allows the listener or musician to fill in the chord with his ear.”. One of many

examples is provided in Figure 2.1a. It is informative to compare the definition of chord to the

definition of a different concept, that of simultaneity, taken from the same dictionary:

Simultaneity. Any two or more pitches sounded simultaneously.

This definition is different from the definition of chord in two ways: the minimum number of

notes is reduced to two, and—more importantly—strictly requires that the pitches should be

sounded simultaneously. What is meant by the word chord is usually clear from the context, so

the distinction between chords and simultaneities is often treated sloppily when talking about

music. However, it has implications when implementing a software system with the goal of

transcribing chords rather than simultaneities: chords are not necessarily represented in the low-

level content of a signal. This fundamentally distinguishes chord transcription from polyphonic

pitch transcription, where we assume that a transcribed note always has a physical counterpart in

the audio waveform3. This means that a procedure is needed that possesses the human capability
3A similar problem occurs in beat-tracking, where beat-times are perceived (like chords) without a clear physical

correspondence in the audio data (Davies, 2007).
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• Its inversion, defined by the degree of the chord
played as its bass note.

These parameters remain consistent for all the different
ways in which notes of a particular chord may be played,
or voiced Taylor (1989).

2.1 Styles of Notation

There are many styles of harmony and chord notation in
music. These conventions can vary not only across genres
but also within them. To illustrate some of the variation in
chord notation methods, several styles are shown for the
short excerpt of music in Figure 1(a).

2.1.1 Figured Bass

The first style, in Figure 1(b) is the Baroque Figured Bass.
This was a system of figures written underneath a bass line
indicating which intervals should be played above the bass
note to complete the correct harmony Taylor (1989).

2.1.2 Classical Harmony Analysis

In classical Western harmony analysis, chord notation was
developed to show the sequential aspects of harmony or
harmonic progression rather than just the particular chord
or sonority at any given instant Tagg (2003). Figure 1(c)
shows Roman numeral style notation. Chords are labelled
according to the position of their root note within the scale
related to the current key Taylor (1989). Inversions are
marked with ‘b’ for first inversion, ‘c’ for second inversion
and so on if the chord has further degrees. The notation
shown in Figure 1(d) with letters denoting the root notes
of chords is also common in classical analysis. In both
cases major chords are shown with uppercase characters
and minor chords in lowercase.

In classical notation, because chords are notated in the
context of a given key, certain properties are implied rather
than explicitly marked. For example, in a major key, the
seventh degree of the key scale is a major seventh inter-
val, so in marking a tonic major seventh chord ‘I7’ with
a superscript 7, the major seventh is implied. However, a
dominant seventh chord, by definition, contains a minor
seventh interval but it is also marked with a superscript 7
‘V7’ (see second bar of the example in Figure 1(c)). In
the Roman numerals system it is clear that ‘V7’ is a domi-
nant chord but when using letters as shown in Figure 1(d)
this can become a source of ambiguity. The extract is in
the key of C major so the first chord is marked C7 but the
dominant chord in the second bar is marked G7. If the
key context is lost from this notation, which is a possibil-
ity if storing these symbols in a text file, then there can
be no sure way of telling which quality of seventh chord
the transcriber intended without trying to infer the context
from the chord progression.

2.1.3 Jazz and Popular Music

In popular music and jazz, the role of chord symbols is
more tailored for use in performance, with jazz musicians
in particular often playing at sight. For this reason chords
are notated in a much more explicit manner so that mu-
sicians need spend the minimum of time and thought to
correctly work out what they are required to play. The

7 7 6364 64 7 54 3RI IVcii VIIc V IIVb7 7 77

a)

b)
c)d)e) C d F/CCmajor: F/A B°/F G CCmajor: 7 7 7 7CM7 Dm7 F/C F/A Fdim7 G7 Csus4 Cf) C^7 D7 F,/C F,/A F07 G7 C,Csus4-

-

Figure 1: A short extract of music in C major with differ-
ent harmony notations: a) Musical score b) Figured bass,
c) Classical Roman numeral, d) Classical letter, e) Typical
Popular music guitar style, f) Typical jazz notation

qualities of chords are marked explicitly but the markings
that are used vary widely and it is hard to find two people
who agree on a preferred style for every chord type.

The first chord of the example in Figure 1(a), a C
major seventh, may be marked as CM7, CMaj7, or C!7

Coker (1964) as seen in Figure 1(e) and 1(f). The second
chord in the example, a D minor seventh, may be marked
Dm7, Dmin7 and D−7. The G seventh chord in the sec-
ond bar can be marked G7 or G7 or sometimes Gdom7,
although this last marking is often incorrectly applied in
cases where the seventh chord does not actually function
as a dominant chord. Inversions are most often denoted
by an oblique stroke (/) followed by the bass note to be
played. This can be seen with the inverted F major chords,
F/C and F/A, at the end of the first bar of the example Tay-
lor (1989).

Ambiguity between chord symbols can occur when
translated to flat text if the notation convention used by
the transcriber is not given. For example, if an annotation
contains the symbol A7, this could be a seventh chord in
jazz notation or in classical notation if in the key of D.
However, it could also be a major seventh chord in classi-
cal notation if in the keys of A or E major. It is to avoid
this kind of ambiguity that we propose the adoption of
the chord symbol representation outlined in the following
sections.

3 A MODEL FOR MUSICAL CHORDS
We now define a model to represent chords unambigu-
ously and independent of key context. The root is defined
as a note element which has an absolute pitch class value.
The list of component intervals and the bass note are de-
fined as degrees, relative to the root note. A diagram of
this model is shown in Figure 2.

We define seven natural note names (letters A to G,
eqn. 1), which correspond to the white keys on a piano

67

Figure 2.2: Chord syntax (the image and the following caption text are an excerpt from Harte
et al., 2005): a short extract of music with different harmony notations: a) Musical score, b)
Figured bass, c) Classical Roman numeral, d) Classical letter, e) Typical Popular music guitar
style.

of mentally completing or integrating chords. On the other hand, there may be tones present in

the music that are not considered part of the harmony, as is exemplified in Figure 2.1b. They

are called non-harmony notes (Butterworth, 1999) (also: embellishing tones (Randel, 2003,

p. 217)). These notes are not recorded in the chord label despite their presence in the audio

waveform, as we will see in the following paragraphs.

2.1.3 Syntax

There is great variety in the syntax of chord labels. Harte et al. (2005) review different ways of

labelling chords in Classical music, jazz and popular music. Examples are given in Figure 2.2.

What is common to all forms of chord syntax is that they describe a chord as a chord quality and

a bass pitch that indicates which note of the chord is the lowest. An informative transcription

needs to include a description of the tonal content (as pitch classes, or degrees from a root note),

and the bass note.

Chord labels represent an abstraction from the sounded music in the two senses we have

already considered in Section 2.1.1 and Section 2.1.2: octave information is discarded, and over

time, notes are integrated as part of the chord or discarded as non-harmony notes. Note that the

bass pitch class, too, is an abstract notion, and, going back to the example in Figure 2.1b, we

can see that although the chord F implies a bass note of F, other bass notes can occur in the

realisation. We will call the bass note implied by the chord the nominal bass note.

Harte et al. (2005) devise a chord syntax based on that used in jazz and pop music, but

with unambiguous definitions, and in a fully textual format that can be easily read by human

beings and computers alike. For example, D:min is a D minor chord, F/3 is an F major chord
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in first inversion, i.e. with an A in the bass (represented as “/3”: major third). This syntax

has been widely used in the MIR community, and it has the convenient property of describing

the nominal bass note relative to the chord root, which we will need in later chapters. We use

the syntax indicated by typewriter font, and without the colon separating the root note from the

chord type shorthand, i.e. D:min becomes Dmin.

2.1.4 Musical Context

In some forms of chord labelling syntax, notably the Roman numeral notation (Figure 2.2)

usually used in the analysis of Classical music (Butterworth, 1999), the function of the chord

with respect to the current key is explicitly notated. This is not the case in jazz or pop notation,

since the chord symbols are intended for live use by musicians: here, for faster realisation, the

chord itself is notated explicitly and without an interpretation in terms of the key. This does

not mean the relation to the key is lost: in their textbook on jazz harmony theory Wyatt and

Schroeder (1998, p. 65) write that “it is necessary [for musicians] to be able to tell what key

a [chord] progression belongs to by means of the chords alone”. Furthermore, the functional

interpretation of the chord in terms of the key may not be clearly defined in jazz and popular

music, where chord combinations are handled more freely than in the Baroque and Classical

periods, and modulations (key changes) may be only temporary or ambiguous.

Research in music perception has shown that the close link between chords and key in mu-

sic theory and practice has parallels in human perception and cognition of chords. Harmonic

priming studies show (for a review, see Patel, 2003) that human perception of chords is quicker

and more accurate if they are harmonically close to their context. Furthermore Thompson

(1993) shows that chords are perceived together with key and melody, in a partial hierarchy, in

which the three qualities are linked by expectation, see Figure 2.3a. Hainsworth (2003, Chap-

ter 4) conducted a survey among human music transcription experts, and found that these use

several musical context parameters during the transcription process. Based on his findings,

Hainsworth describes a scheme for automated polyphonic transcription, part of which is de-

picted in Figure 2.3b: not only is a prior rough chord detection the basis for accurate note tran-

scription, but the chord transcription itself depends on the tonal context and other parameters

such as beats, instrumentation and structure. Music theory, perceptual studies, and musicians

themselves agree that generally no musical quality can be treated separately from the others.
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MELODY, HARMONY, AND KEY 23

GENERAL DISCUSSION

Experiments 1 and 3 were designed to evaluate a hier-
archical model of perceiving Western tonal music. The
results of Experiment 2 highlight the inherent difficulties
in attempting to manipulate the stimulus attributes rele-
vant to this hierarchical model while controlling for all
other musical qualities. In spite of these difficulties, the
results of the investigations converge with previous in-
vestigations by Thompsonand Cuddy (1989, 1992) toward
the concept of a partially hierarchical system.
Within a hierarchical system, both single voices and

harmonic sequences are perceived with respect to all three
levels of musical description: melody, harmony, and key.
Therefore, a hierarchical model predicts that all three
levels should be relevant to the perceived relationship be-
tween single voices and harmonic sequences. Experi-
ment 1 revealed that when there was no key movement,
the listeners judged the relationship between singlevoices
and harmonic sequences with reference to congruency in
melody, chord progression, and key structure. This find-
ing suggests that under conditions of tonal stability, sin-
gle voices and harmonic sequences are indeed processed
within a hierarchical processing system that involves func-
tional connections between the three levels of musical
description.
Other results of the investigation, however, suggest that

this system is most accurately conceived as a partial hier-
archy. A partially hierarchical model suggests that sensi-
tivity to sources of congruency between structural levels
may be more or less evident depending on the musical
context, and processes may exist at each level that are
not influenced by processes at other levels in the system.
The results of Experiment 1 suggest that when key move-
ment was implicated, single voices and harmonic se-
quences were not associated with each other with respect
to all three levels of musical description. In Experiment 3,
differentiation between key movement of four and six
steps on the circle of fifths was actually superior when
single voices were presented than when harmonic se-
quences were presented, in contrast to a basic prediction
of a strict hierarchical model.
A partially hierarchical model accounts for the ex-

perience that the musical implications of melodic and

Melodic input

Harmonic input

harmonic materials may be more or less interrelated, de-
pending on factors such as how one is attending to the

music, performance factors, or compositional factors. For
example, a performer may choose to implement expres-
sion either in a way that emphasizes hierarchical relation-
ships between melody and harmony or in a way that
dissociates melodic implications from the harmonic ma-
terials. The present results suggest that a composer, in
emphasizing key movement, may enhance independence
of melodic and harmonic implications.

Influences of Key Movement on Perceived
Congruency Between Single Voices and
Harmonic Sequences
Experiment 1 demonstrated that when key movement

was large, the perceived relationship between single
voices and harmonic sequences was not influenced by con-

gruency in chord progression. One explanation of this
result is that, under these conditions, the listeners were
unable to infer a chord progression (correctly or at all)
from the single voices. Listeners may infer a chord
progression from a melody most readily if the key struc-
ture is stable—if a large key change is implicated in a
melody, listeners may focus on the nature of the key
movement at the expense of harmonic implications.
The results of Experiment 3 indicate that, although the

listeners could discriminate key movement reliably in sin-
gle voices, discrimination of key movement in harmonic
sequenceswas less reliable. This finding helps to explain
why the listeners inExperiment 1 were unable to use key
structure as a basis for comparing single voices and har-
monic sequences involving key movement.
It is surprising that key movement was conveyed less

well by harmonic sequences than by single voices—not
only because the finding is inconsistent with a strict
hierarchical conception ofmelody, harmony, and key, but
because harmonic sequences themselves contained indi-
vidual voices. It should be noted, however, that harmonic
sequences were played precisely as notated, with no phras-
ing of individual voices, and sounded mostly like a series
of block chords. That is, harmonic presentations empha-
sized chord progression, making it difficult for the
listeners to abstract and benefit from the musical impli-
cations of individual voices. In a more realistic context,

Figure 7. A model of perceived relationships between melody, harmony, and key.
The model incorporates the principles of partially hierarchical structure (dotted con-
nections), direct links betweenmelody and key structure, and the generation of expec-
tancies from each of the three levels.

(a) Music perception: partial hierarchy of melody, harmony,
and key, taken from (Thompson, 1993).

arrangement

post processing
(score generation)

performance
analysis

FURTHER
TASKS

sub-melodies

melodybass

individual
lines detailed phrase

by phrase analysis

MORE DETAILED
TASKS

representationtonal context
chords/ structural

instrument
ID (approx.)

beat tracking

GLOBAL
TASKS

style
detection

Figure 3: Proposed scheme for automated polyphonic transcription.
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(b) Part of a note transcription scheme, taken
from (Hainsworth, 2003).

Figure 2.3: Chords in a musical context. Figure 2.3a shows the partial hierarchy which Thomp-
son (1993) derived from perceptual studies. Figure 2.3b shows a part of the human transcription
model proposed by Hainsworth (2003) based on a survey among musical experts.

2.1.5 Sheet Music and Lead Sheets

Musicians who play music of the common practice period, i.e. the Baroque, Classical, and

Romanic styles (roughly from the late 1600s to the late 1900s), do not usually play from chord

labels because every note is explicitly notated in sheet music, and chords only emerge when

they are heard (or read) together. Chord labels are used predominantly as an analysis tool.

An exception is the tradition of thorough bass (and its notation, figured bass, see Fig-

ure 2.2), where a musician is provided with a bass note and a chord label consisting of degree

numbers (figures) relative to the bass note. The musician, usually a keyboardist, then impro-

vises the realisation of the music in notes (Randel, 2003, p. 890). The realisation of chord labels

in jazz and modern popular music is similar. Often a simple representation called the lead sheet

(e.g. Rawlins and Bahha, 2005) is used instead of explicitly written out sheet music. A lead

sheet typically contains only one staff, on which the melody is notated, complete with lyrics,

time signature and key signature (and possibly markups that define the style or feel). Apart

from that, the only playing instructions are the chord symbols over the staves and the nominal

bass note for the chord (if different from the root note). The players then usually improvise

the actual realisation, or play from memory what was arranged during rehearsals. In short, lead

sheets describe the song without dictating the arrangement. They are also used by songwriters

when submitting their songs for consideration by publishers. The hit songwriter Hirschhorn

(2004) recommends “sending a lyric sheet [...], a recording of the song [...], and a lead sheet

(handwritten sheet music with melody, chords, and lyric), whenever you submit a song”. Lead

sheets have also arrived in the computer world mainly through the commercial software “Band
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in a Box”4, which automatically generates an accompaniment based on the lead sheet informa-

tion provided by the user. It is also common, especially among hobby musicians, to play from a

text-based format, which contains only the lyrics with chords written above the word they occur

closest to, like in this excerpt of the song “Your Latest Trick” (Knopfler):
E

You played robbery with insolence

F#m B A/C# B/D#
And I played the blues in twelve bars down Lover’s Lane

This is the usual way of exchanging chords on the internet, but, according to Hirschhorn

(2004), a comparable format is also used by studio musicians: “Some musicians want full lead

sheets. The majority of musicians are content with just chords.”

We have seen that in the context of chords, numerous other musical and perceptual con-

cepts play a role. We have argued that chord labels are an abstraction of the sounded music, and

we have described some formats in which chord labels are communicated by musicians. The

next section will show how the complicated concepts surrounding musical chords have been

expressed in computational models.

2.2 Related Work in Automatic Chord Analysis

In this section we summarise previous work in the field of automatic chord extraction, with some

excursions to key extraction methods. We list relevant work ordered by year of publication in

Table 2.1 (1999 to 2006), Table 2.2 (2007 to 2008) and Table 2.3 (2008, continued, to 2009).

The increasing number of research papers concerned with this subject reflects the popularity of

the task and the increase in computational power of modern computers.

Chord extraction methods can differ in many ways. We break down the description of

design choices into three different areas, each of which a subsection in this section is dedicated

to: Section 2.2.1 deals with chord models, describing different approaches to that part of a chord

extraction algorithm which is in direct contact with the audio or symbolic front end. Section

2.2.2 examines different extraction and enhancement techniques for the chromagram, the data

model used in the majority of audio chord extraction tasks. Finally, in Section 2.2.3, we turn

to higher-level models that have been used to integrate the low-level content—as recognised

through the chord model—in order to produce chord transcriptions.

4http://www.pgmusic.com
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2.2.1 Chord Models

Chord models describe a chord label in terms of a low-level harmonic descriptors. In the sym-

bolic domain, chord models can work directly on discrete note events, whereas methods work-

ing from musical audio work on usually continuous low-level features extracted from audio, a

distinction which has led to considerable differences between chord analysis approaches. In the

following paragraphs we will review them separately.

Symbolic Domain

In his early symbolic work on chord, key and chord function detection Ulrich (1977) represents

a chord as a list of semitone distances from the root. For example, a Dmin chord in his represen-

tation would then be written as D(3 7), encoding the note F as 3, since it is three semitones

above the root D, etc. This representation enables him to systematically investigate to what

extent chords match notes in a score. It also allows him to represent so called extended jazz

chords that include notes at distances from the root that are larger than one octave; however, in

the examples presented Ulrich confines himself to chords contained in one octave.

Academic approaches to automatic chord estimation mostly assume octave equivalence at

least implicitly, i.e. they are based exclusively on pitch class, not pitch height. The rule-based

approach to symbolic harmony analysis taken by Temperley and Sleator (1999) has a root model

rather than a chord model. Scores for roots are calculated according to a compatibility rule,

depending on the harmonic relationships of the present notes to the root. The presence of the

notes D and A, for example, would generate a high score for a root of D because both notes

have high (manually tuned) weights in the D root model. In a similar way, Sapp (2007) defines

scores for roots of chords by their distance in stacked thirds. Though in these two models no

chords are directly estimated, they recognise the special role of the chord root.

Pardo (2002) represents chords in “modulo-12 arithmetic” (i.e. pitch classes, not pitches).

The pitch class C is represented as 0, and the Dmin chord is then represented as <2 5 9> (for

D, F, A). Similarly, an Amin chord would be represented as <9 0 4> (for A, C, E). A score for

a chord template over a segment is then determined by the number of coinciding notes minus

the number of notes that are false positives or false negatives, i.e. only in either score or chord

template. In the case of equal scores between chord templates, a tie break rule based on the

chord root is applied. In a symbolic chord finding method for Bossa Nova guitar music, Scholz

and Ramalho (2008) use a variant of the algorithm proposed by Pardo with more complex jazz

chords. It is not clear however how an extended note such as an 11th would be represented. We
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assume that they are also mapped to the modulo-12 arithmetic.

Raphael and Stoddard (2003) use a hidden Markov model (HMM) to infer chord and key

sequences from symbolic MIDI data (key models will be discussed in Section 2.2.3, page 42).

In their chord model they distinguish five kinds of pitch classes: the root, the third, the fifth of

the triad, then pitch classes that coincide with key scale notes, and finally the remaining pitch

classes. The chord model—HMM emissions—then consists of learned probabilities for these

five classes (further depending on the metric position). It is worth noting that in this model,

a chord will have as many templates as there are keys. This corresponds very well to musical

understanding: for example, in the key of C major, the note B may be just a passing note in a

Cmaj chord, but the note B[would indicate that the chord is actually a C7 chord. In the key of F

major, similar situations could be interpreted differently. Raphael and Stoddard also introduce

simultaneous modelling of the key through HMMs, which marks a great advance from other

models that considered chords and key one after the other. However, since they consider only

diatonic chords in a key, a key change is required whenever a chord occurs that is non-diatonic

in the present key (more on key models in Section 2.2.3). A similar chord model is used by

Rhodes et al. (2007). It factorises the probability of notes given a triad pattern in terms of the

relative number of chord notes and the proportion between the three triad notes, both expressed

as Dirichlet distributions.

An interesting approach is taken by Paiement et al. (2005), who investigate a way of gener-

ating physically motivated substitution probabilities between chords to apply them in a graphi-

cal model of jazz chord sequences. They take symbolic chord voicings and generate from them

an kind of imitation of MIDI profiles by calculating the strengths of the partials of a note accord-

ing to a geometric envelope. The profiles are subsequently wrapped to one octave, discarding

the pitch height dimension, such that every chord and chord voicing is finally characterised by

a 12-dimensional vector of real numbers, not by the notes it contains. As we will see in the

following paragraphs, defining chords by such schemata or patterns has been the method of

choice for many audio chord models.

Audio Domain

Chord models for symbolic music do not easily transfer to the audio domain because the mu-

sical notes cannot be directly inferred from an audio signal. Estimation of pitch and note on-

sets and offsets is still an active research field. Multiple pitch detection (see, e.g., Goto and

Hayamizu, 1999; Klapuri, 2004) in particular is difficult because a simple frequency spectrum
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does not only exhibit high energy at the fundamental frequency of a note (i.e. the pitch), but

also at related frequencies, upper partials. Additionally, broadband noise generated at instru-

ment transients or drum and cymbal sounds can generate high energy at frequencies that bear

no relationship with the pitches played. As a result, transcription methods usually work reli-

ably only in a certain fields of application, like monophonic pitch estimation (for an overview,

see Poliner et al., 2007), although quantization to note events is still an unsolved problem. By

introducing schemata for tonal centres, Leman (1994) circumvents the detection of notes and

directly estimates the tonal centre from the output of an auditory model. Every schema—a

tonal centre—has a profile which is directly matched to the continuous data. Fujishima (1999)

uses the same kind of paradigm for chords, resulting in the first research paper explicitly con-

cerned with chord transcription from audio. In his work, the schemata modelled are chords, and

the features used are pitch class profiles (PCP), also called chroma vectors (Wakefield, 1999),

which are produced by wrapping spectral content into one octave. The PCP is then used as

a 12-dimensional chromatic representation of the harmonic content of an audio signal. This

representation may appear similar to Parncutt’s theoretical chroma salience model (page 23),

but the PCP represents the physical signal and not the salience of pitch classes in a perceptual

(potentially more musical) sense.

The implementation of the feature extraction as used by Fujishima (1999) is straightfor-

ward: first, the spectrum Xk of an audio signal [x]n is computed using the discrete Fourier

transform (DFT)

Xk =
NF−1∑
n=0

xnwne
− 2πi
NF

kn
, k = 0, . . . , NF − 1, (2.2)

where NF is the number of samples in one frame and wn is a window function that weights

the samples to reduce the spectral leakage associated with finite observation intervals (Harris,

1978). The pitch classes from C to B are assigned to the numbers p = 0, . . . , 11. Then, the

PCP value for p is computed as the sum of all the power spectrum coefficients closest to an

instance of that pitch class,

PCPp =
∑

M(m)=p

||Xm||2, (2.3)

where

M(m) = round
(

12 log2

(
fs
fref
· m
NF

))
mod 12,
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with fref being the reference frequency of pitch class p = 0, and fs being the sample frequency.

Usually, the spectrum is calculated on overlapping frames over the duration of a piece of music,

in a process called short-time Fourier transform (STFT). The resulting matrix (Xk,m), in which

the DFT of the mth frame occupies the mth column, is called the spectrogram. Much like

a spectrogram describes the spectral content of a signal over time, the chromagram matrix

(PCPp,m), in which the chroma vector of themth frame occupies themth column, describes the

chroma content over time (Wakefield, 1999). In order to allow for energy differences between

frames, every individual chroma vector in the chromagram is normalised. We discuss different

ways of generating the chromagram in Section 2.2.2 on page 38.

In order to perform chord recognition on the chromagram Fujishima takes the inner prod-

uct between predefined 12-dimensional chord patterns and the PCP derived from audio. At

every time frame, the chord pattern that returns the highest value is chosen. Fujishima (1999)

chooses and test 27 different isolated chord types. For real-world music the chord set is re-

duced to “triadic harmonic events, and to some extent more complex chords such as sevenths

and ninths”. Unfortunately, only one short excerpt demonstrates the system’s capability of

recognising chords from real-world music signals.

We can observe then, that ignoring the upper partials by using theoretical chord templates

that only contain the chord notes can result in a working system. Harte and Sandler (2005) too

use pitch class templates of a chord and an inner product with chroma vectors as an indicator

of the prominence of that chord, but with a reduced set of 48 chords, covering the maj, min,

dim, and aug triads. It is possible to calculate the fit of such binary chord templates in differ-

ent ways: Bello and Pickens (2005) model a chord as a 12-dimensional Gaussian distribution,

in which they set the means of the chord notes to 1, all others to 0, and furthermore hand-tune

a covariance matrix according to an assumed high covariance between chord notes. Due to

normalisation, all chromagram values are in the interval [0, 1], and—as in one of our own mod-

els (Figure 4.9)—the Gaussian distribution is used as an auxiliary approximation to a heuristic

chord score function. Similarly, Catteau et al. (2007) use theoretical chord profiles to build a

customized probability distribution with the help of Gaussians, see Figure 2.4. In order to ob-

tain more realistic chord profiles Papadopoulos and Peeters (2007) modify the binary chroma

mask to allow for the energy of the upper partials (similar to Paiement et al., 2005, as described

on page 33). As a measure of fit between chroma vectors and their 24 maj and min profiles,

Papadopoulos and Peeters use 12-dimensional Gaussians as well as the correlation coefficient

(as previously used by Gomez (2006) for key extraction) and find that in their application the
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Fig. 1. The two distributions used to discriminate between notes appearing or not
in a certain chord

than transitions between less similar keys/chords, and (2) chords comprising
the key tonic or fifth are more likely to appear than others. Under these
circumstances, we can retrieve the requested probabilities from music theory
and avoid the need for developing a large training database.

Lerdahl (2001) has proposed a three-dimensional representation of the
tonal space and a scheme for quantizing the perceptual differences between
chords as well as keys. Lerdahl distinguishes five note levels, namely the chro-
matic, diatonic, triadic, fifth and tonic levels and he accumulates the differ-
ences observed at all these levels in a distance metric.

If we can assume that in the case of a key modulation the probability of
kn is dominated by the distance d(kn, kn−1) emerging from Lerdahl’s theory,
then we can propose the following model:

P (kn|kn−1, cn−1) = Pos kn = kn−1 (10)

= βs e−
d(kn,kn−1)

ds kn != kn−1 (11)

with ds being the mean distance (=15) between keys and βs a normalization
constant. By changing Pos one can control the prior chance of hypothesizing
a key modulation.

4.3 Modeling the chord transition probabilities

For computing these probabilities we rely on the distances between diatonic
chords (= chords solely composed of notes that fit into the key) as they
follow from Lerdahl’s theory, and on the tonicity of the chord. Reserving
some probability mass for transitions to non-diatonic chords we then come to
the following model

P (cn|cn−1, kn, kn−1) = Poc cn = non-diatonic in kn (12)

= βc e−
d(cn,cn−1)

dc g(cn, kn) cn = diatonic in kn(13)

Figure 2.4: Chord model proposed by Catteau et al. (2007): the two distributions used to dis-
criminate between notes appearing or not in a certain chord.

correlation coefficient works best. Oudre et al. (2009) have recently shown that the Kullback-

Leibler divergence is a good measure of similarity between chroma vectors and chord profiles

of several chord types that are enhanced to take account of harmonics, including not only maj,

min, dim, and aug, but also dominant chords (7) as an extra chord type.

These theoretically-motivated template models have the advantage of being data-

independent. From a machine-learning point of view however they may be unsatisfactory

despite their good performance in the research described above because they rely on music-

theoretical considerations rather than on the physical properties of features such as the chroma

vector.

A slightly different, data driven approach is taken by Sheh and Ellis (2003). They too

assume that the chroma vectors contain enough information to recognise chords and use mul-

tidimensional Gaussians to model chords as chroma templates. However, these templates are

now learned from data. Since at the time labelled chord data was not available, they resorted to

a half-supervised learning procedure: a hidden Markov model is fed with the unaligned chord

progression for a song as well as chromagram data. Then, using the expectation-maximisation

algorithm, both chord change times and chord profiles are estimated. Assuming that chord pro-

files of the same chord type should be identical up to circular permutation in the modulo 12

arithmetic, the chord means and covariance matrices of each chord type are weighted by the

number of frames they are estimated from, appropriately rotated, and then added, resulting in

only one Gaussian chord profile per chord type. With seven different chord types Sheh and Ellis

consider a greater harmonic variety than most later approaches to chord extraction. Sheh and

Ellis report recognition scores for two different kinds of experiments: chord alignment (chord

sequence is given) and free chord recognition. While it is expected that results for alignment

exceed those for recognition, the size of the difference is remarkable, for example 63.2 per-
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centage points (83.3% and 20.1%). We suspect that assuming a single chord profile per chord

overfits the data, such that simultaneities with non-harmony notes (as discussed in 2.1.2) are

erroneously recognised as different chords.

Similar data-driven approaches have been taken up by other researchers, though the ten-

dency has been to use supervised learning on fully labelled data, enabled by new, hand-labelled

data (e.g. Harte et al., 2005). A single 12-dimensional Gaussian is easy to estimate and was used

with considerable success in a variety of research papers (Papadopoulos and Peeters, 2007; Weil

et al., 2009) not only for chord estimation, but also for key estimation (e.g. Peeters 2006). It

is, however, clear that a single Gaussian is a bad match for normalised chromagram values

(Burgoyne et al., 2007), and different distribution types have been used to work around this

problem: mixture of Gaussians (Lee and Slaney, 2008; Mauch and Dixon, 2008; Khadkevich

and Omologo, 2009a,b; Peeters, 2006; Maddage et al., 2004), Dirichlet distributions (Burgoyne

et al., 2007), as well as neural networks (Su and Jeng, 2001; Zhang and Gerhard, 2008) and

automatically generated feature models (Cabral et al., 2005). Lee and Slaney (2007) report im-

proved performance using a Gaussian mixture model on a six-dimensional linear transform of

the chromagram called tonal centroid (TC) (Harte et al., 2006). In all these cases, only relatively

few chord classes are learned (mostly 24). It is therefore plausible that treating a chord as one

perceptual schema and learning this schema as a chord profile has its limitations: chord types

that are similar on average in their acoustic properties can easily be confused, and the surpris-

ingly low performance of a model with many chord types (Sheh and Ellis, 2003), as discussed

above, suggests that assuming a generative model with maximum likelihood learning tends to

overfit the data.

In contrast, Reed et al. (2009) learn Gaussian chord profiles by using a form of discrimina-

tive training: the minimum classification error (MCE). This model still assumes that a chord has

one profile, but the profiles in this model depend on each other, they form what could be called

a “chord set model” as opposed to 24 separate chord models. Weller et al. (2009) use support

vector machines (SVMs) for related discriminative training and achieve state-of-the-art results.

It is also possible not to explicitly assume a particular distribution and—as is often done in the

theoretically-motivated contexts mentioned above—calculate some distance between a learned

chord profile and the data, e.g. the Mahalanobis distance (Yoshioka et al., 2004) (which is how-

ever similar to using a Gaussian model), or the correlation distance (Gomez, 2006).

A drawback of all chroma-based models that directly use the spectrum and map it onto

one octave is that they assume the information that is lost by discarding the pitch height is not
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necessary to recognise a chord pattern. Upper partials can corrupt the chroma vector, and in

Chapter 5 we find evidence suggesting that this assumption may indeed be problematic.

To conclude the description of chord models, we can observe that symbolic approaches

differ greatly from audio-based approaches: while symbolic approaches tend to work on indi-

vidual note events, audio approaches usually assume that a chord can be expressed by a single

template, which is matched to the data in a song. This latter assumption works well in many

circumstances, but is flawed from a musical perspective because a chord is a musical construct

which develops its meaning over time, as we have argued in Section 2.1.2, and in conjunction

with the current tonality. The approach taken by Raphael and Stoddard (2003) is the only one

in which the chord model itself changes according to the current key. Finally, the difference in

performance between trained models and theoretically-defined models is not clear-cut, and the

development of better training methods for chords is an active research topic.

2.2.2 Calculation and Enhancement of Chromagrams

The frequency spectrum calculated by the Fourier transform has coefficients at equally-spaced

frequencies. We have seen in Section 2.1.1 that pitch, however, is geometrically spaced with

respect to frequency (Equation 2.1). Pitch is therefore linear in log-frequency, and in order to

calculate any pitch or pitch class representation in the frequency domain, a conversion from

frequency to log-frequency is required.

We discussed in Section 2.2.1 on page 34 how chromagrams can be calculated by summing

the DFT frequency bins closest to each pitch class. In this approach, the conversion to log-

frequency is handled in a discrete mapping directly from the DFT bins. Gomez (2006) uses

a similar approach, but detects spectral peaks first and maps only those to the chroma vector,

according to their estimated frequency position. An alternative strategy is to perform a log-

frequency transform first and then assign the different pitch bins to the appropriate pitch class

bin. The most prominent approach is a constant-Q transform (Brown, 1991), often referred to

as the constant-Q transform. The number Q = f/δf is the ratio of note frequency and note

bandwidth. Given the desired number nbin of bins per octave,

Q = nbin/ ln 2 (2.4)

can be computed easily5. The calculation of the constant-Q transform in the time domain in-

5This formula for Q can be derived as follows: Let the frequency x bins higher than a reference frequency f be
gf (x) = f 2x/nbin , then the bandwidth δf at f is the derivative of gf , evaluated at x = 0. Since this derivative is
g′
f (x) = f ln 2

nbin
2x/nbin , the bandwidth is δf = g′

f (0) = f ln 2
nbin

, and Q = f/δf = nbin/ ln 2.
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volves separate windowing for every constant-Q bin, but equivalent windowing in the frequency

domain can be implemented efficiently, and requires only a simple matrix multiplication of a

kernel matrix with the DFT spectrum. Several key and chord extraction methods have used

variants of the constant-Q transform (see Tables 2.1, 2.2 and 2.3). To a similar effect, alter-

native kernels and filter banks with constant Q (Peeters, 2006; Müller et al., 2009; Sagayama

et al., 2004; Catteau et al., 2007) can be used to map the spectrum to the pitch domain. This

may be desirable, since the original constant-Q transform requires very long frame sizes for

low notes, and the short window in the high frequency range can result in parts of the signal not

being considered unless the hop-size is set to a very low value.

None of the methods just mentioned are natively immune to the presence of unwanted

noise, the presence of unwanted harmonics of notes, and instrument tuning that differs from

the expected pitch. We will review below efforts to find solutions and work-arounds for these

problems after a brief consideration of signal processing parameters.

Signal Processing Considerations

The choice of the DFT frame length NF , and the window function w (Equation 2.2) depend on

the application they are used in. The choice of frame length NF in the DFT has effects in time

and frequency resolution. Usually, the DFT is implemented as fast Fourier transform (FFT)

(Cooley and Tukey, 1965), which dramatically speeds up implementation and only imposes

a minor restriction, namely that the frame length NF be a power of two. Given a sample

frequency fs, the greater NF the better the frequency resolution; the smaller NF the better

the time resolution. Resolving simultaneous sinusoids can become an issue in lower frequency

bands, where DFT bins are wide with respect to pitch. For example, if the sampling frequency

is fs = 11025Hz and NF = 4096, the distance between two DFT bins is 2.7Hz, more than the

difference between the adjacent pitches E1 and F1 (MIDI notes 28 and 29). This is indeed a

problem when we require to resolve two simultaneous bass frequencies, which are a semitone or

less apart—as happens in the constant Q transform. However, as we will explain in Chapter 3,

this is generally not necessary in musical audio because such closely-spaced bass notes do not

occur simultaneously. Then, if sinusoids are not very closely-spaced, each can be resolved, and

the signal processing literature provides techniques such as quadratic interpolation or the phase

vocoder (Zölzer, 2002, Chapters 8 and 10) to detect frequencies with much higher accuracy

than the frequency difference between spectral bins. The ability to resolve sinusoids, however,

depends on the window function.
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Window functions are crucial to the Fourier analysis of finite signals. Harris (1978) com-

pares 23 different families of window shapes according to their theoretical properties, high-

lighting that there is always a trade-off between main-lobe width (should be narrow for higher

sinusoid resolution) and side-lobe height (should be low for noise robustness). That is why

no general conclusion on the optimal window can be made without knowing properties of the

data considered. Arguably due to the fact that music data are very heterogeneous, no single

best practice windowing function has emerged, and music computing researchers use a range of

windows. For example, Gomez and Herrera (2006) use the Blackman-Harris window. Khadke-

vich and Omologo (2009a) compare three different window shapes, and find that the Blackman

window works best for them though the differences between different window types are very

small. Papadopoulos and Peeters (2007) also use a Blackman window. Catteau et al. (2007) use

a Hamming window, as do Ryynänen and Klapuri (2008). The Hamming window is also the

default window in the MATLAB spectrogram function6. In many papers the window shape is

not reported.

Transient and Percussive Noise Reduction

Given a chromagram, a simple way of reducing transient and percussive noise is to smooth

the chromagram in the time direction using a finite impulse response lowpass filter (Harte and

Sandler, 2005), or a median filter (Khadkevich and Omologo, 2009b). Median filters have also

been used one stage earlier, before wrapping a pitch representation to the chroma (Peeters, 2006;

Mauch and Dixon, 2008). Gomez (2006) removes frames that have been recognised as transient

frames using the method proposed by Bonada (2000). Catteau et al. (2007) and Varewyck et al.

(2008) subtract from a spectral representation of the signal the background spectrum, a smooth

noise envelope calculated by median smoothing of the spectrum.

Reduction of noise is also a welcome side-effect of beat-synchronising chroma, since short

noisy drum sounds and transients are averaged out over the period of one beat. In a chord tran-

scription context Bello and Pickens (2005) are the first to use a beat-synchronous chromagram

by averaging frames over a beat. Apart from providing a more principled smoothing (and hence

relative reduction of transients and noise), this also results in a data representation in which

each chroma “frame” has a musical meaning – it represents one beat. This is very useful when

trying to do beat level analysis (e.g. Shenoy and Wang, 2005; Weil et al., 2009).

Reversing the point of view, noise reduction can also be performed by isolating harmonic

6http://www.mathworks.com/access/helpdesk/help/toolbox/signal/spectrogram.
html
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sounds. Proposed methods are spectral peak picking (Gomez, 2006) and peak picking in a fine-

grained chroma vector (Harte and Sandler, 2005, see also tuning on page 59). Reed et al. (2009)

preprocess the audio using harmonic-percussive separation (Ono et al., 2008). We will discuss

below harmonic attenuation methods, which, like the pitch salience preprocessing step used by

Ryynänen and Klapuri (2008), often include noise reduction at least as a side-effect.

Harmonics Removal

One of the most difficult problems regarding music transcription in general is the presence of

overtones in the sound of all natural instruments (Klapuri, 2006b). Overtones are sinusoidal

components of a complex tone above the frequency of the fundamental frequency. Since most

instruments have a harmonic set of overtones (i.e. the overtone frequencies are integer multi-

ples of the fundamental frequency) they have been the focus of attention also for chord extrac-

tion methods. Though chroma profiles can to some extent be learned from chroma data that

still contain overtones, it is desirable that the pitch classes corresponding to true fundamental

frequencies dominate the chroma vector in the first place—as they would in the perceptually

motivated concept of chroma salience (Parncutt, 1989, Chapter 4). To emphasise fundamental

frequencies Gomez (2006) considers not only the spectral peaks at the pitches of the respective

pitch class bin, but also at multiple frequencies—harmonics—thereof. The weight of the har-

monics decreases exponentially: the ith harmonic contributes si−1 of its energy, where Gomez

chooses s = 0.6. A similar approach is taken by Ryynänen and Klapuri (2008) using the pitch

salience function developed by Klapuri (2006b) as a preprocessing step. Varewyck et al. (2008)

propose a chromagram based on a prior hard transcription step: they detect note candidates

by spectral peak picking and calculate for each a salience value based on sub-harmonic sum-

mation. Starting from the most salient, they successively eliminate note candidates that are in

harmonic relationship to the current note. They show that the chromagrams obtained from this

transcription outperform those calculated using several other chromagram calculation methods

in terms of correlation with an annotated set of pitch classes.

Tuning

Human pitch perception is relative to a tuning frequency. The tuning frequency is implicitly

contained in the music, and all further tonal analyses are based on being able to decide which

pitch a played note can be “quantised” to. The reference frequency often used in music is the

A above middle C, whose frequency usually is in the range of 415 to 445 Hz, but most often

440 Hz. For reliable chord estimation, the computer has to be instructed how to determine this
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reference frequency. Harte and Sandler (2005) use a chromagram with 36 chroma bins, three

per pitch class. They use the positions of the peaks in the chromagram to form a histogram over

the width of one semitone. The position of the maximum of the histogram is then an estimator

of the true tuning. Peeters (2006) defines a range of possible tunings and uses the one that best

explains the frequency components found in a song. Dressler and Streich (2007) and Mauch

and Dixon (2010) wrap frequency to the interval [−π, π), where π represents a quartertone,

and interpret the tuning as an angle. Since the effect of upper partials is negligible for the

rough tuning detection needed for harmonic analysis (Gomez, 2006, page 71) all the methods

mentioned work well enough for key or chord estimation, and tuning detection can be regarded

as a solved problem7, if the true tuning is within a quartertone of the tuning used in most

modern music, 440 Hz. It has been used by several authors of chord and key extraction work,

e.g. Gomez (2006); Papadopoulos and Peeters (2007); Mauch and Dixon (2008); Papadopoulos

and Peeters (2008); Noland (2009); Reed et al. (2009); Khadkevich and Omologo (2009a);

Oudre et al. (2009). In many cases the tuning step can greatly increase the clarity of the data

because notes can be clearly attributed to one pitch class.

2.2.3 Context Models

The variety of possible note combinations arising during a bar of music is large, even if the bar

can be summarised by only one or two chords, as we have seen in Section 2.1. This makes

the reverse procedure of estimating the chord behind the set of these played notes a difficult

task, and other factors, i.e. musical context, have to be taken into account in order to arrive

at a musical solution. This section reviews how musical context such as chord progressions,

meter, melody, bass note, and tonality have been used to achieve more reliable automatic chord

transcription.

Smoothing, Chord Transitions and HMMs

Since noise and embellishments disguise the chords in music, all chord detection methods in-

clude strategies to eliminate short term deviations, which otherwise would have resulted in false

chord changes being detected. As we have argued in Section 2.1, it is necessary to imitate the

horizontal abstraction humans are capable of. One of the most important facts about chords

used in chord extraction algorithms is that chords are usually stable over a certain duration

(several seconds).

Several segmentation algorithms have been suggested in the symbolic domain that include
7If viewed as a problem in its own right, the fine detection of tuning and temperament is much more difficult, but

has been successfully implemented for the special case of harpsichord music (Tidhar et al., 2010).
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the knowledge that chords “want” to remain stable. Pardo and Birmingham (2001) find the best

partitioning for note sequences by first considering all possible transitions, assigning scores

to them and then globally finding the best partition using Relaxation Search. In a similar set-

ting, Temperley and Sleator (1999) employ Viterbi-like dynamic programming to obtain smooth

chord root transitions. Rhodes et al. (2007) consider every bar of a piece separately and choose

the optimal partition pattern according to Bayesian model selection.

In the audio domain, with no score information available, these approaches cannot be

directly applied. Instead, every frame of (possibly beat-synchronous) audio is taken as one ob-

servation. Fujishima (1999) detects chord boundaries by introducing a procedure called “chord

change sensing”, which determines the point of a chord change by “monitoring the direction”

of the chroma vectors, which we assume is achieved by calculating the cosine distance. Harte

and Sandler (2005) observe a performance increase when using the median filter on frame-wise

chord labels to discard short term chord changes: the median filter uses the middle element of

the sorted list of chord labels in a window around the current frame. If a chord label occurs

in more than half the frames in the window, the median filter will always return it; it may find

a different chord label, if the most frequent label in the window occurs in less than half the

frames, since it is not guaranteed to occupy the middle of the list anymore. This suggests that

the mode filter, which simply picks the most frequent chord label in a window, could be more

robust. Oudre et al. (2009) also use median and low-pass filtering: not on the frame-wise output

sequence, but on the frame-wise relative score of all chords.

The symbolic domain chord extraction algorithm by Raphael and Stoddard (2003) and—

importantly—most audio chord transcription algorithms use probabilistic time-series models in

order to obtain smooth chord sequence descriptions (Sheh and Ellis, 2003; Bello and Pickens,

2005; Peeters, 2006; Mauch and Dixon, 2008; Ryynänen and Klapuri, 2008; Weil and Dur-

rieu, 2008; Khadkevich and Omologo, 2009b; Weil et al., 2009; Reed et al., 2009; Yoshioka

et al., 2004; Catteau et al., 2007; Papadopoulos and Peeters, 2008; Burgoyne et al., 2007). The

predominant model used is the hidden Markov model (HMM), which is known to be an effec-

tive tool for spoken language recognition (Manning and Schütze, 1999; Rabiner, 1989) because

HMMs model contiguous, non-overlapping events over time. This is why they are an obvious

choice for chord labelling, which follows the same paradigm. Since HMMs are not only impor-

tant in previous approaches, but are also closely related to dynamic Bayesian networks, which

we use in our own method (Chapter 4), we will now give a brief overview of the model.

The backbone of an HMM as depicted in Figure 2.5 is a Markov chain of discrete state
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which defines P (Zi
t |Pa(Zi

t)) for all t > 1. The form of these CPDs is arbitrary: see Tables A.1 and A.2 for
some examples.

The parents of a node, Pa(Zi
t), can either be in the same time slice or in the previous time slice, i.e.,

we assume the model is first-order Markov. However, this is mostly for notational simplicity: there is no

fundamental reason why we cannot allow arcs to skip across slices. The arcs between slices are from left to

right, reflecting the causal flow of time. If there is an arc from Z i
t−1 to Zi

t , this node is called persistent. The

arcs within a slice are arbitrary, so long as the overall DBN is a DAG.1 Intuitively, directed arcs within a slice

represent “instantaneous” causation. It is also useful to allow undirected arcs within a slice, which model

correlation or constraints rather than causation; the resulting model is then called a (dynamic) chain graph

[Dah00]. However, we will not consider such models in this thesis.

We assume the parameters of the CPDs are time-invariant, i.e., the model is time-homogeneous. If

parameters can change, we can add them to the state-space and treat them as random variables. Alternatively,

if there is only a finite set of possible parameter values (e.g., corresponding to different regimes), we can add

a hidden variable which selects which set of parameters to use.

The semantics of a DBN can be defined by “unrolling” the 2TBN until we have T time-slices. The

resulting joint distribution is then given by

P (Z1:T ) =
T∏

t=1

N∏
i=1

P (Zi
t |Pa(Zi

t))

The difference between a DBN and an HMM is that a DBN represents the hidden state in terms of a

set of random variables, X1
t , . . . ,XNh

t , i.e., it uses a distributed representation of state. By contrast, in an

HMM, the state space consists of a single random variableXt. The difference between a DBN and a KFM is

that a KFM requires all the CPDs to be linear-Gaussian, whereas a DBN allows arbitrary CPDs. In addition,

HMMs and KFMs have a restricted topology, whereas a DBN allows much more general graph structures.

The examples below will make this clearer.

Before diving into a series of DBN examples, we remark that some other ways of representing time in

the context of BNs have been proposed in the UAI community, e.g., [AC95, DG95, SY99] and the references

therein. However, very few of these formalisms have genuinely more expressive power (as opposed to just

having nicer “syntactic sugar”) than DBNs, and those that do are generally intractable, from the point of

view of inference, learning or both. In the engineering community, DBNs have become the representation

of choice because they embody a good tradeoff between expressiveness and tractability, and include the vast

majority of models that have proved succesful in practice, as we will see below.

2.3 Representing HMMs and their variants as DBNs

X1 X2 X3

Y1 Y2 Y3

Figure 2.1: An HMM represented as an instance of a DBN, unrolled for 3 slices. Since the structure repeats,

the model can be defined by showing just the first two slices.

We can represent an HMM as a DBN as shown in Figure 2.1. We follow standard convention and use

shading to mean a node is observed; clear nodes are hidden. This graph represents the following conditional

independence assumptions: Xt+1 ⊥ Xt−1|Xt (the Markov property) and Yt ⊥ Yt′ |Xt, for t
′ "= t. The latter

assumption can be relaxed, as we discuss in Section 2.3.3.

1The intra-slice topology of the first slice may be different from the other slices, since the first slice may either represent the stationary

distribution of the chain (if we assume the process started at t = −∞), or the initial conditions of the chain (if we assume the process
started at t = 1).
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Figure 2.5: Representation of an HMM, taken from (Murphy, 2002). The hidden state variables
Xt usually represent an unknown sequence (e.g. chords), while the variables Yt represent the
observed features (e.g. chroma vectors).

variables Xt ∈ {1, . . . ,K}, where K is the number of states. In hidden Markov models for

chord transcription, each state usually represents a chord. In this model, the state variables are

subject to the Markov property,

P (Xt |Xt−1, Xt−2, . . .) = P (Xt |Xt−1), (2.5)

i.e. the current state directly depends only on the previous state. The specification of the right-

hand side in (2.5) is the state transition model, which can be expressed in a stochastic transition

matrix (Aij), where Aij = P (Xt = j |Xt−1 = i). The states (e.g. chords) are not observed

directly. Instead we observe features (e.g. chroma vectors), which are modelled as random

variables Yt and are assumed to depend exclusively on the current state, i.e. the observations’

distribution is P (Yt |Xt). Once the initial state distribution πi = P (X1 = i) has been specified,

the model can be used to infer the most likely state sequence x∗1:T from the observations y1:T ,

i.e.

x∗1:T = arg max
x1:T

P (x1:T | y1:T ), (2.6)

using the Viterbi algorithm (Rabiner, 1989). The function of the HMM in chord recognition is

hence (at least) twofold: the chord models (see 2.2.1) are expressed in the observation distri-

butions, and the nature of chord changes is modelled in the transition matrix. For two given

chords, the transition matrix describes the probability of the one following the other. Possi-

bly the most important value is the self-transition value: it describes how likely it is that the

chord does not change. The transition matrix can also describe musically relevant transition

patterns. Bello and Pickens (2005) learn the transition matrix for every single song using the

expectation-maximization algorithm. This works well for the simple song data-base they con-

sider. Collection-level learning for more complex n-gram models is demonstrated by Scholz

et al. (2009), though not applied to chord recognition. Lee and Slaney (2008) use key-dependent
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chord transition matrices learned from data. It is not clear however whether the observed im-

provements are caused by modelling the transition probabilities or whether modelling merely

the probability of the chord given the key would have had a similar effect. Khadkevich and

Omologo (2009b) find that including longer dependencies and explicit duration modelling can

result in a slight increase in accuracy.

There are other strategies to model time series, including Conditional Random Fields (Bur-

goyne et al., 2007) or dynamic modelling strategies hand-tailored for the task of chord extrac-

tion (Yoshioka et al., 2004; Sumi et al., 2008; Catteau et al., 2007). A recent attempt to use the

SVNstruct tool (Weller et al., 2009) achieved very good results in the Chord Detection Task of

the Music Information Retrieval Evaluation eXchange (MIREX) (Downie et al., 2010). Inter-

estingly, Weller et al. report that increasing the model order from 1 to higher orders does not

improve results.

Research by Cemgil et al. (2006) and Leistikov (2006) introduced dynamic Bayesian net-

works (DBN) to music computing: probabilistic graphical models whose scope is the same

as that of HMM. Although their algorithms are not directly concerned with the extraction of

chords from audio, they stress the fact that DBNs can natively model higher-level musical qual-

ities more intuitively and efficiently than an HMM. In the late-breaking session of the 2008

ISMIR conference Raczynski8 presented a DBN for chord and key estimation from symbolic

data. As we will see in Chapter 4, DBN can be used to simultaneously integrate many musical

context qualities, which have been considered separately before. The following paragraphs give

an overview of methods that have used musical context beyond chord transition patterns.

Key Context

The importance of key for the analysis of chords in music theory and perception (Section 2.1.4)

has led several researchers to incorporate key context into their methods (Raphael and Stoddard,

2003; Yoshioka et al., 2004; Maddage et al., 2004; Shenoy and Wang, 2005; Catteau et al., 2007;

Lee and Slaney, 2007; Zenz and Rauber, 2007; Reinhard et al., 2008; Lee and Slaney, 2008;

Sumi et al., 2008; Khadkevich and Omologo, 2009b). Though the implementations differ, what

is common to all is that they use key information to correct chord detection errors. The un-

derlying principle is that, when in a particular key, traditionally only the diatonic chords (i.e.

those that can be formed from the notes in the scale of the key) are used, and other chords are

less likely. We can distinguish two different approaches to key-aided chord transcription: an

8ismir2008.ismir.net/latebreak/raczynski.pdf
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iterative approach, in which the chord labels are refined in a post-processing step after a pre-

vious key recognition step (Maddage et al., 2004; Shenoy and Wang, 2005; Zenz and Rauber,

2007; Reinhard et al., 2008; Khadkevich and Omologo, 2009b), and a simultaneous approach,

in which chords and keys are modelled simultaneously in the main recognition step (Raphael,

2005; Catteau et al., 2007). To some degree, the algorithms proposed by Lee and Slaney (2008),

Yoshioka et al. (2004) and Sumi et al. (2008) also belong to the latter group, but they assume that

the key remains constant throughout a piece, so that a true interaction between key and chord

estimation cannot be established. The same is true for (Shenoy and Wang, 2005). Yoshioka

et al. argue: “The main difficulty in automatic chord transcription lies in the following mutual

dependency of three processes that constitute automatic chord transcription: chord-boundary

detection, chord-symbol identification, and key identification. Because of the mutual depen-

dency, these processes are inseparable.” In this sense, only the simultaneous approaches can

adequately model chord sequences and key, and of those, only the models of Raphael (2005)

and Catteau et al. (2007) allow for modulations, i.e. key changes. Both use a probabilistic

framework. In the symbolic approach proposed by Raphael and Stoddard (2003), both the ob-

servation (pitch class) probabilities and the chord transition probabilities (and hence the chord

probabilities) depend on the key, and are learned in an unsupervised way from MIDI data (with

some hand-tying of states). In the audio-based approach of Catteau et al. (2007), only the chord

change probabilities depend on the current key. Both key and chord transition probabilities are

based on the chord distance proposed by Lerdahl (2001), a mixture of pitch-class overlap and

root distance.

Bass Context

A few approaches to chord transcription acknowledge the special role of the bass frequency re-

gion (Yoshioka et al., 2004; Sumi et al., 2008; Mauch and Dixon, 2008; Ryynänen and Klapuri,

2008): Ryynänen and Klapuri (2008) use a chroma vector of length 24, in which the first twelve

elements represent the chroma over low frequencies (MIDI notes 26 to 49), and the remaining

twelve elements represent the high frequencies (MIDI pitches 50 to 73). When trained, a chord

profile will naturally include information about the bass note, and about harmonics, which are

more likely to be present in the higher frequency range. The remaining approaches employ bass

note information more explicitly, by first estimating a bass pitch or pitch class and then modi-

fying the score for every chord according to the bass pitch. This was done by either weighting

chord notes differently from non-chord notes (Yoshioka et al., 2004; Mauch and Dixon, 2008)
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or by applying a learned bass pitch probability (Sumi et al., 2008). Unlike dedicated bass tran-

scription approaches (Ryynänen, 2008), none of the approaches mentioned take into account

the temporal development of bass lines. Furthermore, they have not been used to exploit the

possibility of discerning different chord inversions, for which the recognition of the bass note

is the prerequisite.

Metric Position Context

The fact that the likelihood of a chord change is higher at certain metric positions has been used

both to improve beat/bar detection (Goto, 2001) and to improve chord transcription (Shenoy

and Wang, 2005; Maddage et al., 2004; Papadopoulos and Peeters, 2008; Weil et al., 2009).

These algorithms rely on good prior beat detection, and in some cases have used manual beat

annotations. The approach taken by Papadopoulos and Peeters (2008) stands out because the

downbeat (i.e. the “phase” of the bar beginnings relative to the beat) of the rhythm is estimated

at the same time as the chord, and chords and downbeats are treated in a very musical way. The

other approaches use separate downbeat estimation (sometimes based on the preliminary chord

estimation) and then use the newly found rhythm estimates to post-process the preliminary

chord sequence or rerun the algorithm including the new rhythm knowledge. None of the

algorithms incorporate a way of dealing with deleted or inserted beats, which restricts their

usage to simple songs in which no beats are omitted on the composer’s side, and in which the

beat-tracker performance is perfect.

Generally, we observe a trend towards more musically-aware models, which seems the

only way to imitate the human cognition of harmony. Several ways of integrating musical con-

text into the chord estimation process have been proposed. As yet, the ways in which musical

context has been incorporated into chord extraction models have been mainly exploratory, but

this is a great advance from the simplistic models that used only chroma information for audio

chord detection. The next paragraph reports that musical context models are used in commercial

applications too.

2.2.4 Commercial Tools

Automatic chord extraction is not a widely-used feature of commercial music software. The

company D’Accord9 sells a chord recognition product aimed at guitarists, with fretboard chord

visualisation. From the videos available at the website it becomes clear that the automatic chord

recognition performance is not state of the art, but the product offers the possibility to add lyrics,

9http://www.daccordmusic.com/
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edit the chord labels and export the final result as a simple lyrics and chords text file. A similar

quality and functionality is provided in the program Chord Pickout10. A more sophisticated

approach to chord transcription is built into the newer versions of the commercial software

Band in a Box11. The extraction itself can be done automatically, but works well only when the

user provides bar line positions. The program can display an approximate transcription of the

music as discrete note events. We assume that the chord transcription is then generated from this

transcription. The user can choose whether he wants the program to estimate one or two chords

per bar. The user can also choose a fine tuning, the time signature and key of the piece. The

output is clearly not perfect, but good, and has impressive detail (including chord inversions)

which generally makes sense musically. The program allows the user to subsequently edit the

chord sequence, add lyrics and melody, and output lead sheets. This approach shows that for

the analysis of an individual song, a semi-automatic approach can lead to very good results.

2.3 Evaluation of Chord Labels

The quality of a chord transcription can be assessed only in relation to the piece of music it

transcribes. There are guidelines in the music theory literature of what makes a good chord

transcription (e.g. Felts, 2002, Chapter 7), but they are usually based on the assumption that

the chord and the chord boundaries have already been recognised and interpreted by a human

expert. Automatic chord transcription, at this stage, seeks to imitate the way an experienced

human chord annotator would find and segment chords in audio, and further improvement in

style of chord labels in ambiguous situations is still uncharted territory. Therefore, chord tran-

scription evaluation has largely concentrated on metrics that focus on the correctness of chord

root (with enharmonic equivalence) and type, and the correct chord segmentation granularity.

2.3.1 Correct Overlap

In order to assess the quality of an automatic transcription it is common practice to compare it to

some reference transcription (“ground truth”) provided by a human expert. Not many reference

transcriptions are available, and the existing ones (Harte et al., 2005; Mauch et al., 2009a)

have been used extensively by researchers and in the Music Information Retrieval Evaluation

Exchange (MIREX, Downie et al., 2010) chord detection tasks. The song is partitioned into

contiguous segments, of which onset time, offset time and a chord label are transcribed. The

chords can then be made available in different formats. The .lab format is human-readable, as

10http://www.chordpickout.com
11http://www.pgmusic.com/
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in this example12

35.635 36.711 A

36.711 37.759 D:min

37.759 38.790 A:7

where the first and second fields represent onset and offset time, and the third is the chord label

in the notation proposed by Harte et al. (2005).

It has been common practice to use the relative correct overlap (RCO) with respect to a

ground truth annotation as an accuracy measure. It measures the proportion of the duration

of a piece or collection of music on which the automatic transcription matches the reference

annotation. This is sometimes implemented as relative frame count (e.g. in the MIREX tasks

and Sheh and Ellis, 2003),

# matching frames
total # of frames

(2.7)

or as relative overlap in seconds of the scores (Catteau et al., 2007; Mauch and Dixon, 2008,

2010),

RCO =
summed duration of correct chords

total duration
. (2.8)

Equations (2.7) and (2.8) provide the same result up to rounding errors introduced by using

the frame-wise approach. Usually, a collection of songs is used to evaluate an algorithm. Two

slightly different approaches to do so have emerged, with the past two years’ MIREX tasks

being examples for each one, respectively. In 2008, the relative overlap measure was calculated

for every song, and the final score was obtained by taking the mean over all songs in the col-

lection. In 2009, the strategy changed and the mean of all songs, now weighted by their length,

was used, which is equivalent to applying the overlap measure directly on the whole collection.

2.3.2 Chord Classes

Manual transcriptions often feature a great amount of detail, particularly extended chords. For

example, the reference transcriptions available to us for evaluation (Harte et al., 2005; Mauch

et al., 2009a) contain hundreds of different chord symbols, constructed from around 160 chord

12taken from “Erbauliche Gedanken Eines Tobackrauchers” (Mauch/Rust), transcription available at http://
isophonics.net/content/reference-annotations
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types. On the other hand, as discussed above, automatic chord transcription methods often have

a rather limited chord vocabulary, often only the 24 maj and min chords. Therefore, in order to

evaluate algorithms chords are usually organised into a smaller set of chord classes. Typically,

these are based on a choice of a set of chords that all other chords are then mapped to, as

exemplified in Table 2.4. Often, the 24 maj and min labels are used as classes to map chords

to, usually complemented by a class for “no chord”. Unfortunately, only some papers explicitly

report results evaluated on more detailed chord class sets (Sheh and Ellis, 2003; Papadopoulos

and Peeters, 2008), and very few also detail the performance of the algorithms by chord class

(Oudre et al., 2009; Mauch and Dixon, 2008, 2010).

original chord by first third (majmin) by root

C C C
Cmin Cmin C
F]min F]min F]
G[min F]min F]
D7 D D
Emin7([9) Emin E
Bdim Bmin B
N (no chord) N N

Table 2.4: Example chords and their chord classes as classified in the MIREX Chord Detection
tasks. The leftmost column shows the chord as given in the manual annotations, the middle
column shows the chord as classified by the first third in the chord (25 different labels), and
the last column as classified by only considering the root of the chord (13 different labels).
Enharmonic equivalence is assumed as symbolised by G[ root that is converted to F].

In general, slight differences in the choice of chord class sets, and—possibly more so—the

use of different data sets have rendered the direct comparison of different chord transcription

algorithms impossible. The best assessment remains the MIREX Chord Detection task, despite

the simplistic chord class set used for evaluation.

2.3.3 Segmentation Quality

Correct chord overlap is not the only relevant indicator of the quality of a chord transcription. It

is also desirable that the chord boundaries of the automatic transcription segment the song in a

way similar to those of the reference annotations. Clearly, if the overlap metric discussed above

returns a perfect match, then the segmentation quality will also be perfect13, and often good

overlap will correlate with good segmentation performance. In some cases, however, a tran-

13This may not always be true in practice because we do not merge identical consecutive chords in the ground
truth.
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(d) C Fmin G7 D G7 D G7 C overlap: 90%
segment.: 70%

(c) C Fmin G7 C overlap: 90%
segment.: 90%

(b) C Dmin G7 C overlap: 80%
segment.: 100%

(a) C Fmin G7 C ground truth

Figure 2.6: Example of overlap metric (Equation (2.8)) and segmentation metric (Equa-
tion (2.11)). Against the ground truth (a), transcription (b) has only 80% correct overlap be-
cause the second chord is incorrect, but the segmentation is perfect. Transcription (c) has more
correct overlap, but a slightly lower segmentation score (90%). Finally, transcription (d) has
the same overlap score as transcription (c), but a much lower segmentation score because the
transcription is too fragmented.

scription that is good in terms of correct overlap can be quite fragmented (i.e. bad segmentation

quality), or a transcription that systematically misinterprets one chord can still have very good

segmentation performance. Figure 2.6 provides some examples that illustrate this behaviour.

Chord segmentation quality has received very little attention. Though not explicitly con-

cerned with segmentation similarity, the deletion and insertion counts introduced by Catteau

et al. (2007) can give a sense of segmentation quality. The chord change rate, used by Mauch

and Dixon (2008) and subsequently by Khadkevich and Omologo (2009a) is quite a coarse

measure because it does not take into account the segmentation quality of individual chords,

but essentially only expresses that a chord transcription should ideally have as many chord

changes as the ground truth.

A metric called directional Hamming divergence14, which has been used in the con-

text of image segmentation (Huang and Dom, 1995) and structural segmentation (Abdal-

lah et al., 2005), takes into account the quality of every single segment. For each element

Bi = [starttimei, endtimei] of a contiguous segmentation B, the directional Hamming diver-

gence measures how much of it is not overlapped by the maximally overlapping segment of the

other segmentation. Then the values over all intervals are summed, i.e. given two segmentations

14also called directional Hamming distance



Chapter 2. Background and Related Work 52

B0 = (B0
i ) and B = (Bi) the directional Hamming divergence is

h(B||B0) =
NB∑
i=1

(
|B0

i | −max
j
|B0

i ∩Bj |
)
, (2.9)

where | · | is the duration of a segment. It describes how fragmentedB is with respect toB0, and

that means, if B0 is the ground truth chord segmentation, then h(B||B0) ∈ [0, T ] is a measure

of over-segmentation. Conversely, h(B0||B) is a measure of the under-segmentation of B with

respect to the reference annotation. In both cases, a small value indicates a good transcription.

It is usually desirable to know both, and Mauch and Dixon (2010) combined the two measures

by taking their mean and normalising by the duration T of the song:

h(B||B0) + h(B0||B)
2T

∈ [0, 1]. (2.10)

In an online discussion on the MIREX wiki15 Chris Harte suggested to take (1 minus) the

maximum of the two values instead to capture the worse case. This may capture better the

overall quality of the segmentation, since it will only be high when neither under-segmentation

nor over-segmentation are dominant:

H(B,B0) = 1− 1
T

max{h(B||B0), h(B0||B)} ∈ [0, 1]. (2.11)

It is desirable that an automatic transcription B have high H(B,B0) against a ground truth

segmentation B0.

The segmentation quality metrics described above can be evaluated without taking the

actual chord labels into account. This is a welcome side-effect because such a metric is a true

complement to the RCO measure discussed in Section 2.3.1.

2.3.4 Comparing Algorithms

When comparing two or more algorithms, an additional problem arises, namely that of deter-

mining whether the differences between their overlap, or segmentation scores are significant.

While this problem has not received much attention in chord transcription papers, the results

of the MIREX tasks provide statistical analysis of significant differences using Friedman rank

tests, which we have adopted for evaluation in our own work (Mauch et al., 2009c; Mauch and

Dixon, 2010). The data considered for this test are the individual song-wise overlap scores as

15http://www.music-ir.org/mirex/2009/index.php/Audio_Chord_Detection



Chapter 2. Background and Related Work 53

described above. The analysis of variance test (ANOVA) (e.g. Flury, 1997) can be appropriate

in many such circumstances, but it is a parametric test that assumes that the data from every

algorithm is distributed according to a Gaussian distribution and that the distributions have the

same variance. As has been pointed out (Mauch et al., 2009c), these assumptions cannot be

maintained for song-wise overlap scores. The appropriate solution is then to consider a non-

parametric test. The Friedman test is a non-parametric test based on rank statistics. It works

on the song-wise rank of the algorithms under scrutiny and determines whether the mean ranks

significantly differ. This has the additional effect of removing the so-called row effects: the

differences in difficulty between songs are adjusted for.

Conclusions

In this chapter we have reviewed the literature on the problem of chord transcription from

a musical perspective and in the light of related research in automatic chord detection, and

then finished with a survey of evaluation techniques. We saw that existing chord extraction

techniques have indeed taken into account some of the aspects that characterise chords in music

theory and perception. Automatic chord detection requires making these aspects explicit in

terms of algorithms, which leads to these two main problems: finding features that make the

physical audio signal processable in musical terms by the computer (low-level processing and

chord model), and finding a high-level framework that incorporates the horizontal and vertical

abstraction performed by human listeners (context models).

While these two aspects have received a considerable amount of attention by researchers,

the work has only just started: chromagrams as they are used today may be superseded by

chroma features that show the perceptual salience of pitch classes, rather than a direct transform

of the physical signal. Furthermore, research in context modelling has already shown that key,

bass, rhythm and other features are indeed important for the recognition of chords, but so far

the models do not integrate all these sources of information. Other context qualities have not

even been taken into account: the structural segmentation of a song, its genre, melody, phrase

structure and instrumentation are still missing from chord detection approaches.

All these directions promise to improve chord transcription, especially when bearing in

mind our research goal of providing methods for musically acceptable chord transcriptions for

musicians. We believe that driving the research in context modelling is the most interesting

and seminal way to progress, and the obvious first step in that direction is to combine the

context qualities that have already been used in chord detection. We will present our approach
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in Chapter 4. Extending the context models to new features is the next step. We present our

approach to include structural segmentation in Chapter 6. On the low-level side, the front

end, adapting chord models to the data or indeed developing better input features is an equally

important part of chord transcription research, and we offer our approach in Chapter 5. First

though, in order to get started on high-level modelling, we require baseline low-level features,

chromagrams, whose calculation is explained in the following chapter.



Beat-synchronous

Bass and Treble Chromagrams 3
In this chapter we describe how we transform an input audio wave to a baseline chromagram

representation that can be processed by the higher-level chord and context models in Chapters 4,

5 and 6, as well as the structural segmentation algorithm presented in Chapter 6. The mentioned

chapters should however be accessible without this description.

We have seen in Section 2.2.2 that there are many ways to calculate a chromagram. The

approach presented here includes mainly our implementations of standard procedures such as

de-noising, summing of harmonics and tuning. Our representation may be special in that it uses

a dedicated bass chromagram, which was first introduced in one of our previous publications

(Mauch and Dixon, 2008) and independently by Ryynänen and Klapuri (2008). The version

described here has been used for our more recent work (Mauch et al., 2009c,b).

The chroma calculation results from three subsequent steps, schematically depicted in Fig-

ure 3.1. First, we calculate a note salience representation from the audio (Section 3.1). Obtain-

ing a beat-synchronous chromagram from a note salience representation then involves only a

few simple steps. First, we apply pitch-domain windows to the salience in order to distinguish

bass and treble frequency regions and wrap the resulting windowed salience to chromagrams

(Section 3.2). Then the chroma frames between two beat locations are summarised to yield one

chroma vector per beat (Section 3.3).

note salience calculation chroma mapping beat-synchronisation

Figure 3.1: Overall view of the chroma generation process.

3.1 Note Salience Calculation
Note salience calculation aims at representing which notes are present at every audio frame in a

piece of music. We would like to stress that the method presented in this section is not capable
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of extracting pitch salience like a human would perceive it (Parncutt, 1989). Our approach uses

the inner product of the spectrum with harmonic tone patterns and is therefore similar to the

harmonic sum spectrum (Noll, 1970). The resulting “salience” will have high values not only at

fundamental frequencies, but also at other harmonics of complex tones. We are aware that the

two concepts are not the same but will continue to use the word salience because we perform

some non-linear transformations, and hence describing the results as amplitude or energy would

be inappropriate.

Our salience function takes as an input an audio file in WAV1 format, and outputs a matrix

representing the note salience of every note at every time frame. In the following paragraphs

we will explain the intermediate steps.

3.1.1 Frequency-Domain Transform

The input to the chroma extraction function is a monaural audio waveform at a sample frequency

of fs = 11025 Hz. If the audio file under consideration has a higher sample rate, the audio is

low-pass filtered and downsampled to fs using the MATLAB R© function resample.

We window the input wave using a Hamming window of length NF = 4096 samples at

a hop size of 512 samples. The choice of the FFT length NF is determined by the closest co-

occurrence of two sinusoids we require to be resolvable, i.e. we want to find the shortest FFT

length that is large enough to meet our frequency resolution requirements. This is mainly an

issue in the lower frequency range. We observe that bass notes are generally set apart from

higher notes by a wide note interval. In the context of jazz, Lawn and Hellmer (1996, p. 136)

recommend that the “C below middle C be considered the lower limit for the lowest pitch in a

voicing. Rootless voicings with the bottom tone below this point will sound muddy and interfere

with the register occupied by the bass player [...].” Butterworth (1999) makes similar recom-

mendations for Classical music: “3rds low down in the texture sound muddy” . We therefore

assume that simultaneous notes occurring in bass frequency regions, they will be spaced some

minimum pitch interval apart. We are more conservative than would be necessary according to

(Butterworth, 1999) and require only that the note A below middle C can be separated from the

semitone below (MIDI notes 56 and 57), and that the note A in the second octave below middle

C can be separated from the (full) tone below (MIDI notes 43 and 45).

To ensure computational efficiency and high time resolution we are interested in minimum

FFT length that fulfills these requirements. If f1 and f2 are the frequencies of the notes in either

1Waveform Audio File in PCM encoding
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of the above requirements, Smith (2008) gives a lower bound for the minimum FFT length M

as

NF ≥M = K
fs

|f2 − f1| , (3.1)

where K is a constant that depends on the window function. Smith (2008) also provides the

value of K = 4 for the Hamming window we decide to use. Both requirements are met if

NF ≥ max
{

4 · fs
|220− 220 · 2−1/12| ,

4 · fs
|110− 110 · 2−2/12|

}
≈ 3675. (3.2)

Hence, our choice of FFT length is NFFT = 212 = 4096, the smallest power of 2 greater than

the bound in (3.2). Then, if xk,m is the Hamming-windowed signal in the mth frame,

Xk,m =
NF−1∑
j=0

xk,me
− 2πi
NF

kn

k = 0, ..., NF /2− 1,

(3.3)

is its discrete Fourier transform. We will use only the amplitude of these signals, and since the

Fourier transform is symmetric for real-valued signals we use only the first half of the elements

in the spectra described above,

Ak,m =|Xk,m|,
k = 0, ..., NF /2− 1.

(3.4)

In preparation of the calculation of the cosine distance in Section 3.1.2, we normalise every

column ofAk,m with respect to theL2 norm, which means that for themth column ||A · ,m|| = 1.

3.1.2 Preliminary Salience Matrix

We use two collections, M s and M c, of tone profiles. For a given frequency f0, the collec-

tion M s contains simple tone profiles with one peak at f0, similar to a constant-Q kernel, and

M c contains complex harmonic tone profiles with peaks at integer multiples of f0. We then

use these profiles to create two corresponding salience matrices Ss and Sc, which in turn will

be combined to the preliminary salience matrix Spre that is passed on to the next step. The

following paragraphs explain the details.

In both profile collectionsM s andM c, the tones range from MIDI note 21 (A0 ≈̂ 27.5 Hz)

to MIDI note 92 (G]6 ≈̂ 1661 Hz), which means that we consider six octaves. Two consecutive
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tones have a frequency ratio of 2
1/36 , i.e. the tones are spaced a third of a semitone apart.

The rows of the simple tone profile matrix M s then consist of the amplitude spectrum of a

Hamming-windowed sine wave at the fundamental frequency of the jth tone. Each tone profile,

i.e. each row of M s, is subsequently normalised by dividing it by its L2 norm.

Analogously, we compute a second matrix M c containing amplitude spectrum profiles of

complex tones at the same fundamental frequencies as the simple tones above. The complex

tones are realised as the sum of four sine waves with frequencies k · f and geometrically mod-

elled (Gomez, 2006) amplitudes sk−1 for the kth partial. The choice of four partials and the

parameter s = 0.9 are hand-tuned, and testing different values could lead to improvements. In

Chapter 5 we propose a different approach to chroma using the same geometric partial model,

and test different values of s.

Given the two collections of normalised tone profiles M s and M c, we calculate a prelimi-

nary salience for each frame and note using cosine similarity on the STFT magnitude matrix A.

This results in two preliminary salience matrices

Ss = M s ·A and Sc = M c ·A. (3.5)

The product with the complex-tone matrix Sc is similar to applying a harmonic sum spectrum

and emphasises pitches that have high amplitudes at multiple frequencies, i.e. at the frequency

of harmonics of harmonic tones, and especially at the fundamental frequency. The reason for

additionally calculating Ss is that Sc has a high value not only at partials of a harmonic tone,

but unfortunately also at sub-harmonics, e.g. at the frequency 220 Hz, if the true note played

has a fundamental frequency of 440 Hz. Ss does not suffer from this phenomenon, but from the

reverse problem of possibly having high values at pitches that are not harmonics.

Since we are only interested in the harmonic content of a piece of audio, we introduce a

next step which serves for broadband spectral noise reduction: we will use only those notes for

which both preliminary salience matrices have values that exceed the local standard deviation

from the mean, i.e. which are near spectral peaks. To determine which values have high stan-

dard deviation we consider the columns Ssm (and analogously Scm), and run mean and standard

deviation filters on it with a window length of half an octave, i.e. 18 bins, yielding vectors µsm

and σsm (and analogously µcm and σcm). To form the combined preliminary salience matrix Spre,

the element-wise product of Ssm and Scm is taken for bins that are greater than one standard
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deviation above the mean in both. All others are set to zero.

S
pre
j,m =


Ssj,m · Scj,m if Ssj,m > µsj,m + σsj,m

and Scj,m > µcj,m + σcj,m,

0 otherwise.

(3.6)

This preliminary salience matrix still has three bins per semitone. These three give us the possi-

bility to adjust the matrix to the tuning of the piece, as is explained in the following subsection.

3.1.3 Tuning and Reduction to Semitones

So far, the rows in Spre relate to third-of-semitone spaced tones, i.e. three consecutive rows (or

bins) relate to one semitone, with the middle bin relating to the respective tone given a stan-

dard tuning frequency of 440 Hz. Since pieces of music are not generally tuned to 440 Hz, we

compensate for tuning differences (assuming equal temperament) of less than half a semitone

by re-adjusting the matrix such that the middle bin corresponds to the estimated semitone fre-

quency. Assuming furthermore that the tuning does not change over the course of a piece of

music, we consider the average preliminary salience over all time frames

S̄ =
1
T

T∑
t=1

S
pre
t . (3.7)

Treating S̄ itself as a signal, the tuning of the piece now corresponds to the phase angle ϕ of

the DFT of S̄ at the normalised frequency π/3, i.e. the song tuning in semitones from the 440

reference tuning is

δ =
wrap

(−ϕ− 2π
3

)
2π

∈ [−0.5, 0.5), (3.8)

where wrap is the phase wrap operation to the interval [−π, π). The estimated tuning frequency

is hence τ = 440 · 2 δ/12 . We use this information to update the salience matrix Spre using

linear interpolation so that the middle bin of each semitone now corresponds to the semitone

frequency in the estimated tuning. The final salience matrix S results from adding, for each

time frame, the three bins belonging to one semitone,

Sr,m =
3r∑

i=3r−2

S
pre
i,m, r = 1, . . . , 72. (3.9)
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In the salience matrix S, every row corresponds to one semitone from MIDI note 21 to 92, and

every column corresponds to one time frame at hop size 512 samples (46 ms). An example of

S can be seen at the top of Figure 3.2. The salience matrix can now easily be transformed to a

chromagram representation, as we will explain below.

3.2 Range-specific Chroma Representations

The underlying reason for considering the frequency regions separately is the special role of

the bass note, which we have discussed in Section 2.1.3. That is why the methods presented

in Chapters 4, 5 and 6 use separate bass and treble chromagrams. This section describes how

we calculate them. For the segmentation algorithm in Chapter 6 we additionally use a “wide”

chromagram, which is the sum of the bass and treble chromagrams.

We emphasise bass and treble regions of the salience matrix S in the respective chroma-

grams by applying the pitch-domain windows shown in Figure 3.3. Every profile is a vector

with one element for each semitone. The bass profile gb vector elements equal 1 in the core bass

region (MIDI notes 33–44) and level off linearly to both sides. The same applies to the treble

profile gt (core treble region: MIDI notes 56–68). Where the two profiles overlap, their sum is

unity, and the mid-point of their overlap is MIDI note 50, i.e. one octave below middle C. The

wide profile gw is the sum of the treble and bass profiles and hence spans the whole pitch range.

The respective bass, treble and wide chromagrams are easily calculated. The chroma of

the jth pitch class at frame m is

Cj,m =
5∑

k=0

Sj+12k,m · g(j + 12k), (3.10)

where g is either gt, gb, or gw, as appropriate, and k is the octave index running over the six

octaves we consider. These chromagrams could now be used in general applications, but our

algorithms require beat-synchronous chroma vectors. This last step of the chroma generation

process will be explained below.

3.3 Beat-Synchronisation and Normalisation

Beat-synchronisation is the process of summarising frame-wise features that occur between two

beats. The beat times that are required in this process can be obtained either manually or auto-

matically, and while most of our methods use automatic beat-tracking, Chapter 6 features some
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Figure 3.2: Examples of chromagrams, calculated from the song Let It Be (Lennon/McCartney).
From top to bottom: semitone-spaced salience S, treble chroma and bass chroma (Cj,m), beat-
synchronous treble chroma, beat-synchronous bass chroma (Csync

j,t ). The label “n.b.” refers to
the “no bass” bin. Lighter shades mean higher salience.
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Figure 3.3: Note range profiles: bass profile gb (dashed line), treble profile gt (solid), and wide
profile gw (dotted).

experiments with manual beat annotations taken from the OMRAS2 Metadata Project (Mauch

et al., 2009a). The beat-tracking algorithm used in the remaining methods was developed by

Davies et al. (2009), and we use a version from 2008.

We obtain a single chroma vector for each beat by taking the median (in the time direction)

over all the chroma frames m ∈ Bt = {m | mth frame is between the (t − 1)th and tth beat}
with centres between two consecutive beat times.

C
sync
j,t = median

m∈Bt

Cj,m, j = 0, . . . , 11. (3.11)

The bass chroma is extended by a 13th, “no bass” bin. It describes a measure of flatness of the

other twelve bins, which is used in the dynamic Bayesian network proposed in Chapter 4:

C
sync
j,t =

(
1
12
·
∑11

j=0C
sync
j,t

maxj C
sync
j,t

)2

∈
[

1
144

, 1
]

(3.12)

These beat-synchronous bass and treble chroma vectors can then be normalised so as to be inde-

pendent of the magnitude of the signal. For example, the model presented in Chapter 4 assumes

normalisation by the maximum norm, i.e. every bass and treble chroma vector is separately

divided by its maximum value.

Conclusions

In the present chapter we have explained our baseline chroma extraction method. The method

combines methods of tuning, noise reduction, emphasis of fundamental frequencies, and beat-

synchronisation that are mostly equivalent to similar methods in previous work, if in slightly

different variations. As a departure from most other chromagram extraction techniques (with

the exception of Ryynänen and Klapuri, 2008), we produce two different chromagrams for

different frequency ranges, and a third one that is the sum of the other two.
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In the following chapter, the bass and treble chromagrams are used as the input to a high-

level model of chords and context, in which we demonstrate the positive effect of including

explicit information on the bass range.
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Chords are not simply isolated descriptors of a piece of music. Rather, they become meaningful

only when perceived in conjunction with other musical qualities. Among these qualities, it is

arguably the key that influences the perception of chords most strongly—and vice versa. The

key sets the scene for what happens harmonically, and though the key does not strictly exclude

any chord from being played, all chords are interpreted with reference to the current key. This

does not mean, however, that the key of a piece is set in stone: a new key arises when the

chords can no longer be interpreted as part of the old key, and the hierarchy as discussed in

Section 2.1.4 is restored. This kind of inter-dependency is not restricted to chords and keys, but

extends to relationships between rhythm, melody, bass and other musical qualities.

The chord transcription approach proposed in this chapter takes inter-dependencies and

hierarchies into account and uses them to produce better chord labels. The method is closely

linked to one of our previous publications (Mauch and Dixon, 2010). The novelty of the ap-

proach is that it integrates in a single graphical model pieces of musical context that had pre-

viously been assessed only separately: keys, chords, metric position and bass pitch class can

now be estimated simultaneously using the efficient inference techniques available for dynamic

Bayesian networks. This also means that key changes are tracked and beat omissions and dele-

tions are recognised—parameters which can be used to create lead sheets.

Figure 4.1 shows an overview of our system. In Section 4.1 we motivate our design

choices. Section 4.2 details the topology and parameter settings of the novel dynamic Bayesian

network. Section 4.3 describes the experiments, and 4.4 provides comparative evaluations of

our methods, followed by a discussion and conclusions.

4.1 Motivation

While our general goal of providing good transcriptions is simple, we would like to recapit-

ulate the motivation that prompted us to pursue the direction of integrating musical context
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Figure 4.1: A schematic overview of our method (see Section 4.2). White boxes represent the
chroma extraction sub-methods described in Chapter 3.

parameters in a probabilistic model. We have argued in Section 2.1 that chord transcription is

quite different from polyphonic pitch transcription in that two kinds of abstraction are usually

performed by a human listener: notes are integrated into chords over time, and non-harmony

notes are discarded; in the pitch dimension, height is largely discarded with the exception of the

position of the bass note (relative to the chord root). The abstraction over time is aided mainly

by the knowledge of key and rhythm, and vertically, the knowledge of the bass note is essential.

To determine the chord label at a particular position within a song, it is generally not enough to

consider the chroma or other low-level tonal descriptors at that position. Instead, a multitude of

musical qualities are required. In Section 2.2 we have shown that probabilistic models of differ-

ent musical qualities have been used to improve chord transcription, though usually in isolation.

In an attempt to “dig deeper into the music itself” (Downie et al., 2009, page 17) we present

a model that integrates several of these approaches and attempts to approximate human music

listening better. Importantly, the interdependence of musical parameters should be modelled,

and inference on them should be simultaneous. In fact, Raphael calls the inter-dependence of

musical qualities we have mentioned in the introduction of this chapter the “chicken and egg

problem” (Raphael, 2005, p. 659), and strongly argues for simultaneous estimation for cases in

which such inter-dependence arises. Dynamic Bayesian networks (DBN) (Murphy, 2002) offer

a probabilistic framework to describe the inter-dependence of several parameters, and provide
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simultaneous inference methods. The next section explains how we make use of this framework

to achieve better chord modelling.

4.2 Network Model

The foundation of dynamic Bayesian networks are Bayesian networks (BNs). A BN is a joint

distribution of several random variables. It is called a “network” because its dependency struc-

ture can be represented using a directed acyclic graph. Every node represents one random

variable1. A directed edge represents a direct dependency; it points at the node that directly

depends on the node from which the edge originates. This duality of the graph and the joint dis-

tribution allows very intuitive modelling of several musical qualities as detailed in this section.

The requirement of the graph to be acyclic means that there is no dependency “short circuit”,

so a random variable is never its own descendent.

To model time series with BNs, dynamic Bayesian networks (DBNs) are used (Murphy,

2002). A DBN can be thought of as a succession of simple BNs. Like in a HMM, the succession

is assumed to be Markovian and time-invariant, i.e. the model can be described recursively by

defining only two slices (Boyen and Koller, 1998): one “initial state” slice and one “recursive”

slice. Such models are also called 2-slice temporal Bayesian networks (2-TBN). Note that any

DBN could equivalently be modelled as an HMM, comprising the different state variables of

the DBN in a single (very large) state variable. As a result, modelling of the adequate HMM is

less intuitive and inference can be much slower (Murphy, 2002, page 20–21).

In the proposed DBN topology shown in Figure 4.2 discrete nodes model the states of

metric position, key, chord, and bass pitch class. Continuous nodes model bass and treble

chroma. Our DBN is a generative model, i.e. some state configuration sequence of the hidden

source nodes is assumed to have generated the observed data, which in our case are the bass

and treble chromagrams whose calculation we have described in Chapter 3. This assumption

allows us to use Bayesian reasoning to infer the state sequence from the data (Leistikov, 2006,

p. 96). We use the Bayes Net Toolbox (Murphy, 2001) written in MATLAB, which implements

inference methods for DBNs, to model the data and perform the inference. The inference

method of our choice is Viterbi decoding, which finds the most probable explanation of the

observed data as given in Equation (2.6) in terms of the four layers of discrete nodes.

The definition of the network topology in 2-TBN form is provided by Figure 4.2. To

complete the definition of the network the conditional probability distributions (CPD) of the

1We will use the two expressions node and random variable interchangeably.
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Figure 4.2: Our network model topology, represented as a 2-TBN with two slices and six layers.
The clear nodes represent random variables, while the observed ones are shaded grey. The
directed edges represent the dependency structure. Intra-slice dependency edges are drawn
solid, inter-slice dependency edges are dashed.
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Figure 4.3: Frequency of predominant time signature numerators in the OMRAS2 beat annota-
tions (Mauch et al., 2009a). Time signatures in 4 are by far the most frequent.

random variables need to be specified, providing a good approximation of how beats, keys,

chords and bass interact. Since we do not have any preconception of the initial metric position,

key, chord or bass pitch class of a piece, all initial nodes are set to a uniform distribution. In the

rest of this section we will be concerned with the details of the CPDs of the recursive nodes on

the right hand side of the 2-TBN depicted in Figure 4.2.

Like Leistikov (2006) we map expert musical knowledge onto a probabilistic network. In

the process of developing the method, many design choices were made to be able to express this

musical knowledge. This chapter focuses on the model itself, and we show that our choices,

based on informed considerations of music theory and expert judgement, result in state-of-the-

art performance.

4.2.1 Metric Position

Western music is usually grouped in bars, each containing a number of beats. The arrangement

of strong and weak beats within a bar is described by the time signature, denoted usually in a

notation similar to fractions: the numerator corresponds to the number of beats per bar (e.g. 3

in the case of 3
4 time), and the denominator to the note value at the beat level (e.g. 4, a quarter

note or crotchet, in the case of 3
4 time). The 197 manual beat annotations in the OMRAS2

Metadata Project (Mauch et al., 2009a) contain information about the numerator. We found that

the predominant time signature numerator in 87.3% of the songs is 4, see Figure 4.3. Songs

in even meter, i.e. they have a time signature numerator of either 2 or 4, make up 92% of the

collection. In the light of this data, we choose to restrict ourselves to modelling only one kind

of time signature, namely 4
4 .

A simple model of beat progression would have to express the following straightforward

semantics visualised in Figure 4.4a: the first beat (metric position 1) in a bar is followed by the

second (metric position 2), and so on, until after the fourth the next bar starts on metric position
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(a) simple meter model
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(b) implemented meter model

Figure 4.4: Metric position: visualisation of the metric position state transitions as given in
(4.1). In the ideal model (a) ε = 0, hence all bars are in 4

4 meter and all four beats have to
be reached before returning to beat 1. The implemented model (b) still assumes a 4

4 meter,
but allows for missing and inserted beats. Black arrows represent a transition probability of
1 − ε (ε = 0.05) to the following beat. Grey arrows represent a probability of ε/2 for either
self-transition or transition to the beat after the following, see (4.1).

1. Hence, the node Mi has four states to represent the metric position of the current beat. This

is essentially the model used by Papadopoulos and Peeters (2008). This simple model does

not take into account occasional inaccuracies in the beat-tracking procedure. Beats may be

missed or erroneously inserted. Additionally, we often deal with pieces of music in which beats

are intentionally omitted or added to a bar by the songwriter or artist. For robustness against

these two sources of irregularity we allow for the small probability ε of deviation from the

normal succession of beats, which we choose to be ε = 0.05. Since in our network topology

(Figure 4.2) node Mi depends only on node Mi−1, the conditional distribution P (Mi|Mi−1)

can be represented as a two-dimensional transition matrix


ε/2 1− ε ε/2 0

0 ε/2 1− ε ε/2

ε/2 0 ε/2 1− ε
1− ε ε/2 0 ε/2

 ,

in which each row represents a state of Mi−1, and every column a state of Mi. The “usual”

transitions are underlined for better readability. The same information can be written as a
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conditional probability distribution (CPD),

P (mi|mi−1) =


1− ε if (mi −mi−1) mod 4 = 1,

ε/2 if (mi −mi−1) mod 4 ∈ {0, 2},
0 otherwise.

(4.1)

Figure 4.4b shows a diagram of the four metric position states with these modified transition

probabilities. We will encounter the metric position node again when considering the CPD of

the chord node. The key node, which we discuss next, has no direct links to the metric position

node.

4.2.2 Key

In order to describe the tonal content of a passage of music, chords are complemented by a more

general concept relating to the common tonal material that extends over several consecutive

chords. This concept is called key.

Key. As a principle in music composition, implies adherence, in any passage, to the

note-material of one of the major or minor scales–not necessarily a rigid adherence,

but a general adherence, with a recognition of the Tonic (or “key-note”) of the scale

in question as a principal and governing factor in its effect. (Kennedy, 1980)

Together with the findings in the field of music perception that we discussed in Section 2.1.4

on page 26, this suggests that lower-level harmonic content (such as chords) should depend

on the current key in a generative model as ours. In their key estimation method, Noland and

Sandler (2009) model the key as a hidden variable which “generates” chords, and we follow this

general idea. We assume that the modelling of the key and key changes will have two benefits:

it improves the stability of the chord estimation by making off-key chords less probable, and

the retrieved keys and key changes can be used to set the right key signature at the typesetting

stage, for example in a lead sheet.

In our network model (Figure 4.2) the node Ki is a discrete random variable modelling

all 24 major and minor keys. In accordance with the observation in the previous paragraph, the

key node governs the chord node. In fact, the keys are defined by a scale that contains the note-

material predominantly used in that key, but this definition will be used only in the following

subsection (4.2.3) to describe the CPD of the chord node. The key node itself depends only

on its predecessor in time. Hence, in order to model the key we only need to express the key

transition probabilities. Since to the best of our knowledge there is no model of key change
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Figure 4.5: Key: state transition graph for keys. This is a simplified representation with only
five keys. The key states are fully connected, but transition to a different key (grey) has a low
probability of 0.02, see (4.2).

for popular music, we choose to model only the fact that a key is constant over a passage, as

illustrated in Figure 4.5. In other words, while making no assumptions of the probability of a

target key given a key change, we do model the rate of key change, expressing that at a given

beat the key is expected to remain the same with a high probability. We set this probability to

0.98, i.e. we assume that at any beat the key changes with a probability of 0.02,

P (ki|ki−1) =

 0.98 if ki−1 = ki,

(1− 0.98)/23 otherwise.
(4.2)

The way in which the key acts upon the chord is coded into the chord CPD as detailed in the

following subsection.

4.2.3 Chord

The chord node Ci is the focus point of the DBN as depicted in Figure 4.2 on page 67. Together

with the treble chroma node Xi it forms the core part of our method. The discrete CPD of Ci

describes the dependencies of the chord node on its predecessor Ci−1, the metric position node

Mi and the key node Ki. The inferred state sequence in this node will essentially be the final

chord transcription. The complex dependency structure as illustrated in Figure 4.2 allows us to

model two vital characteristics of chord occurrence:

1. metric position dependency: a chord change is likely at the beginning of a bar (metric

position 1), less likely in the middle of a bar (position 3), and even less likely at the

remaining metric positions 2 and 4.

2. key dependency: a chord is more likely the fewer non-key pitch classes it contains. If it
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is also a tonic chord in the key, it is yet more likely to occur.

Accordingly, we factorise the conditional probability of chord ci at the ith beat given the chord

ci−1 at the previous beat, the current metric position mi and the current key ki as

P (ci|ci−1,mi, ki) = P (ci|ci−1,mi) · P (ci|ki), (4.3)

in which the first factor describes the dependency of a chord change on the metric position, and

the second factor describes the chord’s dependency on the current key. Let us consider the first

factor. We translate the above statement on the chord change probability at a particular metric

position to numbers in the vector

a =


0.5

0.1

0.4

0.1

 . (4.4)

The probability of a chord given the previous chord and the current measure is then modelled

by the equation

P (ci|ci−1,mi) =

 ami/(NC − 1) if ci−1 6= ci,

(1− ami) otherwise,
(4.5)

where NC is the number of chords. Chord change transitions are favoured at the first and third

beats in a measure. Note that no distinction is made for different chord types. Preference for

particular chords or chord changes is expressed only though the key model in the second factor

of (4.3).

The second factor in (4.3) describes how likely a chord is, conditional on the key. Percep-

tual chord ratings in a key context are available for maj, min, and dim chords (Krumhansl,

1990, page 171). Though they have been used extensively in key detection research (e.g.

Noland, 2009), their use in our computational model is limited because no ratings exist for

the more complex chords which we consider, and even in the existing ratings there is a bias

towards more consonant chords2. Nevertheless, we will use them as a point of reference.

2For example, the Dmin chord, which is a diatonic chord in C major, has a lower perceptual rating than any maj
chord, e.g. the chord F#.
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Figure 4.6: Examples of our f chord-key ratings (black) for major chords in a C major key
context, compared to the Krumhansl profiles (grey) as described on page 73, both normalised
by the L1 norm over the 12 examples given.

Instead of using the ratings directly, we introduce a parametric expert function f to mea-

sure how well a chord fits with a key, and adapt its parameter ν using Krumhansl’s perceptual

ratings for major chords in a major key context. First of all, however, we notice that the rat-

ings for major chords in a major key range between 4.3 and 6.7, which means they have a high

baseline rating of 4.3. To increase the contrast between high and low ratings, we subtract half

of the minimum rating from all ratings, yielding twelve ratings r = (r1, . . . , r12) for the twelve

major chords in a C major key context. Then, we need a parametric function whose parameter

ν is going to be adjusted such that they fit the chord ratings:

fν(c, k) =


2e−ν−(# notes in c but not in k) if c is tonic in k,

e−ν−(# notes in c but not in k) otherwise.
(4.6)

Let the vector fν = (fν1 , . . . , f
ν
12), with fνi = fν(ci,C major), i = 1, . . . , 12, contain the

values obtained for the twelve major chords in a C major key context.

Using numerical optimisation, we determine the smoothing parameter ν by maximising

the correlation between fν and the chord ratings vector r. Once the parameter ν is fixed, we

use the standard linear regression method to find the parameters β0 and β1 to minimise the least

squares distance ||r− (β1 f
ν + β0)||, and the final expert function is then defined for all chords

c using the optimal parameters ν, β0 and β1:

f(c, k) = β1 f
ν(c, k) + β0. (4.7)
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Figure 4.7: The two key types, exemplified with a tonic of C: C major (top) and C minor key
scales. Pitch classes in black belong to the key as defined for the purpose of our model, pitch
classes in gray do not. Natural, harmonic and melodic minor scales are not distinguished: our
minor scale contains all pitch classes appearing in any of these minor scales. Note spelling is
not taken into account: enharmonically equivalent pitch classes are treated as equivalent.

Examples are shown in Figure 4.6. The function takes into account how many notes of the

chord do not match the current major or minor scale, and whether the chord is a tonic chord.

For our model we assume the keys are defined as by a binary vector that indicates which pitch

classes are considered part of the key, as illustrated in Figure 4.7. A chord is considered a tonic

chord, if in addition to sharing all notes with the current key scale, its root coincides with the

tonic of the key. For example, Gmaj7 is a tonic chord in the key of G major, but G7 is not. This

model has the advantage that the f score does not directly depend on the number of notes in the

chord, and that it allows us to calculate scores for any chord defined by a pitch class set.

The f values are then normalised by a constant κki such that considering all chords

P (Ci|ki) = κki · f(Ci, ki) is a conditional probability distribution, i.e. for a fixed key ki the

probabilities sum to 1. This finalises the proposed probability distribution of the chord node Ci,

given its dependencies on the previous chord, the metric position, and the key. The following

subsections deal with probability distributions that in turn depend on the chord node.

4.2.4 Bass

The bass pitch class plays a crucial role in the recognition of chords, both in classical music and

popular music styles. Being at the bottom of the frequency range, it “anchors” the chord and

makes the rest of the notes more easily interpretable. For example, knowing the bass note can

help disambiguate chords such as Cmaj6 and Amin7, which share the same pitch class set. In

particular, distinguishing different inversions of the same chord is impossible without the notion

of a bass note. No previous audio chord extraction methods have dealt with this problem.

Bass lines tend to include several different notes over the span of one chord. The role of

the bass pitch class of a chord becomes clear if one observes that in popular music the bass

note is almost always present on the first beat of a chord. One popular bass player tutorial
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(Westwood, 1997) confirms this: among the 207 example bass patterns covering styles Blues

& R’n’B, Soul, Motown/Atlantic Records, Funk, and Rock only 20 do not start with the bass

pitch class. Allowing for some more variation than given in these examples, we estimate that

the bass note played and the nominal chord bass note coincide on the first beat of the chord

80% of the time. This behaviour can be modelled, since the bass node Bi depends on both the

previous chord node Ci−1 and the current chord node Ci, i.e. we know that if Ci−1 6= Ci then

the current beat is the first beat of a new chord.

P (bi|ci−1 6= ci) =

 0.8 if bass is nominal chord bass,

0.2/12 otherwise.
(4.8)

As the chord continues, we still expect the “nominal” bass pitch class as the most likely option,

but the other pitch classes of the chord may be used as a bass note too. These pitch classes

still share the probability 0.8, but the chord pitch class retains double weight among them. This

leaves 0.2 for the rarer cases in which the bass can play notes that do not belong to the chord.

P (bi|ci−1 = ci) =


0.8 · 2

nn+1 if bass is chord bass,

0.8 · 1
nn+1 if otherwise the bass is in the chord,

0.2 · 1
13−nn otherwise,

(4.9)

where nn is the number of notes in the current chord. The bass model presented here goes far

beyond the one presented by Yoshioka et al. (2004) and our own previous method (Mauch and

Dixon, 2008) in that it gives special weight to the chord bass note, rather than preferring just

any chord note or only the root note. Specifically, it enables the recognition of chord inversions.

4.2.5 Chroma

The chroma nodes Xi and Xb
i provide models of the chroma features. Unlike the nodes pre-

viously discussed, they are continuous nodes because the 12 elements of the chroma vector

represent relative salience (see Chapter 3), which can assume any value between zero and unity.

The BNT toolbox provides a Gaussian node class for the modelling of continuous variables,

which we use to describe both treble and bass chroma.

Treble Chroma

We employ a data-independent way of modelling chords such as the ones shown in Figure 4.8

and define a chord by the pitch classes it contains. In the example of the Cmin chord in Fig-

ure 4.8, these are C, E[, and G. This is reflected in the treble chroma emission model. As
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(a) musical notation

C C# D E! E F F# G A! A B! B
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(b) binary pitch classes

Figure 4.8: Chord examples: Cmaj7 and Cmin chords in musical notation and a binary pitch
class representation. The shaded squares in (b) denote the pitch classes belonging to the chord.
To obtain the same chord type with a different root, the chord is “rolled” (circular shift).
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Figure 4.9: Treble chroma node: distribution of single elements of the 12-dimensional Gaus-
sian, monotonically increasing curve for chord pitch classes, monotonically decreasing curve
(dashed) for non-chord pitch classes.

has been explained in Chapter 3, the chroma features xi ∈ [0, 1] are normalised by the maxi-

mum norm, so high values will be close to one, and—ideally—low values will be close to zero.

Hence, the probability density P (Xi|ci) of the chroma node given a chord should monotonically

increase with any of the chord pitch class saliences increasing (C, E[, and G in the case of a

Cmin chord). It should monotonically decrease with any of the non-chord pitch class saliences

increasing. In a manner very similar to Bello and Pickens (2005) and Catteau et al. (2007) (see

also Figure 2.4 in this thesis) we model this behaviour as a 12-dimensional Gaussian random

variable: the mean vector has ones at elements representing the chord pitch classes, and zeros

at the elements representing non-chord pitch classes. We choose to use a diagonal covariance

matrix and set the variances in all dimensions to σ2 = 0.2. Figure 4.9 shows the marginal prob-

ability density distribution over the interval [0, 1] for a single dimension for the case in which

this dimension corresponds to a chord note and a non-chord note, respectively. Note that due to

the chroma normalisation, a flat chroma vector will contain only ones. Therefore, we define N

(no chord) as including all pitch classes.
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Bass Chroma

The bass chroma is modelled in much the same way as the treble chroma, by a multidimensional

Gaussian vector. Its number of dimensions is 13 = 12+1, with 12 dimensions representing the

bass pitch classes C through B, and the thirteenth representing “no bass note” (cf. Chapter 3).

Since the bass is defined by just one note, every profile has only one element for which the

mean value is set to 1 (rather than 3 or 4 in the case of chords), while the others are set to 0.

Usually only one bass note is played at any time, which implies that the pitch class played will

more often have a normalised salience of 1, and the other pitch classes will have saliences close

to zero. We choose a lower variance value of σ2 = 0.1.

The description of the chroma nodes completes the definition of the DBN. We have estab-

lished musically-informed conditional probability distributions for metric position, key, chord,

bass pitch class, and the corresponding chroma emission nodes. Note that while modelling

essential properties of popular music in 4
4 time, the CPDs described in this section do not ex-

plicitly suppress or encourage particular key, chord or bass note transitions. The experiments

in Section 4.4 show that the individual components of the system lead to improved chord tran-

scriptions of recordings of popular songs.

4.3 Experimental Setup and Chord Label Mapping

We conduct several experiments to investigate the overall performance of our model and the

influence of choice of chord set, metric position, bass note, and key. We use the song collection

from the 2009 MIREX Audio Chord Detection subtask3, which contains 210 songs (174 by the

Beatles, and 18 by Queen and Zweieck, respectively), making it the largest audio-aligned chord

test set used to date. A list of all songs can be found in Appendix B.

4.3.1 Configurations and Inference

We consider 10 different DBN configurations by varying two parameters: the network topology

and the size of the chord vocabulary. Since the DBN described in Section 4.2 is modular, the

network topology can be changed by disabling selected nodes. We consider these four network

topologies of ascending complexity:

plain In the plain model, the modelling of metric position, key, and bass pitch class is disabled;

chord duration is modelled as similar to our previous work (Mauch and Dixon, 2008)

as a negative binomial distribution4 with shape parameter 2, and scale parameter 1/3,

3http://www.music-ir.org/mirex/2009/index.php/Audio_Chord_Detection
4the discrete analogue of a gamma distribution
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corresponding to an expected chord duration of 4 beats.

M In the metric model (M), metric position is fully modelled as described in Section 4.2; the

bass and key nodes are disabled.

MB In the metric-bass model (MB), the bass pitch class node and the bass chroma node are

additionally enabled.

MBK The metric-bass-key model (MBK) is the entire model as described in 4.2.

The treble chroma node and the chord node are always enabled. As a second variable, the

following three different chord vocabularies are tested:

majmin consists of the 24 maj and min chords as well as the “no chord” symbol N (25 chords).

inv additionally contains the chord inversions maj/3 and maj/5 (49 chords).

full contains chords of types maj, min, maj/3, maj/5, maj6, 7, maj7, min7, dim, aug,

and, the “no chord” class N (121 chords).

The full vocabulary is the largest chord vocabulary tested on a substantial collection of musical

audio. We infer the most likely state sequence for the enabled discrete nodes using the Viterbi

algorithm as provided by the find_mpe function in the BNT Toolbox, which we slightly

modified for better memory usage. All calculations are performed in MATLAB on a shared

computer running CentOS 5.3 with 8 Xeon X5570 cores at 2.93GHz, 24 GB RAM. The song

“Ticket to Ride” (Lennon/McCartney) as performed by the Beatles has a typical pop single

play time of 190 seconds and takes 131 seconds to process (21 seconds CPU time). Memory

consumption peaks at 6 GB. Longer songs can take considerably more time to process, and

much more memory. “I Want You (She’s So Heavy)” (Lennon/McCartney) is the longest song in

the test set (467 seconds) and takes 354 seconds to calculate (135 seconds CPU time). Memory

consumption peaks at 15 GB.

4.3.2 Chord Label Mapping for Evaluation

To measure the relative correct overlap (RCO) of a transcription with respect to a ground truth

annotation, we use the metric

RCO =
summed duration of correct chords

total duration
, (4.10)
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which is equivalent (up to rounding) to the measure used in the 2009 MIREX Chord Detection

tasks (see also Section 2.3.1). Note that if a collection is concerned, RCO is the duration of

correctly annotated chords in the whole collection divided by the length of the whole collection.

This is different from taking the mean of the song-wise RCO. The reason for our choice is that

it is easily comparable with the results from the 2009 MIREX Chord Detection tasks.

We have already discussed the necessity of mapping chords to chord classes in Sec-

tion 2.3.2. To evaluate our methods on different levels of detail we use two chord class sets: one

is relatively coarse, and equivalent to that used in the 2009 MIREX Chord Detection task; the

other one distinguishes many more chords, which enables us to analyse results in more detail.

The reader will notice that the names of the following definitions correspond to the names used

for two of the sets of chords we model in the DBN. This is because the different chord models

directly correspond.

majmin is equivalent to the mapping used in the MIREX Chord Detection Subtask5. It uses

as a basis the 24 maj and min chord as well as the “no chord” symbol N. Except for

a few unclassifiable chords (0.3%), all other chords are then mapped to these 25 chord

classes. Usually this is decided by the first interval above the root: chords with a major

third are mapped to the respective maj class; chords with minor thirds are mapped to the

respective min class.

full contains 121 chord classes with types maj, min, maj/3, maj/5, maj6, 7, maj7,

min7, dim, aug and, again, the “no chord” class N. They are chosen such that many

chords can sensibly be mapped to these classes without changing the chord’s function.

Note that now, the chord symbols maj and min will unite fewer chords under their label,

since chords such as the dominant chords (7 chords) will be mapped to a class of their

own.

All chords that cannot be mapped to any will be mapped to the “unknown” class and always

considered wrongly estimated. A detailed account of all mappings and some statistics on chord

type occurrence can be found in Appendix A. We will refer to the RCO metric together with

the majmin chord class set as MIREX-style evaluation.

5http://www.music-ir.org/mirex/2009/index.php/Audio_Chord_Detection
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Figure 4.10: Songwise relative correct overlap for different algorithms with full chord vocabu-
lary, using the MIREX-style majmin evaluation.

4.4 Results

This section is organised as follows. In Subsection 4.4.1 we compare our method to the cur-

rent state of the art using MIREX-style evaluation and investigate which components improve

performance with statistical significance. In Subsection 4.4.2 we report in detail the chord con-

fusion behaviour in our best-performing model. In Subsection 4.4.3 we compare chord segmen-

tation results between our methods. The performance in terms of key extraction is discussed in

4.4.4. Section 4.4.5 features some examples of the output of our methods.

4.4.1 Relative Correct Overlap

The MIREX-style relative correct overlap (RCO) is a good benchmark for comparing our algo-

rithm to others. The song-wise original MIREX task results are freely available6, which allows

us to test the significance of the observed differences using the Friedman test as explained in

Section 2.3.4.

Several versions of our algorithm (Table 4.1) have a relative correct overlap of 72%. The

best configuration is full-MBK, reaching 73%, which means it performs better than the best

performances in the 2008 MIREX pretrained Audio Chord Detection task (our own submission

(Mauch et al., 2009b) at 71%). The best-performing algorithm in the train-test task was sub-

mitted by Weller et al. (2009) and scored 74%. Figure 4.10 shows the RCO results for the four

different algorithms using the full chord dictionary. In order to determine whether the difference

between the method proposed by Weller et al. (2009) and our full-MBK method is significant,

we use a one-way ANOVA test and a Friedman ANOVA test on the song-wise relative overlaps.

Both tests return p-values much larger than 0.05 (0.31 and 0.17, respectively), which indicates

that there is no significant difference between the results: we cannot decide which method is

better. In particular, since the Friedman test is based on the ranking within rows (performance

6http://www.music-ir.org/mirex/2009/results/chord
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RCO score in %
chord set plain M MB MBK

majmin 65.7 66.5 70.9 72.1
inv n/a n/a 71.0 72.0
full 65.5 65.9 72.0 73.0

(a) MIREX-style RCO score

RCO score in %
chord set plain M MB MBK

majmin (56.4) (57.0) (60.3) (61.3)
inv n/a n/a (56.9) (57.8)
full 54.6 55.1 55.8 56.7

(b) RCO score using the full chord class set

Table 4.1: Overlap score results: (a) the MIREX-style RCO against (b) the more detailed RCO
using the full chord class set. The results of models that do not output as many classes as are
tested are given in brackets. Since they never transcribe complex chords, their performance is
high only due to their better performance on more common chords.

of songs), this means that the algorithms do not consistently rank differently given a song.

The use of more different chord types in the full chord vocabulary does not decrease the

MIREX score, and in some cases goes along with an improvement in accuracy. Hence for fur-

ther evaluations we consider only the configurations using full, the largest chord vocabulary.

As can be seen from Table 4.1a, each of the added system components (metric position, bass,

and key) has increased the overlap score. We would like to assess which of these improvements

can be considered significant. We perform a Tukey-Kramer multiple comparison test at a con-

fidence level of 95%, based on the Friedman analysis of variance, over the four configurations

with full chord and also include the results by Weller et al. for comparison. Figure 4.11 shows

the results of this test: except for the step from the plain model to the M model, each addition-

ally added node achieves a significant improvement. We conclude that bass and key modelling

significantly contribute to better chord labelling in our model.

4.4.2 Performance by Chord Type and Chord Confusion

The performance of specific chord types is relevant to understand the system. In order to show

the performance of individual chords, we use the chord class set full, i.e. all the 121 different

chords modelled in the full-MBK model are discerned. Here the performance is naturally much

lower (57% overlap). Figure 4.12 shows the performance of the eleven individual chord types.

The maj and min triads are by far the best-modelled and still have 69% and 61% relative

correct overlap. All other chord classes behave much worse, ranging between 12% and 37%.

While this may look discouraging at first, a closer look at the chord confusion will show that

many of the errors are “well-behaved”, which explains the good performance in the MIREX-

style evaluation.

Tables 4.2, 4.3, and 4.4 show eleven chord confusion matrices, one for every chord type in

the full-MBK model as described in Section 4.2. The rows represent the different chord types,
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1.5 2 2.5 3 3.5 4 4.5

Weller et al.

full−MBK

full−MB

full−M

full−plain

mean overlap rank

2 groups have mean column ranks significantly different from Weller et al.

(a) full models

1.5 2 2.5 3 3.5 4 4.5

Weller et al.

majmin−MBK

majmin−MB

majmin−M

majmin−plain

mean overlap rank

2 groups have mean column ranks significantly different from Weller et al.

(b) majmin models

Figure 4.11: Friedman significance analysis based on the song-wise RCO rank of the four
configurations with (a) full chords and (b) majmin chords. In each case the MIREX results
of Weller et al. are given for comparison. Where confidence intervals overlap, the difference
between methods cannot be considered significant. We can see that our best model actually
ranks higher on average than Weller’s, if not significantly so. See discussion in Section 4.4.1.

0 10 20 30 40 50 60 70 80 90

N
aug
dim

min7
maj7

7
maj6

maj/5
maj/3

min
maj 68.73

32.52
16.84

20.48
23.48

32.61
11.54

14.86
36.45

30.13
61.17

percentage of correct overlap

ch
or

d 
fa

m
ily

Figure 4.12: Relative overlap for individual chords in the MBK setting with full chord dictio-
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Figure 4.13: Excerpt of Something (Lennon/McCartney), displayed in the free software Sonic
Visualiser. The first (black) line of chords is the ground truth transcription, the lines below
(grey chord symbols) are our automatic transcription, using full chords, metric position, bass,
and key (full-MBK).

while the columns represent relative chord root note difference. This means that the correct

chord is in the zero difference column in the row that shares its chord type name. The confusion

values are given as percentages, rounded to the nearest integer. Confusion values < 0.5 are not

printed for clarity. The confusion behaviour of the chords maj/3 and maj/5—the inversions

of the maj chord—can be observed in Table 4.2: for both chord types the highest score is

indeed concentrated in the respective correct bin. Most of the confusions are then dispersed

on the min or maj chords with which they share the respective bass note (i.e. 4-min and

7-maj), and the maj chord of the same root. Both confusion types are thus easily explained.

We have to acknowledge that, although the confusion of 0-maj/3 chords as 4-min chords

is not very high, it is likely to be due to the insufficient handling of harmonic overtones in

the chroma extraction procedure, since the chord’s bass note may have a strong third harmonic

(creating salience at the interval of a fifth from the bass pitch class), which makes it hard to

distinguish from the 4-min chord. There is clearly some scope for improvement. It is worth

noting that the confusion with the maj chord of the same root has no influence on the MIREX

score, since both root and chord type are correctly recognised. Similarly, a human reader of

the transcription is likely to forgive this kind of error, especially since conversely very few maj

chords in root position are transcribed as inversions. This is a phenomenon which also affects

the other chords with additional sixths and sevenths, i.e. maj6, 7, maj7, and min7, as can

be seen in Table 4.3. The dominant chord 7 has a low recall of only 12%, but confusion is

heavily concentrated on the maj of the same root (50%). Similar observations can be made

for the three remaining chord types in Table 4.3, if not always as pronounced. Again, these
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confusions make sense musically, since transcribing a non-triadic chord with its base triad is

acceptable (and rewarded in the MIREX-style evalutation). However it is a characteristic that

has not wittingly been modelled: the maj and min triads “attract” chords with more complex

ground truth. This may have a number of reasons. In the case of the dominant 7 chord we

can attempt a qualitative explanation in musical terms: in Figure 4.13 an excerpt of the song

“Something” (Lennon/McCartney), is displayed as loaded from an automatically created XML

file into Sonic Visualiser (grey). For comparison we have additionally loaded the ground truth

annotations (black). Note that while the ground truth correctly annotates the first two full bars

of the example as C7, our method switches back to Cmaj in the second bar. This happens

because in the second bar the flat seventh that turns a Cmaj chord into a C7 is not present, but

the annotator has made the musical choice of extending the chord over both bars. Our model

does not take into account this kind of semantics.

A different behaviour can be found in Table 4.4, where the confusion of dim and aug

triads as well as the “no chord” symbol N are shown. Here, musically acceptable confusion

accounts only for a relatively small part of chord confusions (e.g. the dim chord is confused

with other dim chords shifted by 3, 6 or 9 semitones). Otherwise confusion is widely spread,

and indicates that the chord chroma model we used has its limitations, especially when it comes

to modelling aug chords. Here, similar to the maj/3 chord, the confusion is likely to have been

caused by the chromagram, which does not sufficiently take into account harmonics that remain

in the chromagram. Another reason for low recall of aug chords may be their shorter individual

duration. The results of the N chord are hard to interpret, since the N symbol in annotations does

not necessarily imply that there are no harmonic sounds. Hence, the confusions might at times

make musical sense, but investigating this would be a substantial musicological task on its own.

Generally, of course, we would like to boost the performance of “no chord” detection.

The confusion behaviour in the chord transcriptions often makes musical sense. The maj

and min triads expose good recall behaviour, and their extensions maj6, 7, maj7, and min7

are transcribed consistently as the corresponding base triad or indeed correctly. The perfor-

mance on the “no chord” symbol N and the dim and aug chords is less satisfactory and sug-

gests that better chord modelling, and in particular better chromagrams, could further improve

results (see Chapter 5).
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0 1 2 3 4 5 6 7 8 9 10 11
maj 69 1 1 3
min 2 1 1 1
maj/3 1
maj/5 6 1
maj6 1
7 2
maj7 2
min7
dim
aug
N

(a) maj chord confusion

0 1 2 3 4 5 6 7 8 9 10 11
maj 7 4 1 2 1
min 61 1 3
maj/3 2
maj/5 1 1 1
maj6 2
7 1
maj7
min7 6
dim
aug
N

(b) min chord confusion

0 1 2 3 4 5 6 7 8 9 10 11
maj 12 3 3 6
min 1 22 2
maj/3 30
maj/5 2
maj6 1
7 1 1
maj7 1 1
min7 2
dim 5
aug 1
N

(c) maj/3 chord confusion

0 1 2 3 4 5 6 7 8 9 10 11
maj 14 30
min 2 3 2
maj/3 1
maj/5 37
maj6 1 2
7
maj7
min7 1 1
dim 1
aug
N

(d) maj/5 chord confusion

Table 4.2: Chord confusion table I: chord confusions for four different chord types, maj, min,
maj/3, maj/5. The columns represent semitone difference from the root of the reference
chord (modulo 12). The confusion values are given as percentages, rounded to the nearest
integer. Confusion values < 0.5 are not printed for clarity. The percentage of the correct chord
is printed bold.
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0 1 2 3 4 5 6 7 8 9 10 11
maj 63 1 1
min 1 1 3
maj/3 1 1
maj/5 9
maj6 15
7 1
maj7 1
min7 1
dim
aug
N

(a) maj6 chord confusion

0 1 2 3 4 5 6 7 8 9 10 11
maj 50 2 2 2
min 3 1 1 7 1 1
maj/3 1
maj/5 4 2
maj6 1 1
7 12
maj7 1
min7 1 1
dim 2 1
aug 1
N

(b) 7 chord confusion

0 1 2 3 4 5 6 7 8 9 10 11
maj 27 2 7 1
min 11 1
maj/3 7 1
maj/5 2 1
maj6 1 1
7
maj7 33 1
min7
dim
aug
N

(c) maj7 chord confusion

0 1 2 3 4 5 6 7 8 9 10 11
maj 6 5 1 1 5
min 32 4
maj/3 6 1
maj/5 5 1
maj6 2 1
7 1
maj7
min7 24 1
dim
aug 1
N

(d) min7 chord confusion

Table 4.3: Chord confusion table II: chord confusions for four different chord types, maj6, 7,
maj7, min7. Confusion values < 0.5 are not printed for clarity. The percentage of the correct
chord is printed bold.
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0 1 2 3 4 5 6 7 8 9 10 11
maj 5 1 1 5 9 2 1
min 3 1 9
maj/3 1 5
maj/5 1 2 1 1
maj6 1 1
7 1 1
maj7 1
min7 2 1
dim 21 6 2 7
aug 1
N

(a) dim chord confusion

0 1 2 3 4 5 6 7 8 9 10 11
maj 44 1 1
min 4 1 1 4
maj/3 2 1 3
maj/5 1 1 2 1
maj6
7 4
maj7 1
min7
dim 1
aug 16 3 5
N

(b) aug chord confusion

0 1 2 3 4 5 6 7 8 9 10 11
maj 25
min 11
maj/3 5
maj/5 9
maj6 2
7 2
maj7 3
min7 1
dim 7
aug 3
N 32

(c) N confusion matrix

Table 4.4: Chord confusion table III: chord confusions for two different chord types, dim,
aug, and the “no chord” symbol N (since N has not root note, all confusions are given in the
0 column). Confusion values < 0.5 are not printed for clarity. The percentage of the correct
chord is printed bold.
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segmentation score
chord set plain M MB MBK

majmin 0.743 0.759 0.780 0.781
inv n/a n/a 0.781 0.782
full 0.721 0.711 0.781 0.779

Table 4.5: Segmentation score. Generally there is a tendency of the more complex models to
perform better. The metric model increases segmentation performance only in the case of the
majmin configurations.

4.4.3 Chord Segmentation Quality

False over-segmentation can make a chord transcription much harder to read, and under-

segmentation necessarily results in wrongly annotated chords. In both cases the transcription is

less useful, even if the overlap measure discussed above (Section 4.4.1) is moderate to good. In

fact, chord segmentation quality on its own can point to a good chord estimation, regardless of

the correct overlap.

We evaluate the segmentation quality according to the H measure discussed in Section

2.3.3, given in Equation (2.11), on all full chord versions. Table 4.5 shows the segmentation

scores for all ten configurations. For the models using majmin and full chord dictionaries we

have also illustrated the results of the Tukey-Kramer multiple comparison with a confidence

level of 95%, see Figure 4.14. Modelling the bass results in a significantly improved seg-

mentation score. Modelling the key does not greatly influence the segmentation score. The

influence of meter modelling is ambiguous. While it significantly increases the segmentation

score with respect to the plain model for the configurations using the majmin chord dictionary

(Figure 4.14b), it significantly decreases the segmentation score for the configurations using the

full chord dictionary (Figure 4.14a). We interpret these results as follows: bass modelling, and

to some degree meter modelling, provide means of finding chord change positions at a level of

granularity more closely related to manual annotations.

4.4.4 Key Estimates

In order to automatically generate a score of a piece of tonal music, it is essential to have key

information. The proposed model full-MBK estimates the key dynamically, and simultaneously

with the chords, so key changes will also be tracked, and can be used to insert a new key

signature in a musical score (see Figure 4.18). Since we have the beat-wise data, we use an

overlap measure similar to the one used for chord recognition, based on the key ground truth

from the OMRAS2 Metadata Project (Mauch et al., 2009a). The results are very encouraging:
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1 1.5 2 2.5 3 3.5

full−MBK

full−MB

full−M

full−plain

mean chord segmentation rank

3 groups have mean column ranks significantly different from Group 1

(a) full models

1 1.5 2 2.5 3 3.5

majmin−MBK

majmin−MB

majmin−M

majmin−plain

mean chord segmentation rank

3 groups have mean column ranks significantly different from Group 1

(b) majmin models

Figure 4.14: Chord segmentation.
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77% of all key regions are detected correctly7. It is common to measure key detection accuracy

by main key. We derive the main key as the one that occupies the largest amount of time in the

piece, according to the ground truth and automatic extraction respectively. The portion of songs

for which the main keys match is 80%, which compares very well with other key extraction

algorithms. In 90% of all cases the correct main key is part of the automatic transcription.

4.4.5 Examples

Our system can automatically generate LilyPond8 source files. Figures 4.15, 4.17, and 4.18

show excerpts of lead-sheet-like engravings (compiled from the LilyPond source files) using

only the output of our full-MBK method. In Figure 4.15 the lead sheet makes use of key, chord

inversion, and metric information to provide a detailed notation that matches the official version

from Mercury et al. (1992) depicted in Figure 4.16.

As remarked above, the dynamic modelling of metric position and key enables us to

automatically transcribe time and key signature changes. Even if “Back In The USSR”

(Lennon/McCartney) is mainly in 4
4 meter, after the second verse, two extra beats are inserted.

The DBN inference compensates by remaining in the same metric position state twice, leading

to two measures in 5/4, as can be seen in Figure 4.17. Unfortunately, in this particular case the

correct key A major has not been recognised, but rather a closely related key—the correct key’s

subdominant D major. An example of very good key recognition is shown in Figure 4.18: the

key correctly changes from E[ major to B major and back. Note that the knowledge of the key

also enables us to pitch-spell correctly, i.e. had the whole song been transcribed as E[ major,

then the G]min chord just after the first key change would have been transcribed as A[min. The

inferred bass pitch class, written as a note in the bass clef staff, can be used as a rough guideline

only. For a proper transcription (Ryynänen and Klapuri, 2008), additional octave information

as well as onset and finer-grained duration information would be required.

4.5 Discussion

We have briefly noted in Section 4.3.1 that the memory needed to run our most complex DBNs

can exceed 10GB. This prohibits their usage on today’s personal computers, which usually have

around 2GB of RAM. However, there are a number of ways in which the memory size can be

reduced. Implementing the model in a programming language that passes values by reference

7There are a few pieces annotated as modal. We convert them to the major/minor scale they share the third degree
with, i.e. mixolydian is taken as major, dorian is taken as minor, etc. This is common practice, see (Noland, 2009,
page 69).

8http://lilypond.org/web/
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Figure 4.15: Excerpt of an automatic output of our algorithm using the full-MBK model for
“Friends Will be Friends” (Deacon/Mercury). In the second bar of the four bars marked with a
box, the Dmaj chord is correctly identified as being in first inversion (D/3, here D/F]). The key
signature of G major is also correct. The notes in the treble clef staff replicate the information of
the chord symbols, the bass notes are the ones inferred from the system. Bass and chord lengths
are appropriately merged or divided at bar lines in a post-processing step. Music engraving by
LilyPond.

Figure 4.16: Pop music lead-sheet: excerpt of Friends Will Be Friends (Deacon/Mercury) taken
from (Mercury et al., 1992). Chords are represented both by chord labels and the corresponding
guitar fingering. The number in a box denotes the physical time. The bass is represented only
implicitly in the chord labels.
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Figure 4.17: Time signature change: excerpt of an automatic output of our algorithm using
the full-MBK model for “Back In The USSR” (Lennon/McCartney). The metric position node
enables inference of time signature changes (marked with boxes) to account for inserted/deleted
beats. In this case the inserted beats are part of the composition. Music engraving by LilyPond.
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FmFigure 4.18: Key signature change: excerpt of an automatic output of our algorithm using

the full-MBK model for “Good Old-Fashioned Lover Boy” (Mercury). The key node enables
inference of key signature changes (marked with boxes). Music engraving by LilyPond.

(instead of copying) and has better memory management could alleviate this practical problem.

Speech recognition models also have a large number of states in similar probabilistic models,

so borrowing memory-saving techniques could be a way to further increase practical usability.

For example, while we want to keep modelling the key dynamically, we believe it is safe to

remove or “prune” the n least likely keys or even chords from the model. We also show in

Chapter 6 how memory consumption can be greatly reduced without significant performance

loss by considering structural segments of a song instead of the whole song.

One striking observation is that the modelling of meter has helped improve the chord

segmentation measure only for one of two cases. Informal tests show that a metric position

model in which missing two beats in one bar is allowed (compare Equation 4.1) leads to the

expected improvement for the models with full chord dictionary too. In future work, we would

like to study this parameter because—as we have seen in the examples—having the metric

position available allows the creation of lead sheets. Furthermore, implementation of time

signatures other than 4
4 is analogous, and preliminary experiments have shown that it is possible

to track even time signature changes within one song.

Conclusions

We have presented a novel musically-informed dynamic Bayesian network for the automatic

extraction of chord transcriptions from musical audio. While being a manually-tuned expert

model, it is not a rule based model; rather, it reflects the natural inter-dependence of these

entities by simultaneous inference of metric position, key, chord, and bass pitch class. With 121

chords, the model provides a higher level of detail than previous approaches, including chord
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inversions of major chords. Sophisticated bass pitch class modeling acknowledges the special

position of the bass at the first beat of the chord.

The comprehensive context model of the proposed full-MBK compensates for deleted or

inserted beats, detects key changes and infers the nominal bass note for maj chords. These

capabilities are essential for the creation of lead sheets. We have provided several examples of

lead sheets created from our fully automatic transcription.

The proposed full-MBK method achieves a state-of-the-art correct overlap score of 73%,

and outperforms all systems tested in the 2009 MIREX task for pretrained chord detection. In

the train-test evaluation task the algorithm proposed by Weller et al. (2009) scores better than

our full-MBK model in terms of relative correct overlap, but does not do so significantly. We

compared 10 different variants of our algorithm and show that bass and key modelling cumu-

latively improve the method’s performance with statistical significance. The greatest enhance-

ment is achieved by bass modelling. The key model does not only aid the correct identification

of chords, but also performs well in its own right by correctly identifying 80% of the songs’

main keys. The relative overlap of correctly recognised keys is 77%. The high number of

recognised chord types provides new musical information, without decreasing the performance

of the method.

As a complement to the correct overlap evaluation method, we have used a metric for chord

segmentation quality to show how well the locations and granularity of chord changes resemble

those of the ground truth. Our results show a significant improvement in segmentation quality

due to bass modelling, and for some models also for metric position modelling. Our best model

achieves a segmentation measure of 0.782.

Our evaluation of the confusion behaviour of the system has shown that—although the

model behaves as expected most of the time—chords that do not contain the fifth degree above

the bass note (maj/3, maj/5, aug, dim) perform worse as those that do. We attribute this

mainly to the insufficient reduction of harmonics in the chromagrams. Therefore, we believe

that a better front end would help recognise those chords more reliably.

In the following chapter we investigate two ways of improving the front end of our model

presented here: by learning chroma profiles, and by applying a soft transcription approach to

produce better chromagrams.



Improving the Front End 5
An important part of a chord transcription method is the interface between the audio and a high-

level model, usually referred to as the front end. Since the front end input features of our DBN

model are chroma vectors, we want to investigate whether changes in the way they are mod-

elled in the high-level model or changes in the chroma vector itself can result in better chord

recognition. Recall that one of the main weaknesses of the model presented in Chapter 4 is the

chord confusion between chords that are musically dissimilar. This was especially noticeable

in chords that have no fifth above the bass note (maj/3, aug, dim): these were often falsely

recognised as chords that do have a fifth above the bass note but are otherwise similar1. Our in-

terpretation of this result is that the bass note’s third harmonic, which causes a spectral peak an

octave and a fifth above the bass note, often leads to an incorrect interpretation of these chords.

More generally, the presence of harmonics is not negligible. The most common chords (maj,

min) suffer less from this problem, since the first few harmonics of the bass note coincide with

chord notes. However, for good chord transcription, rare chords should also be recognised cor-

rectly as they often add decisive detail to a song. Therefore, we believe that raising recognition

rates of rare chords while maintaining high accuracy of more frequent chords would greatly

benefit an automatic transcription—and not only for overall accuracy in the MIREX sense. Our

main efforts shall be directed at finding a better fit between the high-level model and the low-

level features to accommodate the presence of harmonics. Without changing the overall model

topology as presented in Chapter 4, we can follow two different paradigms: firstly, we can mod-

ify the model by training its parameters, and secondly, we can modify the chroma generation

procedure such that the model assumptions are met more closely.

Let us consider first the problem of training model parameters. Due to the complexity of

the model presented in Chapter 4, the number of parameters that need to be estimated to fully

train the DBN is large and requires a large amount of training data. For example, the chord node

1For example, Cmaj/3 recognised as Emin, see Table 4.2.
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Ci (see Figure 4.2) alone has more than a million parameters: 121× 4× 24× 121 = 1405536

(for the previous chord, current metric position, current key and current chord). Even when

considering tying of parameters, the available ground truth data is still comparatively scarce. We

do have audio-synchronised ground truth of chords and keys, and additionally metric position

data (Mauch et al., 2009a) for a large subset of the songs used in the 2009 MIREX chord

detection task. However, the key change ground truth is not sufficient for training since key

changes are rare in songs, and no aligned ground truth is available for bass notes. Nonetheless—

especially in the light of the results in Chapter 4 mentioned above—it seems appropriate to learn

a subset of the DBN parameters: the chroma nodes, which connect the high-level model with

the chromagrams, and the chord transition rate given the metric position. The aligned chord

and metric position ground truth data can be used to train these parts of the model. We describe

how we proceed in Section 5.1.

The alternative paradigm, adapting the data properties to the model assumptions, is neces-

sarily concerned with the low-level features too. The model assumption which was not met by

the chroma features described in Chapter 3 is the absence of upper partials of the notes present

in the signal. In Section 5.2 we describe a simple procedure using idealised note profiles to

find a note activation pattern that matches a given log-frequency spectrum most closely in the

least-squares sense, using a non-negative least squares (NNLS) algorithm. This note activation

pattern, a kind of approximate transcription similar to the pitch salience proposed by Klapuri

(2006b, 2009), is then mapped to bass and treble chroma vectors and can directly be used in

the proposed DBN of Chapter 4. The results of several variants of both approaches will be

given in Section 5.3, followed by a discussion in Section 5.4. We also show that the mediocre

performance of the model in terms of the “no chord” label can be improved by changing the

means of the Gaussian chroma node from 1 to 0.5.

5.1 Training Chord Profiles as Gaussian Mixtures

As we have mentioned above, we do not have sufficient ground truth data at our disposal to

fully train the DBN presented in Chapter 4. Furthermore, the experiments with trained language

models, e.g. Khadkevich and Omologo (2009b), do not suggest great improvements from train-

ing chord sequences. In informal experiments, we found that using the relative frequencies of

the chord types as prior probabilities in our model led to results extremely biased towards the

most frequent maj chords. Learning the chroma profiles from the chord labels seems, then, an

adequate way of improving the labelling process, because the harmonics will be automatically
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norm cov. matrix GMM components
1 3 6

L1
diagonal 8.17 19.98 16.14
full 5.71 20.55 17.99

L2
diagonal 8.12 18.52 16.08
full 8.62 22.67 21.69

max
diagonal 8.82 18.04 15.59
full 9.76 19.99 19.07

standardise
diagonal 8.25 13.09 14.96
full 7.60 19.56 17.79

Table 5.1: Raw (no high-level model) beat-wise chord recall percentage, based on the 121
chords in the full chord class set (defined on page 78), modelled using different types of chroma
normalisation and Gaussian mixture models.

included in the chord model. Since Gaussian mixture models are a standard way of training

chroma data (e.g. Papadopoulos and Peeters, 2007) we choose to follow that approach too.

There are however many ways of doing so, and we perform preliminary experiments us-

ing the 121 different chord classes of the full chord class set, which we have already used in

Chapter 4 (page 78), to determine which chroma normalisation procedure (L1 norm, L2 norm,

maximum norm, or standardisation) and which number of Gaussian mixture components (1, 3,

or 6) are best suited to our chroma data. We would also like to know whether to use full co-

variance matrices or diagonal ones. As is common practice, we assume transposition invariance

(e.g. the profiles of Cmin and Fmin are identical up to transposition), and transpose all chro-

magrams such that their root note coincides with the first bin (Sheh and Ellis, 2003; Lee and

Slaney, 2008; Mauch and Dixon, 2008; Ryynänen and Klapuri, 2008). In this way we estimate

only one chord model for each of the 11 chord classes, which is especially important in the case

of rarer chord classes like aug for which otherwise the training data would not suffice. The “no

chord” label is trained by using the respective beat chroma vectors twelve times in all possible

rotations. Our measure of quality is the beat-wise recall on the raw Bayesian classification of

each beat, i.e. for every beat we calculate the density of each of the trained Gaussian mixture

model (GMM) distributions, and the chord model with the highest density wins. The results can

be seen in Table 5.1. The variant using L2 norm and a GMM with three mixture components

and full covariance matrices performs best. In the following, we will use these parameters to

estimate the treble chroma node. To estimate the bass chroma, we only need to estimate 12

bass note chroma patterns and one “no chord” pattern. Using the argument that the first beat
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of chords usually features the respective bass note (see Section 4.2.4, page 74), to estimate the

bass note chroma we use the first beats of all chords that feature this bass note. The bass chroma

model will also differ from the treble chroma model in that we will use only a single Gaussian,

which we deem appropriate due to the lower complexity of the bass note.

The results of the new models with learned chroma profiles are described in Section 5.3.

The following section introduces our second approach to improving the front end: a different

chroma calculation method.

5.2 Chroma as Pitch Class Activation from Approximate Non-

Negative Least Squares Transcription

This section is concerned with a novel application of the non-negative least squares (NNLS)

algorithm to the generation of better chromagrams. Let us consider the difference between what

information a chromagram usually contains and what a perfect chromagram for musicological

purposes would be.

Chromagrams are usually a transform (often linear) of some kind of spectrum onto twelve

bins that correspond to the twelve pitch classes. Our own baseline approach from Chapter 3 is

a variant of this model. While the chromagrams generated this way are highly correlated to the

true pitch class set, they do not actually contain information about which pitch classes have been

played, but rather about the energy across the spectrum. As has been discussed in Chapter 2.2,

such chromagrams are hence corrupted by noise and upper partials, though attempts have been

made to attenuate both (e.g. Gomez, 2006, Chapter 3). A perfect chromagram, for our purposes

and for musicological usage, would simply be an automatically generated pitch class set: it

would preserve only the pitch classes of the musical notes present at a certain time in a piece of

music, with any unwanted spectral information removed, much like in Parncutt’s perceptually

motivated chroma tally or chroma probability. Perhaps more generally, we could call this ideal

pitch class activation.

Furthermore, when concerned with harmony analysis the relative energy of notes present

is of little use: what matters is which notes (or pitch classes) are present and which are not.

Klapuri (2009) proposes a visualisation method that transforms spectral energy to a salience

representation in which spectral peaks that are also fundamental frequencies have a value close

to unity, and others close to zero. This note activation likelihood could be used as input for

harmony extraction tools. It is however a one step transform, in which the note saliences are

independent of each other.
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In a different class of approaches to (approximate) transcription, the spectrum (or a log-

frequency spectrum) is considered a sum of note profiles in a dictionary, and an algorithm is

used to find a note activation pattern that best explains the spectrum (e.g. Abdallah and Plumb-

ley, 2004), with some constraints. This approach differs in that it involves iterative re-weighting

of the note activation values. To our knowledge, such a procedure has not been used to generate

chromagrams or otherwise conduct further automatic harmony analysis. Our proposed method

can be broken down into the calculation of a log-frequency spectrogram (Subsection 5.2.1),

different ways of preprocessing the log-frequency spectrum (Subsection 5.2.2), and finally the

application of the NNLS (Subsection 5.2.3). We call the chroma resulting from this procedure

NNLS chroma.

5.2.1 Log-frequency Spectrum

We map the 2048 bins of the magnitude spectrum onto bins whose centres are linearly-spaced

in log frequency, i.e. they correspond to pitch (Peeters, 2006; Müller et al., 2009; Sagayama

et al., 2004; Catteau et al., 2007). As in our baseline chroma approach (see Chapter 3, page 57),

these pitch bins are spaced a third of a semitone apart. The mapping is performed as a matrix

multiplication of the chromagram with a transform matrix, similar to a constant-Q kernel, which

can be calculated in advance. The resulting log-frequency spectrum is then adjusted to the

tuning as described in Chapter 3.

As motivated in in Chapter 3, we use the discrete Fourier transform with a frame length of

4096 samples on audio downsampled to 11025 Hz. The main problem in mapping the spectrum

to a log-frequency representation is that in the low frequency range several log-frequency bins

may fall between two DFT bins, while in high frequency regions the reverse is true. We use

cosine interpolation on both scales for its simplicity despite providing smoother results than

linear interpolation: first we upsample the DFT spectrum to a highly over-sampled frequency

representation, and then we map that intermediate representation to the desired log-frequency

representation. We estimate the intermediate representation Mf at frequency f as

Mf =
NF∑
i=0

h(f, fi)Xi, (5.1)
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where Xi is the ith FFT bin, and

h(f, fi) =


1
2 cos

(
2π(f−fi)
fs/NF

)
+ 1

2 , if |fi − f | < fs/NF

0 otherwise,
(5.2)

where NF is the frame length and fs is the sampling frequency. We use frequencies f spaced

by 1/40 of the DFT bandwidth δf = fs/NF . We choice of this very high oversampling rate is

not problematic in terms of performance since the calculation is only performed only once to

generate the mapping matrix, and not at runtime. We proceed analogously to map the interme-

diate representation into the log-frequency domain, only that the band-width term δf , which in

Equation (5.2) was constant, δf = fs/NF , now becomes linear with respect to frequency. In

fact, since in our case we have nbin = 36 bins per octave, we compute Q using (2.4) as

Q = nbin/ ln 2 = 36/ ln 2 ≈ 51.94,

and the bandwidth term is δf(f) = f/Q ≈ f/51.94 (see the notes on constant-Q transforms in

Section 2.2.2). Hence, the transform from the intermediate representation to the log-frequency

domain is

Yk =
∑
f

hl(f, fk)Mf , (5.3)

where

hl(f, fk) =


1
2 cos

(
2π(f−fk)
δf(f)

)
+ 1

2 , if |fk − f | < δf(f)

0 otherwise
(5.4)

Using Equations (5.1) and (5.3), the transform can then be calculated directly as

Yk =
∑
f

hl(f, fk)
NF∑
i=0

h(f, fi)Xi, (5.5)

and it can thus be implemented as a matrix multiplication, which is computationally efficient.

This calculation is performed on all frames of a spectrogram, yielding a log-frequency spectro-

gram Y = (Yk,m). The tuning of the piece is now estimated from the phase shift of the sum of

the frames of the spectrogram in exactly the same way as previously described in Equation (3.8)
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on page 59. Then the matrix is updated via linear interpolation, such that the centre bin of ev-

ery semitone corresponds to the tuning frequency. The updated log-frequency spectrogram Y

has 256 1/3 -semitone bins, and is hence much smaller than the original spectrogram. The re-

duced size enables us to model it efficiently as a sum of idealised notes, as will be explained in

Subsection 5.2.3.

5.2.2 Pre-processing the Log-frequency Spectrum

Since the NNLS dictionary, which will be introduced in the next subsection, does not have

explicit noise profiles, it seems natural to perform a noise reduction step on the log-frequency

spectrogram Y prior to the approximate transcription procedure. The noise reduction procedure

we choose is subtraction of the background spectrum (Catteau et al., 2007): we calculate the

running mean µk,m at every note bin Yk,m with a note Hamming-weighted neighbourhood

window spanning half an octave around the note. The values at the edges of the spectrogram,

where the full window is not available are set to the value at the closest bin that is covered.

Then, the µk,m is subtracted from Yk,m, and negative values are discarded. This results in the

new spectrum

Y SUB
k,m =


Yk,m − µk,m if Yk,m − µk,m > 0

0 otherwise.
(5.6)

We observed that additionally dividing by the respective running standard deviation σk,m, a

procedure similar to spectral whitening (e.g. Klapuri, 2006b), produces visually more pleasing

chromagrams. The two procedures, subtraction of the background spectrum and division by

the standard deviation, amount to a local standardisation: the data has mean 0 and standard

deviation 1. Here also, negative values are discarded. This results in the new spectrum

Y STD
k,m =


Yk,m−µk,m

σk,m
if Yk,m − µk,m > 0

0 otherwise.
(5.7)

Although the process—in particular the division—clearly destroys connections to the physical

properties of the signal, the underlying motivation is that spectral amplitude differences in the

music are evened out, and the influence of noise and timbre is hence reduced. Whether this has

an impact on the chord extraction performance in our model will be considered in Section 5.3.

Note that the background spectrum and the running standard deviation can both be calculated
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very efficiently using FFT-based convolution.

5.2.3 Note Dictionary and Non-negative Least Squares

In order to decompose a log-frequency spectral frame into the notes it has been generated from,

we need two basic ingredients: a note dictionary, describing the assumed profile of (idealised)

notes, and an inference procedure to determine the note activation patterns that result in the

closest match to the spectral frame.

Applying Equation (5.3), we generate a dictionary of idealised note profiles in the log-

frequency domain with geometrically decaying overtone amplitudes

ak = sk−1 (5.8)

where the parameter s ∈ (0, 1) influences the spectral shape: the smaller the value of s, the

weaker the higher partials. Gomez (2006) uses the parameter s = 0.6 for her chroma genera-

tion, and we have used s = 0.9 (if in a slightly different context, see Section 3.1.2). We will

test both possibilities. We add a third possibility motivated by the fact that resonant frequen-

cies of musical instruments are fixed (Rossing, 1990), and hence partials of notes with higher

fundamental frequency are less likely to correspond to a resonance: here, s is linearly spaced

between s = 0.9 for the lowest note and s = 0.6 for the highest note. In each of the three

cases, we create tone patterns over seven octaves, with twelve tones per octave: a set of 84 tone

profiles. Note that we do not model three semitones here because we assume that the notes we

want to transcribe are approximately in tune. The fundamental frequencies of these tones range

from A0 (at 27.5 Hz) to G]6 (at approximately 3322 Hz). Every note profile is normalised such

that the sum over all the bins equals unity. Together they form a matrix T , in which every col-

umn corresponds to one tone. We assume now that the individual frames of the log-frequency

spectrogram Y are generated approximately as a linear combination

Y·,m ≈ T z (5.9)

of the 84 tone profiles. The problem is to find a tone activation pattern z that minimises the

Euclidian distance

||Y·,m − T z|| (5.10)

between the linear combination and the data, with the constraint z ≥ 0, i.e. all activations
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Figure 5.1: The baseline chroma (top) and the new NNLS-based chroma representation (STD-
LS) proposed in this chapter, illustrated using the song “Friends Will Be Friends” (Dea-
con/Mercury). Two main differences are highlighted: in the left box, the true chord is A/3,
i.e. it has the pitch classes A, C], and E, and a C] in the bass. Due to the strong third (and
sixth etc.) partial of the bass note, the upper chromagram falsely suggests the presence of a G].
The new chroma calculation method attenuates this tendency. Similarly, in the right box, the
G/5 chord is unrecognisable in the baseline chroma representation, because the bass note D
generates harmonics at A. In the proposed chroma representation, this is attenuated.
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Figure 5.2: Bass and treble profiles: compared to Figure 3.3 the treble profile is now spread
over the whole note range with an emphasis in the mid range, while the bass profile occupies a
similar region to the one shown in Figure 3.3. The wider treble profile is used so that all active
pitch classes are included.

must be non-negative2. This is a well-known mathematical problem called the non-negative

least squares (NNLS) problem (Lawson and Hanson, 1974). To find a solution, we use the

MATLAB implementation3 of an algorithm proposed by Lawson and Hanson (1974). Note

that since we do not aim to perform actual transcription, sparseness constraints (Abdallah and

Plumbley, 2004) are less important. The effect that the NNLS approach has on chromagrams is

illustrated in Figure 5.1 by comparing them to the baseline chromagrams.

Unlike the salience calculations performed in Chapter 3, these tone activation patterns

may feature a certain pitch class only in lower frequency regions—ideally just like it is played.

The nearly mutually exclusive note separation between bass and treble chroma (see Figure 3.3)

makes less sense in this setup, since we want the treble chroma to represent the chord type and

hence all active pitch classes including the bass pitch classes, whereas the bass chroma will be

used to determine the chord inversion. We therefore choose different profiles (see Figure 5.2),

in which the bass profile remains in the low tone range, but the treble profile encompasses the

whole note spectrum, with an emphasis on the mid range. Beat-synchronisation and normalisa-

tion are performed exactly as expained in Section 3.2.

5.3 Experiments and Results

We calculated chord transcriptions using the inference algorithm and data as described in Sec-

tion 4.3.1. The methods using trained chroma and chord change probabilities were evaluated

in five-fold cross-validation on the 2009 MIREX data set. We use the best-performing, most

complex model from Chapter 4 for the evaluation, with the full chord alphabet. Since we are

2The non-negativity is a reasonable assumption, since notes played by physical instruments necessarily have
non-negative amplitudes.

3http://www.mathworks.com/access/helpdesk/help/techdoc/ref/lsqnonneg.html
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chord set trained MBK MBK

majmin 72.4 72.1
inv 69.6 72.0
full 70.6 73.0

(a) MIREX-style evaluation using the ma-
jmin chord class set

chord set trained MBK MBK

majmin (61.0) (61.3)
inv (51.1) (57.8)
full 41.8 56.7

(b) evaluation using the full chord class set

Table 5.2: Models with trained chroma: overall relative correct overlap. In Table 5.2b, the re-
sults of models that do not output as many classes as are tested are given in brackets. Since they
never transcribe complex chords, their performance is high only due to their better performance
on more common chords.

interested also in whether learning less detailed data influences the result, we also learn and test

using smaller chord class sets (chord alphabets), namely majmin and inv (see Section 2.3.2).

5.3.1 Models with Trained Chroma

The MIREX-style results of the trained models are shown in Table 5.2. We can observe that

overall accuracy is good but not exceptional. The trained majmin-MBK model has a slightly

increased accuracy of 72.4% compared to the baseline model (majmin-MBK at 72.1%), but

accuracy in the full model has decreased by two percentage points. Table 5.2b shows that

evaluating by the full chord class set, all trained models perform worse. Figure 5.3 provides an

indication of the reason why this has happened: accuracy for rare chords such as aug, dim,

and maj6, has risen steeply (compare with Figure 4.12). The “no chord” label N in particular

has greatly improved and now has the highest recall. The figure shows that, the accuracy is

indeed reasonably balanced over all chord types. While this is a positive result and shows that

the training has indeed improved the recognition of chords that were badly recognised by the

baseline model, the more frequent chords maj and min have worse recall figures compared

to the baseline method. Since these chords are far more frequent than the chords for which

recognition has improved, overall recognition has decreased. To analyse the nature of the errors

better, in Subsection 5.3.3 we will examine some typical chord confusion matrices and compare

them to those retrieved using the NNLS chroma.

Note that while giving a better MIREX-style result, the trained majmin-MBK model is

not actually capable of conveying musically detailed data. It recognises well all the chords

subsumed under the maj label, but should a musician want to replicate the song from the chord

labels given, it would be possible only for very simple songs that do not feature other chord

labels. This is, of course, also true for the un-trained majmin models in Chapter 4, and previous

chord recognition methods presented in Chapter 2.2. In that light, the full models would seem
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(b) un-trained baseline full-MBK

Figure 5.3: Model with trained chroma and the baseline model for comparison: relative overlap
for the individual chord types, using MBK models with trained chroma nodes (Section 5.1).
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(a) STD-0.6
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(b) STD-LS

Figure 5.4: Methods with NNLS chroma: relative overlap for the individual chord types, using
the full-MBK model proposed in Chapter 4.

like the better choice because they offer more musical detail.

5.3.2 Methods Using NNLS Chroma

We compare the use of NNLS chroma retrieved from three different versions of log-frequency

spectra discussed in Section 5.2.2:

O the unprocessed, original log-frequency spectrum Y (Equation 5.5),

SUB the log-frequency spectrum Y SUB, after subtraction of the background spectrum (Equa-

tion 5.6), and

STD the standardised log-frequency spectrum Y STD (Equation 5.7).

The second variable we test is the partial roll-off parameter s from Equation (5.8): it is either

0.6 for all notes, 0.9 for all notes, or linearly spaced (LS) between 0.9 and 0.6. We refer to the
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0 1 2 3 4 5 6 7 8 9 10 11
maj 16 26
min 1 2 1
maj/3 2
maj/5 44
maj6 1 2
7 1
maj7 1
min7 1
dim 1
aug
N

Table 5.3: maj/5 chord confusion in the full-MBK model with NNLS chroma (STD-0.6). The
columns represent semitone difference from the root of the reference chord (modulo 12). The
confusion values are given as percentages, rounded to the nearest integer. Confusion values
< 0.5 are not printed for clarity. The percentage of the correct chord is printed bold.

combinations by linking the parameter names; for example, the combination of the standardised

log-frequency spectrum with roll-off parameter s = 0.9 would be named STD-0.9. All nine

variants of the NNLS chroma are used for inference with the DBN proposed in Chapter 4. At

79% the MIREX-style score of the STD-0.6 model performs best, and around five percentage

points better than the equivalent model using the baseline chroma (Chapter 4). It also performs

significantly better (ANOVA value is p < 0.001) than the algorithm proposed by Weller et al.

(2009) which at 74% was the best-performing algorithm in the 2009 MIREX Chord Detection

task (train/test). As we can see from Table 5.4a, the methods using no standardisation or only

subtraction of the background spectrum perform considerably worse than the best method; the

variants O-0.6 and SUB-0.6 are still better than the baseline method.

The evaluation using the full chord class set offers a more differentiated view. Let us con-

sider Figure 5.4a: compared to the baseline method’s results displayed in Figure 5.3b every

individual chord type achieves higher performance, the only exception being the “no chord”

label, whose performance decreases by about four percentage points. The increased perfor-

mance of the other chords is particularly impressive for aug chords (16 percentage points),

min and dim chords (both 11 percentage points), and /5 and maj7 chords (both seven per-

centage points). Consider, for example, the confusion of /5 chords in Table 5.3: not only has

the accuracy risen (44%, was 36%), but also the unwanted confusion with the 7-maj chord has

been reduced from 30% to 26%. Our aim to improve in particular the chords which do not

feature a fifth above the bass note has been achieved.
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log-freq. parameter s
spectrum s = 0.6 s = 0.9 LS

O 74.8 66.5 70.8
SUB 73.5 65.9 69.7
STD 78.8 74.2 76.7

(a) MIREX-style evaluation using the majmin
chord class set

log-freq. parameter s
spectrum s = 0.6 s = 0.9 LS

O 52.6 45.4 49.2
SUB 56.8 50.8 53.9
STD 61.1 60.6 61.8

(b) evaluation using the full chord class set

Table 5.4: Relative correct overlap for the methods using NNLS chroma (all extracted using the
full-MBK model from Chapter 4). In all experiments the NNLS chroma using the standardised
log-frequency spectrum achieves the highest scores. In the MIREX-style evaluation, the highest
result comes from the standardised log-frequency spectrum with parameter s = 0.6, in the
evaluation on the full chord class set, the LS parameter setting achieves better relative correct
overlap, but still using standardisation.

We compare some of the confusion matrices of the STD-LS method to those of the model

with trained chroma nodes in the following subsection.

5.3.3 A Comparison of Chord Confusion Matrices

The overall accuracy does not always provide a comprehensive picture of the performance of

an algorithm. We can demonstrate more subtle advantages and disadvantages of the two com-

peting approaches discussed in this chapter by considering selected confusion matrices. We

have already seen that the accuracy of maj and min chords was only moderate in the trained

models, but no chord types had very low accuracy (Figure 5.3). On the other hand, the meth-

ods using NNLS chroma had good overall performance in the MIREX sense due to several

very accurately-recognised chord types, but at the price of a few chord types with low accuracy

(Figure 5.4a).

Let us first examine the confusion matrices of the maj chord as given in Table 5.5: here, the

method using the NNLS chroma (STD-LS) obviously performs better. The errors of the trained

model are widely spread over incorrect chords with the same root. Unfortunately, chords that

have a simple structure are often falsely recognised as more complex chords, for example 0-maj

as 0-74. This can falsely suggest a different function of the chord, in the case of the 7 chord, a

dominant function (Rawlins and Bahha, 2005). Another possible explanation is missing detail

in the reference annotations.

It is then interesting to find out what happens in the converse case, the confusion table of

the 7 chord (Table 5.6). Clearly, the NNLS chroma has only 16% correctly transcribed 7 chords

4We have listened to several songs and found that this tends to happen when the melody features a non-chord
note that briefly makes the chromagram “look” like the respective wrong chord.
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compared to 29% correctly transcribed by the trained model. This means that the trained model

will more often correctly indicate a dominant function of a chord. The transcriptions using the

NNLS chroma do not tend to make “un-musical mistakes” as much as were done by the trained

chroma in the case of the maj chord: here, the distribution of falsely recognised 7 chords is

concentrated on the maj chord of the same root. Although not ideal, this is musically acceptable

because the maj chord is a subset of the 7 chord and may have the same function.

The models using NNLS chroma inherit from the baseline model the tendency to tran-

scribe a complex chord as its less complex relative, described in Section 4.4.2, but with boosted

recognition rates. This is musically more acceptable than falsely transcribing a chord as more

complex than the ground truth. The balanced performance of the trained models on both simple

and complex chords is marred because it tends to do just that. Apparently, the implicit bias

towards simpler chords induced by the key node in our DBN (Section 4.2.2) does not suffice to

prevent these false classifications. We discuss other implications and possible solutions to this

problem in Section 5.4.

5.3.4 An Additional Experiment

The good recognition results for the “no chord” label in the model using the trained chroma pro-

files encouraged us to investigate why the recognition of these had been worse in the baseline

models. We decided to take a closer look at where it had been correctly recognised, and where

it had not. Both the baseline method from Chapter 4 and the methods using NNLS chroma usu-

ally failed to detect the “no chord” segments in the middle of a piece. It was only the silent parts

at the beginnings and ends of pieces, and their immediate surroundings that were correctly tran-

scribed as N. Clearly, the N chords do not behave as we assumed in Section 4.2.5 (see page 76):

the corresponding treble chroma vector is not flat enough, and in the normalisation process we

therefore obtain chroma values that are not necessarily situated close to unity. Changing the

mean from unity to a lower value in the Gaussian distribution of N chord model in the treble

chroma node (see Subsection 4.2.5) arose as a simple way to remedy this behaviour. We chose

a value of 0.5 and tested a thus modified full-MBK model with the new chroma features (STD-

0.6). As we had hoped, the model maintained a high recognition rate for the chords, but also

recognised 70% of the duration of N labels (see Figure 5.5), which is considerably better than

without the modification (28%), but also better than the trained model (55%). Here the im-

provement of individual chord recognition is true for all chord types, including the “no chord”

label N. The overall MIREX-style result is 80% correct overlap (full chord class set 63%).
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0 1 2 3 4 5 6 7 8 9 10 11
maj 72 1 2 2
min 3 1 1 2
maj/3 1
maj/5 5 3
maj6 1
7 3
maj7
min7
dim
aug
N

(a) NNLS chroma (STD-LS)

0 1 2 3 4 5 6 7 8 9 10 11
maj 43 1 1 1
min 4 1 1 1
maj/3 3
maj/5 6 4
maj6 8
7 8
maj7 7 1
min7 2 1 1
dim
aug 2
N 1

(b) trained chroma (full chord dictionary)

Table 5.5: Comparison of maj chord confusion. The columns represent semitone difference
from the root of the reference chord (modulo 12). The confusion values are given as percent-
ages, rounded to the nearest integer. Confusion values < 0.5 are not printed for clarity. The
percentage of the correct chord is printed bold.
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Figure 5.5: Method with NNLS chroma (STD-0.6) and the DBN with a minor modification as
described in Subsection 5.3.4: relative overlap for the individual chord types.
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0 1 2 3 4 5 6 7 8 9 10 11
maj 52 2 1 1
min 4 2 5 1
maj/3 1
maj/5 2 1 2
maj6
7 16
maj7
min7 1
dim 1
aug 1
N

(a) NNLS chroma (STD-LS)

0 1 2 3 4 5 6 7 8 9 10 11
maj 28 1 1
min 6 1 2
maj/3 2 1
maj/5 2 1 2 1
maj6 3 1
7 29
maj7 2 1
min7 4 2
dim 1
aug 2
N 1

(b) trained chroma (full chord dictionary)

Table 5.6: Comparison of 7 chord confusion. The columns represent semitone difference from
the root of the reference chord (modulo 12). The confusion values are given as percentages,
rounded to the nearest integer. Confusion values < 0.5 are not printed for clarity. The percent-
age of the correct chord is printed bold.
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5.4 Discussion and Future Work

The most puzzling result presented in this chapter is the lack of overall performance increase

due to statistical learning. This may certainly be due to the way we performed the training,

i.e. despite using standard techniques, we did not carefully examine the interactions between

all components in our model. As demonstrated by the MIREX performance of the algorithm

proposed by Weller et al. (2009), a trained algorithm can perform better than our trained mod-

els presented in this chapter, and the approach of discriminative learning and the use of support

vector machines may be superior to ours. It is however the only model we know of that out-

performs even our baseline models presented in the previous chapter, and performs worse than

our best model, using the new chroma by means of NNLS and our expert model. This may be

a hint at what we believe are three principle shortcomings of the trained chroma profile model.

Firstly, as the definition of a chord makes clear (page 32), a chord can develop over time, which

implies that a single chord profile will not suffice to model it closely. Secondly, the chord sur-

face features for the same nominal chord may differ substantially with the key. The only chord

model that uses this information is that proposed by Raphael and Stoddard (2003) for symbolic

data. Thirdly, occurrences of notes may have effects that are not modelled in any model to date.

For example, an occurrence of the 7th in one beat of a maj chord stretching a bar can turn the

chord into a dominant 7 chord. We have seen a similar situation in the example of the song

“Something” in Chapter 4 (page 4.13). But an occurrence of the 6th on one beat in a similar sit-

uation would often be interpreted as a non-harmony note, and the note would have to be longer

to turn the chord into a maj6 chord.

We believe that in order to properly learn chord models, these important characteristics

of chords will have to be taken into account. This may not be possible with the chord models

that have been used for chord transcription (including ours) because they fuse into one chord

profile what really consists of two very distinct components: the musical chord model (choice

of notes given the chord, key and other factors) and the audio feature model (the surface given

the choice of notes). In other words, a note (or pitch class) will be modelled by its probability

of sounding in a chord model, and by the effect it has on the audio given that it is sounded.

We argue that for further improvements a departure towards a more realistic model with these

distinct sub-components will be vital.

Our findings provide evidence to support the intuition that the information which is lost

by mapping the spectrum to a chroma vector cannot be recovered completely: therefore it is
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necessary to perform note transcription or calculate a note activation pattern before mapping the

spectrum to a chroma representation (as we did in this chapter) or directly use spectral features

as the input to higher-level models, which ultimately may be the more principled solution.

These new directions provide all sorts of possibilities for future work, and especially two-

component (musical + physical) chord models are an exciting perspective. There is also scope

in comparing how other approximate transcription methods influence chord analysis, whether

through an intermediate chroma mapping or directly on some spectral representation. Finally,

the combination of transcription techniques and statistical learning could provide further im-

provements to chord extraction, if the topology of the chord models were more adequate.

Conclusions

In this chapter we have presented two substantially different approaches with the aim of im-

proving the front-end interface of our DBN proposed in Chapter 4: statistical training of the

chroma nodes in the model, and an enhanced chroma extraction technique that performs a pre-

liminary transcription step to match the model better. The best results were achieved by one

of the methods using the enhanced NNLS chroma extraction technique, reaching 79% MIREX

accuracy (80% with an additional minor modification of the DBN). This is a significant im-

provement over the state of the art (MIREX 2009 Chord Detection Task). We have shown that

statistical learning of chroma can boost the recognition rate of individual chord types. In our

implementation, this came at the cost of lower overall accuracy because many frequent chords

were misclassified.

We have compared in detail confusion matrices obtained from NNLS chroma and the

trained chroma models, and have found that while the trained variants can be better for the

annotation of some particular chords, they tend to go wrong in less musically accepted ways

than the NNLS models. These inherit the musical “conservativeness” from the baseline method,

and often provide acceptable (simpler) approximations to the true chord.

We have also discussed some more conceptual issues, arguing that in the future the general

approach to chord models will have to model what notes are played, and how these affect the

surface features separately. The success of our NNLS chroma has also given us confidence

that the information lost in simple chroma mapping is not negligible, and that further research

should go into using approximate transcription methods for chord extraction. We have derived

several areas of future work, that extend the approximate transcription approach presented in

this chapter and combine it with statistical learning.
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This chapter has considered some methods that improve chord transcription results through

changes in the low-level processing front end of the baseline model presented in Chapter 4. In

the following chapter we draw attention to the highest organisational level in a piece of music:

the form. We will investigate its importance for chord transcription, and, in particular, what

gains in transcription performance can be achieved through knowledge of repeated sections in

a piece of music.



Using Repetition Cues to

Enhance Chord Transcription 6
In this chapter we propose a further step towards unified music analysis by using a global fea-

ture of music to enhance chord estimation: the repetition of song segments. The work is based

on a published collaboration with Katy Noland (Mauch et al., 2009c), in which she contributed

background knowledge on structural segmentation, further technical ideas and analysis of re-

sults. The proposed technique allows us to generate more authentic chord transcriptions than

previously possible with automatic methods. This is achieved by averaging the low-level fea-

tures of repeated sections of a piece of music, thus attenuating non-systematic deviations and

noise. The structural segmentations needed in this process are provided either by manual anno-

tation or by a novel structural segmentation method tailored to the task. We show that in both

cases the improvements are twofold: due to the cleaner features, chord extraction performance

increases significantly; furthermore, repeated segments of a song are transcribed with identical

chord progressions (unless the context around the segment suggests otherwise), a characteristic

that would be expected from a manually transcribed lead sheet.

We have already seen how musical context has been used to improve chord recognition

(Section 2.2.3 and Chapter 4). However, none of the previous methods take into account the

global structure of a piece of music. In fact, hidden Markov models, and related dynamical

models such as our DBN (Chapter 4), are intrinsically ill-suited to modelling global structures

since the direct temporal dependencies are assumed to be Markovian, i.e. only local direct

dependencies are allowed (Equation (2.5) on page 44). On the other hand, Dannenberg (2005)

shows that a music computing algorithm (beat tracking) can be greatly improved by the use

of knowledge about the musical structure. To our knowledge this principle has not yet been

applied to chord estimation.

Since much of musical structure is defined by repetition, which is a core principle in music

(Huron, 2006, p. 229), exploiting repetition structures seems to be a valid starting point for
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research in this direction. Moreover, in popular songs in particular, a repeated verse-chorus

format is common, in which the chord sequence is the same in all sections of the same type.

In lead sheets then—for better readability—these sections would usually only be notated once,

with repeats indicated. Our method mirrors this improvement by assigning the same chord

progression to repeated sections. In addition, having found repeating sections, we have available

several instances of a given chord sequence from which to estimate the chords, so we expect

an improvement in estimation accuracy. We demonstrate the improvements in readability and

accuracy using manually-annotated descriptions of the musical structure, and show that the

improvement can also be achieved using an automatic structure annotation algorithm tailored

to the task.

In Section 6.1 we describe work related to structural segmentation. In Section 6.2 we

present a new segmentation technique that is tailored to our task of finding repeated chord se-

quences. In Section 6.3 we describe the technique that integrates this repetition information into

the chord transcription process. In the results section 6.4 we first give examples of chord estima-

tion with and without the segmentation technique (Section 6.4.1), and then present quantitative

chord estimation results (Section 6.4.2). In Section 6.5 we discuss our findings.

6.1 Related Work on Structural Segmentation and Motivation

Previous automatic music structure extraction techniques are usually based on either of two

ways of defining a structural segment: firstly a structural segment can be defined as a segment in

which some parameter of interest, for example timbre, remains stable; secondly it can be defined

as a segment that has a characteristic sequence of events, for example a chord progression.

Methods of the first kind primarily search for section boundaries, indicated by a sudden

change in the feature of interest. This can be timbre (Aucouturier et al., 2005; Levy and Sandler,

2008; Abdallah et al., 2005; Chu and Logan, 2000), spectral evolution (Peeters et al., 2002),

rhythm (Jensen et al., 2005), or combinations of features (Jensen, 2007; Maddage, 2006). A

common approach is to cluster together frames that are similar, then label contiguous similar

frames as a segment. Often several clustering methods are used in series, including hidden

Markov models (Peeters et al., 2002; Chu and Logan, 2000; Abdallah et al., 2005; Levy and

Sandler, 2008), k-means (Peeters et al., 2002) and simulated annealing (Abdallah et al., 2005).

For chord transcription, timbre and rhythm are not very important, and often a repeated verse

will intentionally differ in terms of timbre and rhythm from the first verse. The chord progres-

sion is usually unchanged between different verses (or choruses etc.).
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Hence, an approach that searches for repeated progressions (Rhodes and Casey, 2007;

Bartsch and Wakefield, 2005; Müller and Kurth, 2007; Goto, 2003; Lu et al., 2004; Paulus

and Klapuri, 2006) is more appropriate for our purposes. Methods using this paradigm rely

on a self-similarity matrix (Foote, 1999), which is a symmetric, square matrix that contains a

measure of the similarity between every pair of frames. Repeated sections appear as parallel

diagonal lines, and can be extracted with some post-processing, such as the application of a low

pass filter to reduce noise (Bartsch and Wakefield, 2005) or erosion and dilation techniques to

eliminate noise (Lu et al., 2004), followed by a thresholding operation to find highly similar

sequences of frames. Recently, Paulus and Klapuri (2009) have shown that the state-based and

sequence-based approaches can be combined, and Peeters and Deruty (2009) have proposed a

multi-dimensional annotation format for musical segments.

Since these approaches are usually aimed at structural segmentation for its own sake, they

do not restrict segments to be of equal length. For instance, if the third chorus in a song is

extended by one bar compared to the previous ones, a general structural segmentation algorithm

should ideally recognise all three as chorus. This kind of variation, however, could not be

handled by our current algorithm, as we will see in Section 6.3. We require repetitions that

approximately match with respect to similarity and exactly match with respect to length in beats.

Only then will the chromagrams of the respective repeats neatly fit onto each other. Using beat-

synchronous chromagrams is essential for two reasons: firstly, our baseline chord transcription

model from Chapter 4 requires beat-synchronous chroma as its input, and secondly, the beat-

tracking can adjust for changing tempos between segments of a song.

This special requirement has led us to develop a new variation of a sequence-based seg-

mentation algorithm which is similar to algorithms proposed by Ong (2006) and Rhodes and

Casey (2007) and detects approximately repeated chroma sequences of equal length in beats.

The next section describes this algorithm.

6.2 Segmentation Method

In a song, we call a chord sequence that describes a section such as the verse or chorus a segment

type. Any segment type may occur one or more times in a song and we call each occurrence a

segment instance. To make use of segment repetition as part of the chord estimation process,

we rely on segment types whose instances are not only harmonically very similar, but also have

the same length in beats.

Our automatic segmentation method has two main steps: finding approximately repeated
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beat-synchronous chroma sequences in a song (Section 6.2.1), and deciding which of these

sequences are indeed segments, using a greedy algorithm (Section 6.2.2). The section ends

with a description of the process of obtaining similar structural segmentation based on hand-

annotated audio-aligned segment names (Section 6.2.3).

6.2.1 Finding Approximately Repeated Chroma Sequences

We calculate the Pearson correlation coefficients between every pair of the wide beat-

synchronous chroma vectors described in Section 3.3. More precisely, given two chroma vec-

tors c and e we calculate the Pearson correlation coefficient

r =
∑

(ci − c̄)(ei − ē)
(12− 1) · scse ∈ [−1, 1], (6.1)

where sc and se are the standard deviations of the elements of the respective chroma vectors.

The matrix of correlation coefficients is a beat-wise self-similarity matrix R = (rij) of the

whole song. This is similar to the matrix of cosine distances used by Ong (2006). In the simi-

larity matrix, parallel diagonal lines indicate repeated sections of a song. In order to eliminate

short term noise or deviations we run a median filter of length 5 (typically just more than one

bar) diagonally over the similarity matrix. This step ensures that locally some deviation is

tolerated.

We perform a search of repetitions over all diagonals in the matrix over a range of lengths.

We assume a minimum length of m1 = 28 beats and a maximum length of mM = 128 beats

for a segment, leading to a very large search space. We minimise the number of elements we

have to compare by considering as section beginnings only those beats that have a correlation

r greater than a threshold tr, and assuming that section durations are quantised to multiples of

four beats. We found that a value of tr = 0.65 worked well.

To assess the similarity of a segment of length l starting at beat i to another one of the

same length starting at j we consider the diagonal elements

Di,j,l = (ri,j , ri+1,j+1, . . . , ri+l,j+l) (6.2)

of the matrix R. If the segments starting at i and j are exactly the same, then Dij will be a

vector of ones (and vice versa), hence we can characterise a perfect match by

min{Di,j,l} = 1. (6.3)
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In practice however, repeated segments are rarely identical. To accommodate variation arising

in a practical situation, we relax the requirement (6.3) by using the empirical p-quantile func-

tion1 instead of the minimum (which is the 0-quantile), and choosing a segment threshold ts

lower than unity. For our purposes, the triple (i, j, l) hence describes an approximate repetition,

if

quantilep{Di,j,l} > ts. (6.4)

The two parameters p = 0.1 and ts = 0.6 are chosen empirically. They express that we allow

10% of the beats in Di,j,l to have values ≤ 0.6. In future work we would like to learn these

values from the ground truth data. For every beat index i and every length l we obtain at least

the trivial beat index j = i that fulfills the requirement (6.4), and possibly others. If two

segments of those found overlap, the one with the higher value of quantilep{Di,j,l} is chosen.

The remaining set of indices j is then added to a list L of repetition sets, if it has more than one

element, i.e. if it actually describes at least one repetition.

Each of the repetition sets in L represents a potential segment type, and its elements rep-

resent the start beats of instances of that segment type. However, there are typically many more

repetition sets than there are segment types. In the following subsection we describe how we

decide which repetition sets become segment types.

6.2.2 A Greedy Structure-finding Algorithm

To find repetition sets relating to actual segment types we use the heuristic of a music editor

who tries to make a concise transcription to make orientation in the score easier, and to save

space (or paper): the space saved transcribing repeated sections only once will be the number of

repetitions (minus 1) multiplied by the length (in beats) of the repeated material. If l is the length

of a segment in a particular repetition set, and it occurs nr times, then the score is l× (nr − 1).

For example, a sequence of length 32 occurring three times would “save” 32 × (3 − 1) = 64

beats, while a sequence of length 48 occurring twice would save only 48× (2− 1) = 48 beats.

This score can be easily calculated for all the repetition sets. The repetition set with the highest

score in L will be selected to represent a segment type. If more than one repetition set yields

the top score, then the one with the highest mean of quantilep{Di,j,l} is chosen. All repetition

sets whose segment instances overlap with the top-scoring repetition set are removed from L.

This procedure is applied to the remaining repetition sets until no repetition sets are left in L.

1http://www.mathworks.com/access/helpdesk/help/toolbox/stats/quantile.html
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At the end of the process there will generally be parts of the song that are not assigned to any

segment type because they have not been detected as a repetitions. Each of these segments will

then be treated as a separate segment type with only one segment instance.

The algorithm described above has performed well as a structural segmentation algorithm

in its own right, with very good results at the 2009 MIREX Structural Segmentation task2.

6.2.3 Manual Structural Segmentation

We use manual structural segmentation annotations (Mauch et al., 2009a) of 192 songs by

The Beatles and Zweieck3. The annotators were instructed to always annotate segment bound-

aries at bar boundaries, but chose the segment boundaries according to their own perception.

The basis for all Beatles annotations were Pollack’s song analyses (Pollack, 1995). A song

usually contains several segment types, some of which have multiple instances. We combined

several segment instances into one segment type if they had the same manually assigned label

and also the same length in beats.

The automatic and manual segmentation techniques presented in this section are the basis

for a modified chord extraction technique, which will be described in the next section.

6.3 Using Repetition Cues in Chord Extraction

We use structural segmentation to combine several instances of a segment type in a song and

then infer a single chord sequence from the combination. As a baseline we use the full-

MBK chord transcription method presented in Chapter 4, which extracts chords from beat-

synchronous treble and bass chromagrams, using a dynamic Bayesian network. In order to

integrate the knowledge of repeating segments, we update the beat-synchronous bass and treble

chromagrams by averaging the respective beats of all segment instances of the same segment

type. For example, assume that we have a segment type with two segment instances which

start at beats s1 and s2, respectively. The two beat-synchronous chroma vectors Csync
s1+t−1 and

C
sync
s2+t−1 describe the tth beat in the respective instances. Both will then be replaced by their

arithmetic mean, i.e.

Cnew
s1+t−1 = Cnew

s2+t−1 =
C

sync
s1+t−1 + C

sync
s2+t−1

2
. (6.5)

2Five algorithms were ranked according to the frame pair clustering F-measure (Levy and Sandler, 2008),
and our algorithm achieved the best score (0.60). http://www.music-ir.org/mirex/2009/results/
MIREX2009ResultsPoster1.pdf

3In order to have a homogeneous test set in this chapter, we decided not to use the Queen songs used in previous
chapters. The reason is that, as described in Section 6.4, we will test manually extracted beat annotations, which
were not available for the Queen songs.
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Both treble and bass chromagrams are processed in this fashion. Trivially, the chroma vectors

in segments for which no repetition is detected remain unchanged.

This is a simple way of sharing chroma information between segment instances of the

same segment type. Non-systematic chroma information such as noise and off-pitch melody

notes which happen in only one of the instances is relatively reduced, while systematic chordal

information which is present in all instances is retained. The updated chromagram can now be

processed as proposed in Chapter 4, by using the Viterbi algorithm in the DBN.

Recall, however, our remark in Section 4.4 that memory consumption for this task was

very high. As an alternative way of processing the signal we therefore propose to process every

segment instance separately. This leads to a major reduction in memory consumption, since

usually the songs’ longest sections are much shorter than half their length, and the memory

complexity of inference in DBN is linear in the sequence length (Murphy, 2002, page 8).

First, in order not to deal with very short segments (less than 12 beats) between two seg-

ment instances, the end-boundary of the first one is moved to coincide with the start-boundary of

the second instance. Any short segment is thus appended to the previous segment. Then infer-

ence is performed in the usual way, but separately on each segment instance, with an additional

neighbourhood of 8 beats on both sides: this neighbourhood is meant to provide additional

context for the segments and to avoid mis-classification of boundary chords. Then, to form a

final contiguous transcription from the individual segment transcriptions we use the transcribed

states from the core part of the individual segment instances (i.e. without the neighbourhood),

and re-assemble them.

In general, transcriptions of beats that share exactly the same chroma (by the process we

have just described) will be more similar than the transcriptions of the same beats would have

been without using repetition cues. Note however that there are temporal dependencies between

beats, which potentially exist over longer stretches of audio, and it may in some cases happen

that these beats are transcribed with different chord transcriptions.

6.4 Experiments and Results

We conducted experiments on a subset of the 2009 MIREX test set for which chord, segmen-

tation and beat annotations were available (Mauch et al., 2009a). This subset consists of 197

songs by The Beatles and Zweieck. For the Queen songs we additionally use to evaluate our

methods in Chapters 4 and 5, beat transcriptions are not yet available. We compare the influence

on combinations of the following three parameters: type of segmentation (automatic, manual



Chapter 6. Using Repetition Cues 121

or none4), type of beat tracking (automatic, manual), and the segment-wise inference described

in Section 6.3 (on or off). This leads to the following ten different configurations, including the

baseline configuration as proposed in Chapter 4:

autobeat-autoseg automatic beats, automatic segmentation, song-wise inference

autobeat-autoseg-segwise automatic beats, automatic segmentation, segment-wise inference

autobeat-manseg automatic beats, manual segmentation, song-wise inference

autobeat-manseg-segwise automatic beats, manual segmentation, segment-wise inference

autobeat-noseg automatic beats, no segmentation (baseline), song-wise inference

manbeat-manseg manual beats, manual segmentation, song-wise inference

manbeat-manseg-segwise manual beats, manual segmentation, segment-wise inference

manbeat-autoseg manual beats, automatic segmentation, song-wise inference

manbeat-autoseg-segwise manual beats, automatic segmentation, segment-wise inference

manbeat-noseg manual beats, no segmentation, song-wise inference

We use manual segmentation annotations because they are expected to be more reliable

than automatic ones, and hence they are expected to work even if the automatic ones do not.

This reasoning applies to the manual beats too: if in a segment instance the automatic beat-

tracker misses a beat or falsely detects one, the segmentation algorithm may fail to recognise it

as a repeated segment because no other similar segment will have the same length. This could

corrupt an otherwise positive outcome, and so we wanted to exclude that possibility by testing

with manually annotated beats too. Though we are ultimately interested in the fully automatic

method, we test the concept of our algorithm by using ideal segmentation and beat detection to

get an upper bound on performance increase.

The rest of this section will explain the effects of the proposed methods on the chord tran-

scriptions in two different ways. Firstly, we use four song examples to provide the reader with a

qualitative idea of the effect of using repetition information in the proposed way (Section 6.4.1).

This will help to explain the increase in quantitative performance and performance differences

between the configurations, reported in Section 6.4.2.

4i.e. without updating the chromagram (Section 6.3)
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6.4.1 Qualitative Evaluation of Four Examples

We have chosen four songs to demonstrate the effect of our method. Since for practical use

the fully automatic autobeat-autoseg method is most relevant, all examples will feature this

configuration: the first three examples will highlight its behaviour compared to the baseline

method (autobeat-noseg), and in the fourth example we compare it to the autobeat-manseg

method.

The four figures 6.1, 6.2, 6.3 and 6.4 are all structured in the same way: the top part

provides an overview of the whole song, displaying the manual segmentation, the automatic

segmentation (on automatically extracted beats), and then two horizontal bars each of which

displays in black the times in the song where the chord transcription is correct for each of the

two configurations, respectively. The bottom part then shows chord transcriptions of an inter-

esting excerpt of that song: the ground truth transcription and the two automatic transcriptions.

Example 1: “It Won’t Be Long” (Lennon/McCartney) performed by The Beatles

The MIREX-style evaluation for this song increased by 8.7 percentage points as a result of

using repetition cues. Let us first compare manual and automatic segmentation in Figure 6.1a.

Evidently, they correspond well, but the automatic segmentation algorithm has summarised

the “verse” and “chorus” parts into the larger “part A”. The first chorus is not preceded by a

verse, and is therefore classified as not repeated by the automatic method (“part n1”). The last

chorus in the manual transcription is shorter, and leads into the “outro”, whereas the automatic

segmentation finds that the outro actually has similar chords to the end of the chorus, so it puts

the section boundary later, which is reasonable. The black bars indicate where the transcriptions

using autobeat-autoseg and the baseline (autobeat-noseg) were correct according to the MIREX-

style RCO score. One can clearly see that some white gaps in the baseline bar have been closed

due to averaging of information between segment instances of “part A”. This improvement is

particularly evident between times 100s and 120s. We will consider this excerpt in more detail.

Figure 6.1b shows three chord transcriptions between times 100s and 120s. The baseline

transcription is much worse than the transcription using repetition cues; in particular, many E

chords were transcribed as B chords. This may be caused by strong bass notes on the pitch B,

which repeatedly appear in the E chords. The autobeat-autoseg transcription however, does not

suffer from this and recognises the excerpt completely correctly, using the information from

other instances of “part A” that previously appeared in the piece. In this song, the desired

improvement in accuracy due to shared information between instances of the same segment
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type has indeed been realised.

Example 2: “A Hard Day’s Night” (Lennon/McCartney) performed by The Beatles

This song is another example in which the proposed method autobeat-autoseg produces better

chord transcriptions than the baseline method (+12.3 percentage points): the black bar corre-

sponding to autobeat-autoseg in Figure 6.2a shows that more chords are recognised if segmenta-

tion information is used. Of course, this can also backfire in some places, and if we consider the

segment transcribed as “part B”, we can observe that its first instance (around 50s) is actually

transcribed better using the baseline method: the transcription of that part has been influenced

by “bad” chromagrams from the second instance of “part B” (around 110s). In Figure 6.2b

we can more clearly observe what happened at 54s: the Emin chord was falsely transcribed as

Cmaj7. Generally, the method worked though and provided an overall better transcription of

the song. In the next example we will see that this is not always the case.

Example 3: “Got To Get You Into My Life” (Lennon/McCartney) performed by

The Beatles

Due to erroneous segmentation, the MIREX-style score for this song decreased by 6.5 percent-

age points. It is very instructive to look at the automatic segmentation. Until around 110s it is

a very good match for the manual transcription. After that, however, something goes wrong:

instead of recognising the refrain, “part B” is recognised as having two instances. These are

not in fact repetitions, and contain different chord sequences. This causes the chord recognition

to do badly, and one can see that a gap is introduced in the bar showing the correct regions of

the chord transcription using segmentation (autobeat-autoseg). The more detailed Figure 6.2b

shows that all chord changes have been dropped in favour of a contiguous chord G, the pre-

dominant chord in the second instance of (the falsely recognised) “part B”. This kind of false

segmentation seems to occur relatively rarely.

Example 4: “Liebesleid” (Kreisler) performed by Zweieck

Finally, we encounter an example in which we compare two transcriptions that use segmenta-

tion, one automatic (autobeat-autoseg) and one manual (autobeat-manseg). Though generally

the use of manual segmentation worked well (as we will see in Section 6.4.2), we want to high-

light one pitfall that occurred in the extraction of the song “Liebesleid”: since the manual seg-

mentations were not strictly meant to be referring to the chord sequence of a song segment, the

person transcribing decided to summarise several segment instances with two different chord

sequences with the label “bridge”. In the transcription, then, all of the chromagrams belonging
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to these were averaged, resulting in incorrect transcriptions of the two segment instances around

55s to 80s, those in fact transcribed as “part B” by the automatic segmentation algorithm. The

detail of Figure 6.4b highlights the remarkable effect, showing completely incorrect chord la-

bels. Conversely, some segment instances that do in fact have a common chord sequence were

transcribed with different labels (“bridge” and “chorus”, towards the end of the song), where

the automatic segmentation procedure correctly recognised the repetition (“part A”).

We can see that while the manual segmentation may make perfect sense in terms of how

humans perceive the song, it can still be detrimental to our method if the judgement is not based

on similarity of chord progressions. The automatic method does judge repetition strictly by

chroma similarity and is hence less susceptible to this kind of error.

For all songs that have repeated parts—almost all—it is not only the improved chord ac-

curacy that makes the transcriptions more helpful to a musician. It also results in more natural

transcriptions because chord progressions that are repeated are transcribed identically, so could

be used to generate compact lead-sheets with each segment type written exactly once.

We have demonstrated how segmentation can help create consistent and hence more read-

ily readable chord transcriptions. In the following paragraphs we will examine their overall

performance.

6.4.2 Quantitative Results

We compare the ten different combinations arising from two different beat annotations (manual

and automatic) and three different segmentation annotations (manual, automatic, and none).

At the end we will present an additional experiment using the fully automatic configuration

autobeat-autoseg with the NNLS chromagrams we introduced in Chapter 5.

As in the previous chapters, we use two different kinds of chord class sets to examine

the accuracy of the automatically extracted chord transcriptions (see Section 2.3.2): the majmin

chord class set, which results in an evaluation equivalent to that used in the 2009 MIREX Chord

Detection task, and the more detailed full chord class set, which distinguishes as many chord

classes as we transcribe in the full-MBK method.

Effect of Using Repetition Cues

Let us first consider the effect of using the proposed method of integrating repetition infor-

mation. As Figure 6.5 illustrates, all methods employing repetition information—manual or

automatic—have higher MIREX-style scores than the baseline methods without segmentation.

The highest score of 75.7% is achieved by the manbeat-autoseg algorithm. In fact, the Tukey-
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configuration normal segwise

manbeat
autoseg 75.7 75.4
manseg 74.6 74.7
noseg 73.4 n/a

autobeat
autoseg 75.2 75.1
manseg 74.4 74.5
noseg 73.0 n/a

(a) MIREX-style RCO

configuration normal segwise

manbeat
autoseg 59.3 59.1
manseg 57.2 57.2
noseg 55.9 n/a

autobeat
autoseg 59.0 58.8
manseg 57.7 57.4
noseg 56.3 n/a

(b) RCO using the full chord class set

Table 6.1: Effects of using repetition cues on transcription accuracy.

72 73 74 75 76

autobeat!noseg

manbeat!noseg

autobeat!manseg

autobeat!manseg!segwise

manbeat!manseg

manbeat!manseg!segwise

autobeat!autoseg!segwise

autobeat!autoseg

manbeat!autoseg!segwise

manbeat!autoseg 75.7
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74.4
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74.6
74.7
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Figure 6.5: MIREX-style relative correct overlap (RCO) of all 10 tested configurations. All
models using repetition cues perform better than the baseline models.
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Figure 6.6: Tukey-Kramer multiple comparison test (at 95% confidence) of the results of all 10
configurations based on the Friedman test and MIREX-style evaluation.

Kramer multiple comparison test shows that all methods using segmentation result in a signif-

icant improvement over the baseline methods (Figure 6.6). There is also a difference between

automatic and manual segmentation, as shown in Table 6.1a shows: whether we consider the

“normal” column or the “segwise” column, the automatic segmentation performs better than

the manual segmentation for both automatic and manual beats. This is also true for the results

using evaluation on the full chord class set listed in Table 6.1b. However, the differences are

not significant at 95% confidence in terms of the Tukey-Kramer multiple comparison test, nei-

ther for MIREX-style evaluation (see Figure 6.6) nor for evaluation on the full chord class set.

However, we had expected manual segmentation to outperform our automatic algorithm, and it

is indeed very encouraging to see that our automatic segmentation algorithm has performed at

least as well as the manual segmentation for our use case.

To explain why manual segmentation does not actually perform better than automatic seg-

mentation we can refer to Example 4 in Section 6.4.1 (also, Figure 6.4): since the manual

segmentation annotations do not strictly assign exactly the segments that are harmonic repeats

to the same segment type, it is likely that, as a result, segments were added erroneously. The

automatic method is tailored to the task of finding harmonic repetitions and is conservative

enough to avoid this kind of misclassification.

An alternative way to look at the improvements is offered by Figure 6.7. For simplicity

we have restricted our scope to two pairwise comparisons, which both show the improvements
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(b) manbeat-manseg against manbeat-
noseg

Figure 6.7: Song-wise improvement in RCO for the methods using segmentation cues over
the respective baseline methods. The lower part of the figures shows the performance differ-
ence per song, and the upper part summarises the same information in a histogram. Using
autobeat-autoseg improves performance on 71% of songs compared to autobeat-noseg (Fig-
ure 6.7a); manbeat-manseg improves RCO scores for 63% of songs compared to the manbeat-
noseg method (Figure 6.7b).

resulting from segmentation information. Here we can see the performance improvement on

a song-wise basis. For example, Figure 6.7a allows us to see immediately why the difference

between using and not using segmentation is significant: the autobeat-autoseg method performs

better than the autobeat-noseg method on the majority of songs (71%). Similarly Figure 6.7b

shows the song-wise improvement of manbeat-manseg over manbeat-noseg, where the method

using repetition cues increases performance in 63% of the songs.

Our main hypothesis—that repetition cues can be used to improve chord transcription—

has been confirmed with statistical significance. Next, we consider the difference between man-

ual and automatic beat extraction to find out whether the more practicable automatic approach

yields significantly lower results.
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Effect of Automatic Beat-tracking against Manual Annotations

Manual beat annotation is very labour-intensive, and hence being able to use automatic beat-

tracking considerably increases the usability of an algorithm. Tables 6.1a and 6.1b (on

page 129) show that the use of manual beats increases performance in some cases, as could

have been expected. In fact, this result is more intuitive than that presented in our previous pub-

lication (Mauch et al., 2009c), in which we found the manual beat detection to result in worse

chord transcriptions, and the results presented here have probably benefited from the use of re-

vised and corrected manual beat transcriptions (Mauch et al., 2009a). However, the differences

are slight and do not prove to be significant (Figure 6.6). For the kind of popular music our test

set contains, automatic beat-tracking is of no significant disadvantage compared to manual beat

annotations.

Effect of Segment-wise Inference

Like automatic beat-tracking, the segment-wise inference has a practical advantage: it reduces

the memory requirements of our algorithms. It is therefore encouraging that no significant

difference can be found between the methods using inference by segment compared to their

“normal” inference counterpart. Even looking at individual songs, the differences are generally

small. Consider, for example, the improvement of autobeat-autoseg over the method autobeat-

autoseg-segwise as seen in Figure 6.8: differences are random and small, with the exception of

one song (“One After 909”, Lennon/McCartney). Here, in the case of segment-wise inference,

the key context was missing, and produced a faulty key estimate on some parts, whereas in the

normal inference the key estimate helped stabilise the chord transcription (see Chapter 4). The

result suggests that segment-wise inference will not usually be detrimental in the chord analysis

of popular songs. This is a very welcome result because memory consumption can be lowered.

6.4.3 An Additional Experiment

The work in this chapter and the work in Chapter 5 are based on the chord extraction method

proposed in Chapter 4. Since we observed improvement in accuracy in both, it is interesting

to see whether combining the two techniques—a different chroma and the use of repetition

information—improves results further. We take the method presented in Section 5.3.4 and per-

form inference as previously done in this chapter using the autobeat-autoseg configuration (with

normal, song-wise inference). The result is the best obtained so far, with 80.7% RCO according

to the MIREX-style majmin evaluation, and 64.5% with the more detailed full chord class eval-
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(b) using NNLS chroma: improvement
of autobeat-autoseg over autobeat-noseg

Figure 6.8: Song-wise improvement in RCO. Figure (a) shows the relatively small effect of
segment-wise inference: improvement of the method autobeat-autoseg over the method autbeat-
autoseg-segwise is small. Figure 6.8b displays the differences between two algorithms using
the NNLS chroma introduced in Chapter 5: here also, using repetition cues (autobeat-autoseg)
increases performance (see discussion in Section 6.4.3). The upper parts of the figures are
histograms summarising the song-wise differences.
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uation. Here too, the method using segmentation is significantly different from the one without

(Section 5.3.4), according to the Friedman test on the song-wise results (p < 0.01, for both

evaluations). The song-wise differences for these two experiments are shown in Figure 6.8b.

6.5 Discussion and Future Work

The method of averaging the low-level content between repeated sections can be seen as a

global-level modelling of the song. While the results are encouraging, the procedure is sequen-

tial, and, unlike the more elegant DBN, in which several musical parameters mutually interact,

no information from the chord/key extraction is fed back to the segmentation. Developing a

“grand” model that achieves this would involve a radical redesign of the baseline model, but

there are a number of possible modifications that are easier to implement. For example, rather

than simply averaging the chromagram chunks that belong to repeated segments, one could use

the one that yields the highest likelihood given the model5. The chunks could also be averaged

in different ways, perhaps by using the median instead of the mean.

The procedure presented here can also be looked at as a modular algorithm, in which the

actual implementation of the components matters little, as long as they work well. We have

already shown that both manual segmentation and our automatic segmentation algorithm work

well in the framework, and it would be surprising if others could not. This is to say, our method

is not tied to our segmentation and chord extraction modules, and we expect that the method

still achieves an improvement if other modules, possibly from third parties, are plugged in.

We have shown that for many songs, our method brings about improvement, and that the

idea is indeed a valid way of achieving better chord transcription. In a fully-automatic envi-

ronment, however, the pitfalls highlighted in the examples may sometimes hinder performance.

Additionally, slight changes between two choruses, for example, may be intended by the song-

writer or artist interpreting the song, and a fully automatic method may not detect them. In a

semi-automatic application of chord transcription, these limitations would be removed: a user

could easily adjust section boundaries, and dissociate a segment instance from a segment type,

if needed. Once section boundaries are adjusted, our method could infer the chord transcription,

and a lead sheet representation with appropriate repeat signs could easily be produced.

Conclusions

We have proposed a novel algorithm to improve an existing chord transcription method by aver-

aging low level features over the song segments whose chroma progressions are approximately

5We would like to thank Prof. Sagayama for this suggestion.
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the same. To be able to apply this method in a fully automatic chord transcription procedure,

we also developed a structural segmentation algorithm tailored to the task.

Using manually annotated segments, we have shown that the method does indeed signifi-

cantly improve chord extraction accuracy for the evaluation used in the MIREX tasks as well as

for a more detailed chord evaluation method. The improvement is statistically significant, with

a typical improvement of around 1.5 percentage points. The improvement is also observed,

and significant, when using the automatic segmentation algorithm, which shows that the prin-

ciple can be applied to real systems. Here the improvement on the collection level is usually

higher than 2 percentage points. The automatic segmentation algorithm ranked first in the 2009

MIREX Structural Segmentation task as a general structural segmentation method.

We have illustrated the benefits of the method and differences between manual and au-

tomatic segmentation. The examples show how non-repeating incorrect chord fragments are

removed by the averaging process, and why on some songs, chord transcription deteriorated.

We have described a property which further increases the quality of the chord transcrip-

tions and will be necessary for the production of concise lead sheets: the chords in repeated

segments will be transcribed identically or nearly identically, since they are provided with the

same low-level input data. In a lead sheet, for example, a repeated chorus would then be written

only once with repeats indicated.

We have shown that the use of automatic beat-tracking does not lead to significantly worse

chord transcription results. We have also shown that inferring the chords on separate structural

segments, not on the whole song, does not significantly affect recognition rates. This is a

welcome result because the memory usage of our algorithms is proportional to the length of the

observed feature sequence. As a consequence, memory usage can be reduced.

Finally, combining the new technique with the proposed DBN from Chapter 4 and the

proposed NNLS chroma from Chapter 5 yields a score of 81% on the 2009 MIREX dataset,

which is significantly higher than any other known algorithm, including the ones in this thesis.
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In this thesis we have discussed several novel methods for automatic chord transcription from

audio that span a wide range of abstraction levels. All methods were developed with express

emphasis on their musical relevance.

In order to provide low-level features that reflect the notes played—rather than a spectral

transform including harmonically irrelevant partials and noise—we have proposed an approx-

imate transcription method using non-linear least squares. In order to integrate high-level fea-

tures such as metric position, key, chord, and bass note, we have presented a dynamic Bayesian

network that treats all of these as hidden variables, and models two low level features as ob-

served variables: bass and treble chromagrams. Time series models such as DBNs model only

local dependencies. In order to overcome this limitation, we have introduced an algorithm that

uses repetition cues to feed information of the global song structure into the chord estimation

process. We have shown that every proposed method increases the accuracy of chord transcrip-

tion with statistical significance, and our best methods outperform the state of the art by a large

margin.

In the rest of this chapter we will summarise the main achievements (Section 7.1) and then

conclude this thesis by exploring a range of possible directions for future work (Section 7.2).

7.1 Summary

The overriding principle of our algorithms is to integrate as much musical context as possible

into the transcription process. Especially Chapter 4 and Chapter 6 show that musical qualities

beyond low-level harmonic features can contribute to a better chord transcription.

In Chapter 4 we have presented a novel musically-informed dynamic Bayesian network

for the automatic extraction of chord transcriptions from musical audio. This model is the basis

for all other methods we have proposed in this thesis. The model is a manually-tuned expert

model. Although this aspect of the model resembles a rule-based approach, one important
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aspect of the model is different from rule-based approaches: our method simultaneously infers

metric position, key, chord, and bass pitch class, thus reflecting the inter-dependencies of these

musical qualities.

Ours is the first model to combine these musical qualities into a single model. As a conse-

quence of the higher amount of detail, we can obtain information beyond chord transcription:

the method detects bar boundaries and is able to compensate for deleted or inserted beats; the

method detects keys and key changes; sophisticated bass pitch class modeling uses the special

position of the bass at the first beat of the chord and allows the method to detect the nominal

bass note of a chord (for maj chords). The time signature and key signature changes are es-

sential features for the creation of lead sheets, and we have shown several examples of lead

sheets created from our fully automatic transcription. With 121 chords, the model provides a

higher level of chord detail than has been realised in previous approaches. This provides higher

accuracy, without decreasing the performance of the method.

The proposed full-MBK method achieves a state-of-the-art correct overlap score of 73%,

and outperforms all systems tested in the 2009 MIREX task for pretrained chord detection.

In the train-test evaluation task the algorithm proposed by Weller et al. (2009) scores better

than our full-MBK model in terms of relative correct overlap, but does not do so significantly.

We compared 10 different variants of our algorithm and show that bass and key modelling

cumulatively improve the method’s performance in terms of correct overlap with statistical

significance. The greatest enhancement is achieved by bass modelling.

As a complement to the correct overlap evaluation method, we have used a metric for chord

segmentation quality to show how well the locations and granularity of chord changes resemble

those of the ground truth. Our results show a significant improvement in segmentation quality

due to bass modelling, and—in some circumstances—also for metric position modelling. Our

best model achieves a segmentation measure of 0.782.

The key model does not only aid the correct identification of chords, but also performs

well in its own right by correctly identifying 80% of the songs’ main keys. The relative overlap

of correctly recognised keys is 77%.

In Chapter 5 we address a remaining problem in the front end of the DBN: the confusion of

chords due to the influence of upper partials on the chromagram. We propose two substantially

different approaches, namely: statistical training of the chroma nodes in the model, and an

enhanced chroma extraction technique based on a prior transcription step using a non-negative

least squares (NNLS) algorithm.
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The best results were achieved by one of the methods using the enhanced NNLS chroma

extraction technique, reaching 79% MIREX-style accuracy (80% with an additional minor mod-

ification of the DBN). This is a significant improvement over the state of the art (MIREX 2009

Chord Detection Task). We have also shown that statistical learning of chroma can boost the

recognition rate of individual chord types. In our implementation, this came at the cost of lower

overall accuracy because many frequent chords were misclassified. The detailed comparison

of confusion matrices between the two approaches shows that while the trained variants can be

better for the annotation of some particular chords, they tend to generate errors in less musically

acceptable ways than the NNLS models do. These inherit the musical “conservativeness” from

the baseline method, and often provide acceptable (simpler) approximations to the true chord.

Chapter 6 has two distinct contributions. We introduce a method that uses the global song-

level repetition structure to share information between repeated segments. We also provide an

algorithm that automatically extracts the repetition structure from a beat-synchronous chroma

representation. The segmentation algorithm ranked first in the 2009 MIREX Structural Segmen-

tation task as a general structural segmentation method, and an earlier version of the proposed

chord extraction algorithm ranked first in the 2009 MIREX Chord Detection (pretrained) task.

Using manually annotated segment and beat annotations, we proved that the use of repe-

tition cues significantly improves recognition accuracy. The fully automatic method, using au-

tomatic beat-tracking and the novel automatic segmentation method, also yielded significantly

better results than the baseline method, and often also better than the methods using manual

segmentation. The best result was achieved by the method using manual beat annotations and

automatic segmentation. According to the MIREX-style evaluation metric the fully automatic

method performs significantly better than the best method entering the 2009 MIREX Chord

Detection tasks.

We also report the welcome result that two other parameters do not result in significant

differences: the use of automatic beat-tracking, and the use of segment-wise inference (instead

of inference over the whole song). Both have practical implications: the use of automatic beat-

tracking greatly increases the ease of use of the methods; the use of segment-wise inference can

reduce the memory requirements of the algorithm.

Finally, combining the new technique with the proposed DBN from Chapter 4 and the

proposed NNLS chroma from Chapter 5 yields a score of 81% on the 2009 MIREX dataset,

which is significantly higher than any other known algorithm, including the ones presented in

this thesis. The ranking in Table 7.1 allows a quick comparison of a selection of methods in
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method RCO in %

full-plain (Chapter 4) 65.5
full-MBK (Chapter 4) 73.0
Weller et al. (MIREX 2009) 74.2
autobeat-autoseg (Chapter 6) 75.2
STD-0.6 (Chapter 5) 78.8
autobeat-autoseg with STD-0.6 (Section 6.4.3) 80.7

Table 7.1: Ranked MIREX-style relative correct overlap of selected fully automatic methods.

terms of the MIREX-style RCO score. We have included the best-performing methods from

Chapters 4, 5 and 6, as well as results of the basic full-plain model (Chapter 4) and the highest

score in the 2009 MIREX Chord Detection tasks (Weller et al., 2009).

7.2 Directions for Future Work
In the process of working on the research for this thesis, and the writing of the thesis itself, many

exciting new research ideas have arisen but had to be left aside in favour of implementing and

testing the methods presented. Here, we would like to mention a selection of ideas for future

work in the context of chord transcription. Since we will not be able to follow all directions

mentioned here ourselves, we hope that other researchers can draw some inspiration, or even

insights, from the following paragraphs.

Implementation of the Proposed Methods as a Vamp Plugin

Most immediately, we will concentrate our efforts on making the proposed methods available to

the public. One possibility of doing so is an implementation in C++ as a Vamp plugin1, which

would make our methods available to all users of Vamp hosts such as the open source multi-

platform software Sonic Visualiser2. This aim seems attainable, since for inference in DBNs

there is already an open source C++ package3. The usage of the C++ programming language is

also expected to alleviate the problem of high memory usage because parameters can be passed

by reference, in contrast to pass by value (i.e. copying) in MATLAB.

Refinement of our DBN

Perhaps the most serious shortcoming of our DBN is its inability to deal with time signatures

other than 4
4 . As we have already indicated, preliminary experiments have shown that other

time signatures such as 3
4 can be implemented and even time signature changes can be tracked.

1http://vamp-plugins.org/
2http://www.sonicvisualiser.org/
3Mocapy++ http://sourceforge.net/projects/mocapy/
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An algorithm with this ability would be substantially more general. Additionally, we would

like to test whether the minor change in the metric position model we discussed in Chapter 4

will provide the expected significant improvement of metric modelling over the plain model

(page 77). We would also like to revisit the bass model, and find a solution which uses only 12

bass chroma bins, without the additional flatness measure in the 13th bin. Informal experiments

indicate that this is possible.

Separation of Music Model and Sound Model

Based on the results of Chapter 5 we have already discussed the idea that chords should be

modelled not as a single profile, but as a dual model, in which one part is concerned with the

musical note events (or pitch class events) conditional on a chord label, and the other one with

the physical properties of a feature conditional on the note events. This is a step towards a

more realistic model whose implementation is easily conceivable within the DBN paradigm.

For example, twelve binary pitch class nodes could depend on the chord node (and, ideally, also

the key node). Each binary pitch class node would in turn generate a chroma salience value,

modelled as a Gaussian. The essential characteristic of this kind of model is the intermediate

pitch class layer4, which is removed from the physical realisation of the pitch classes. A pos-

sible topology of one slice of such a model is displayed in Figure 7.1. This resembles a chord

labelling approach from symbolic data with an audio transcription front-end, but here, the tran-

scription would be a “soft” transcription, such as our approximate NNLS transcription. Using

other third party methods may have similar or even better effect on our chord transcriptions, as

we will discuss below.

Replace Modules in Our Methods with Other Components

Our implementations of algorithms described in this thesis show only a few ways of realising

the underlying concepts. We believe that at least some of the techniques are more generally

useful. In the discussion sections of Chapters 5 and 6 we have already stated that it would be

interesting to replace parts of our algorithms with third party methods: using other transcrip-

tion approaches such as the visualisation function proposed by Klapuri (2009) as a front end

instead of our NNLS approximate trancription, and using other sequence-based segmentation

algorithms (Chapter 6) such as the one proposed by Rhodes and Casey (2007).

4similar to the subchords from one of our previous papers (Mauch and Dixon, 2008)
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Figure 7.1: Separation of music model and sound model. In this hypothetical model the 12
binary pitch class nodes depend on the current chord, and the treble chroma is split into 12
one-dimensional chroma nodes, each modelled by a one-dimensional Gaussian. Independence
of the chroma bins is assumed, i.e. the chroma needs to stem from a transcription approach,
like, for example, our NNLS chroma.
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Reducing Redundancies in Models

Nearly all chord extraction algorithms assume, quite rightly, that chord types do not change

with the root note (except for transposition). The same is true for the keys’ relationships to

chords. In existing probabilistic models, including ours, every chord type is modelled twelve

times, instead of once. That means that a large part of these models is redundant. It seems that

there should be a way to reduce these redundancies in order to make more parsimonious models

of music. These could not only be far more elegant, but also more memory-efficient.

Tatum-Synchronous Features

The use of beat-synchronous chroma is essential to our musical context models. It allows us

to describe bars and bass note behaviour, and to extract repetitions of meaningful lengths. One

drawback of the beat-synchronous paradigm is that chords or other musical events that are not

quantised to the beat will be detected with a systematic error. One of many examples of this

occurs in the song “You Won’t See Me” (Lennon/McCartney) as shown in Figure 7.2: the chord

A starts on the anticipated third beat of the bar. A purely beat-based algorithm is by definition

not able to transcribe the chord change time correctly. There are many possible approaches to

solve this problem. If we assume that the two chords before and after the change are detected

correctly, a post-processing step on tatum level (the fastest regular pulse train, usually quavers)

could adjust the chord change. It may be more principled to infer the correct harmonic rhythm

from the tatum-synchronous features, for example by means of a pre-processing step that groups

tatum-synchronous features into beat-synchronous features. We expect that this change could

benefit chord transcription performance for heavily-syncopated styles like modern rock music

and jazz.

Integrating Segmentation

We have already indicated in the discussion of Chapter 6 that a “grand model” including both

the high-level model of metric-position, key, chord and bass, and a repetition model could be

a worthwhile project. In contrast to the algorithm we have proposed, information could flow

back and forth between the chord extraction and repetition extraction, in a manner similar to

the information flow between key and chords exploited in our DBN. Since, however, the model

without the repetition part already requires large amounts of memory, it is not clear whether the

implementation of an additional layer in the existing DBN would be computationally feasible.

It is also not clear whether a DBN could express the semantics needed for repetition at all. An

alternative technique may be to employ probabilistic context-free grammars.
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Figure 7.2: Excerpt from “You Won’t See Me” (Lennon/McCartney), taken from The Beatles –
Complete Scores, Hal Leonard Publishing Corporation, 1993. The chord change from D to A is
syncopated (anticipated), and happens between the second and third beat of the bar.

Statistical Learning

The parameters for the segmentation method proposed in Section 6 are manually set. Since

we have at our disposal manual segmentation data, we could learn these parameters from the

data. We expect this to be relatively straight-forward because it mainly involves finding a good

threshold for what is a “similar” beat in terms of chroma correlation, and what is not. Statistical

learning in the chord estimation methods is far more complex. We have not used much statistical

learning in the chord transcription methods because of the relative scarcity of training data.

Another problem is that the current methods do not always model actual concepts; the chord

profile, for example, has no counterpart in the real world. We hypothesise that this is why none

of the previous statistical learning approaches, including ours presented in Chapter 5, have

reached the levels of accuracy we have presented using the NNLS chroma in Chapter 5 and 6.

However, we believe that more realistic models like the pitch class model described above (see

Figure 7.1) could be trained more effectively.

Other Music Domains and Style-Dependent Inference and Testing

While our focus has been on chord transcription of popular music, we have already mentioned

in Section 2.1.3 that in Baroque music the figured bass notation has played a role similar to

that of lead sheet chords in pop and jazz music. The paradigm is the same: a label represents

a bass note and the chord note degrees relative to this note. Although some of the properties

of the model will change, for example the chord names and qualities, and the metric position

modelling may have to be relaxed, the overall structure of our DBN model is well suited to this

task and could be adapted to figured bass transcription.

In jazz music, improvements due to repetition cues are likely to be significant: while the
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extraction of chords in jazz is expected to be more difficult than in rock music, as a result of

improvisation and more complex chord types, the repetition of segment types, “choruses”, is

often more rigid.

We expect that there is not one best chord transcription algorithm for all music, even within

one genre. Testing existing algorithms against editorial metadata such as genre or artist could

reveal in more detail the strengths of different existing methods. For example, it is not hard to

imagine high correlation between good performance of one of our algorithms with happy love

songs, whereas bluesy, sad love songs—due to their use of blue notes—may perform much

worse.

Hence, customising chord transcription methods to cater for different musical styles or

genres seems a natural step. The survey of transcription practice conducted by Hainsworth

(2003) also supports this idea (see Figure 2.3b on page 27). For a given piece of music, an

algorithm or model can then be selected according to the retrieved metadata. In contrast to

chord transcriptions, metadata like the name of the performer and genre of pieces of music are

easily obtainable. They are often encoded in the ID3 tags of MP3 files, or otherwise they can

be retrieved from databases like MusicBrainz5 and Last.fm6.

Perhaps, style could also be detected dynamically, in a similar way to the key model in

our DBN. Here, the main issue is finding the right model parameters for a certain style (or

mood etc.) of music. We expect that, with better chord models, this could be achieved through

unsupervised learning.

Semi-Automatic Chord Transcription

We have seen in Chapter 6 that using repetition cues helped produce better chord transcriptions

in many cases, but not always. This is likely to be true for many techniques that result in

improved collection-level results. We expect that human beings, even those who themselves

may not be expert enough to perform a complete chord transcription, would be able to discover

mistakes in an automatic transcription. A computer program that enables such a user to make

explicit the errors he has spotted could then use this information for a re-estimation of the

transcription. By using probabilistic models like our DBN, rich ways of manipulating the output

can be introduced, as in the following scenario. First, the user could correct possible beat-

tracking errors. The next step could be to correct segmentation errors. Even if the user does

not know what chord was played, he could suggest that he perceives a chord change at a certain

5http://musicbrainz.org/
6http://www.last.fm/
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beat, and the computer program would re-estimate the sequence given the manually annotated

chord change. Many other ways of intervention are possible, and could help even a novice user

obtain a good chord transcription for songs on which a fully automatic algorithm fails.

Applications in music transcription, computational musicology, and content-based music

information retrieval provide strong motivation to develop ever better music computing systems.

All are likely to benefit from computational methods that can imitate aspects of human listening

to obtain a multi-faceted, more complete representation of music.



Appendix



Chord Class Mapping A
Table A.1 and Figure A.1 display what proportion of the MIREX 2009 collection the chord

classes occupy. Table A.2 contains a list with all chord mappings used.

chord type
relative

duration (%)

maj 59.5
min 17.3
7 8.0
N 4.3
min7 3.3
maj/5 2.2
maj/3 1.9
dim 1.0
maj6 0.9
maj7 0.8
aug 0.6
unknown 0.3

(a) full

chord type
relative

duration (%)

maj 73.8
min 21.6
N 4.3
unknown 0.3

(b) majmin

Table A.1: The relative durations of chord class types in the two chord class sets used for
evaluation, expressed as percentages.

unknown

0%

N

4%

min

22%

maj

74%

(a) majmin

unknown

0%

others

11% N

4%

7

8%

min

17%maj

59%

(b) full

Figure A.1: Pie charts visualising the information given in Table A.1: the relative duration of
chord classes in the collection. It is evident that the dominance of the maj chords is reduced in
favour of more detailed chords.
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original chord majmin full

maj maj
min min min
7 maj 7
min7 min min7
N N N
/5 maj maj/5
maj maj maj
/3 maj maj/3
maj7 maj maj7
sus4 maj maj
min/5 min min
maj6 maj maj6
9 maj 7
min/b3 min min
/2 maj maj
aug maj aug
/7 maj maj
dim min dim
(1) unknown unknown
min/b7 min min7
/b7 maj maj
6 unknown unknown
min6 min min
dim7 min dim
7(#9) maj 7
/4 maj maj
(1,5) maj maj
/6 maj maj
7/3 maj maj/3
min/6 min min
maj7/3 maj maj/3
min7/b7 min min7
min/4 min min
maj9 maj maj7
hdim7 min dim
min9 min min7
sus4(b7) maj maj
maj(9) maj maj
maj/9 maj maj
7/b7 maj 7
min/2 min min
maj6/5 maj maj/5
7/5 maj maj/5
minmaj7/b3 min min
min(*b3) min min
maj(9)/9 maj maj
sus4/5 maj maj/5
sus2 maj maj
min7/4 min min7
min(9) min min
sus4(2) maj maj
min(6) min min
dim/b3 min dim
/9 maj maj
(1,4) maj maj
min/7 min min
maj6/2 maj maj

original chord majmin full

hdim7/b7 min dim
min7/b3 min min7
maj(2) maj maj
min6/5 min min
9(*3) maj 7
min7(4)/b7 min min7
maj(4) maj maj
6/2 unknown unknown
maj(*3) maj maj
minmaj7 min min
min7(9) min min7
maj7(9) maj maj7
maj(9)/3 maj maj/3
maj(#4)/5 maj maj/5
7/2 maj 7
min7(4) min min
maj7/5 maj maj/5
maj(2)/2 maj maj
maj(*1)/#1 maj maj
9(11) maj 7
minmaj7/5 min min
min7(2,*b3,4) min min7
min6/6 min min
maj6/3 maj maj/3
maj(b9) maj maj
maj(*5) maj maj
dim7/b3 min dim
dim/b5 min dim
7(b9) maj 7
7(13) maj 7
/b3 maj maj
sus4(9) maj maj
sus4(2)/2 maj maj
sus2(b7) min min
min7(*5,b6) min min7
min(2) min min
min(*5) min min
maj/2 maj maj
maj(*1)/5 maj maj/5
maj(#11) maj maj
dim7/b9 min dim
dim7/5 min dim
7sus unknown unknown
/#4 maj maj
(6) unknown unknown
min7/5 min min7
min7(4)/5 min min7
min7(*b3) min min7
min6/b3 min min
min/3 min min
min(b6)/5 min min
min(9)/b3 min min
maj6/b7 maj maj6
maj/5 maj maj/5
maj/3 maj maj/3
maj(9)/6 maj maj
maj(9)/5 maj maj/5

original chord majmin full

hdim7/b3 min dim
dim7/2 min dim
aug/3 maj aug
aug/#5 maj aug
9/5 maj maj/5
7/b3 maj 7
7/b2 maj maj
7/#5 maj 7
4 unknown unknown
/b6 maj maj
(1,5,9) min min
(1,4,b7) maj 7
(*5) unknown unknown
sus4/4 maj maj
sus maj maj
min7/7 min min7
min7(*5)/b7 min min7
min(4) min min
min(*b3)/5 min min
min(*5)/b7 min min
min(*3)/5 min min
maj9(*7) maj maj7
maj7/7 maj maj7
maj7/2 maj maj7
maj7(*b5) maj maj7
maj7(*5) maj maj7
maj6(9) maj maj6
maj(13) maj maj
maj(11) maj maj
dim7/7 min dim
dim/b7 min dim
dim/5 min dim
aug(9,11) maj aug
9(*3,11) maj 7
7(*5,13) maj 7
(b6) unknown unknown
(b3,5) min min
(7) unknown unknown
(5) unknown unknown
(4,b7,9) unknown unknown
(3) unknown unknown
(1,b7)/b7 unknown unknown
(1,b7) unknown unknown
(1,b3,4)/b3 unknown unknown
(1,b3)/b3 unknown unknown
(1,b3) unknown unknown
(1,4,b5) unknown unknown
(1,2,5,b6) unknown unknown
(1,2,4) unknown unknown

Table A.2: All chord types in the song collections and their chord class mappings for the majmin
and full chord class sets.



Song Collection B
All ground truth song collections used in this thesis are subsets of the collection published in the

OMRAS2 Metadata Project 2009 (Mauch et al., 2009a). For all songs we have audio-aligned

reference chord and key annotations as well as annotations of musical structural segmentation.

Of the 225 reference chord transcriptions, 210 were used in the MIREX Chord Detection tasks,

and for ease of comparison we use the same 210 songs (174 by The Beatles, 18 by Queen and

18 by Zweieck). A full list, is given on the following pages. For the evaluation in Chapter 6,

we additionally need manual beat labels. At this moment, we do not have at our disposal the

beat annotations for the Queen songs in the collection mentioned above, and hence the number

of songs reduces to 192 for those experiments.

OMRAS2 Metadata:

225 Songs

(Beatles, Queen,

Zweieck, Carole King)


⊃


Chapters 4 and 5:

210 Songs

(Beatles, Queen,

Zweieck)

 ⊃


Chapter 6:

192 Songs

(Beatles,

Zweieck)
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B.1 Queen

A Kind Of Magic

Bicycle Race

Bohemian Rhapsody

Crazy Little Thing Called Love

Don’t Stop Me Now

Fat Bottomed Girls

Friends Will Be Friends

Good Old-Fashioned Lover Boy

Hammer To Fall

I Want To Break Free

Play The Game

Save Me

Seven Seas Of Rhye

Somebody To Love

We Are The Champions

We Will Rock You

Who Wants To Live Forever

You’re My Best Friend

B.2 The Beatles

Across the Universe

Act Naturally

A Day In The Life

A Hard Day’s Night

All I’ve Got To Do

All My Loving

All You Need Is Love

And I Love Her

And Your Bird Can Sing

Anna (Go To Him)

Another Girl

Any Time At All

Ask Me Why

A Taste Of Honey

Baby It’s You

Baby’s In Black

Baby You’re A Rich Man

Back in the USSR

Because

Being For The Benefit Of Mr. Kite!

Birthday

Black Bird

Blue Jay Way

Boys

Can’t Buy Me Love

Carry That Weight

Chains

Come Together

Cry Baby Cry

Dear Prudence

Devil In Her Heart

Dig a Pony

Dig It

Dizzy Miss Lizzy

Doctor Robert

Don’t Bother Me

Do You Want To Know A Secret

Drive My Car

Eight Days a Week

Eleanor Rigby

Everybody’s Got Something To Hide Except

Me and My Monkey

Everybody’s Trying to Be My Baby

Every Little Thing
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Fixing A Hole

Flying

For No One

For You Blue

Get Back

Getting Better

Girl

Glass Onion

Golden Slumbers

Good Day Sunshine

Good Morning Good Morning

Good Night

Got To Get You Into My Life

Happiness is a Warm Gun

Hello Goodbye

Help!

Helter Skelter

Here Comes The Sun

Here, There And Everywhere

Her Majesty

Hold Me Tight

Honey Don’t

Honey Pie

I Am The Walrus

I Don’t Want to Spoil the Party

If I Fell

If I Needed Someone

I’ll Be Back

I’ll Cry Instead

I’ll Follow the Sun

I’m a Loser

I Me Mine

I’m Happy Just To Dance With You

I’m Looking Through You

I’m Only Sleeping

I’m So Tired

I Need You

In My Life

I Saw Her Standing There

I Should Have Known Better

It’s Only Love

It Won’t Be Long

I’ve Got A Feeling

I’ve Just Seen a Face

I Wanna Be Your Man

I Want To Tell You

I Want You

I Will

Julia

Kansas City- Hey, Hey, Hey, Hey

Let It Be

Little Child

Long Long Long

Love Me Do

Lucy In The Sky With Diamonds

Maggie Mae

Magical Mystery Tour

Martha My Dear

Maxwell’s Silver Hammer

Mean Mr Mustard

Michelle

Misery

Money

Mother Nature’s Son

Mr. Moonlight

No Reply
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Norwegian Wood (This Bird Has Flown)

Not A Second Time

Nowhere Man

Ob-La-Di, Ob-La-Da

Octopus’s Garden

Oh! Darling

One After 909

Penny Lane

Piggies

Please Mister Postman

Please Please Me

Polythene Pam

P. S. I Love You

Revolution 1

Rock and Roll Music

Rocky Raccoon

Roll Over Beethoven

Run For Your Life

Savoy Truffle

Sexy Sadie

Sgt. Pepper’s Lonely Hearts Club Band

Sgt. Pepper’s Lonely Hearts Club Band

(Reprise)

She Came In Through The Bathroom Window

She Said She Said

She’s Leaving Home

Something

Strawberry Fields Forever

Sun King

Taxman

Tell Me What You See

Tell Me Why

The End

The Fool On The Hill

The Long and Winding Road

The Night Before

There’s A Place

The Word

Things We Said Today

Think For Yourself

Ticket To Ride

Till There Was You

Tomorrow Never Knows

Twist And Shout

Two of Us

Wait

What Goes On

What You’re Doing

When I Get Home

When I’m Sixty-Four

While My Guitar Gently Weeps

Why Don’t We Do It In The Road

With A Little Help From My Friends

Within You Without You

Words of Love

Yellow Submarine

Yer Blues

Yesterday

You Can’t Do That

You Like Me Too Much

You Never Give Me Your Money

You Really Got A Hold On Me

You’re Going To Lose That Girl

Your Mother Should Know

You’ve Got To Hide Your Love Away

You Won’t See Me
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B.3 Zweieck
Akne

Andersrum

Blass

Duell

Erbauliche Gedanken Eines Tobackrauchers

Es Wird Alles Wieder Gut, Herr Professor

Ich Kann Heute Nicht

Jakob Und Marie

Liebesleid

Mr Morgan

Paparazzi

Rawhide

Santa Donna Lucia Mobile

She

Spiel Mir Eine Alte Melodie

Tigerfest

Zuhause

Zu Leise Für Mich



Index

2-TBN, 65

2-slice temporal Bayesian networks, 65

ANOVA, 52

background spectrum, 40

Bayesian networks, 65

BN, 65

chord, 23

chord syntax, 25

chord transcription, 17

chroma vector, 34

common practice period, 26

conditional probability distributions, 65

constant-Q transform, 38

CPD, 65

DBN, 64

DFT, 34

discrete Fourier transform, 34

Dynamic Bayesian networks, 64

embellishing tones, 24

even meter, 67

fast Fourier transform, 39

FFT, 39

figured bass, 26

Gaussian mixture model, 95

GMM, 95

hidden Markov model, 32, 43

HMM, 32, 43

lead sheet, 27

log-frequency spectrum, 97

MCE, 37

metric position, 67

MIDI, 32

MIR, 15

MIREX, 45

MIREX-style evaluation, 78

music information retrieval, 15

NNLS, 100

NNLS chroma, 97

nominal bass note, 25

non-harmony notes, 24

note, 22

octave, 22

PCP, 34

pitch, 22

pitch class, 23

pitch class activation, 96

pitch class profile, 34

pitch height, 23

RCO, 49

relative correct overlap, 49

salience, 55

schema, 33

segment instance, 115

segment type, 115

short-time Fourier transform, 34

154
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simultaneity, 23

STFT, 34

SVM, 37

tatum, 141

TC, 37

thorough bass, 26

time signature, 67

tonal centroid, 37

Vamp plugin, 138

Viterbi algorithm, 44

WAV, 55
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