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Abstract

Automatic music transcription is the process of converting an audio recording

into a symbolic representation using musical notation. It has numerous ap-

plications in music information retrieval, computational musicology, and the

creation of interactive systems. Even for expert musicians, transcribing poly-

phonic pieces of music is not a trivial task, and while the problem of automatic

pitch estimation for monophonic signals is considered to be solved, the creation

of an automated system able to transcribe polyphonic music without setting

restrictions on the degree of polyphony and the instrument type still remains

open.

In this thesis, research on automatic transcription is performed by explicitly

incorporating information on the temporal evolution of sounds. First efforts ad-

dress the problem by focusing on signal processing techniques and by proposing

audio features utilising temporal characteristics. Techniques for note onset and

offset detection are also utilised for improving transcription performance. Sub-

sequent approaches propose transcription models based on shift-invariant prob-

abilistic latent component analysis (SI-PLCA), modeling the temporal evolution

of notes in a multiple-instrument case and supporting frequency modulations in

produced notes. Datasets and annotations for transcription research have also

been created during this work. Proposed systems have been privately as well as

publicly evaluated within the Music Information Retrieval Evaluation eXchange

(MIREX) framework. Proposed systems have been shown to outperform several

state-of-the-art transcription approaches.

Developed techniques have also been employed for other tasks related to mu-

sic technology, such as for key modulation detection, temperament estimation,

and automatic piano tutoring. Finally, proposed music transcription models

have also been utilized in a wider context, namely for modeling acoustic scenes.
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Chapter 1

Introduction

The topic of this thesis is automatic transcription of polyphonic music exploiting

temporal evolution. This chapter explains the motivations and aim (Section 1.1)

of this work. Also, the structure of the thesis is provided (Section 1.2) along

with the main contributions of this work (Section 1.3). Finally, publications

associated with the thesis are listed in Section 1.4.

1.1 Motivation and aim

Automatic music transcription (AMT) is the process of converting an audio

recording into a symbolic representation using some form of musical notation.

Even for expert musicians, transcribing polyphonic pieces of music is not a trivial

task [KD06], and while the problem of automatically transcribing monophonic

signals is considered to be a solved problem, the creation of an automated system

able to transcribe polyphonic music without setting restrictions on the degree

of polyphony and the instrument type still remains open. The most immediate

application of automatic music transcription is for allowing musicians to store

and reproduce a recorded performance [Kla04b]. In the past years, the problem

of automatic music transcription has gained considerable research interest due

to the numerous applications associated with the area, such as automatic search

and annotation of musical information, interactive music systems (e.g. computer

participation in live human performances, score following, and rhythm tracking),

as well as musicological analysis [Bel03, Got04, KD06].

The AMT problem can be divided into several subtasks, which include: pitch
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estimation, onset/offset detection, loudness estimation, instrument recognition,

and extraction of rhythmic information. The core problem in automatic tran-

scription is the estimation of concurrent pitches in a time frame, also called

multiple-F0 or multi-pitch estimation. As mentioned in [Cem04], automatic mu-

sic transcription in the research literature is defined as the process of converting

an audio recording into piano-roll notation, while the process of converting a

piano-roll into a human readable score is viewed as a separate problem. The 1st

process involves tasks such as pitch estimation, note tracking, and instrument

identification, while the 2nd process involves tasks such as rhythmic parsing,

key induction, and note grouping.

For an overview of transcription approaches, the reader is referred to [KD06],

while in [dC06] a review of multiple fundamental frequency estimation systems

is given. A more recent overview of multi-pitch estimation and transcription

is given in [MEKR11], while [BDG+12] presents future directions in AMT re-

search. A basic example of automatic music transcription is given in Fig. 1.1.

We identify two main motivations for research in automatic music transcrip-

tion. Firstly, multi-pitch estimation methods (and thus, automatic transcription

systems) can benefit from exploiting information on the temporal evolution of

sounds, rather than analyzing each time frame or segment independently. Sec-

ondly, many applications in the broad field of music technology can benefit from

automatic music transcription systems, although there are limited examples of

such uses. Examples of transcription applications include the use of automatic

transcription for improving music genre classification [LRPI07] and a karaoke

application using melody transcription [RVPK08].

The aim of this work is to propose and develop methods for automatic music

transcription which explicitly incorporate information on the temporal evolution

of sounds, in an effort to improve transcription performance. The main focus

of the thesis will be on transcribing Western classical and jazz music, excluding

unpitched percussion and vocals. To that end, we utilize and propose techniques

from music signal processing and analysis, aiming to develop a system which

is able to transcribe music with a high level of polyphony and is not limited

to pitched percussive instruments such as piano, but can accurately transcribe

music produced by bowed string and wind instruments. Finally, we aim to

exploit proposed automatic music transcription systems in various applications

in computational musicology, music information retrieval, and audio processing,

demonstrating the potential of automatic music transcription research in music

and audio technology.
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Figure 1.1: An automatic music transcription example. The top part of the
figure contains a waveform segment from a recording of J.S. Bach’s Prelude in
D major from the Well-Tempered Clavier Book I, performed on a piano. In the
middle figure, a time-frequency representation of the signal can be seen, with
detected pitches in rectangles (using the transcription method of [DCL10]). The
bottom part of the figure shows the corresponding score.

1.2 Thesis structure

Chapter 2 presents an overview of related work on automatic music transcrip-

tion. It begins with a presentation of basic concepts from music terminol-

ogy. Afterwards the problem of automatic music transcription is defined,

followed by related work on single-pitch detection. Finally, a detailed sur-

vey on state-of-the-art automatic transcription methods for polyphonic

music is presented.

Chapter 3 presents proposed methods for audio feature-based automatic mu-

sic transcription. Preliminary work on multiple-F0 estimation on isolated

piano chords is described, followed by an automatic music transcription
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system for polyphonic music. The latter system utilizes audio features

exploiting temporal evolution. Finally, a transcription system which also

incorporates information on note onsets and offsets is given. Private and

public evaluation results using the proposed methods are given.

Chapter 4 presents proposed methods for automatic music transcription which

are based on spectrogram factorization techniques. More specifically, a

transcription model which is based on shift-invariant probabilistic latent

component analysis (SI-PLCA) is presented. Further work focuses on

modeling the temporal evolution of sounds within the SI-PLCA frame-

work, where a single-pitch model is presented followed by a multi-pitch,

multi-instrument model for music transcription. Private and public eval-

uation results using the proposed methods are given.

Chapter 5 presents applications of proposed transcription systems. Proposed

systems have been utilized in computational musicology applications, in-

cluding key modulation detection in J.S. Bach chorales and temperament

estimation in harpsichord recordings. A system for score-informed tran-

scription has also been proposed, applied to automatic piano tutoring.

Proposed transcription models have also been modified in order to be

utilized for acoustic scene characterisation.

Chapter 6 concludes the thesis, summarizing the contributions of the thesis

and providing future perspectives on further improving proposed tran-

scription systems and on potential applications of transcription systems

in music technology and audio processing.

1.3 Contributions

The principal contributions of this thesis are:� Chapter 3: a pitch salience function in the log-frequency domain which

supports inharmonicity and tuning changes.� Chapter 3: A spectral irregularity feature which supports overlapping

partials.� Chapter 3: A common amplitude modulation (CAM) feature for suppress-

ing harmonic errors.
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� Chapter 3: A noise suppression algorithm based on a pink noise assump-

tion.� Chapter 3: Overlapping partial treatment procedure using harmonic en-

velopes of pitch candidates.� Chapter 3: A pitch set score function incorporating spectral and temporal

features.� Chapter 3: An algorithm for log-frequency spectral envelope estimation

based on the discrete cepstrum.� Chapter 3: Note tracking using conditional random fields (CRFs).� Chapter 3: Note onset detection which incorporates tuning and pitch

information from the salience function.� Chapter 3: Note offset detection using pitch-wise hidden Markov models

(HMMs).� Chapter 4: A convolutive probabilistic model for automatic music tran-

scription which utilizes multiple-pitch and multiple-instrument templates

and supports frequency modulations.� Chapter 4: A convolutive probabilistic model for single-pitch detection

which models the temporal evolution of notes.� Chapter 4: A convolutive probabilistic model for multiple-instrument

polyphonic music transcription which models the temporal evolution of

notes.� Chapter 5: The use of an automatic transcription system for the automatic

detection of key modulations.� Chapter 5: The use of a conservative transcription system for tempera-

ment estimation in harpsichord recordings.� Chapter 5: A proposed algorithm for score-informed transcription, applied

to automatic piano tutoring.� Chapter 5: The application of techniques developed for automatic music

transcription to acoustic scene characterisation.
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1.4 Associated publications

This thesis covers work for automatic transcription which was carried out by

the author between September 2009 and August 2012 at Queen Mary Univer-

sity of London. Work on acoustic scene characterisation (detailed in Chapter 5)

was performed during a one-month visit to IRCAM, France in November 2011.

The majority of the of the work presented in this thesis has been presented in

international peer-reviewed conferences and journals:

Journal Papers

[i] E. Benetos and S. Dixon, “Joint multi-pitch detection using harmonic

envelope estimation for polyphonic music transcription”, IEEE Journal

on Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1111-1123, Oct.

2011.

[ii] E. Benetos and S. Dixon, “A shift-invariant latent variable model for au-

tomatic music transcription,” Computer Music Journal, vol. 36, no. 4,

Winter 2012.

[iii] E. Benetos and S. Dixon, “Multiple-instrument polyphonic music tran-

scription using a temporally-constrained shift-invariant model,” submit-

ted.

[iv] E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, and A. Klapuri, “Auto-

matic music transcription: challenges and future directions,” submitted.

Peer-Reviewed Conference Papers

[v] E. Benetos and S. Dixon, “Multiple-F0 estimation of piano sounds ex-

ploiting spectral structure and temporal evolution”, in Proc. ISCA Tuto-

rial and Research Workshop on Statistical and Perceptual Audition, pp.

13-18, Sep. 2010.

[vi] E. Benetos and S. Dixon, “Polyphonic music transcription using note onset

and offset detection”, in Proc. IEEE Int. Conf. Acoustics, Speech, and

Signal Processing, pp. 37-40, May 2011.

[vii] L. Mearns, E. Benetos, and S. Dixon, “Automatically detecting key mod-

ulations in J.S. Bach chorale recordings”, in Proc. 8th Sound and Music

Computing Conf., pp. 25-32, Jul. 2011.
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[viii] E. Benetos and S. Dixon, “Multiple-instrument polyphonic music tran-

scription using a convolutive probabilistic model”, in Proc. 8th Sound and

Music Computing Conf., pp. 19-24, Jul. 2011.

[ix] E. Benetos and S. Dixon, “A temporally-constrained convolutive proba-

bilistic model for pitch detection”, in Proc. IEEE Workshop on Appli-

cations of Signal Processing to Audio and Acoustics, pp. 133-136, Oct.

2011.

[x] S. Dixon, D. Tidhar, and E. Benetos, “The temperament police: The

truth, the ground truth and nothing but the truth”, in Proc. 12th Int.

Society for Music Information Retrieval Conf., pp. 281-286, Oct. 2011.

[xi] E. Benetos and S. Dixon, “Temporally-constrained convolutive probabilis-

tic latent component analysis for multi-pitch detection”, in Proc. Int.

Conf. Latent Variable Analysis and Signal Separation, pp. 364-371, Mar.

2012.

[xii] E. Benetos, A. Klapuri, and S. Dixon, “Score-informed transcription for

automatic piano tutoring,” 20th European Signal Processing Conf., pp.

2153-2157, Aug. 2012.

[xiii] E. Benetos, M. Lagrange, and S. Dixon, “Characterization of acoustic

scenes using a temporally-constrained shift-invariant model,” 15th Int.

Conf. Digital Audio Effects, pp. 317-323, Sep. 2012.

[xiv] E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, and A. Klapuri, “Au-

tomatic music transcription: breaking the glass ceiling,” 13th Int. Society

for Music Information Retrieval Conf., pp. 379-384, Oct. 2012.

Other Publications

[xv] E. Benetos and S. Dixon, “Multiple fundamental frequency estimation

using spectral structure and temporal evolution rules”, Music Information

Retrieval Evaluation eXchange (MIREX), Aug. 2010.

[xvi] E. Benetos and S. Dixon, “Transcription prelude”, in 12th Int. Society for

Music Information Retrieval Conference Concert, Oct. 2011.

[xvii] E. Benetos and S. Dixon, “Multiple-F0 estimation and note tracking using

a convolutive probabilistic model”, Music Information Retrieval Evalua-

tion eXchange (MIREX), Oct. 2011.

7



It should be noted that for [vii] the author contributed in the collection of

the dataset, the transcription experiments using the system of [vi], and the im-

plementation of the HMMs for key detection. For [x], the author proposed and

implemented a harpsichord-specific transcription system and performed tran-

scription experiments. For [xiii], the author proposed a model for acoustic

scene characterisation based on an existing evaluation framework by the second

author. Finally in [iv, xiv], the author contributed information on state-of-the-

art transcription, score-informed transcription, and insights on the creation of

a complete transcription system. In all other cases, the author was the main

contributor to the publications, under supervision by Dr Simon Dixon.

Finally, portions of this work have been linked to Industry-related projects:

1. A feasibility study on score-informed transcription technology for a piano

tutor tablet application, in collaboration with AllegroIQ Ltd1 (January

and August 2011).

2. Several demos on automatic music transcription, for an automatic scor-

ing/typesetting tool, in collaboration with DoReMIR Music Research AB2

(March 2012 - today).

1http://www.allegroiq.com/
2http://www.doremir.com/
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Chapter 2

Background

In this chapter, state-of-the-art methods on automatic transcription of poly-

phonic music are described. Firstly, some terms from music theory will be

introduced, which will be used throughout the paper (Section 2.1). Afterwards,

methods for single-pitch estimation will be presented along with monophonic

transcription approaches (Section 2.2). The core of this chapter consists of a

detailed review of polyphonic music transcription systems (Section 2.3), followed

by a review of note tracking approaches (Section 2.4), commonly used evalua-

tion metrics in the transcription literature (Section 2.5), and details on public

evaluations of automatic music transcription methods (Section 2.6). Finally, a

discussion on assumptions and design considerations made in creating automatic

music transcription systems is made in Section 2.7. It should be noted that part

of the discussion section has been published by the author in [BDG+12].

2.1 Terminology

2.1.1 Music Signals

A signal is called periodic if it repeats itself at regular time intervals, which is

called the period [Yeh08]. The fundamental frequency (denoted f0) of a signal

is defined as the reciprocal of that period. Thus, the fundamental frequency is

an attribute of periodic signals in the time domain (e.g. audio signals).

A music signal is a specific case of an audio signal, which is usually pro-

duced by a combination of several concurrent sounds, generated by different

sources, where these sources are typically musical instruments or the singing
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voice [Per10, Hai03]. The instrument sources can be broadly classified into

two categories, which produce either pitched or unpitched sounds. Pitched in-

struments produce sounds with easily controlled and locally stable fundamental

periods [MEKR11]. Pitched sounds can be described by a series of sinusoids

(called harmonics or partials) which are harmonically-related, i.e. in the fre-

quency domain the partials appear at integer multiples of the fundamental fre-

quency. Thus, if the fundamental frequency of a certain harmonic sound is f0,

energy is expected to appear at frequencies hf0, where h ∈ N.

This fundamental frequency gives the perception of a musical note at a

clearly defined pitch. A formal definition of pitch is given in [KD06], stating

that “pitch is a perceptual attribute which allows the ordering of sounds on a

frequency-related scale extending from low to high”. As an example, Fig. 2.1

shows the waveform and spectrogram of a D3 piano note. In the spectrogram,

the partials can be seen as occurring at integer multiples of the fundamental

frequency (in this case it is 146.8 Hz).

It should be noted however that sounds produced by musical instruments

are not strictly harmonic due to the very nature of the sources (e.g. a stiff

string produces an inharmonic sound [JVV08, AS05]). Thus, a common as-

sumption made for pitched instruments is that they are quasi-periodic. There

are also cases of pitched instruments where the produced sound is completely

inharmonic, where in practice the partials are not integer multiples of a funda-

mental frequency, such as idiophones (e.g. marimba, vibraphone) [Per10]. An

example of an inharmonic sound is given in Fig. 2.2, where the spectrogram of

a Marimba A3 note can be seen.

Finally, a musical instrument might also exhibit frequency modulations such

as vibrato. In practice this means that the fundamental frequency changes

slightly. One such example of frequency modulations can be seen in Fig. 2.3,

where the spectrogram of a violin glissando followed by a vibrato is shown.

At around 3 sec, the vibrato occurs and the fundamental frequency (with its

corresponding partials) oscillates periodically over time. Whereas a vibrato

denotes oscillations in the fundamental frequency, a tremolo refers to a periodic

amplitude modulation, and can take place in woodwinds (e.g. flute) or in vocal

sounds [FR98].

Notes produced by musical instruments typically can be decomposed into

several temporal stages, denoting the temporal evolution of the sound. Pitched

percussive instruments (e.g. piano, guitar) have an attack stage, followed by

decay and release [BDA+05]. Bowed string or woodwind instruments have a

10



(b)

fr
eq
u
en
cy

(H
z)

time (sec)

(a)
a
m
p
li
tu
d
e

1 2 3 4 5

1 2 3 4 5

1000

2000

3000

4000

5000

−0.2

−0.1

0

0.1

0.2

Figure 2.1: A D3 piano note (146.8 Hz). (a) The waveform of the signal. (b)
The spectrogram of the signal. Harmonics occur at integer multiples of the
fundamental frequency.

long sustain state [Per10]. Formally, the attack stage of a tone is the time

interval during which the amplitude envelope increases [BDA+05]. An example

of the attack and release states of a piano sound can be seen in Fig. 2.1, where

at 0.7sec an attack region can be seen, whereas from 2-4 sec the tone decays

before being released. It should finally be noted that the focus of the thesis is on

transcribing music produced by pitched instruments, thus excluding percussion

or audio effects. Human voice transcription is also not considered, although a

transcription experiment using a singing voice excerpt is presented in the thesis

(recording 12 in Table 3.1).

2.1.2 Tonality

Music typically contains combinations of notes organized in a way so that they

please human listeners. The term harmony is used to the combination of concur-
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Figure 2.2: The spectrogram of an A3 marimba note.

rent pitches and the evolution of these note combinations over time. A melodic

interval refers to the pitch relationship between two consecutive notes while a

melody refers to a series of notes arranged in a musically meaningful succession

[Sch11].

Research on auditory perception has shown that humans perceive as conso-

nant musical notes whose ratio of fundamental frequencies (also called harmonic

interval) is of the form n+1
n , where n ≤ 5 [Ter77]. The most consonant harmonic

intervals are 2
1 , which is called an octave, and 3

2 , which is called a perfect fifth.

For the case of the octave, the partials of the higher note (which has a funda-

mental frequency of 2f0, where f0 is the fundamental frequency of the lower

note) appear at the same frequencies with the even partials of the lower note.

Likewise, in the case of a perfect fifth, notes with fundamental frequencies f0

and 3f0
2 will have in common every 3rd partial of f0 (e.g. 3f0, 6f0). These

partials which appear in two or several concurrent notes are called overlapping

partials.

In Western music, an octave corresponds to an interval of 12 semitones, while

a perfect fifth to 7 semitones. A tone is an interval of two semitones. A note

can be identified using a letter (A,B,C,D,E,F,G) and an octave number. Thus,

A3 refers to note A in the 3rd octave. Also used are accidentals, which consist

of sharps (♯) and flats (♭), shifting each note one semitone higher or lower,
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Figure 2.3: The spectrogram of a violin glissando. A vibrato can be seen around
the 3 sec marker.

respectively. Although a succession of 7 octaves should result to the same note

as a succession of 12 fifths, the ratio (32 )
12 : 27 is approximately 1.0136, which

is called a Pythagorean comma. Thus, some of the fifth intervals need to be

adjusted accordingly. Temperament refers to the various methods of adjusting

some or all of the fifth intervals (octaves are always kept pure) with the aim

of reducing the dissonance in the most commonly used intervals in a piece of

music [Bar51, Ver09].

One way of representing temperament is by the distribution of the Pythagorean

comma around the cycle of fifths, as seen in Fig 2.4. The most common tem-

perament is equal temperament, where each semitone is equal to one twelfth of

an octave. Thus, all fifths are diminished by 1
12 of a comma relative to the pure

ratio of 3
2 . Typically, equal temperament is tuned using note A4 as a reference

note with a fundamental frequency of 440 Hz.

A scale is a sequence of notes in ascending order which forms a perceptually

natural set [HM03]. The major scale follows the following pattern with respect

to semitones: 2-2-1-2-2-2-1. An example of a C major scale using Western

notation can be seen in Fig. 2.5. The natural minor scale has the pattern 2-1-2-

2-1-2-2 and the harmonic minor scale has the pattern 2-1-2-2-1-3-1. The key of
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Figure 2.5: A C major scale, starting from C4 and finishing at C5.

a section of music is the scale which best fits the notes present. Using Western

harmony rules, a set of concurrent notes which sound pleasant to most people is

defined as a chord. A simple chord is the major triad (i.e. a three-note chord),

which in equal temperament has a fundamental frequency ratio of 4:5:6. The

consonance stems from the fact that these notes share many partials.

2.1.3 Rhythm

Rhythm describes the timing relationships between musical events within a piece

[CM60]. A main rhythmic concept is the metrical structure, which consists of

pulse sensations at different levels. Klapuri et al. [KEA06] consider three levels,

namely the tactus, tatum, and measure.

The tatum is the lowest level, considering the shortest durational values

which are commonly encountered in a piece. The tactus level consists of beats,

which are basic time units referring to the individual elements that make up a
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Figure 2.6: The opening bars of J.S. Bach’s menuet in G major (BWV Anh.
114) illustrating the three metrical levels.

pulse. The tempo indicates the rate of the tactus. A pulse is a regularly spaced

sequence of accents. Finally, the measure level consists of bars, which refers

to the harmonic change rate or to the length of a rhythmic pattern [KEA06].

The three metrical levels are illustrated in Fig. 2.6 using J.S. Bach’s menuet

in G major. It should also be noted that in Western music notation rhythm

is specified using a time signature, which specifies the number of beats in each

measure (e.g. in Fig. 2.6 the time signature is 3/4, which means that each bar

consists of 3 beats, with each beat corresponding to a crotchet).

2.1.4 MIDI Notation

A musical score can be stored in a computer in many different ways, however the

most common computer music notation framework is the Musical Instrument

Digital Interface (MIDI) protocol [MID]. Using the MIDI protocol, the specific

pitch, onset, offset, and intensity of a note can be stored, along with additional

parameters such as instrument type, key, and tempo.

In the MIDI protocol, each pitch is assigned a number (e.g. A3=69). The

equations which relate the fundamental frequency f0 in Hz with the MIDI num-

ber nMIDI are as follows:

nMIDI = 12 · log2

[
f0
440

]
+69

f0 = 440 · 2
nMIDI−69

12 (2.1)

15



time (sec)

M
ID

I
p
it
ch

20 40 60 80 100 120

30

40

50

60

70

80

90

100

Figure 2.7: The piano-roll representation of J.S. Bach’s prelude in C major from
the Well-tempered Clavier.

Although MIDI has certain advantages regarding accessibility and simplic-

ity, it has certain limitations, such as the storage of proper musical notation or

expressive features. To that end, there are numerous protocols used for music

notation in computers, such as MusicXML1 or Lilypond2. Automatic transcrip-

tion systems proposed in the literature usually convert an input recording into

a MIDI file or a MIDI-like representation (returning a pitch, onset, offset).

One useful way to represent a MIDI score is a piano-roll representation,

which depicts pitch in the vertical axis and time in the horizontal axis. An

example of a piano-roll is given in Fig. 2.7, for J.S. Bach’s prelude in C major,

from the Well-tempered Clavier Book I.

2.2 Single-pitch Estimation

In this subsection, work on single-pitch and single-F0 detection for speech and

music signals will be presented. Algorithms on single-F0 estimation assume that

only one harmonic source is present in a specific instant within a signal. The

1http://www.makemusic.com/musicxml
2http://lilypond.org/
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Figure 2.8: The spectrum of a C4 piano note (sample from MAPS database
[EBD10]).

single-F0 estimation problem is largely considered to be solved in the literature,

and a review on related methods can be found in [dC06]. In order to describe

single-F0 estimation methods we will use the same categorization, i.e. separate

approaches into spectral, temporal and spectrotemporal ones.

2.2.1 Spectral Methods

As mentioned in Section 2.1.1, the partials of a harmonic sound occur at integer

multiples of the fundamental frequency of that sound. Thus, a decision on

the pitch of a sound can be made by studying its spectrum. In Fig. 2.8 the

spectrum of a C4 piano note is shown, where the regular spacing of harmonics

can be observed.

The autocorrelation function can be used for detecting repetitive patterns

in signals, since the maximum of the autocorrelation function for a harmonic

spectrum corresponds to its fundamental frequency. Lahat et al. in [LNK87]

propose a method for pitch detection which is based on flattening the spectrum

of the signal and estimating the fundamental frequency from autocorrelation

functions. A subsequent smoothing procedure using median filtering is also

applied in order to further improve pitch detection accuracy.

In [Bro92], Brown computes the constant-Q spectrum [BP92] of an input

sound, resulting in a log-frequency representation. Pitch is subsequently de-

tected by computing the cross-correlation between the log-frequency spectrum
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Figure 2.9: The constant-Q transform spectrum of a C4 piano note (sample
from MAPS database [EBD10]). The lowest bin corresponds to 27.5 Hz and the
frequency resolution is 60 bins/octave.

and an ideal spectral pattern, which consists of ones placed at the positions

of harmonic partials. The maximum of the cross-correlation function indicates

the pitch for the specific time frame. The advantage of using a harmonic pat-

tern in log-frequency stems from the fact that the spacing between harmonics is

constant for all pitches, compared to a linear frequency representation (e.g. the

short-time Fourier transform). An example of a constant-Q transform spectrum

of a C4 piano note (the same as in Fig. 2.8) can be seen in Fig. 2.9.

Doval and Rodet [DR93] proposed a maximum likelihood (ML) approach for

fundamental frequency estimation which is based on a representation of an input

spectrum as a set of sinusoidal partials. To better estimate the f0 afterwards,

a tracking step using hidden Markov models (HMMs) is also proposed.

Another subset of single-pitch detection methods uses cepstral analysis. The

cepstrum is defined as the inverse Fourier transform of the logarithm of a signal

spectrum. Noll in [Nol67] proposed using the cepstrum for pitch estimation,

since peaks in the cepstrum indicate the fundamental period of a signal.

Finally, Kawahara et al. [KdCP98] proposed a spectrum-based F0 estimation

algorithm called “TEMPO”, which measures the instantaneous frequency at the

output of a filterbank.
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2.2.2 Temporal Methods

The most basic approach for time domain-based single-pitch detection is the

use of the autocorrelation function using the input waveform [Rab77]. The

autocorrelation function is defined as:

ACF [ν] =
1

N

N−ν−1∑

n=0

x[n]x[n + ν] (2.2)

where x[n] is the input waveform,N is the length of the waveform, and ν denotes

the time lag. For a periodic waveform, the first major peak in the autocorre-

lation function indicates the fundamental period of the waveform. However it

should be noted that peaks also occur at multiples of the period (also called

subharmonic errors). Another advantage of the autocorrelation function is that

it can be efficiently implemented using the discrete Fourier transform (DFT).

Several variants and extensions of the autocorrelation function have been

proposed in the literature, such as the average magnitude difference function

[RSC+74], which computes the city-block distance between a signal chunk and

another chunk shifted by ν. Another variant is the squared-difference function

[dC98], which replaced the city-block distance with the Euclidean distance:

SDF [ν] =
1

N

N−ν−1∑

n=0

(x[n]− x[n+ ν])2 (2.3)

A normalized form of the squared-difference function was proposed by de

Cheveigné and Kawahara for the YIN pitch estimation algorithm [dCK02]. The

main improvement is that the proposed function avoids any spurious peaks near

zero lag, thus avoiding any harmonic errors. YIN has been shown to outperform

several pitch detection algorithms [dCK02] and is generally considered robust

and reliable for fundamental frequency estimation [dC06, Kla04b, Yeh08, Per10,

KD06].

2.2.3 Spectrotemporal Methods

It has been noted that spectrum-based pitch estimation methods have a ten-

dency to introduce errors which appear in integer multiples of the fundamental

frequency (harmonic errors), while time-based pitch estimation methods typ-

ically exhibit errors at submultiples of the f0 (subharmonic errors) [Kla03].

Thus, it has been argued that a tradeoff between spectral and temporal meth-
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Figure 2.10: Pitch detection using the unitary model of [MO97]. HWR refers to
half-wave rectification, ACF refers to the autocorrelation function, and SACF
to the summary autocorrelation function.

ods [dC06] could potentially improve upon pitch estimation accuracy.

Such a tradeoff can be formulated by splitting the input signal using a fil-

terbank, where each channel gives emphasis to a range of frequencies. Such a

filterbank is the unitary model by Meddis and Hewitt [MH92] which was utilized

by the same authors for pitch detection [MO97]. This model has links to human

auditory models. The unitary model consists of the following steps:

1. The input signal is passed into a logarithmically-spaced filterbank.

2. The output of each filter is half-wave rectified.

3. Compression and lowpass filtering is performed to each channel.

the output of the model can be used for pitch detection by computing the auto-

correlation for each channel and summing the results (summary autocorrelation

function). A diagram showing the pitch detection procedure using the unitary

model can be seen in Fig. 2.10. It should be noted however that harmonic

errors might be introduced by the half-wave rectification [Kla04b]. A similar

pitch detection model based on human perception theory which computes the

autocorrelation for each channel was also proposed by Slaney and Lyon [SL90].

2.3 Multi-pitch Estimation and Polyphonic Mu-

sic Transcription

In the polyphonic music transcription problem, we are interested in detecting

notes which might occur concurrently and could be produced by several instru-
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ment sources. The core problem for creating a system for polyphonic music tran-

scription is thus multi-pitch estimation. For an overview on polyphonic tran-

scription approaches, the reader is referred to [KD06], while in [dC06] a review of

multiple-F0 estimation systems is given. A more recent overview on multi-pitch

estimation and polyphonic music transcription is given in [MEKR11].

As far as the categorization of the proposed methods is concerned, in [dC06]

multiple-F0 estimation methods are organized into three groups: temporal,

spectral, and spectrotemporal methods. However, the majority of multiple-F0

estimation methods employ a variant of a spectral method; even the system by

Tolonen [TK00] which depends on the summary autocorrelation function uses

the FFT for computational efficiency. Thus, in this section, two different clas-

sifications of polyphonic music transcription approaches will be made; firstly,

according to the time-frequency representation used and secondly according to

various techniques or models employed for multi-pitch detection.

In Table 2.1, approaches for multi-pitch detection and polyphonic music

transcription are organized according to the time-frequency representation em-

ployed. It can be clearly seen that most approaches use the short-time Fourier

transform (STFT) as a front-end, while a number of approaches use filter-

bank methods, such as the equivalent rectangular bandwidth (ERB) gamma-

tone filterbank, the constant-Q transform (CQT) [Bro91], the wavelet transform

[Chu92], and the resonator time-frequency image [Zho06]. The gammatone fil-

terbank with ERB channels is part of the unitary pitch perception model of

Meddis and Hewitt and its refinement by Meddis and O’Mard [MH92, MO97],

which compresses the dynamic level of each band, performs a non-linear pro-

cessing such as half-wave rectification, and performs low-pass filtering. Another

time-frequency representation that was proposed is specmurt [SKT+08], which

is produced by the inverse Fourier transform of a log-frequency spectrum.

Another categorization was proposed by Yeh in [Yeh08], separating systems

according to their estimation type as joint or iterative. The iterative estimation

approach extracts the most prominent pitch in each iteration, until no addi-

tional F0s can be estimated. Generally, iterative estimation models tend to

accumulate errors at each iteration step, but are computationally inexpensive.

In the contrary, joint estimation methods evaluate F0 combinations, leading to

more accurate estimates but with increased computational cost. However, re-

cent developments in the automatic music transcription field show that the vast

majority of proposed approaches now falls within the ‘joint’ category.

Thus, the classification that will be presented in this thesis organises auto-
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Time-Frequency Representation Citation

Short-Time Fourier Transform [Abd02, AP04, AP06, BJ05, BED09a, BBJT04, BBFT10, BBST11]
[BKTB12, Bel03, BDS06, BMS00, BBR07, BD04, BS12, Bro06]

[BG10, BG11, CLLY07, OCR+08, OCR+09b, OCR+09a]
[OCQR10, OVC+11, CKB03, Cem04, CKB06, CSY+08]

[CJAJ04, CJJ06, CJJ07, CSJJ07, CSJJ08, Con06, DG03, DGI06]
[DCL10, Dix00, DR93, DZZS07, DHP09, DHP10, DPZ10]
[DDR11, EBD07, EBD08, EBD10, FHAB10, FK11, FCC05]

[Fon08, FF09, GBHL09, GS07a, GD02, GE09]
[GE10, GE11, Gro08, GS07a, Joh03, Kla01, Kla03, Kla04b, Kla06]
[Kla09a, Kla09b, KT11, LYLC10, LYC11, LYC12, LW07, LWB06]

[Lu06, MSH08, NRK+10, NRK+11, NLRK+11]
[NNLS11, NR07, Nie08, OKS12, OP11, ONP12]

[OS03, OBBC10, BQ07, QRC+10, CRV+10, PLG07]
[PCG10, PG11, Pee06, PI08, Per10, PI04]
[PI05, PI07, PI08, Per10, PI12, PAB+02]

[PEE+07, PE07a, PE07b, QCR+08, QCR+09]
[QCRO09, QRC+10, CRV+10, CQRSVC+10, ROS09a]
[ROS09b, RVBS10, Rap02, RFdVF08, RFF11, SM06]

[ŞC10, ŞC11, SB03, Sma11, Sun00, TL05, VK02]
[YSWJ10, WL06, Wel04, WS05]

[Yeh08, YR04, YRR05, YRR10, YSWS05, ZCJM10]
ERB Filterbank [BBV09, BBV10, KT99, Kla04b, Kla05, Kla08, RK05, Ryy08]

[RK08, TK00, VR04, VBB07, VBB08, VBB10, ZLLX08]
Constant-Q Transform [Bro92, CJ02, CPT09, CTS11, FBR11, KDK12]

[Mar12, MS09, ROS07, Sma09, Wag03, WVR+11b, WVR+11a]
Wavelet Transform [FCC05, KNS04, KNS07, MKT+07, NEOS09]

[PHC06, SIOO12, WRK+10, YG10, YG12a]
Constant-Q Bispectral Analysis [ANP11, NPA09]
Resonator Time-Frequency Image [ZR07, ZR08, ZRMZ09, Zho06, BD10b, BD10a]

Multirate Filterbank [CQ98, Got00, Got04]
Reassignment Spectrum [HM03, Hai03, Pee06]
Modulation Spectrum [CDW07]

Matching Pursuit Decomposition [Der06]
Multiresolution Fourier Transform [PGSMR12, KCZ09, Dre11]

Adaptive Oscillator Networks [Mar04]
Modified Discrete Cosine Transform [SC09]

Specmurt [SKT+08]
High-resolution spectrum [BLW07]

Quasi-Periodic Signal Extraction [TS09]

Table 2.1: Multiple-F0 estimation approaches organized according to the time-
frequency representation employed.

matic music transcription systems according to the core techniques or models

employed for multi-pitch detection, as can be seen in Table 2.2. The majority

of these systems employ signal processing techniques, usually for audio feature

extraction, without resorting to any supervised or unsupervised learning pro-

cedures or classifiers for pitch estimation. Several approaches for note tracking

have been proposed using spectrogram factorisation techniques, most notably

non-negative matrix factorisation (NMF) [LS99]. NMF is a subspace analysis

method able to decompose an input time-frequency representation into a basis

matrix containing spectral templates for each component and a component ac-

tivity matrix over time. Maximum likelihood (ML) approaches, usually employ-
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ing the expectation-maximization (EM) algorithm [DLR77, SS04], have been

also proposed in order to estimate the spectral envelope of candidate pitches

or to estimate the likelihood of a set of pitch candidates. Other probabilis-

tic methods include Bayesian models and networks, employing Markov Chain

Monte Carlo (MCMC) methods for reducing the computational cost. Hidden

Markov models (HMMs) [Rab89] are frequently used in a postprocessing stage

for note tracking, due to the sequential structure offered by the models. Su-

pervised training methods for multiple F0 estimation include support vector

machines (SVMs) [CST00], artificial neural networks, and Gaussian mixture

models (GMMs). Sparse decomposition techniques are also utilised, such as

the K-SVD algorithm [AEB05], non-negative sparse coding, and multiple signal

classification (MUSIC) [Sch86]. Least squares (LS) and alternating least squares

(ALS) models have also been proposed. Finally, probabilistic latent component

analysis (PLCA) [Sma04a] is a probabilistic variant of NMF which is also used

in spectrogram factorization models for automatic transcription.

2.3.1 Signal Processing Methods

Most multiple-F0 estimation and note tracking systems employ methods derived

from signal processing; a specific model is not employed, and notes are detected

using audio features derived from the input time-frequency representation either

in a joint or in an iterative fashion. Typically, multiple-F0 estimation occurs

using a pitch salience function (also called pitch strength function) or a pitch

candidate set score function [Kla06, PI08, YRR10]. In the following, signal

processing-based methods related to the current work will be presented in detail.

In [Kla03], Klapuri proposed an iterative spectral subtraction method with

polyphony inference, based on the principle that the envelope of harmonic

sounds tends to be smooth. A magnitude-warped power spectrum is used as

a data representation and a moving average filter is employed for noise sup-

pression. The predominant pitch is estimated using a bandwise pitch salience

function, which is able to handle inharmonicity [FR98, BQGB04, AS05]. After-

wards, the spectrum of the detected sound is estimated and smoothed before it

is subtracted from the input signal spectrum. A polyphony inference method

stops the iteration. A diagram showing the iterative spectral subtraction sys-

tem of [Kla03] can be seen in Fig. 2.11. This method was expanded in [Kla08],

where a variant of the unitary pitch model of [MO97] is used as a front-end,

and the summary autocorrelation function is used for detecting the predomi-
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Technique Citation

Signal Processing Techniques [ANP11, BBJT04, BBFT10, BBST11, BKTB12, BLW07, Bro06, Bro92]
[CLLY07, OCR+08, OCR+09b, OCR+09a, Dix00, Dre11]

[DZZS07, FHAB10, CQ98, FK11, Gro08, PGSMR12, HM03]
[Hai03, Joh03, KT99, Kla01, Kla03]

[Kla04b, Kla05, Kla06, Kla08, LRPI07, LWB06, NPA09]
[BQ07, PHC06, PI07, PI08, Per10, PI12]

[QCR+09, QCRO09, CQRSVC+10, SKT+08, SC09, TK00]
[Wag03, WZ08, YSWJ10, WL06, WS05, YR04, YRR05]

[Yeh08, YRR10, YSWS05, ZLLX08, Zho06, ZR07, ZR08, ZRMZ09]
Maximum Likelihood [BED09a, DHP09, DPZ10, EBD07, EBD08, EBD10, FHAB10, Got00]

[Got04, KNS04, KNS07, KT11, MKT+07, NEOS09, NR07]
[Pee06, SIOO12, WRK+10, WVR+11b, WVR+11a, YG10, YG12b, YG12a]

Spectrogram Factorization [BBR07, BBV09, BBV10, OVC+11, Con06, CDW07, CTS11]
[DCL10, DDR11, FBR11, GE09, GE10, GE11, HBD10, HBD11a]

[HBD11b, KDK12, Mar12, MS09, NRK+10, NRK+11, NLRK+11, Nie08]
[OKS12, ROS07, ROS09a, ROS09b, SM06, SB03, Sma04b]

[Sma09, Sma11, VBB07, VBB08, VBB10, VMR08]
Hidden Markov Models [BJ05, CSY+08, EP06, EBD08, EBD10, LW07, OS03, PE07a, PE07b]

[QRC+10, CRV+10, Rap02, Ryy08, RK05, ŞC10, ŞC11, VR04]
Sparse Decomposition [Abd02, AP04, AP06, BBR07, BD04, OCQR10, CK11, Der06, GB03]

[LYLC10, LYC11, LYC12, MSH08, OP11, ONP12, PAB+02, QCR+08]
Multiple Signal Classification [CJAJ04, CJJ06, CSJJ07, CJJ07, CSJJ08, ZCJM10]
Support Vector Machines [CJ02, CPT09, EP06, GBHL09, PE07a, PE07b, Zho06]

Dynamic Bayesian Network [CKB03, Cem04, CKB06, KNKT98, ROS09b, RVBS10]
Neural Networks [BS12, GS07a, Mar04, NNLS11, OBBC10, PI04, PI05]

Bayesian Model + MCMC [BG10, BG11, DGI06, GD02, PLG07, PCG10, PG11, TL05]
Genetic Algorithms [Fon08, FF09, Lu06, RFdVF08, RFF11]
Blackboard System [BMS00, BDS06, Bel03, McK03]

Subspace Analysis Methods [FCC05, VR04, Wel04]
Temporal Additive Model [BDS06, Bel03]
Gaussian Mixture Models [Kla09a, Mar07]

Least Squares [Kla09b, KCZ09]

Table 2.2: Multiple-F0 and note tracking techniques organised according to the
employed technique.

nant pitch. In [RK05] the system of [Kla03] was combined with a musicological

model for estimating musical key and note transition probabilities. Note events

are described using 3-state hidden Markov models (HMMs), which denote the

attack, sustain, and noise/silence state of each sound. Also incorporated was

information from an onset detection function. The system of [RK05] was also

publicly evaluated in the MIREX 2008 multiple-F0 estimation and note track-

ing task [MIR] where competitive results were reported. Also, in [BKTB12],

the system of [Kla08] was utilised for transcribing guitar recordings and also

for extracting fingering configurations. An HMM was incorporated in order to

model different fingering configurations, which was combined with the salience

function of [Kla08]. Fingering transitions are controlled using a musicological

model which was trained on guitar chord sequences.

Yeh et al. [YRR10] present a joint pitch estimation algorithm based on a
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Figure 2.11: The iterative spectral subtraction system of Klapuri (figure from
[Kla03]).

pitch candidate set score function. The front-end of the algorithm consists of a

short-time Fourier transform (STFT) computation followed by an adaptive noise

level estimation method based on the assumption that the noise amplitude fol-

lows a Rayleigh distribution. Given a set of pitch candidates, the overlapping

partials are detected and smoothed according to the spectral smoothness prin-

ciple [Kla03]. The weighted score function for the pitch candidate set consists of

4 features: harmonicity, mean bandwidth, spectral centroid, and synchronicity.

A polyphony inference mechanism based on the score function increase selects

the optimal pitch candidate set. The automatic transcription methods proposed

by Yeh et al. [YRR05, Yeh08, YRR10] have been publicly evaluated in several

MIREX competitions [MIR], where they rank first or amongst the first ones.

Pertusa and Iñesta [PI08, Per10, PI12] propose a computationally inexpen-

sive method similar to Yeh’s. The STFT of the input signal is computed, and

a simple pitch salience function is computed. For each possible combination in

the pitch candidate set, an overlapping partial treatment procedure is applied.

Each harmonic partial sequence (HPS) is further smoothed using a truncated

normalised Gaussian window, and a measure between the HPS and the smooth

HPS is computed, which indicates the salience of the pitch hypothesis. The

pitch candidate set with the greatest salience is selected for the specific time

frame. In a postprocessing stage, minimum duration pruning is applied in order

to eliminate local errors. In Fig. 2.12, an example of the Gaussian smoothing

of [PI08] is given, where the original HPS can be seen along with the smoothed

HPS.

Zhou et al. [ZRMZ09] proposed an iterative method for polyphonic pitch esti-
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Figure 2.12: Example of the Gaussian smoothing procedure of [PI08] for a
harmonic partial sequence.

mation using a complex resonator filterbank as a front-end, called the resonator

time-frequency image (RTFI) [Zho06]. An example of the RTFI spectrum is

given in Fig. 2.13. A mid-level representation is computed, called the pitch

energy spectrum and pitch candidates are selected. Additional pitch candidates

are selected from the RTFI using harmonic component extraction. These candi-

dates are then eliminated in an iterative fashion using a set of rules based on fea-

tures of the HPS. These rules are based on the number of harmonic components

detected for each pitch and the spectral irregularity measure, which measures

the concentrated energy around possibly overlapped partials from harmonically-

related F0s. This method has been implemented as a real-time polyphonic mu-

sic transcription system and has also been evaluated in the MIREX framework

[MIR].

A mid-level representation along with a respective method for multi-pitch

estimation was proposed by Saito et al. in [SKT+08], by using the inverse

Fourier transform of the linear power spectrum with log-scale frequency, which

was called specmurt (an anagram of cepstrum). The input spectrum (generated

by a wavelet transform) is considered to be generated by a convolution of a

common harmonic structure with a pitch indicator function. The deconvolution

of the spectrum by the harmonic pattern results in the estimated pitch indicator

function, which can be achieved through the concept of specmurt analysis. This
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Figure 2.13: The RFTI spectrum of a C4 piano note (sample from MAPS
databse [EBD10]). The lowest frequency is 27.5 Hz and the spectral resolution
is 120 bins/octave.

process is analogous to deconvolution in the log-frequency domain with a con-

stant harmonic pattern (see e.g. [Sma09]). Notes are detected by an iterative

method which helps in estimating the optimal harmonic pattern and the pitch

indicator function.

A system that uses a constant-Q and a bispectral analysis of the input au-

dio signal was proposed by Argenti et al. in [ANP11, NPA09]. The processed

input signal is compared with a two-dimensional pattern derived from the bis-

pectral analysis, instead of the more common one-dimensional spectra, leading

to improved transcription accuracy, as demonstrated by the lead ranking of the

proposed system in the MIREX 2009 piano note tracking contest [MIR].

Cañadas-Quesada et al. in [QRC+10] propose a frame-based multiple-F0

estimation algorithm which searches for F0 candidates using significant peaks

in the spectrum. The HPS of pitch candidate combinations is extracted and a

spectral distance measure between the observed spectrum and Gaussians cen-

tered at the positions of harmonics for the specific combination is computed.

The candidate set that minimises the distance metric is finally selected. A post-

processing step is also applied, using pitch-wise two-state hidden Markov models

(HMMs), in a similar way to the method in [PE07a].

More recently, Grosche et al. [PGSMR12] proposed a method for automatic
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transcription based on a mid-level representation derived from a multiresolu-

tion Fourier transform combined with an instantaneous frequency estimation.

The system also combines onset detection and tuning estimation for computing

frame-based estimates. Note events are afterwards detected using 2 HMMs per

pitch, one for the on state and one for the off state.

2.3.2 Statistical Modelling Methods

Many approaches in the literature formulate the multiple-F0 estimation problem

within a statistical framework. Given an observed frame v and a set C of

all possible fundamental frequency combinations, the frame-based multiple-F0

estimation problem can then be viewed as a maximum a posteriori (MAP)

estimation problem [EBD10]:

Ĉ = argmax
C∈C

P (C|v) (2.4)

where Ĉ is the estimated set of fundamental frequencies and P (·) denotes prob-

ability. If no prior information on the mixtures is specified, the problem can be

expressed as a maximum likelihood (ML) estimation problem using Bayes’ rule

[CKB06, DPZ10, EBD10]:

Ĉ = argmax
C∈C

P (v|C)P (C)

P (v)
= argmax

C∈C

P (v|C) (2.5)

Goto in [Got00, Got04] proposed an algorithm for predominant-F0 estima-

tion of melody and bass line based on MAP estimation, called PreFEst. The

input time-frequency representation (which is in log-frequency and is computed

using instantaneous frequency estimation) is modelled using a weighted mixture

of adapted tone models, which exhibit a harmonic structure. In these tone mod-

els, a Gaussian is placed in the position of each harmonic over the log-frequency

axis. MAP estimation is performed using the expectation-maximization (EM)

algorithm. In order to track the melody and bass-line F0s over time, a multiple-

agent architecture is used, which selects the most stable F0 trajectory. An

example of the tone model used in [Got04] is given in Fig. 2.14.

A Bayesian harmonic model was proposed by Davy and Godsill in [DG03],

which models the spectrum as a sum of Gabor atoms with time-varying am-

plitudes with non-white residual noise, while inharmonicity is also considered.

The unknown model parameters are estimated using a Markov chain Monte
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Figure 2.14: An example of the tone model of [Got04]. Each partial in the
log-frequency domain is modelled by a Gaussian probability density function
(PDF). The log-frequency resolution is 120 bins/octave.

Carlo (MCMC) method. The model was expanded in [DGI06], also including

the extraction of dynamics, timbre, and instrument type.

An expansion of Goto’s method from [Got04] was proposed by Kameoka

et al. [KNS04, KNS07], called harmonic temporal structured clustering (HTC),

which jointly estimates multiple fundamental frequencies, onsets, offsets, and

dynamics. The input time-frequency representation is a wavelet spectrogram.

Partials are modelled using Gaussians placed in the positions of partials in the

log-frequency domain and the synchronous evolution of partials belonging to

the same source is modelled by Gaussian mixtures. Time-evolving partials from

the same source are then clustered. Model parameters are learned using the

EM algorithm. The HTC algorithm was also used for automatic transcription

in [MKT+07], where rhythm and tempo are also extracted using note duration

models with HMMs. A variant of the HTC algorithm was publicly evaluated for

the MIREX competition [NEOS09], where an iterative version of the algorithm

was used and penalty factors for the maximum number of active sources were

incorporated into the HTC likelihood.

The HTC algorithm was also utilised in [WRK+10] for instrument identifica-

tion in polyphonic music, where for each detected note event harmonic temporal

timbre features are computed and a support vector machine (SVM) classifier is

used for instrument identification. The HTC algorithm was further extended

by Wu et al. in [WVR+11a], where each note event is separated into an attack

and sustain state. For the attack states, an inharmonic model is used which

is characterised by a spectral envelope and a respective power. For the sustain

states, a harmonic model similar to [KNS07] is used. Instrument identification
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is also performed using an SVM classifier, in a similar way to [WRK+10].

A maximum likelihood approach for multiple-F0 estimation which models

spectral peaks and non-peak regions was proposed by Duan et al. in [DHP09,

DPZ10]. The likelihood function of the model is composed of the peak region

likelihood (probability that a peak is detected in the spectrum given a pitch)

and the non-peak region likelihood (probability of not detecting any partials in a

non-peak region), which are complementary. An iterative greedy F0 estimation

procedure is proposed and priors are learned from monophonic and polyphonic

training data. Polyphony inference, in order to control the number of itera-

tions, is achieved by a threshold-based method using the likelihood function. A

post-processing stage is performed using neighboring frames. Experiments were

performed on the newly released Bach10 dataset3, which contains multi-track

recordings of Bach chorales. The methods in [DHP09, DPZ10] were also pub-

licly evaluated in the MIREX 2009 and 2010 contests and ranked second best

in the multiple-F0 estimation task.

Badeau et al. in [BED09a] proposed a maximum likelihood approach for

multiple-pitch estimation which performs successive single-pitch and spectral

envelope estimations. Inference is achieved using the expectation-maximization

(EM) algorithm. As a continuation of the work of [BED09a], Emiya et al. in

[EBD10] proposed a joint estimation method for piano notes using a likelihood

function which models the spectral envelope of overtones using a smooth au-

toregressive (AR) model and models the residual noise using a low-order moving

average (MA) model. The likelihood function is able to handle inharmonicity

and the amplitudes of overtones are considered to be generated by a complex

Gaussian random variable. The authors of [EBD10] also created a large database

for piano transcription called MAPS, which was used for experiments. MAPS

contains isolated notes and music pieces from synthesised and real pianos in

different recording setups.

Raczynski et al. in [RVBS10] developed a probabilistic model for multiple

pitch transcription based on dynamic Bayesian networks (DBNs) that takes

into account temporal dependencies between musical notes and between the

underlying chords, as well as the instantaneous dependencies between chords,

notes and the observed note saliences. In addition, a front-end for obtaining

initial note estimates was also used, which relied on the non-negative matrix

factorization (NMF) algorithm.

3http://music.cs.northwestern.edu
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Peeling and Godsill [PCG10, PG11] proposed a likelihood function for multiple-

F0 estimation where for a given time frame, the occurrence of peaks in the fre-

quency domain is assumed to follow an inhomogeneous Poisson process. This

method was updated in [BG10, BG11], where in order to link detected pitches

between adjacent frames, a model is proposed using Bayesian filtering and in-

ference is achieved using the sequential MCMC algorithm. It should be noted

however that the proposed likelihood function takes only into account the posi-

tion of partials in f0 candidates and not their amplitudes.

An extension of the PreFEst algorithm in [Got04] was proposed in [YG10,

YG12a], where a statistical method called Infinite Latent Harmonic Allocation

(iLHA) was proposed for detecting multiple fundamental frequencies in poly-

phonic audio signals, eliminating the problem of fixed system parameters. The

proposed method assumes that the observed spectra are superpositions of a

stochastically-distributed unbounded (theoretically infinite) number of bases.

For inference, a modified version of the variational Bayes (VB) algorithm was

used. In [YG12b], the method of [YG12a] was also used for unsupervised mu-

sic understanding, where musicological models are also learned from the input

signals. Finally, the iLHA method was improved by Sakaue et al. [SIOO12],

where a corpus of overtone structures of musical instruments taken from a MIDI

synthesizer was used instead of the prior distributions of the original iLHA al-

gorithm.

Koretz and Tabrikian [KT11] proposed an iterative method for multi-pitch

estimation, which combines MAP and ML criteria. The predominant source

is expressed using a harmonic model while the remaining harmonic signals are

modelled as Gaussian interference sources. After estimating the predominant

source, it is removed from the spectrogram and the process is iterated, in a

similar manner to the spectral subtraction method of [Kla03]. It should also be

noted that the algorithm was also tested on speech signals in addition to music

signals.

2.3.3 Spectrogram Factorization Methods

A large subset of recent automatic music transcription approaches employ spec-

trogram factorization techniques. These techniques are mainly non-negative

matrix factorization (NMF) [LS99] and its probabilistic counterpart, proba-

bilistic latent component analysis (PLCA) [SRS06]. Both of these algorithms

will be presented in detail, since a large set of proposed automatic transcription
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methods in this thesis are based on PLCA and NMF.

Non-negative Matrix Factorization

Subspace analysis seeks to find low dimensional structures of patterns within

high-dimensional spaces. Non-negative matrix factorization (NMF) [LS99] is

a subspace method able to obtain a parts-based representation of objects by

imposing non-negative constraints. In music signal analysis, it has been shown

to be useful in representing a spectrogram as a parts-based representation of

sources or notes [MEKR11], thus the use of the term spectrogram factorization.

NMF was first introduced as a tool for music transcription by Smaragdis

and Brown [SB03]. In NMF, an input matrix V ∈ R
Ω×T
+ can be decomposed

as:

V ≈WH (2.6)

where H ∈ R
Z×T
+ is the atom activity matrix across T and W ∈ R

Ω×Z
+ is the

atom basis matrix. In (2.6), Z is chosen as min(Ω, T ), as to reduce the data

dimension. In order to achieve the factorization, a distance measure between

the input V and the reconstruction WH is employed, with the most common

being the Kullback-Leibler (KL) divergence or the Euclidean distance.

Thus, in the case of an input magnitude or power spectrogram V, H is the

atom activity matrix across time and W is the atom spectral basis matrix. In

that case also, t = 1, . . . , T is the time index and ω = 1, . . . ,Ω is the frequency

bin index, while z = 1, . . . , Z is the atom/component index. An example of

the NMF algorithm applied to a music signal is shown in Fig. 2.15, where the

spectrogram of the opening bars of J.S. Bach’s English Suite No. 5 is decomposed

into note atoms W and atom activations H.

In addition to [SB03], the standard NMF algorithm was also employed by

Bertin et al. in [BBR07] where an additional post-processing step was presented,

in order to associate atoms with pitch classes and to accurately detect note

onsets and offsets.

Several extensions of NMF have been used for solving the automatic tran-

scription problem. In [Con06], Cont has added sparseness constraints into the

NMF update rules, in an effort to find meaningful transcriptions using a min-

imum number of non-zero elements in H. In order to formulate the sparse-

ness constraint into the NMF cost function, the lǫ norm is employed, which

is approximated by the tanh function. An extension of the work in [Con06]

was proposed in [CDW07], where the input time-frequency representation was
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Figure 2.15: The NMF algorithm with Z = 5 applied to the opening bars of
J.S. Bach’s English Suite No. 5 (BWV 810 - recording from [Mar04]). (a) The
STFT spectrogram of the recording using a 46ms Hanning window. (b) The
computed spectral bases W (each basis corresponds to a different note). (c)
The activation H for each basis.

a modulation spectrogram. The 2D representation of a time frame using the

modulation spectrogram contains additional information which was also used

for instrument identification.

Raczyński et al. in [ROS07] presented a harmonically-constrained variant

of non-negative matrix approximation (which is a generalized version of NMF

which supports different cost functions) for multipitch analysis, called harmonic

non-negative matrix approximation (HNNMA). The spectral basis matrix W is

initialized to have non-zero values in the overtone positions of each pitch and

its structure is enforced with each iteration. Additional penalties in HNNMA

include a sparsity constraint on H using the l1 norm and a correlation measure

for the rows of H, in order to reduce the inter-row crosstalk. In [ROS09a],

additional regularizations are incorporated into the NNMA model, for enforcing

harmonicity and sparsity over the resulting activations.
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Niedermayer in [Nie08] introduced a method aiming to incorporate prior

knowledge about the pitch dictionary into the NMF algorithm. His approach

was called non-negative matrix division, and it included a step for tone model

learning before using a modified version of the unconstrained NMF with Eu-

clidean distance in order to extract the transcription. As an input, the magnitude-

warped power spectrum of [Kla03] was used.

Vincent et al. [VBB07, VBB08] incorporated harmonicity constraints in the

NMF model, resulting in two algorithms; harmonic and inharmonic NMF. The

model additionally constrains each basis spectrum to be expressed as a weighted

sum of narrowband spectra, in order to preserve a smooth spectral envelope for

the resulting basis functions. The inharmonic version of the algorithm is also

able to support inharmonic spectra and tuning deviations. An ERB-scale time-

frequency representation is used as input and a threshold-based onset/offset

detection is performed in a post-processing step. The harmonic constraints and

the post-processing procedure for note identification and onset/offset detection

were further refined in [VBB10].

A model for automatic transcription of multiple-instrument recordings was

proposed in [GE09], which extends the NMF algorithm to incorporate con-

straints on the basis vectors. Instrument models are incorporated using a group-

ing of spectral bases, called eigeninstruments.

Bertin et al. [BBV09, BBV10] expanded upon the work of [VBB08], propos-

ing a Bayesian framework for NMF, which considers each pitch as a model of

Gaussian components in harmonic positions. Spectral smoothness constraints

are incorporated into the likelihood function and for parameter estimation the

space alternating generalized EM algorithm (SAGE) is employed. Temporal

smoothness of the detected notes is also enforced by using a Markov chain prior

structure.

Nakano et al. [NRK+10] propose an NMF algorithm with Markov-chained

basis for modelling the temporal evolution of music sounds. The goal of the

system is to learn the time-varying sound states of musical instruments, such

as attack, sustain, and decay, without any prior information. The proposed

method is linked to the Viterbi algorithm using Factorial HMMs [GJ97].

In [DCL10], the NMF algorithm with β-divergence is utilised for piano tran-

scription. β-divergence is a parametric family of distortion functions which can

be used in the NMF cost function to influence the NMF update rules for W

and H. Essentially, β = 0 equally penalizes a bad fit of factorization for small

and large coefficients while when β > 0, emphasis is given to components with
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Figure 2.16: The activation matrix of the NMF algorithm with β-divergence
applied to the monophonic melody of Fig. 2.15. (a) β = 0 (b) β = 0.5 (c)
β = 1.

greater energy. A tradeoff between an equal penalization and a penalization of

coefficients with high energy only has been shown to produce improved results

for harmonic sounds (which typically have a strong fundamental and weaker

harmonics). It should also be mentioned that the method of [DCL10] was pub-

licly evaluated in the MIREX contest, giving good results in the piano-only note

tracking task. An example of the use of parameter β for the transcription of

the opening bars of J.S. Bach’s English Suite No. 5 can be seen in Fig. 2.16.

Costantini et al. in [CTS11] employed a variant of the NMF algorithm with

sparsity constraints for the activation matrix, using the constant-Q transform

as a time-frequency representation. The system also incorporated an onset

detector for splitting the input spectrogram into segments.
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Hennequin et al. [HBD10, HBD11a] proposed an NMF-based algorithm for

music signal analysis in order to model non-stationary note events. Since in a

tone each harmonic decays with a different rate, the proposed model extends the

NMF algorithm by including time-frequency activations based on autoregressive

moving average (ARMA) modeling.

Carabias-Orti et al. [OVC+11] proposed a spectrogram factorization tech-

nique for automatic transcription as well as for musical instrument identification

in polyphonic music. A harmonic comb-based excitation-filter model was incor-

porated into the NMF framework in order to model the excitation of different

musical instruments.

Durrieu et al. [DDR11] proposed a mid-level representation which com-

bines a source-filter model with the NMF algorithm in order to produce a pitch

track which also contains timbral information. This mid-level representation

was shown to be useful not only for multi-pitch detection, but also for melody

extraction and lead instrument/accompaniment separation.

Marolt [Mar12] proposed a system for automatically transcribing bell chim-

ing recordings using a modified version of the k-means algorithm for estimating

the number of bells in the recording and the NMF algorithm for estimating the

basis spectra of each bell. This system also incorporates an onset detector for

improving transcription performance.

Ochiai et al. [OKS12] propose an algorithm for multi-pitch detection and

beat structure analysis. The NMF objective function is constrained using in-

formation from the rhythmic structure of the recording, which helps improve

transcription accuracy in highly repetitive recordings.

Non-negative Matrix Deconvolution

Another variant of the NMF algorithm changes the model from a linear to

a convolutive one. Thus, two-dimensional bases can be learned from a time-

frequency representation, where the 2-D atoms are convolved with atom ac-

tivations. In [Sma04a, Sma04b], non-negative matrix deconvolution (NMD) is

proposed, whereV is considered to be the result of a convolution of time-varying

spectra with their activity matrices. The NMD model can be formulated as:

V ≈

T −1∑

τ=0

Wτ ·
−→
Hτ (2.7)
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where Wτ ∈ R
Ω×Z , H ∈ R

Z×T , and
−→
Hτ denotes shifting the columns of H by

τ spots to the right.

Schmidt and Mørup in [MS06, SM06] proposed an extension of NMD with

sparsity constraints, called sparse non-negative matrix factor 2-D deconvolution

(SNMF2D) for automatic transcription of polyphonic music. The method oper-

ates in the log-frequency domain, considering a constant shifted 2-D harmonic

structure as a basis. In this case, the l 1
2
norm of H was used in order to control

the sparseness, while non-negativity constraints on Wτ and H are explicitly

enforced for each iteration. It should also be noted that in [CŞS11], an alterna-

tive formulation of the NMD models is made, called probabilistic latent tensor

factorization (PLTF).

In [KDK12], a method for semi-automatic music transcription is proposed

which is based on a proposed model for shift-invariant NMD. The algorithm op-

erates in the log-frequency domain and extracts a different instrument spectrum

for each fundamental frequency under analysis. The term semi-automatic tran-

scription refers to the user providing prior information about the polyphonic

mixture or user transcribing some notes for each instrument in the mixture.

Probabilistic Latent Component Analysis

An alternative formulation of NMF was proposed by Smaragdis in [SRS06],

called probabilistic latent component analysis (PLCA). It can be viewed as a

probabilistic extension of the non-negative matrix factorization (NMF) algo-

rithm [LS99] using the Kullback-Leibler cost function, providing a framework

that is easy to generalize and interpret. PLCA can also offer a convenient way to

incorporate priors over the parameters and control the resulting decomposition,

for example using entropic priors [SRS08a]. In PLCA, the input spectrogram

Vω,t (ω denotes frequency, and t time), which must be scaled to have integer

entries, is modeled as the histogram of the draw of N independent random

variables (ωn, tn) which are distributed according to P (ω, t). P (ω, t) can be

expressed by the product of a spectral basis matrix and a component activity

matrix.

The asymmetric form of the PLCA model is expressed as:

Pt(ω) =
∑

z

P (ω|z)Pt(z) (2.8)

where z is the component index, P (ω|z) is the spectral template that corre-
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sponds to the z-th component, and Pt(z) is the activation of the z-th compo-

nent.

The generative model for PLCA as presented in [Sha07] is as follows:

1. Choose z according to Pt(z).

2. Choose ω according to P (ω|z).

3. Repeat the above steps Vt times (Vt =
∑
ω Vω,t).

In order to estimate the unknown parameters P (ω|z) and Pt(z), iterative

update rules are applied, using the Expectation-Maximization (EM) algorithm

[DLR77, SS04]. For the E-step, the a posteriori probability for the latent variable

is derived using Bayes’ theorem:

Pt(z|ω) =
P (ω|z)Pt(z)∑
z P (ω|z)Pt(z)

(2.9)

For the M-step, the expected complete data log-likelihood is maximised. The

expected log-likelihood is given by [Sha07]:

L = Ez̄|ω̄;Λ logP (ω̄, z̄) (2.10)

where ω̄, z̄ represent the set of all observations for ω, z and Λ = {P (ω|z), Pt(z)}.

The complete data likelihood P (ω̄, z̄) can be written as:

P (ω̄, z̄) =
∏

j,t

Pt(zj)P (ωj |zj) (2.11)

where ωj , zj are the values of ω, z in their j-th draw. Thus, L can be written

as:

L =
∑

j,t,z

P (z|ωj) logPt(z) +
∑

j,t,z

P (z|ωj) logP (ωj|z) (2.12)

By introducing Lagrange multipliers in (2.12) and maximising with respect to

P (ω|z) and Pt(z) leads to the following M-step equations:

P (ω|z) =

∑
t Vω,tPt(z|ω)∑
ω,t Vω,tPt(z|ω)

(2.13)

Pt(z) =

∑
ω Vω,tPt(z|ω)∑
z,ω Vω,tPt(z|ω)

(2.14)

The update rules of (2.9)-(2.14) are guaranteed to converge to a local min-
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Figure 2.17: (a) The log-frequency spectrogram P (ω, t) of a C4 piano note (b)
Approximation of the spectrogram using PLCA with z = 1 component (c) The
spectral template P (ω|z) (d) The gain Pt(z).

imum. In Fig. 2.17, an example of the application of the PLCA method to a

log-frequency spectrogram of a piano note can be seen.

An extension of the asymmetric PLCA algorithm was used for multiple-

instrument transcription in [GE10, GE11], where a system was proposed which

supported multiple spectral templates for each pitch and instrument source.

The notion of eigeninstruments was again utilised (as in [GE09]), by modeling

the fixed spectral templates as a linear combination of basic instrument models

in a training step. The model was expressed as:

P (ω, t) = P (t)
∑

s

∑

p

∑

z

P (ω|p, z, s)P (z|s, p, t)P (s|p, t)P (p|t) (2.15)

In (2.15), p corresponds to pitch, s to the instrument source, and z to the index

of pitch components per instrument. Thus, P (ω|p, z, s) is the spectral template

that corresponds to the p-th pitch, s-th source, and z-th component. P (p|t)

is the transcription output and P (t) is the signal energy (known quantity).

Sparsity was enforced on the pitch activity matrix and the source contribution

matrix by modifying the model update equations. Experiments were performed

on J.S. Bach duets and on pairs of tracks from the multi-track MIREX multi-F0
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woodwind recording [MIR], which is also used in this thesis.

Shift-Invariant Probabilistic Latent Component Analysis

Incorporating a shift-invariant model into the PLCA framework is practical

since the sum of two random variables corresponds to a convolution of their

distribution. Shift-invariant PLCA [SRS08b] was proposed for extracting shifted

structures in non-negative data. It has been used in music signal processing

applications using a normalized log-frequency spectrogram as an input, since a

shift over log-frequency corresponds to a pitch change.

The shift-invariant PLCA (SI-PLCA) model can be defined as:

P (ω, t) =
∑

z

P (z)P (ω|z) ∗ω P (f, t|z)

=
∑

z

P (z)
∑

f

P (ω − f |z)P (f, t|z) (2.16)

where ω is the log-frequency index, z the component index, and f the shifting

factor. P (ω − f |z) = P (µ|f) denotes the spectral template for the z-th compo-

nent, P (f, t|z) the time-varying pitch shifting, and P (z) the component prior.

Again, the EM algorithm can be used for deriving update rules for the unknown

parameters:� E Step

P (f, z|ω, t) =
P (z)P (ω − f |z)P (f, t|z)∑
z,f P (z)P (ω − f |z)P (f, t|z)

(2.17)� M Step

P (z) =

∑
ω,t,f Vω,tP (f, z|ω, t)∑
z,ω,t,f Vω,tP (f, z|ω, t)

(2.18)

P (µ|z) =

∑
f,t Vω,tP (f, z|ω, t)∑
ω,f,t Vω,tP (f, z|ω, t)

(2.19)

P (f, t|z) =

∑
ω Vω,tP (f, z|ω, t)∑

f,t,ω Vω,tP (f, z|ω, t)
(2.20)

An example of SI-PLCA applied to a music signal is given in Fig. 2.18, where

the input log-frequency spectrogram of a cello melody is decomposed into a

spectral template and a pitch impulse distribution.

Regarding applications of SI-PLCA, in [Sma09] the SI-PLCAmodel was used
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Figure 2.18: (a) The log-frequency spectrogram P (ω, t) of a cello melody (RWC-
MDB-C-2001 No. 12 [GHNO03]) (b) Approximation of the spectrogram using
SI-PLCA with z = 1 (c) The spectral template P (ω|z) (d) The pitch distribution
P (f, t|z).

for relative pitch tracking, where sparsity was enforced on the unknown matrices

using an entropic prior. Mysore and Smaragdis [MS09] used the SI-PLCA model

for multiple-instrument relative pitch tracking, tested on the MIREX multi-F0

recording [MIR]. For eliminating octave errors, a sliding-Gaussian Dirichlet

prior was used in the model, while a temporal continuity constraint using a

Kalman filter type smoothing was applied to P (f, t|z) in order to extract a

smooth pitch track.

More recently, an extension of the SI-PLCA algorithm was proposed for har-

monic signals by Fuentes et al. [FBR11]. Each note is modeled as a weighted

sum of narrowband log-spectra which are also shifted across log-frequency. This

approach is a convolutive probabilistic formulation of the harmonic NMF al-

gorithm proposed by Vincent [VBB10], with added time-dependence for the

weights of the narrowband spectra. The harmonic SI-PLCA method was tested

for single-pitch detection on isolated note samples and a model was proposed

for multi-pitch detection. An asymmetric minimum variance prior was also in-

corporated into the parameter update rules in order to eliminate or reduce any

harmonic errors.

Finally, a variant of PLCA was proposed for extracted scale-invariant struc-
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tures from linear frequency spectrograms in [HBD11b], which is equivalent to

extracting shift-invariant structures in log-frequency spectrograms. This scale-

invariant PLCA is useful for detecting frequency shifts when a linear frequency

representation such as the STFT is used. This can be useful for reconstructing

individual sources, which might not be possible when a log-frequency represen-

tation is utilised.

Non-negative Hidden Markov Model

NMF and PLCA are not able to handle non-stationarity in signals. Their convo-

lutive counterparts, NMD and SI-PLCA are able to extract 2-D structures from

a time-frequency representation, which could assist in detecting non-stationary

events. However, the dimensions of these 2-D structures are fixed, making the

models not suitable for music signal analysis, where notes do not have a fixed

duration. To that end, Mysore in [Mys10, MSR10] introduced temporal con-

straints into the PLCA model for music signal analysis and source separation.

This non-negative hidden Markov model (NHMM) expressed each component

using a set of spectral templates linked to a hidden state in an HMM. Thus,

temporal constraints can be introduced in the NMF framework for modeling

non-stationary events.

In the non-negative hidden Markov model, the input spectrogram Vω,t is

decomposed into a series of spectral templates per component and state, with

corresponding time-varying mixture weights for the components. The model in

terms of the observations is formulated as:

Pt(ωt|qt) =
∑

zt

Pt(zt|qt)P (ωt|zt, qt) (2.21)

where P (ωt|zt, qt) denotes the spectral template for component z and state q,

and Pt(zt|qt) are the time-varying mixture weights. The use of subscript t in

Pt(·) means that there is a separate distribution for each time frame. The sub-

script t in random variables zt, ωt, qt refers to the value of the random variable

for the specific time frame. Pt(ωt|qt) is the time-varying observation probabil-

ity used in the HMM. Thus, the normalized spectrum of each time frame is

approximated by:

Pt(ω) =
∑

qt

Pt(ωt|qt)Pt(qt) (2.22)

where Pt(qt) is the state activation, which can be computed using the HMM
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Figure 2.19: An example of a non-negative hidden Markov model using a left-
to-right HMM with 3 states.

forward-backward procedure [Rab89]. Again, iterative update rules can be de-

rived using the EM algorithm [DLR77]. An diagram of the NHMM using 3

states is shown in Fig. 2.19.

An extension of the NHMM for two sources was also proposed by Mysore

[Mys10], which employed factorial HMMs [GJ97]. Factorial HMMs are used to

model multiple time series data using a common observation. Thus, each source

has its own transition matrix and state prior, but the observation probability is

joint for all sources.

2.3.4 Sparse Methods

The basic concept of sparse coding [OF97] is similar to the aforementioned NMF

model: we wish to express the observation V as a linear mixture of the matrices

W (denoting the spectral basis) and H (the source weights). In sparse coding

though, the sources are assumed to be non-active most of the time, resulting in

a sparse H; in order to derive the basis, ML estimation is performed.

In 2004, Blumensath and Davies [BD04] proposed an iterative reweighted

least squares solution to the sparse coding problem for learning the basis func-

tions in polyphonic piano music. Abdallah and Plumbley [AP04, AP06] used

an ML approach for dictionary learning using non-negative sparse coding. Dic-

tionary learning occurs directly from polyphonic samples, without requiring

training on monophonic data, while the magnitude spectrum was used as input.
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Convolutive sparse coding for sound source separation was presented by

Virtanen in [Vir04], which is linked to non-negative matrix deconvolution pre-

sented in subsection 2.3.3. As in NMD, the resulting spectrum is considered to

be produced by a convolution of source basis spectrograms and onset vectors. In

addition, instead of a Euclidean distance-based cost function, a model fitting cri-

terion based on loudness perception is proposed. Shift-invariant sparse coding,

which is equivalent to convolutive sparse coding, was proposed in [MSH08] for

automatic transcription in multi-instrument mixtures. In that case, the model

extracts a spectral template per instrument source, which is shifted across log-

frequency, as in SI-PLCA.

Derrien et al. [Der06] proposed a method for the decomposition of music

spectrograms, based on the matching pursuit (MP) algorithm. A dictionary of

atoms in the log-frequency scale was used and comparisons were made with the

constant-Q spectrogram using a piano piece by Mozart.

Bertin et al. [BBR07] compared NMF with non-negative K-SVD, which is

a sparse coding-like algorithm for image coding. The l0 norm was used as a

sparsity measure, and the algorithms’ performance was found similar, although

NMF is preferred due to its lower computational cost (even though in NMF

sparsity is an uncontrolled side-effect).

Cañadas-Quesada et al. [QCR+08] proposed a note detection approach based

on the harmonic matching pursuit (HMP) algorithm. The obtained atoms are

further processed using an algorithm based on the spectral smoothness princi-

ple. Also, Carabias-Orti et al. [OCQR10] proposed an unsupervised process for

learning spectral patterns of notes using the matching pursuit (MP) algorithm.

Spectral patterns are learned using additional constraints on harmonicity, enve-

lope smoothness, temporal continuity, and stability. The learned patterns are

used in a note-event detection system, where the harmonic atoms are clustered

according to the amplitude distribution of their spectral envelopes.

Sparse coding of Fourier coefficients was also used in [LYC11] for piano

transcription. The sparse representation is solved by l1 minimization, while a

postprocessing step for note tracking is applied using pitch-wise hidden Markov

models. This method was also publicly evaluated in [LYLC10] for the MIREX

piano note tracking task. The model can be formulated as:

ĥt = argmin ||ht||1, s.t. vt = Wht (2.23)

where vt is the input spectral vector at frame t, W is the dictionary matrix,
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and ht is the activation of the dictionary atoms. || · ||1 refers to the l1 norm. A

method for automatic transcription using exemplar-based sparse representations

was also proposed by the same authors in [LYC12]. In this method, a piano

music segment is expressed as a linear combination of a small number of note

exemplars from a dictionary. The drawback of this method is that it requires

note samples from the same source as the recording (although it does not require

as many samples as the note range of the instrument).

In [OP11] a method for structure-aware dictionary learning is proposed and

applied to piano transcription, which takes into account harmonicity in mu-

sic spectra. Modifications on the NMF and K-SVD algorithms were made by

incorporating structure-awareness. More recently in [ONP12], structured spar-

sity (also called group sparsity) was applied to piano transcription. In group

sparsity, groups of atoms tend to be active at the same time.

Finally in [Sma11], the notion of exemplars was also utilised for polyphonic

pitch tracking. The method is formulated as a nearest subspace search problem.

The input time-frequency representation is a normalized magnitude spectro-

gram, which as in the PLCA case, can exploit the l2 norm for enforcing sparsity

on the atom activations. The problem requires the minimization of the following

cost function:

D[vt|W · ht]− ρ
∑

i

h2i,t (2.24)

where W is the dictionary matrix, vt the spectrum of the input signal, ht is the

atom activation for the t-th frame, hi,t the activation value for the i-th atom, and

ρ is the sparsity parameter. In [Sma11], D[·] was set to be the Kullback-Leibler

divergence.

2.3.5 Machine Learning Methods

A limited number of methods in the literature use standard machine learning

techniques in order to estimate multiple F0s in frame-based systems. Chien

and Jeng in [CJ02] proposed a signal processing-based system which solved the

octave detection problem using a support vector machine (SVM) classifier. The

constant-Q transform was used as input and the features used to train the SVM

classifiers (one classifier for each pitch) were the partial amplitudes within a

short period of time following an onset.

Marolt in [Mar04] performed a comparison of neural networks for note recog-

nition, using as input features the output values of oscillator networks. A net-
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work of adaptive oscillators was used for tracking the partials of each pitch. The

best performance was reported for the time-delay neural networks (TDNNs).

Pertusa and Iñesta in [PI04, PI05] also used TDNNs for polyphonic music

transcription, where the input consisted of pre-processed STFT bins. Poliner

and Ellis [PE07a, PE07b] also used STFT bins for frame-level piano note clas-

sification using one-versus-all SVMs. In order to improve transcription per-

formance, the classification output of the SVMs was fed as input to a hidden

Markov model (HMM) for post-processing.

Giubin and Sheng [GS07a] proposed a transcription method which used a

backpropagation neural network for classification. The input features were de-

rived from an adaptive comb filter using an FFT as input. The system also

supported the detection of onsets, repeated notes, as well as note duration and

loudness estimation.

Zhou [Zho06] also used two-class SVMs for a comparative system for multiple-

F0 estimation, using as features spectral peak amplitudes extracted from the

RTFI representation. Gang et al. [GBHL09] employed a max-margin classifier

for polyphonic music transcription, where features derived from partial ampli-

tudes were used.

Costantini et al [CPT09] also employed SVMs for note classification and off-

set detection in piano recordings. The input time-frequency representation was

the constant-Q transform (CQT). The CQT bins were used as features for the

SVM classifier. It should be mentioned that this system performs classification

at the time instants of each note onset, estimated from an onset detector.

Ortiz et al. [OBBC10] proposed a lightweight pitch detector to be used in

embedded systems. A multilayer perceptron was used for classification, while

the Goertzel Algorithm was employed for computing the frequency components

of the signal on a log-frequency scale, which are used as features.

Nam et al. [NNLS11] employed deep belief networks for polyphonic piano

transcription. Training was made using spectrogram bins as features and using

both single notes and note combinations. For note tracking, the pitch-wise

HMMs from [PE07a] were used.

Finally, Bock and Schedl [BS12] used recurrent neural networks for poly-

phonic piano transcription. Features consist of the output of two semitone

filterbanks, one with short and one with a long window frame. A bidirectional

long short-term memory (BLSTM) neural network is used for note classification

and onset detection. In Fig. 2.20, the system diagram of the method proposed

by [BS12] can be seen.
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Figure 2.20: System diagram of the piano transcription method in [BS12].

2.3.6 Genetic Algorithm Methods

A radically different approach for automatic music transcription is the use of

genetic algorithms. Essentially, a transcription is estimated which is mutated

using a genetic algorithm until it matches some criterion. In the case of pro-

posed approaches for transcription using genetic algorithms, this criterion is

the similarity between the original signal and the synthesized signal from the

estimated transcription.

In [Fon08, FF09], a possible piano-roll transcription is estimated from frag-

ments defined by note onsets, is synthesized, and is compared with the original

spectrogram. The procedure is iterated by mutating the piano-roll, until conver-

gence is observed. In [Lu06], the same basic procedure is employed, although the

features used for synthesizing the transcription are pitch, timbre and dynamics.

Mutations employed by the proposed method in [Lu06] include a random note

change, a change in note duration, note split, note reclassification, and note

assimilation.

Finally, in [RFdVF08] a hybrid genetic algorithm based on gene fragment

competition was proposed for polyphonic music transcription. The proposed

method performs a quasi-global/quasi-local search by means of gene fragment

evaluation and selection using as feature the STFT peaks of the original signal.

A similar method was also publicly evaluated in the MIREX multiple-F0 and

note tracking task by the same authors in [RFF11], where the current fitness

function for the genetic algorithm is based on the log-spectral distance between

the spectra of the original and synthesized recordings.

2.4 Note Tracking

Typically automatic transcription algorithms compute a time-pitch representa-

tion such as a pitch activation matrix, which needs to be further processed in

order to detect note events (i.e. with note onsets and offsets). This procedure is
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called note tracking or note smoothing. Most spectrogram factorization methods

estimate the binary piano-roll representation from the pitch activation matrix

using simple thresholding [GE11, Nie08, VBB08]. In [GE11] is is shown that

the proposed PLCA-based algorithm is fairly robust to the choice of threshold.

One simple and fast solution for note tracking is minimum duration pruning

[DCL10], which is applied after thresholding. Essentially, note events which

have a duration smaller than a predefined value are removed from the final

piano-roll. This method was also used in [BDS06], where more complex rules

for note tracking were used, such as in the case where a small gap exists between

two note events.

In [PE07a], a computationally inexpensive note tracking method was pro-

posed, in order to post-process the non-binary posteriogram of SVM classi-

fiers which were used for multi-pitch estimation. In this approach, pitch-wise

hidden Markov models were used, where each HMM has two states, denot-

ing note activity and inactivity. The HMM parameters (state transitions and

priors) were learned directly from a ground-truth training set, while the ob-

servation probability is given by the posteriogram output for a specific pitch.

The Viterbi algorithm [Rab89] is used for computing the optimal state se-

quence for each pitch, thus producing the final piano-roll. Given a pitch-

wise state sequence Q(p) = {q
(p)
t }, t = 1, . . . , T and a sequence of observations

O(p) = {o
(p)
t }, t = 1, . . . , T , the optimal state sequence is achieved by maximiz-

ing: ∏

t

P (o
(p)
t |q

(p)
t )P (q

(p)
t |q

(p)
t−1) (2.25)

where p = 1, . . . ,P denotes pitch, P (q
(p)
t |q

(p)
t−1) is the state transition matrix for

a given pitch, and P (o
(p)
t |q

(p)
t ) is the pitch-wise observation probability. The

graphical structure of the pitch-wise HMM proposed in [PE07a] can be seen in

Fig. 2.21. An example of the note tracking procedure of [PE07a] can be seen in

Fig. 2.22, where the pitch activation output of an NMF-based algorithm with

β-divergence is used for HMM-based note tracking. This method has also been

employed for other transcription systems, e.g. [QRC+10], where P (o
(p)
t |q

(p)
t )

was computed using the pitch salience as input to an exponential probability

density function (PDF). The note tracking method of [PE07a] was also used in

[LYLC10].

A more complex HMM architecture was proposed in [EBD08] for note track-

ing, where each HMM state corresponds to note combinations (more specifically,
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Figure 2.21: Graphical structure of the pitch-wise HMM of [PE07a].

chords). As in [PE07a], note combination transitions and priors were learned

from MIDI data. However, it should be noted that the number of states is large:
∑L
l=0

(
Nc

L

)
, where L is the maximum polyphony level and Nc is the set of pitch

candidates.

Finally in [ROS09b], dynamic Bayesian networks (DBNs) were proposed for

note tracking using as input the pitch activation of an NMF-based multipitch

detection algorithm. The DBN has a note layer in the lowest level, followed by

a note combination layer. Model parameters were learned using MIDI files from

F. Chopin piano pieces.

2.5 Evaluation metrics

Evaluation of automatic transcription systems is typically done in two ways:

frame-based evaluation and note-based evaluation.

2.5.1 Frame-based Evaluation

Frame-based evaluations are made by comparing the transcribed output and

the ground-truth frame by frame typically using a 10 ms step, as in the MIREX

multiple-F0 estimation task [MIR]. A commonly employed metric is the overall

accuracy, defined by Dixon in [Dix00]:

Acc1 =

∑
nNtp [n]∑

nNfp [n] +Nfn [n] +Ntp [n]
(2.26)

where Ntp [n] is the number of correctly detected pitches at frame n, Nfn [n]

denotes the number of false negatives, and Nfp [n] the number of false positives.
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Figure 2.22: An example of the note tracking procedure of [PE07a].
(a) The NMF-based pitch activation of the first 30 sec of ‘MAPS MUS-
alb se2 ENSTDkCl’ from the MAPS database [EBD10]. (b) The output of
the HMM-based note tracking step.

In the MIREX task, a variant of Acc1 is also used, called ‘Chroma Accuracy’

(Acc1c), where the reference ground-truth and transcribed output are warped

to one octave.

A second accuracy metric is also used for evaluation, proposed in [KNS07],

which also takes into account pitch substitutions:

Acc2 =

∑
nNref [n]−Nfn [n]−Nfp [n] +Nsubs [n]∑

nNref [n]
(2.27)

where Nref [n] is the number of ground-truth pitches at frame n and Nsubs [n] is

the number of pitch substitutions, given by Nsubs [n] = min(Nfn [n], Nfp [n]).

The frame-wise precision, recall, and F-measure metrics are also used for
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evaluating transcription systems, defined in [VBB10] as:

Pre =

∑
nNtp [n]∑
nNsys [n]

Rec =

∑
nNtp [n]∑
nNref [n]

F =
2 · Rec · Pre

Rec + Pre
(2.28)

where Nsys [n] is the number of detected pitches for the n-th frame.

From the aforementioned definitions, several error metrics have been defined

in [PE07a] that measure the substitution errors (Esubs), missed detection errors

(Efn), false alarm errors (Efp), and the total error (Etot ):

Esubs =

∑
nmin(Nref [n], Nsys [n])−Ncorr [n]∑

nNref [n]

Efn =

∑
nmax(0, Nref [n]−Nsys [n])∑

nNref [n]

Efp =

∑
nmax(0, Nsys [n]−Nref [n])∑

nNref [n]

Etot = Esubs + Efn + Efp (2.29)

It should be noted that the aforementioned error metrics can exceed 100% if

the number of false alarms is very high [PE07a].

2.5.2 Note-based Evaluation

For note-based evaluation, the output of a transcription system is typically

in MIDI-like format, stating for each note event an onset, an offset, and the

respective pitch. In this case, the evaluation is more straightforward. There

are two ways of evaluating transcription algorithms using note-based metrics:

firstly, by only utilizing information from note onsets and secondly by using

information from onsets and offsets.

For onset-only evaluation, according to the MIREX [MIR] specifications, a

note event is assumed to be correct if its onset is within a ±50 ms range of a

ground-truth onset and its F0 is within ± a quarter tone (3%) of the ground-

truth pitch. For this case, metrics are defined in a similar way to (2.28), resulting

in the onset-only note-based precision, recall, and F-measure, denoted as Preon ,

Recon , and Fon , respectively.

For onset-offset evaluation, the same rules apply as in the onset-only evalua-

tion, plus the offset of each note needs to be within 20% of ground-truth note’s

duration around the ground-truth note’s offset value, or within 50 milliseconds

of the ground-truth notes offset, whichever is larger [BED09b]. Again, preci-
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sion, recall, and F-measure metrics are defined in a similar way to (2.28), being

Preoff , Recoff , and Foff , respectively.

2.6 Public Evaluation

Public evaluations of various multiple-F0 estimation and note tracking ap-

proaches are carried out as part of the Music Information Retrieval Evaluation

eXchange (MIREX) framework [MIR]. Multiple-F0 estimation is evaluated in a

frame-based manner, while the note tracking task performs evaluation for note-

based events. For note tracking, two separate evaluations are made, one for

multiple-instrument transcription and one for piano-only transcription. Results

for the note tracking task are given using onset-only information, and using

both note onsets and offsets.

Currently, the dataset used for evaluation consists of 30 recordings of 30 sec

duration taken from a woodwind quintet recording of L. van Beethoven’s Vari-

ations for String Quartet, Op.18 No. 5 and synthesized pieces from the RWC

database [GHNO03]. The dataset also includes ten 30 sec recordings recorded

from a Disklavier piano [PE07a]. A 5-track woodwind recording is used as a de-

velopment dataset4, which was annotated by the author and Graham Grindlay.

An overview of the results for the MIREX multiple-F0 estimation and note

tracking tasks for 2007-2008 was made in [BED09b]. For these years, 16 algo-

rithms from 12 labs and 11 algorithms from 7 labs were tested, respectively. For

the multiple F0 estimation task, the best results were reported by the methods

proposed by Yeh [Yeh08], Pertusa and Iñesta [PI08], Ryynänen and Klapuri

[RK05], and Zhou and Reiss [ZR08]. All of the aforementioned approaches em-

ploy signal processing techniques for multiple-F0 estimation without any learn-

ing procedures or statistical models (Ryynänen’s method employs HMMs in a

post-processing step). For the note tracking task, the best results were also

reported by the methods proposed by Yeh, Ryynänen and Klapuri, and Zhou

and Reiss, followed by the SVM-based approach by Poliner and Ellis [PE07a].

As far as runtimes were concerned, the most efficient algorithm was the one by

Zhou [ZR07], followed by the algorithm by Pertusa [PI08].

Best results for the multiple-F0 estimation task for years 2009-2011 are pre-

sented in Table 2.3. In 2009, the best results for the multiple-F0 estimation task

were also reported by Yeh [Yeh08], followed by the statistical modelling method

4http://www.music-ir.org/evaluation/MIREX/data/2007/multiF0/ (password required)

52

http://www.music-ir.org/evaluation/MIREX/data/2007/multiF0/


Participants Metric 2009 2010 2011

Yeh and Röbel
Acc1 0.69 0.69 0.68
Acc1c 0.71 0.71 0.70

Dressler
Acc1 - - 0.63
Acc1c - - 0.66

Cañadas-Quesada et al.
Acc1 - 0.49 -
Acc1c - 0.54 -

Benetos and Dixon
Acc1 - 0.47 0.57
Acc1c - 0.55 0.63

Duan, Han, and Pardo
Acc1 0.57 0.55 -
Acc1c 0.61 0.59 -

Table 2.3: Best results for the MIREX Multi-F0 estimation task [MIR], from
2009-2011, using the accuracy and chroma accuracy metrics.

of Duan et al. [DHP09]. For the note tracking task, the best F-measure was

reported by the system by Nakano et al. [NEOS09], which is based on the HTC

algorithm by Kameoka et al. [KNS07]. The same rankings were reported for

the piano-only note tracking task.

For 2010, the best multiple-F0 estimation results were reported by Yeh and

Röbel [Yeh08], followed by Duan et al. [DHP09] and Cañadas-Quesada et al.

[QRC+10]. The same rankings were reported for the note tracking task.

For 2011, again the best results were reported by Yeh and Röbel [Yeh08],

followed by Dressler [Dre11] and Benetos and Dixon [BD11b]. For note tracking,

the best results were reported by Yeh and Röbel [Yeh08] followed by Benetos

and Dixon [BD11b]. It should also be noted that the method by Dressler [Dre11]

was by far the most computationally efficient.

It should be noted that results for the note tracking task are much inferior

compared to the multiple-F0 estimation task, being in the range of 0.2-0.35

average F-measure with onset-offset detection and 0.4-0.55 average F-measure

for onset-only evaluation.

2.7 Discussion

2.7.1 Assumptions

Most of the proposed methods for automatic transcription rely on several as-

sumptions in order to solve the multiple-F0 estimation problem. The most basic

assumption is harmonicity, which states that the frequency of partials of a har-
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monic sequence are placed at integer multiples of the fundamental. In practice

though, in certain instruments (e.g. piano) partials are slightly shifted upwards

in frequency due to the inharmonicity phenomenon which needs to be taken

into account [Kla04a]. Inharmonicity occurs due to string stiffness, where all

partials of an inharmonic instrument have a frequency that is higher than their

expected harmonic value [BQGB04].

A commonly used model for automatic transcription which supports inhar-

monicity considers a pitch p of a musical instrument sound with fundamental

frequency fp,0 and inharmonicity coefficient bp. The partials for that sound are

located at frequencies:

fp,h = hfp,0

√
1 + (h2 − 1)bp (2.30)

where h ≥ 1 is the partial index [KD06].

One of the most common assumptions used is spectral smoothness [BJ05,

Cau99, EBD10, Kla03, PI08, Yeh08], which assumes that the spectral envelope

of a pitched sound is smooth, although that assumption frequently does not

appear to be valid. An example of that case can be seen in Figure 2.23, where

the envelope of a trumpet sound forms a smooth contour, unlike the envelope

of a clarinet sound, where even partials have lower amplitude compared to the

odd ones.

Another assumption, which is implied for the spectral smoothness principle

and is employed in subspace-based additive models is power summation [dC06],

where it is assumed that the amplitude of two coinciding partials equals the

sum of their respective amplitudes. In fact though, considering two coincid-

ing partials with amplitudes a1 and a2, the resulting amplitude is given by

a = |a1 + a2e
i∆φ|, where ∆φ is their phase difference [Kla01]. This assump-

tion can lead to estimation problems in the presence of harmonically-related

pitches (pitches whose fundamental frequencies are in a rational number rela-

tion), which are frequently found in Western music. Also, when used explicitly

in iterative approaches for multiple-F0 estimation (like [Kla03]), it can lead to

signal corruption. In practice, the resulting amplitude is often considered to

be the maximum of the two [dC06]. The power summation assumption is also

implied in all spectrogram factorization approaches for automatic transcription,

which use an additive model for representing a spectrum.

Other assumptions frequently encountered in multiple-F0 estimation systems

include a constant spectral template for all pitches, as in [SKT+08]. Spectro-
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Figure 2.23: Trumpet (a) and clarinet (b) spectra of a C4 tone (261Hz). Over-
tones occur in positions determined by integer multiples of the fundamental
frequency. In the trumpet case, the partial envelope produces a smooth con-
tour, which is not the case for the clarinet.

gram factorization-based approaches usually consider one spectral template per

pitch, which is however not sufficient for characterizing sounds produced by

different instrument types, or even sounds produced by the same instrument

at different conditions (instrument model, dynamics, articulation). These ap-

proaches also consider a similar decay model for all partials using a constant

spectral template, when in fact higher partials decay more rapidly compared

to lower partials. The problem of using a constant spectral template was ad-

dressed using non-negative matrix deconvolution [Sma04a, Sma04b] and convo-

lutive sparse coding [Vir04], but a different issue arises because these algorithms

use constant 2D templates with fixed note lengths, which is not the case in real-

world music where notes have arbitrary durations.
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2.7.2 Design Considerations

An overview of the design considerations that go into the development of a

multiple-F0 estimation system will be given. The first decision to be made is

selecting the time-frequency representation that will be used for the subsequent

analysis. As shown in Section 2.3, most approaches use the short-time Fourier

transform, due to its strong theoretic background and computational efficiency.

There are however several drawbacks using the STFT, such as the constant

frequency resolution which can create problems in detecting lower pitches. Us-

ing a log-frequency representation like the wavelet transform or the constant-Q

representation of sounds has the advantage that the spacing between individ-

ual harmonics is the same for all pitches [Sma09], unlike the STFT. To that

end, filterbank methods have been employed in the literature, trying to use

an auditory front-end in an effort to produce improved estimation performance.

The unitary model proposed by Meddis in [MH92, MO97] performs a non-linear

transform into each filterbank input, which can assist pitch detection in the case

of suppressed fundamentals, but can also create false spectral peaks in chord

roots [TK00] due to the half-wave rectification, making the model useful for

the monophonic case but problematic in the case of polyphonic western music,

where harmonic relations are quite common. Another approach for comput-

ing a T/F representation for transcription is to increase the FFT resolution,

using quadratic interpolation, parametric methods, or using non-stationary si-

nusoidal modelling techniques, such as the reassignment spectrum [Hai03], with

the drawback of increased computational cost.

Another choice concerns the algorithm for multiple-F0 estimation. Signal

processing methods for transcription (e.g. [Kla03, PI08, YRR10]) have proved

to be quite robust and computationally inexpensive. However, they are diffi-

cult to generalize and to control, since their performance is mostly based on a

combination of audio features and ad-hoc models. Spectrogram factorization

models and sparse decomposition approaches ([VBB08, GE11, LYC12]) seem

more appropriate for multi-pitch estimation, since they are based on a sim-

ple and transparent model which is easy to control and generalize. However,

most spectrogram factorization-based approaches are computationally expen-

sive and the results are sometimes not as high compared to signal processing-

based approaches. Furthermore, spectrogram factorization-based approaches

for multi-pitch detection are mostly based on the magnitude of the frequency or

log-frequency bins of a spectrogram, thus ignoring any additional features from
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audio processing which might improve transcription performance. Although

machine learning methods have been shown to be appropriate for classification

problems, problems have been reported regarding their generalization perfor-

mance for the automatic transcription task (e.g. [PE07a]).

A third choice would be whether to perform multiple-F0 estimation on a

frame-by-frame basis and afterwards form the notes using the frame-based pitch

estimates or to jointly perform multipitch tracking. Only a few methods in the

literature perform multiple-F0 estimation and note tracking in a joint fashion,

due to the complexity of the problem. Such methods include the HTC algo-

rithm by Kameoka [KNS07], the HMM-based model by Chang [CSY+08], the

constrained clustering model proposed by Duan [DHP09], and the Poisson point

process model for multi-pitch detection combined with a dynamical model for

note transitions proposed by Bunch and Godsill [BG11]. Finally, another de-

sign consideration is whether the developed system is able to perform instrument

identification along with multi-pitch detection (e.g. [GE11]).

2.7.3 Towards a Complete Transcription

Most of the aforementioned transcription approaches tackle the problems of

multiple-F0 estimation and note onset and offset detection. However, in order

to fully solve the AMT problem and have a system that provides an output

that is equivalent to sheet music, additional issues need to be addressed, such as

metre induction, rhythm parsing, key finding, note spelling, dynamics, fingering,

expression, articulation and typesetting. Although there are approaches that

address many of these individual problems, there exists no ‘complete’ AMT

system to date.

Regarding typesetting, current tools produce readable scores from MIDI

data only (e.g. Lilypond5), ignoring cues from the music signal which could also

assist in incorporating additional information into the final score (e.g. expres-

sive features for note phrasing). As far as dynamics are concerned, in [EM11]

a method was proposed for estimating note intensities in a score-informed sce-

nario. However, estimating note dynamics in an unsupervised way has not been

tackled. Another issue would be the fact that most existing ground-truth does

not include note intensities, which is difficult to annotate manually, except for

datasets created using reproducing pianos (e.g. [PE07a]), which automatically

contain intensity information such as MIDI note velocities.

5http://lilypond.org/
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Recent work [BKTB12] addresses the problem of automatically extract-

ing the fingering configurations for guitar recordings in an AMT framework.

For computing fingering, information from the transcribed signal as well as

instrument-specific knowledge is needed. Thus, a robust instrument identifica-

tion system would need to be incorporated for computing fingerings in multi-

instrument recordings.

For extracting expressive features, some work has been done in the past,

mostly in the score-informed case. In [GBL+11] a framework for extracting

expressive features both from a score-informed and an uninformed perspective

is proposed. In the latter case, an AMT system is used prior to the extraction of

expressive features. It should be mentioned though that the extracted features

(e.g. auditory loudness, attack, pitch deviation) do not necessarily correspond to

expressive notation. Thus, additional work needs to be done in order to provide

a mapping between mid-level expressive features and the expressive markings

in a final transcribed music score.
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Chapter 3

Audio Feature-based

Automatic Music

Transcription

3.1 Introduction

This chapter presents proposed methods for multiple-F0 estimation of isolated

sounds as well as for complete recordings using techniques from signal processing

theory. Audio features are proposed which exploit the spectral structure and

temporal evolution of notes. Firstly, an iterative multiple-F0 estimation method

for isolated piano sounds is presented, which was published in [BD10a]. This

method is also converted into a system for automatic music transcription, which

was publicly evaluated in [BD10b].

Afterwards, a method for joint multiple-F0 estimation is proposed, which is

based on a novel algorithm for spectral envelope estimation in the log-frequency

domain. This method was published in [BD11a]. For this method, a novel

note tracking procedure was also utilized using conditional random fields. An

extension of the aforementioned system is also presented, which applies late

fusion-based onset detection and hidden Markov model-based offset detection,

which was published in [BD11d]. Finally, evaluation results are presented in

this chapter for all proposed methods.
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Figure 3.1: Diagram for the proposed multiple-F0 estimation system for isolated
piano sounds.

3.2 Multiple-F0 Estimation of Piano Sounds

Initial research consists of a system for multiple-F0 estimation of isolated piano

sounds which uses candidate selection and several rule-based refinement steps.

The resonator time-frequency image (RTFI) is used as a data representation

[ZRMZ09], and preprocessing steps for noise suppression, spectral whitening,

and onset detection are utilized in order to make the estimation system robust

to noise and recording conditions. A pitch salience function that is able to

function in the log-frequency domain and utilizes tuning and inharmonicity

estimation procedures is proposed and pitch candidates are selected according

to their salience value. The set of candidates is refined using rules regarding the

harmonic partial sequence of the selected pitches and the temporal evolution of

the partials, in order to minimize errors occurring at multiples and sub-multiples

of the actual F0s. For the spectral structure rules, a more robust formulation

of the spectral irregularity measure [ZRMZ09] is proposed, taking into account

overlapping partials. For the temporal evolution rules, a novel feature based on

the common amplitude modulation (CAM) assumption [LWW09] is proposed

in order to suppress estimation errors in harmonically-related F0 candidates. A

diagram showing the stages of the proposed system is displayed in Figure 3.1.
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3.2.1 Preprocessing

Resonator Time-Frequency Image

As a time-frequency representation, the resonator time-frequency image (RTFI)

is used [ZRMZ09]. The RTFI selects a first-order complex resonator filter

bank to implement a frequency-dependent time-frequency analysis. For the

specific experiments, a RTFI with constant-Q resolution is selected for the time-

frequency analysis, due to its suitability for music signal processing techniques,

because the inter-harmonic spacing is the same for all pitches. The time interval

between two successive frames is set to 40ms, which is typical for multiple-F0

estimation approaches [KD06]. The centre frequency difference between two

neighbouring filters is set to 10 cents (the number of bins per octave is set to

120). The frequency range is set from 27.5Hz (A0) to 12.5kHz (which reaches

up to the 3rd harmonic of C8). The employed absolute value of the RTFI will

be denoted as X [ω, t], where t is the time frame and ω the log-frequency bin.

Spectral Whitening and Noise Suppression

Spectral whitening (or flattening) is a key preprocessing step applied in multiple-

F0 estimation systems, in order to suppress timbral information and make the

following analysis more robust to different sound sources. When viewed from

an auditory perspective, it can be interpreted as the normalization of the hair

cell activity level [TK00].

Here, a modified version of the real-time adaptive whitening method pro-

posed in [SP07] is applied. Each band is scaled, taking into account the tem-

poral evolution of the signal, while the scaling factor is dependent only on past

frame values and the peak scaling value is exponentially decaying. The following

iterative algorithm is applied:

Y [ω, t] =




max(X [ω, t], θ, ̺Y [ω, t− 1]), t > 0

max(X [ω, t], θ), t = 0

X [ω, t] ←
X [ω, t]

Y [ω, t]
(3.1)

where ̺ < 1 is the peak scaling value and θ is a floor parameter.

In addition, a noise suppression approach similar to the one in [Kla09b] is em-

ployed, due to its computational efficiency. A half-octave span (60 bin) moving

median filter is computed for Y [ω, t], resulting in noise estimate N [ω, t]. After-
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wards, an additional moving median filter N ′[ω, t] of the same span is applied,

but only including the RTFI bins whose amplitude is less than the respective

amplitude of N [ω, t]. This results in making the noise estimate N ′[ω, t] robust

in the presence of spectral peaks that could affect the noise estimate N [ω, t].

Onset Detection

In order to select the steady-state area of the piano tone (or tones), a spectral

flux-based onset detection procedure is applied. The spectral flux measures the

positive magnitude changes in each frequency bin, which indicate the attack

parts of new notes [BDA+05]. It can be used effectively for onset detection of

notes produced by percussive instruments such as the piano, but its performance

decreases for the detection of soft onsets [Bel03]. For the RTFI, the spectral

flux using the ℓ1 norm can be defined as:

SF [t] =
∑

ω

HW (|Y [ω, t]| − |Y [ω, t− 1]|) (3.2)

where HW (·) = ·+|·|
2 is a half-wave rectifier. The resulting onset strength signal

is smoothed using a median filter with a 3 sample span (120ms length), in

order to remove spurious peaks. Onsets are subsequently selected from SF [t]

by a selection of local maxima, with a minimum inter-peak distance of 120 ms.

Afterwards, the frames located between 100-300 ms after the onset are selected

as the steady-state region of the signal and are averaged over time, in order to

produce a robust spectral representation of the tones.

3.2.2 Multiple-F0 Estimation

Salience Function

In the linear frequency domain, considering a pitch p of a piano sound with

fundamental frequency fp,0 and inharmonicity coefficient bp, partials are located

at frequencies:

fp,h = hfp,0

√
1 + (h2 − 1)bp (3.3)

where h ≥ 1 is the partial index [KD06, BQGB04]. Consequently in the log-

frequency domain, considering a pitch p at bin ωp,0, overtones are located at

bins:

ωp,h = ωp,0 +

⌈
u · log2(h) +

u

2
log2

(
1 + (h2 − 1)bp

)⌋
(3.4)
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where u = 120 refers to the number of bins per octave and ⌈·⌋ to the rounding

operator.

A pitch salience function S[p, δp, bp] operating in the log-frequency domain

is proposed, which indicates the strength of pitch candidates:

S[p, δp, bp] =

H∑

h=1

max
mh

{√
Y

[
ωp,h + δp +

⌈
umh +

u

2
log2(1 + (h2 − 1)bp)

⌋]}

(3.5)

where Y [ω] is the log-frequency spectrum for a specific time frame, δp ∈ [−4, . . . , 4]

is the tuning deviation for each pitch, and mh specifies a search range around

overtone positions, belonging to the interval (ml
h,m

u
h), where:

ml
h =

⌈
log2(h− 1) + (M − 1) log2(h)

M

⌋

mu
h =

⌈
(M − 1) log2(h) + log2(h+ 1)

M

⌋
(3.6)

M is a factor controlling the width of the interval, which after experimentation

was set to 60.

While the employed salience functions in the linear frequency domain (e.g.

[Kla09b]) used a constant search space for each overtone, the proposed log-

frequency salience function sets the search range around each partial to be

inversely proportional to the partial index. The number of considered overtones

H is set to 11 at maximum. A tuning search space of 50 cents is set around

the ideal tuning frequency. The range of the inharmonicity coefficient bp is set

between 0 and 5 · 10−4, which is typical for piano notes [BQGB04].

In order to accurately estimate the tuning factor and the inharmonicity

coefficient for each pitch, a two-dimensional maximization procedure using ex-

haustive search is applied to S[p, δp, bp] for each pitch p ∈ [21, . . . , 108] in the

MIDI scale (corresponding to a note range of A0-C8). This results in a pitch

salience function estimate S ′[p], a tuning deviation vector and an inharmonicity

coefficient vector. Using the information extracted from the tuning and inhar-

monicity estimation, a harmonic partial sequence HPS [p, h] for each candidate

pitch and its harmonics (which contains the RTFI values at certain bin) is also

stored for further processing.

An example of the salience function generation is given in Fig. 3.2, where

the RTFI spectrum of an isolated F♯3 note played by a piano is seen, along

with its corresponding salience S ′[p]. The highest peak in S ′[p] corresponds to

63



ω

(a)

p

(b)

20 30 40 50 60 70 80 90 100 110

0 200 400 600 800 1000 1200

0

2

4

6

0

1

2

3

Figure 3.2: (a) The RTFI slice Y [ω] of an F♯3 piano sound. (b) The correspond-
ing pitch salience function S ′[p].

p = 54, thus F♯3.

Spectral Structure Rules

A set of rules examining the harmonic partial sequence structure of each pitch

candidate is applied, which is inspired by work from [Bel03, Zho06]. These rules

aim to suppress peaks in the salience function that occur at multiples and sub-

multiples of the actual fundamental frequencies. In the semitone space, these

peaks occur at ±{12, 19, 24, 28, . . .} semitones from the actual pitch. The set-

tings for the rules were made using a development set from the MAPS database

[EBD10], as described in subsection 3.5.1.

A first rule for suppressing salience function peaks is setting a minimum

number for partial detection in HPS [p, h], similar to [Bel03, Zho06]. If p < 47,

at least three partials out of the first six need to be present in the harmonic

partial sequence (allowing for cases such as a missing fundamental). If p ≥ 47,

at least four partials out of the first six should be detected. A second rule

concerns the salience value, which expresses the sum of the square root of the

partial sequence amplitudes. If the salience value is below a minimum threshold

(set to 0.2 using the development set explained in Section 3.5), this peak is

suppressed. Another processing step in order to reduce processing time is the
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reduction of the number of pitch candidates [EBD10], by selecting only the

pitches with the greater salience values. In the current experiments, up to 10

candidate pitches are selected from S ′[p].

Spectral flatness is another descriptor that can be used for the elimination

of errors occurring in subharmonic positions [EBD10]. In the proposed system,

the flatness of the first 6 partials of a harmonic sequence is used:

Fl [p] =

6

√∏6
h=1 HPS [p, h]

∑
6
h=1 HPS [p,h]

6

(3.7)

The ratio of the geometric mean of HPS [p] to its arithmetic mean gives a mea-

sure of smoothness; a high value of Fl [p] indicates a partial sequence with a

smooth envelope, while a lower value indicates fluctuations in the partial val-

ues, which could indicate the presence of a falsely detected pitch occurring in a

sub-harmonic position. For the current experiments, the lower Fl [p] threshold

for suppressing pitch candidates was set to 0.1 after experimentation using the

development set (described in Section 3.5).

In order to suppress candidate pitches occurring at multiples of the true

fundamental frequency, a modified version of the spectral irregularity measure

formulated in [ZRMZ09] is proposed. Considering a pitch candidate with fun-

damental frequency f0 and another candidate with fundamental frequency lf0,

l > 1, spectral irregularity is defined as:

SI [p, l] =

3∑

h=1

HPS [p, hl]−
HPS [p, hl− 1] +HPS [p, hl+ 1]

2
(3.8)

The spectral irregularity is tested on pairs of harmonically-related candidate

F0s. A high value of SI [p, l] indicates the presence of the higher pitch with

fundamental frequency lf0, which is attributed to the higher energy of the shared

partials between the two pitches compared to the energy of the neighbouring

partials of f0.

In this work, the SI is modified in order to make it more robust against

overlapping partials that are caused by non-harmonically related F0s. Given

the current set of candidate pitches from S ′[p], the overlapping partials from

non-harmonically related F0s are detected as in [Yeh08] and smoothed according

to the spectral smoothness assumption, which states that the spectral envelope

of harmonic sounds should form a smooth contour [Kla03]. For each overlap-
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ping partial HPS [p, h], an interpolated value HPS interp[p, h] is estimated by

performing linear interpolation using its neighbouring partials. Afterwards, the

smoothed partial amplitude HPS ′[p, h] is given by min(HPS [p, h],HPS interp[p, h]),

as in [Kla03]. The proposed spectral irregularity measure, which now takes the

form of a ratio in order to take into account the decreasing amplitude of higher

partials, is thus formed as:

SI ′[p, l] =
3∑

h=1

2 ·HPS ′[p, hl]

HPS ′[p, hl − 1] +HPS ′[p, hl+ 1]
(3.9)

For each pair of harmonically-related F0s (candidate pitches that have a pitch

distance of ±{12, 19, 24, 28, . . .}) that are present in S ′[p] , the existence of the

higher pitch is determined by the value of SI ′ (for the current experiments, a

threshold of 1.2 was set using the development set).

Temporal Evolution Rules

Although the SI and the spectral smoothness assumption are able to suppress

some harmonic errors, additional information needs to be exploited in order to

produce more accurate estimates in the case of harmonically-related F0s. In

[Yeh08], temporal information was employed for multiple-F0 estimation using

the synchronicity criterion as a part of the F0 hypothesis score function. There,

it is stated that the temporal centroid for a harmonic partial sequence should

be the same for all partials. Thus, partials deviating from their global temporal

centroid indicates an invalid F0 hypothesis. Here, we use the common amplitude

modulation (CAM) assumption [GS07b, LWW09] in order to test the presence

of a higher pitch in the case of harmonically-related F0s. CAM assumes that

the partial amplitudes of a harmonic source are correlated over time and has

been used in the past for note separation given a ground truth of F0 estimates

[LWW09]. Thus, the presence of an additional source that overlaps certain

partials (e.g. in the case of an octave where even partials are overlapped) causes

the correlation between non-overlapped partials and the overlapped partials to

decrease.

To that end, tests are performed for each harmonically-related F0 pair that

is still present in S ′[p], comparing partials that are not overlapped by any non-

harmonically related F0 candidate with the partial of the fundamental. The
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Figure 3.3: Salience function stages for an E♭4-G4-B♭4-C5-D5 piano chord.
From top to bottom, the figures represent (i) The raw salience function (ii)
The salience function after the spectral structure rules have been applied (iii)
The salience function after the temporal evolution tests have been applied.

correlation coefficient is formed as:

Corr [p, h, l] =
Cov (Y [ωp,1, t], Y [ωp,hl, t])√

Cov (Y [ωp,1, t])Cov (Y [ωp,hl, t])
(3.10)

where ωp,h indicates the frequency bin corresponding to the h-th harmonic of

pitch p, l the harmonic relation (eg. for octaves l = 2), and Cov (·) stands for the

covariance measure. Tests are made for each pitch p and harmonics hl, using

the same steady-state area used in subsection 3.2.1 as a frame range. If there is

at least one harmonic where the correlation coefficient for a pitch is lower than

a given value (in the experiments it was set to 0.8), then the hypothesis for the

higher pitch presence is satisfied. In order to demonstrate the various refinement

steps used in the salience function, Figure 3.3 shows the three basic stages of

the multiple-F0 estimation system for a synthesized E♭4-G4-B♭4-C5-D5 piano

chord.
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Figure 3.4: Diagram for the proposed joint multiple-F0 estimation system for
automatic music transcription.

3.3 Joint Multiple-F0 Estimation for AMT

This automatic transcription system is an extension of the multiple-F0 estima-

tion system of Section 3.2, but the estimation procedure is now joint instead

of iterative, followed by note tracking. The constant-Q RTFI is used as a suit-

able time-frequency representation for music signals and a noise suppression

method based on cepstral smoothing and pink noise assumption is proposed.

For the multiple-F0 estimation step, a salience function is proposed for pitch

candidate selection that incorporates tuning and inharmonicity estimation. For

each possible pitch combination, an overlapping partial treatment procedure is

proposed that is based on a novel method for spectral envelope estimation in

the log-frequency domain, used for computing the harmonic envelope of candi-

date pitches. A score function which combines spectral and temporal features

is proposed in order to select the optimal pitch set. Note smoothing is also ap-

plied in a postprocessing stage, employing HMMs and conditional random fields

(CRFs) [LMP01] - the latter have not been used in the past for transcription

approaches. A diagram of the proposed joint multiple-F0 estimation system can

be seen in Fig. 3.4.

3.3.1 Preprocessing

Resonator Time-Frequency Image

As in the system of Section 3.2, the resonator time-frequency image was used as

a time-frequency representation. The same settings were used, and the resulting
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absolute value of the RTFI is denoted as X [ω, t].

Spectral Whitening

In this system, we employ a spectral whitening method similar to the one in

[KD06], but modified for log-frequency spectra instead of linear frequency ones.

For each frequency bin, the power within a subband of 1
3 octave span multiplied

by a Hann-window Whann[ω] is computed. The square root of the power within

each subband is:

σ[ω] =

(
1

Ω

ω+Ω/2∑

l=ω−Ω/2

Whann[l]|X [l]|2
)1/2

(3.11)

where Ω = u/3 = 40 bins and X [ω] is an RTFI spectrum. Afterwards, each bin

is scaled according to:

Y [ω] = (σ[ω])j−1X [ω] (3.12)

where j is a parameter which determines the amount of spectral whitening

applied and X [ω] is the absolute value of the RTFI for a single time frame, and

Y [ω] is the final whitened RTFI slice. As in [KD06], j was set to 0.33.

Noise Suppression

In [Yeh08], an algorithm for noise level estimation was proposed, based on the as-

sumption that noise peaks are generated from a white Gaussian process, and the

resulting spectral amplitudes obey a Rayleigh distribution. Here, an approach

based on a pink noise assumption (elsewhere called 1/f noise or equal-loudness

noise) is proposed. In pink noise, each octave carries an equal amount of energy,

which corresponds well to the approximately logarithmic frequency scale of hu-

man auditory perception. Additionally, it occurs widely in nature, contrary to

white noise and is also suitable for the employed time-frequency representation

used in this work.

The proposed signal-dependent noise estimation algorithm is as follows:

1. Perform a two-stage median filtering procedure on Y [ω], in a similar way to

[Kla09b], where a moving median average is calculated using the whitened

spectrum. A second moving median average is calculated, including only

the spectral bins that fall below the magnitude of the first moving average.

The span of the filter is set to 1
3 octave. The resulting noise representation

N [ω] gives a rough estimate of the noise level.
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2. Using the noise estimate, a transformation from the log-frequency spectral

coefficients to cepstral coefficients is performed [Bro99]:

cξ =

Ω′∑

ω=1

log(N [ω]) cos

(
ξ

(
ω −

1

2

)
π

Ω′

)
(3.13)

where Ω′ = 1043 is the total number of log-frequency bins in the RTFI

and Ξ is the number of cepstral coefficients employed, ξ = 0, . . . ,Ξ− 1.

3. A smooth curve in the log-magnitude, log-frequency domain is recon-

structed from the first D cepstral coefficients:

log |Nc(ω̂)| ≈ exp

(
c0 + 2

D−1∑

ξ=1

cξ · cos(ξω̂)

)
(3.14)

4. The resulting smooth curve is mapped from ω̂ into ω. Assuming that the

noise amplitude follows an exponential distribution, the expected value of

the noise log amplitudes E{log(|Nc(ω̂)|)} is equal to log(λ−1)− γ, where

γ is the Euler constant (≈ 0.5772). Since the mean of an exponential

distribution is equal to 1
λ , the noise level in the linear amplitude scale can

be described as:

LN (ω̂) = Nc(ω̂) · e
γ (3.15)

The analytic derivation of E{log(|Nc(ω̂)|)} can be found in Appendix A.

In this work, the number of cepstral coefficients used was set to D = 50. Let

Z[ω] stand for the whitened and noise-suppressed RTFI representation.

3.3.2 Multiple-F0 Estimation

In this subsection, multiple-F0 estimation, being the core of the proposed tran-

scription system, is described. Performed on a frame-by-frame basis, a pitch

salience function is generated, tuning and inharmonicity parameters are ex-

tracted, candidate pitches are selected, and for each possible pitch combination

an overlapping partial treatment is performed and a score function is computed.

Salience Function

The same salience function that is proposed in the multiple-F0 estimation sys-

tem of Section 3.2 is employed in this system. The final result of the salience
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function computation stage is the pitch salience function estimate S ′[p], a tuning

deviation vector and an inharmonicity coefficient vector. Also, using the infor-

mation extracted from the tuning and inharmonicity estimation, a harmonic

partial sequence (HPS) HPS [p, h], which contains magnitude information from

Y [ω] for each harmonic of each candidate pitch, is also stored for further pro-

cessing.

Pitch Candidate Selection

As in the multiple-F0 estimation system of Section 3.2, a set of conservative

rules examining the harmonic partial sequence structure of each pitch candi-

date is applied, which is inspired by work from [Bel03, PI08]. For the present

system, these rules aim to reduce the pitch candidate set for computational

speed purposes.

A first rule for suppressing salience function peaks is setting a minimum num-

ber for partial detection in HPS [p, h], similar to [Bel03]. At least three partials

out of the first six need to be present in the harmonic partial sequence. A second

rule discards pitch candidates with a salience value less than 0.1max(S ′[p]), as

in [PI08].

Finally, after spurious peaks in S ′[p] have been eliminated, CN = 10 candi-

date pitches are selected from the highest amplitudes of S ′[p] [EBD10]. The set

of selected pitch candidates will be denoted as C. Thus, the maximum number of

possible pitch candidate combinations that will be considered is 210, compared

to 288 if the aforementioned procedures were not employed.

Overlapping Partial Treatment

Current approaches in the literature rely on certain assumptions in order to re-

cover the amplitude of overlapped harmonics. In [Kla03], it is assumed that har-

monic amplitudes decay smoothly over frequency (spectral smoothness). Thus,

the amplitude of an overlapped harmonic can be estimated from the ampli-

tudes of neighboring non-overlapped harmonics. In [VK02], the amplitude of

the overlapped harmonic is estimated through non-linear interpolation on the

neighboring harmonics. In [ES06], each set of harmonics is filtered from the

spectrum and in the case of overlapping harmonics, linear interpolation is em-

ployed.

In this system, an overlapping partial treatment procedure based on spec-

tral envelope estimation of candidate pitches is proposed. The proposed spec-

71



tral envelope estimation algorithm for the log-frequency domain is presented in

Appendix B. For each possible pitch combination C ⊆ C, overlapping partial

treatment is performed, in order to accurately estimate the partial amplitudes.

The proposed overlapping partial treatment procedure is as follows:

1. Given a set C of pitch candidates, estimate a partial collision list.

2. For a given harmonic partial sequence, if the number of overlapped partials

is less than Nover, then estimate the harmonic envelope SEp[ω] of the

candidate pitch using only amplitude information from non-overlapped

partials.

3. For a given harmonic partial sequence, if the number of overlapped partials

is equal to or greater than Nover, estimate the harmonic envelope using

information from the complete harmonic partial sequence.

4. For each overlapped partial, estimate its amplitude using the harmonic

envelope parameters of the corresponding pitch candidate (see Appendix

B).

The output of the overlapping partial treatment procedure is the updated

harmonic partial sequence HPS [p, h] for each pitch set combination.

Pitch set score function

Having selected a set of possible pitch candidates and performed overlapping

partial treatment on each possible combination, the goal is to select the optimal

pitch combination for a specific time frame. In [Yeh08], Yeh proposed a score

function which combined four criteria for each pitch: harmonicity, bandwidth,

spectral centroid, and synchronicity. Also, in [PI08], a simple score function

was proposed for pitch set selection, based on the smoothness of the pitch set.

Finally, in [EBD10] a multipitch detection function was proposed, which em-

ployed the spectral flatness of pitch candidates along with the spectral flatness

of the noise residual.

Here, a weighted pitch set score function is proposed, which combines spec-

tral and temporal characteristics of the candidate F0s, and also attempts to

minimize the noise residual to avoid any missed detections. Also, features which

concern harmonically-related F0s are included in the score function, in order to

suppress any harmonic errors. Given a candidate pitch set C ⊆ C with size |C|,
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the proposed pitch set score function is:

L(C) =

|C|∑

i=1

(Lp(i)) + Lres (3.16)

where Lp(i) is the score function for each candidate pitch p(i) ∈ C, and Lres is

the score for the residual spectrum. Lp and Lres are defined as:

Lp = w1Fl [p] + w2Sm[p]− w3SC [p] + w4PR[p]− w5AM [p]

Lres = w6Fl [Res] (3.17)

Features Fl , Sr , SC ,PR,AM have been weighted by the salience function

of the candidate pitch and divided by the sum of the salience function of the

candidate pitch set, for normalization purposes. In order to train the weight

parameters wi, i = 1, . . . , 6 of the features in (3.17), we used the Nelder-Mead

search algorithm for parameter estimation [NM65]. The training set employed

for experiments is described in Section 3.5. The pitch candidate set that maxi-

mizes the score function:

Ĉ = argmax
C⊆C

L(C) (3.18)

is selected as the pitch estimate for the current frame.

Fl [p] denotes the spectral flatness of the harmonic partial sequence:

Fl [p] =
e[
∑

H
h=1 log(HPS [p,h])]/H

1
H

∑H
h=1 HPS [p, h]

(3.19)

The spectral flatness is a measure of the ‘whiteness’ of the spectrum. Its values

lie between 0 and 1 and it is maximized when the input sequence is smooth,

which is the ideal case for an HPS. It has been used previously for multiple-F0

estimation in [PI08, EBD10]. Compared with (3.7), in (3.19) the definition is

the one adapted by the MPEG-7 framework, which can be seen in [Uhl10].

Sm[p] is the smoothness measure of a harmonic partial sequence, which

was proposed in [PI08]. The definition of smoothness stems from the spectral

smoothness principle and its definition stems from the definition of sharpness :

Sr [p] =

H∑

h=1

(SEp[ωp,h]−HPS [p, h]) (3.20)
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Here, instead of a low-pass filtered HPS using a Gaussian window as in [PI08],

the estimated harmonic envelope SEp of each candidate pitch is employed for

the smoothness computation. Sr [p] is normalized into S̄r [p] and the smoothness

measure Sm[p] is defined as: Sm[p] = 1− S̄r [p]. A high value of Sm[p] indicates

a smooth HPS.

SC [p] is the spectral centroid for a given HPS and has been used for the

score function in [Yeh08]:

SC [p] =

√√√√2 ·

∑H
h=1 h · |HPS [p, h]|

2

∑H
h=1 |HPS [p, h]|

2
(3.21)

It indicates the center of gravity of an HPS; for pitched percussive instruments

it is positioned at lower partials. A typical value for a piano note would be

1.5 denoting that the center of gravity of its HPS is between the 1st and 2nd

harmonic.

PR[p] is a novel feature, which stands for the harmonically-related pitch

ratio. Here, harmonically-related pitches [Yeh08] are candidate pitches in C

that have a semitone difference of ⌈12 · log2(l)⌋ = {12, 19, 24, 28, . . .}, where

l > 1, l ∈ N. PR[p] is applied only in cases of harmonically-related pitches, in

an attempt to estimate the ratio of the energy of the smoothed partials of the

higher pitch compared to the energy of the smoothed partials of the lower pitch.

It is formulated as follows:

PRl[p] =

3∑

h=1

HPS [p+ ⌈12 · log2(l)⌋, h]

HPS [p, l · h]
(3.22)

where p stands for the lower pitch and p+⌈12·log2(l)⌋ for the higher harmonically-

related pitch. l stands for the harmonic relation between the two pitches

(fhigh = lflow ). In case of more than one harmonic relation between the can-

didate pitches, a mean value is computed: PR[p] = 1
|Nhr |

∑
l∈Nhr

PRl[p], where

Nhr is the set of harmonic relations. A high value of PR indicates the presence

of a pitch in the higher harmonically-related position.

Another novel feature applied in the case of harmonically-related F0s, mea-

suring the amplitude modulation similarity between an overlapped partial and

a non-overlapped partial frequency region, is proposed. The feature is based

on the common amplitude modulation (CAM) assumption [LWW09] as in the

temporal evolution rules of Section 3.2. Here, an extra assumption is made
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that frequency deviations are also correlated over time. The time-frequency re-

gion of a non-overlapped partial is compared with the time-frequency region of

the fundamental. In order to compare 2-D time-frequency partial regions, the

normalized tensor scalar product [dL97] is used:

AM l[p] =

3∑

h=1

∑
i,j BijB

h
ij√∑

i,j BijB
h
ij ·

√∑
i,j BijB

h
ij

(3.23)

where

B = Z[ωp,1 − 4 : ωp,1 + 4, n0 : n1]

Bh = Z[ωp,hl − 4 : ωp,hl + 4, n0 : n1] (3.24)

where i, j denote the indexes of matrices B and Bh, and n0 and n1 = n0 + 5

denote the frame boundaries of the time-frame region selected for consideration.

The normalized tensor scalar product is a generalization of the cosine similarity

measure, which compares two vectors, finding the cosine of the angle between

them.

Res denotes the residual spectrum, which can be expressed in a similar way

to the linear frequency version in [EBD10]:

Res =

{
Z[ω]

/
∀p, ∀h,

∣∣∣∣ω − ωp,h
∣∣∣∣>

∆w

2

}
(3.25)

where Z[ω] is the whitened and noise-suppressed RTFI representation and ∆w

denotes the mainlobe width of the employed window w. In order to find a

measure of the ‘whiteness’ of the residual, 1−Fl [Res], which denotes the residual

smoothness, is used.

3.3.3 Postprocessing

Although temporal information has been included in the frame-based multiple-

F0 estimation system through the use of the CAM feature in the score function,

additional postprocessing is needed in order to track notes over time, and elim-

inate any single-frame errors. In this system, two postprocessing methods were

employed: the first using HMMs and the second using conditional random fields

(CRFs), which to the author’s knowledge have not been used before in music

transcription research.
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Figure 3.5: Transcription output of an excerpt of ‘RWC MDB-J-2001 No. 2’
(jazz piano) in a 10 ms time scale (a) Output of the multiple-F0 estimation
system (b) Piano-roll transcription after HMM postprocessing.

HMM Postprocessing

In this work, each pitch p = 1, . . . , 88 is modeled by a two-state HMM, denoting

pitch activity/inactivity, as in [PE07a, QRC+10]. The observation sequence is

given by the output of the frame-based multiple-F0 estimation step for each

pitch p: O(p) = {o
(p)
t }, t = 1, . . . , T , while the state sequence is given by Q(p) =

{q
(p)
t }. Essentially, in the HMM post-processing step, pitches from the multiple-

F0 estimation step are tracked over time and their note activation boundaries

are estimated using information from the salience function. In order to estimate

the state priors P (q
(p)
1 ) and the state transition matrix P (q

(p)
t |q

(p)
t−1), MIDI files

from the RWC database [GHNO03] from the classic and jazz subgenres were

employed, as in [QRC+10]. For each pitch, the most likely state sequence is

given by:

Q′(p) = argmax
q(p)

∏

t

P (q
(p)
t |q

(p)
t−1)P (o

(p)
t |q

(p)
t ) (3.26)

In order to estimate the observation probabilities P (o
(p)
t |q

(p)
t ), we employ a

sigmoid curve which has as input the salience function of an active pitch from
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the output of the multiple-F0 estimation step:

P (o
(p)
t |q

(p)
t = 1) =

1

1 + e−(S′[p,t]−1)
(3.27)

where S ′[p, t] denotes the salience function value at frame t. The output of

the HMM-based postprocessing step is generated using the Viterbi algorithm.

The transcription output of an example recording at the multiple-F0 estimation

stage and after the HMM postprocessing is depicted in Fig. 3.5. In addition, in

Fig. 3.6(a) the decoding process of the pitch-wise HMM is shown.

CRF Postprocessing

Although the HMMs have repeatedly proved to be an invaluable tool for smooth-

ing sequential data, they suffer from the limitation that the observation at a

given time frame depends only on the current state. In addition, the current

state depends only on its immediate predecessor. In order to alleviate these as-

sumptions, conditional random fields (CRFs) [LMP01] can be employed. CRFs

are undirected graphical models that directly model the conditional distribution

P (Q|O) instead of the joint probability distribution P (Q,O) as in the HMMs.

Thus, HMMs belong to the class of generative models, while the undirected

CRFs are discriminative models. The assumptions concerning the state inde-

pendence and the observation dependence on the current state which are posed

for the HMMs are relaxed.

In this work, 88 linear-chain CRFs are employed (one for each pitch p),

where the current state q
(p)
t is dependent not only on the current observation

o
(p)
t , but also on o

(p)
t−1, in order to exploit information not only from the current

state, but from the past one as well. For learning, we used the same note priors

and state transitions from the RWC database which were also utilized for the

HMM post-processing. For inference, the most likely state sequence for each

pitch is computed using a Viterbi-like recursion which estimates:

Q′(p) = argmax
Q(p)

P (Q(p)|O(p)) (3.28)

where P (Q(p)|O(p)) =
∏
t P (q

(p)
t |O

(p)) and the observation probability for a

given state is given as a sum of two potential functions:

P (O(p)|q
(p)
t = 1) =

1

1 + e−(S′[p,t]−1)
+

1

1 + e−(S′[p,t−1]−1)
(3.29)
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Figure 3.6: Graphical structure of the postprocessing decoding process for (a)
HMM (b) Linear chain CRF networks.

It should be noted that in our employed CRF model we assume that each note

state depends only on its immediate predecessor (like in the HMMs), while the

relaxed assumption over the HMMs concerns the observation potentials. The

graphical structure of the linear-chain CRF which was used in our experiments

is presented in Fig. 3.6(b).

3.4 AMT using Note Onset and Offset Detec-

tion

The final system presented in this chapter is an extension of the joint multiple-

F0 estimation system of Section 3.3, which explicitly incorporates information

on note onsets and offsets. For onset detection, two novel descriptors are pro-

posed which exploit information from the transcription preprocessing steps. The

multiple-F0 estimation step is made using the same score function as in Section

3.3. Finally, a novel hidden Markov model-based offset detection procedure is

proposed.
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3.4.1 Preprocessing

Resonator Time-Frequency Image

As in the systems of Sections 3.2 and 3.3, the resonator time-frequency image

was used as a time-frequency representation. The same settings were used, and

the resulting absolute value of the RTFI is denoted as X [ω, t] while an RTFI

slice is denoted as X [ω].

Spectral Whitening and Noise Suppression

In order to suppress timbral information and make the following analysis more

robust to different sound sources, spectral whitening is performed using the same

method described in Section 3.3, resulting in the whitened representation Y [ω, t].

Afterwards, an algorithm for noise suppression is applied to the whitened RTFI,

using the two-stage median filtering procedure presented in subsection 3.3.1.The

result is a whitened and noise-suppressed RTFI representation Z[ω].

Salience Function

Using Z[ω], the log-frequency pitch salience function S[p] proposed in Section

3.2 is extracted, where p ∈ [21, . . . , 108] denotes MIDI pitch. Tuning and in-

harmonicity coefficients are also extracted. Using the extracted information, a

harmonic partial sequence (HPS) HPS [p, h] for each candidate pitch p and its

harmonics h = 1, . . . , 13 is also stored for further processing.

3.4.2 Onset Detection

In order to accurately detect onsets in polyphonic music, two onset descriptors

which exploit information from the transcription preprocessing steps are pro-

posed and combined using late fusion. Firstly, a novel spectral flux-based feature

is defined, which incorporates pitch tuning information. Although spectral flux

has been successfully used in the past for detecting hard onsets [BDA+05], false

alarms may be detected for instruments that produce frequency modulations

such as vibrato or portamento. Thus, a semitone-resolution filterbank is cre-

ated from Z[ω, t], where each filter is centered at the estimated tuning position

of each pitch:

ψ[p, t] =

( ωp,0+δp+4∑

l=ωp,0+δp−4

Z[l, t] ·Wp[l]

) 1
2

(3.30)
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where ωp,0 is the bin that ideally corresponds to pitch p and Wp is a 80 cent-

span Hanning window centered at the pitch tuning position. Using the output

of the filterbank, the novel spectral flux-based descriptor is defined as:

SF [t] =

108∑

p=21

HW (ψ[p, t]− ψ[p, t− 1]) (3.31)

where HW (·) = ·+|·|
2 is a half-wave rectifier. Afterwards, onsets can be detected

by performing peak picking on SF [t].

In order to detect soft onsets, which may not be indicated by a change in

signal energy [BDA+05], a pitch-based descriptor is proposed which is based on

the extracted salience function. The salience function S[p, t] is smoothed using a

moving median filter with 120 ms span, in order to reduce any fluctuations that

might be attributed to amplitude modulations (e.g. tremolo). The smoothed

salience function S̄[p, t] is then warped into a chroma-like representation:

Chr [p, t] =
6∑

i=0

S̄[12 · i+ p+ 20, t] (3.32)

where p = 1, . . . , 12 represents the pitch classes C, C♯,. . .,B. Afterwards, the

half-wave rectified first-order difference of Chr [p, t] is used as a pitch-based onset

detection function (denoted as salience difference SD):

SD [t] =

12∑

i=1

HW (Chr[i, t]− Chr[i, t− 1]) (3.33)

Accordingly, soft onsets are detected by peak picking on SD [t].

In order to combine the onsets produced by the two aforementioned descrip-

tors, late fusion is applied, as in [HS10]. From each of the two descriptors an

onset strength signal is created, which contains either the value one at the in-

stant of the detected onset or zero otherwise. The fused onset strength signal

is created by summing and smoothing these two signals using a moving median

filter of 40 ms length. Onsets are detected by performing peak picking on the

fused signal by selecting peaks with a minimum 80 ms distance. For tuning

onset detection parameters, a development set containing ten 30 sec classical

recordings from the meter analysis data from Ghent University [VM07] was

employed.
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3.4.3 Multiple-F0 Estimation

We perform the same multiple-F0 estimation procedure described in subsection

3.4.3 using segments defined by two consecutive onsets instead of performing

multiple-F0 estimation for each time frame.

Overlapping Partial Treatment

We extract segments defined by two consecutive onsets by using the mean Z[ω, t]

of the first 3 frames after the onset. Using each segment, a salience function

and HPS are extracted. A set of CN candidate pitches is selected, based on

the maximum values of the salience function S[p] (here, CN is set to 10 as in

[EBD10]). The pitch candidate set will be denoted as C.

In order to recover the amplitude of overlapped harmonics, we employ the

proposed discrete cepstrum-based spectral envelope estimation algorithm de-

scribed in subsection 3.3.2 and detailed in Appendix B. Firstly, given a subset

C of pitch candidates, a partial collision list is computed. For a given HPS, if

the number of overlapped partials is less than Nover , then the amplitudes of

the overlapped partials are estimated from the spectral envelope SEp[ω] of the

candidate pitch using only amplitude information from non-overlapped partials.

If the number of overlapped partials is equal or greater than Nover , the partial

amplitudes are estimated using spectral envelope information from the complete

HPS.

Pitch set score function

Having selected a set of possible pitch candidates and performed overlapping

partial treatment on each possible combination, the goal is to select the optimal

pitch combination for a specific time frame. A modified version of the pitch

set score function presented in subsection 3.3.2 is employed, which combines

spectral and temporal characteristics of the candidate F0s, and also attempts

to minimize the noise residual to avoid any missed detections.

Given a candidate pitch set C ⊆ C with size |C|, the proposed pitch set score

function is given by (3.16), where in this case Lp is defined as:

Lp = w1Fl [p] + w2Sm[p]− w3SC [p] + w4PR[p] (3.34)

where Fl [p], Sm[p], SC [p],PR[p] are defined in subsection 3.3.2.
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In order to train the weight parameters wi, i = 1, . . . , 4 of the features in

(3.34) as well as for the residual weight in (3.17), training was performed using

the Nelder-Mead search algorithm for parameter estimation [NM65] with 100

classic, jazz, and random piano chords from the MAPS database [EBD10] as

a training set. Trained weight parameters wi were {1.3, 1.4, 0.6, 0.5, 25}. The

pitch candidate set Ĉ that maximizes the score function is selected as the pitch

estimate for the current frame.

3.4.4 Offset Detection

In order to accurately detect note offsets we employ hidden Markov models

(HMMs). HMMs have been used in the past for smoothing transcription results

(e.g. [QRC+10]) but to the author’s knowledge they have not been utilized for

offset detection. As in the note tracking procedure of Subsection 3.3.1, each

pitch is modeled by a two-state HMM, denoting pitch activity/inactivity. The

observation sequence O(p) is given by the output of the multiple-F0 estimation

step for each pitch, while the state sequence is given by Q(p). In order to

estimate state priors P (q
(p)
1 ) and the state transition matrix P (q

(p)
t |q

(p)
t−1), MIDI

files from the RWC database [GHNO03] from the classic and jazz genres were

used.

In order to estimate the observation probabilities P (o
(p)
t |q

(p)
t ), we employ a

sigmoid curve which has as input the salience function of an active pitch from

the output of the multiple-F0 estimation step:

P (o
(p)
t |q

(p)
t = 1) =

1

1 + e−(S[p,t]−1)
(3.35)

where S[p, t] denotes the salience function value at frame t. The output of the

HMM-based offset detection step is generated using the Viterbi algorithm. The

note offset is detected as the time frame when an active pitch between two

consecutive onsets changes from an active to an inactive state for the first time.

Thus, the main difference between the present system and the system of Section

3.3 in terms of postprocessing is that for each active note event between two

onsets, only one offset must be present; in the system of Section 3.3, a note

event in an “off” state might move to an “on” state in the next frame. Thus,

the present system explicitly models note offsets. An example for the complete

transcription system, from preprocessing to offset detection, is given in Fig. 3.7

for a guitar recording from the RWC database.
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Figure 3.7: The transcription system of Section 3.4 applied to an excerpt from
‘RWC MDB-J-2001 No. 9’ (guitar). Black rectangles correspond to correctly
detected pitches, gray rectangles to false alarms, and empty rectangles to missed
detections.

3.5 Evaluation

3.5.1 Datasets

MAPS Database

The proposed multiple-F0 estimation system for isolated piano sounds of Sec-

tion 3.2 is tested on the MIDI Aligned Piano Sounds (MAPS) database [EBD10].

MAPS contains real and synthesized recordings of isolated notes, musical chords,

random chords, and music pieces, produced by 9 real and synthesized pianos in

different recording conditions, containing around 10000 sounds in total. Record-

ings are stereo, sampled at 44100Hz, while MIDI files are provided as ground

truth. For the current experiments, classic, jazz, and randomly generated chords

(without any note progression) of polyphony levels between 1 and 6 are em-

ployed, while the note range is C2-B6, in order to match the experiments per-

formed in [EBD10]. Each recording lasts about 4 seconds. A development set

using 2 pianos (consisting of 1952 samples) is selected while the other 7 pianos

(consisting of 6832 samples) are used as a test set.

For training the weight parameters for the score function in the transcription
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systems of Sections 3.3 and 3.4, samples from the MAPS database are also

used. Here, 103 samples from two piano types are employed for training1.

For comparative experiments on isolated piano sounds using the transcription

system of Section 3.3, it should be noted that the postprocessing stage was not

employed for the MAPS dataset.

RWC Dataset

For the transcription experiments of systems presented in Sections 3.3 and 3.4,

we use 12 excerpts from the RWC database [GHNO03], which have been used

in the past to evaluate polyphonic music transcription approaches in [KNS07,

SKT+08, QRC+10]. A list of the employed recordings along with the instru-

ments present in each one is shown in the top half of Table 3.1. The recordings

containing ‘MDB-J’ in their RWC ID belong to the jazz genre, while those that

contain ‘MDB-C’ belong to the classic genre. For the recording titles and com-

poser, the reader can refer to [SKT+08]. Five additional pieces are also selected

from the RWC database, which have not yet been evaluated in the literature.

These pieces are described in the bottom half of Table 3.1 (data 13-17).

As far as ground-truth for the RWC data 1-12 shown in Table 3.1, non-

aligned MIDI files are provided along with the original 44.1 kHz recordings.

However, these MIDI files contain several note errors and omissions, as well

as unrealistic note durations, thus making them unsuitable for transcription

evaluation. As in [KNS07, SKT+08, QRC+10], aligned ground-truth MIDI data

has been created for the first 23s of each recording, using Sonic Visualiser [Son]

for spectrogram visualization and MIDI editing. For the RWC data 13-17 in

Table 3.1, the newly-released syncRWC ground truth annotations are utilized2.

Disklavier Dataset

The test dataset developed by Poliner and Ellis [PE07a] is also used for tran-

scription experiments. It contains 10 one-minute recordings from a Yamaha

Disklavier grand piano, sampled at 8 kHz. Aligned MIDI ground truth using

the Disklavier is also provided with the recordings. The list of music pieces that

are contained in this dataset is shown in Table 3.2.

1Trained weight parameters for the system of Section 3.3 are wi = {1.3, 1.4, 0.6, 0.5, 0.2, 25}.
2http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/SyncRWC/
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RWC ID Instruments

1 RWC-MDB-J-2001 No. 1 Piano
2 RWC-MDB-J-2001 No. 2 Piano
3 RWC-MDB-J-2001 No. 6 Guitar
4 RWC-MDB-J-2001 No. 7 Guitar
5 RWC-MDB-J-2001 No. 8 Guitar
6 RWC-MDB-J-2001 No. 9 Guitar
7 RWC-MDB-C-2001 No. 30 Piano
8 RWC-MDB-C-2001 No. 35 Piano
9 RWC-MDB-J-2001 No. 12 Flute + Piano
10 RWC-MDB-C-2001 No. 12 Flute + String Quartet
11 RWC-MDB-C-2001 No. 42 Cello + Piano
12 RWC-MDB-C-2001 No. 49 Tenor + Piano

13 RWC-MDB-C-2001 No. 13 String Quartet
14 RWC-MDB-C-2001 No. 16 Clarinet + String Quartet
15 RWC-MDB-C-2001 No. 24a Harpsichord
16 RWC-MDB-C-2001 No. 36 Violin (polyphonic)
17 RWC-MDB-C-2001 No. 38 Violin

Table 3.1: The RWC data used for transcription experiments.

MIREX MultiF0 Development Dataset

Finally, the full wind quintet recording from the MIREX multi-F0 development

set is also used for experiments [MIR]. This recording is the fifth variation

from L. van Beethoven’s Variations from String Quartet Op.18 No.5. It consists

of 5 individual instrument tracks (for bassoon, clarinet, flute, horn, and oboe)

and a final mix, all sampled at 44.1 kHz. The multi-track recording has been

evaluated in the literature in shorter segments [VBB10, PG11, GE11, OVC+11],

or in pairs of tracks [MS09]. MIDI annotations for each instrument track have

been created by the author and Graham Grindlay (the latter from LabROSA,

Columbia University). The recording and the corresponding annotations can be

found online3.

3http://www.music-ir.org/evaluation/MIREX/data/2007/multiF0/index.htm (MIREX
credentials required)
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Composer Title

1 J. S. Bach Prelude BWV 847
2 L. van Beethoven Fur Elise WoO 59
3 L. van Beethoven Sonata Op 13(3)
4 J. Brahms Fantasia Op 116, No 6
5 F. Chopin Etude Op 10, No 1
6 J. Haydn Sonata XVI:40(2)
7 W. A. Mozart Sonata KV 333(1)
8 F. Schubert Fantasia D 760(4)
9 R. Schumann Scenes from Childhood, Op 15(4)
10 P. I. Tchaikovsky The Seasons, Op 37a(1)

Table 3.2: The piano dataset created in [PE07a], which is used for transcription
experiments.

3.5.2 Results

MAPS Database

For the experiments performed on the isolated piano chords from the MAPS

database [EBD10], we employed the precision, recall, and F-measure metrics for

a single frame, as defined in (2.28). A comparison is made between the system

presented in Section 3.2, the system of Section 3.3 using CRF postprocessing,

the system by Emiya et al. [EBD10], as well as results found in [EBD10] for the

system of Klapuri [Kla03]. We do not perform experiments using the system of

Section 3.4, as the multiple-F0 estimation stage is the same as in the system

3.3 and the only difference is for the treatment of note onsets and offsets which

does not apply in this specific experiment.

The performance of the proposed multiple-F0 estimation systems along with

the systems in the literature is shown in Fig. 3.8, organized according to the

polyphony level of the ground truth (experiments are performed with unknown

polyphony).

For the system of Section 3.2, the mean F for polyphony levels L = 1, . . . , 6 is

87.84%, 87.44%, 90.62%, 88.76%, 87.52%, and 72.96% respectively. It should be

noted that the subset of polyphony level 6 consists only of 350 samples of random

notes and not of classical and jazz chords. As far as precision is concerned,

reported rates are high for polyphony levels 2-6, ranging from 91.11% to 95.83%.

The lowest precision rate is 84.25% for L = 1, where some overtones were

erroneously considered as pitches. Recall displays the opposite performance,
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Figure 3.8: Multiple-F0 estimation results for the MAPS database (in F-
measure) with unknown polyphony, organized according to the ground truth
polyphony level L.

reaching 96.42% for one-note polyphony, and decreasing with the polyphony

level, reaching 87.31%, 88.46%, 85.45%, and 82.35%, and 62.11% for levels 2-6.

For the system of Section 3.3 using CRF postprocessing, the mean F for

polyphony levels L = 1, . . . , 6 is 91.86%, 88.61%, 91.30%, 88.83%, 88.14%, and

69.55% respectively. As far as precision is concerned, reported rates are high for

all polyphony levels, ranging from 89.88% to 96.19%, with the lowest precision

rate reported for L = 1. Recall displays the opposite performance, reaching

96.40% for one-note polyphony, and decreasing with the polyphony level, reach-

ing 86.53%, 88.65%, 85.00%, and 83.14%, and 57.44% for levels 2-6.

In terms of a general comparison between all systems, the global F-measure

for all sounds is used, where the system of Section 3.3 outperforms all other

approaches, reaching 88.54%. The system of Section 3.2 reports 87.47%, the

system in [EBD10] 83.70%, and finally the algorithm of [Kla03] reaches 85.25%.

Concerning the statistical significance of the proposed methods’ performance

compared to the methods in [EBD10, Kla03], the recognizer comparison tech-

nique described in [GMSV98] is employed. The number of pitch estimation er-

rors of the two methods is assumed to be distributed according to the binomial
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law and the errors are assumed to be independent and identically distributed

(i.i.d.). Although the independence assumption does not necessarily hold, the

samples present in the test set do belong from different piano models and the

employed statistical significance test gives an indication of what recogniser dif-

ference could be considered to be significant. It should be noted that a discussion

on the importance of statistical significance tests in MIR research was made in

[UDMS12], where it was suggested that indicators of statistical significance are

eventually of secondary importance. The error rate of the method of Section

3.2 is ǫ̂1 = 0.1252; for Section 3.3 it is ǫ̂2 = 0.1146; for [EBD10] it is ǫ̂3 = 0.1630

and for [Kla03] it is ǫ̂4 = 0.1475. Taking into account that the test set size

Ntest = 6832 and considering 95% confidence (αc = 0.05), it can be seen that

ǫ̂i− ǫ̂j ≥ zαc

√
2ǫ̂/Ntest, where i ∈ {1, 2}, j ∈ {3, 4}, zαc

can be determined from

tables of the Normal law (z0.05 = 1.65), and ǫ̂ =
ǫ̂i+ǫ̂j

2 . This indicates that the

performance of the proposed multiple-F0 systems is significantly better when

compared with the methods in [EBD10, Kla03]. Likewise, it can be shown that

the method of Section 3.3 is significantly better compared to the method of

Section 3.2 with 95% confidence.

Another issue for comparison is the matter of computational speed, where

the algorithm in [EBD10] requires a processing time of about 150×real time,

while the system of Section 3.2 is able to estimate pitches faster than real time

(implemented in Matlab), with the bottleneck being the RTFI computation; all

other processes are almost negligible regarding computation time. This makes

the proposed approach attractive as a potential application for automatic poly-

phonic music transcription. The system of Section 3.3 requires a processing

time of about 40×real time, with the bottleneck being the computation of the

score function for all possible pitch candidate combinations.

RWC Dataset

Transcription results using the RWC recordings 1-12 for the proposed system

of Section 3.2, the system of Section 3.3 using CRF postprocessing and the one

in Section 3.4 can be found in Table 3.3. A comparison is made using several

reported results in the literature for the same files [QRC+10, SKT+08, KNS07],

where the proposed methods from Sections 3.3 and 3.4 report improved mean

Acc2. It should be noted that for the system in Section 3.3, results using the

CRF postprocessing technique are displayed in Table 3.3. It should also be

noted that the systems in Sections 3.3 and 3.4 demonstrate impressive results
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§3.4 §3.3 §3.2 [QRC+10] [SKT+08] [KNS07]
1 60.0% 60.2% 61.0% 63.5% 59.0% 64.2%
2 73.6% 75.0% 64.9% 72.1% 63.9% 62.2%
3 62.5% 57.9% 53.8% 58.6% 51.3% 63.8%
4 65.2% 66.8% 51.8% 79.4% 68.1% 77.9%
5 53.4% 54.8% 46.3% 55.6% 67.0% 75.2%
6 76.1% 74.4% 54.6% 70.3% 77.5% 81.2%
7 68.5% 64.0% 62.3% 49.3% 57.0% 70.9%
8 60.1% 58.9% 48.4% 64.3% 63.6% 63.2%
9 50.3% 53.9% 47.2% 50.6% 44.9% 43.2%
10 72.4% 74.1% 66.2% 55.9% 48.9% 48.1%
11 56.2% 50.0% 43.0% 51.1% 37.0% 37.6%
12 33.0% 35.7% 31.0% 38.0% 35.8% 27.5%

Mean 61.2% 60.5% 52.5% 59.1% 56.2% 59.6%

Std. 11.2% 11.5% 10.2% 11.5% 12.9% 16.9%

Table 3.3: Transcription results (Acc2) for the RWC recordings 1-12.

for some recordings compared to the state-of-the-art (e.g. in file 11, which is

a cello-piano duet) while in other cases they fall behind. In file 4 for example,

results are inferior compared to state-of-the-art, which could be attributed to the

digital effects applied in the recording (the present system was created mostly

for transcribing classical and jazz music). As far as the standard deviation of

the Acc2 metric is concerned, the systems in Sections 3.3 and 3.4 reports 11.5%

and 11.2% respectively, which is comparable to the state-of-the-art approaches

in Table 3.3, although it is worth noting that the lowest standard deviation is

reported for the method of Section 3.2.

For the RWC recordings 13-17, transcription results comparing all proposed

methods from Sections 3.4, 3.3, and 3.2, can be found in Table 3.4. It should be

noted that no results have been published in the literature for these recordings.

In general, it can be seen that bowed string transcriptions are more accurate

than woodwind transcriptions. Compared to RWC recordings 1-12, the system

in Section 3.3 performs better compared to the one in Section 3.4, which can be

attributed to the soft onsets found in the pitched non-percussive sounds found

in recordings 13-17.

Additional insight into the proposed systems’ performance for all 17 RWC

recordings is given in Table 3.5, where the error metrics of Section 2.5 are pre-

sented. Results using three different configurations are shown for the system

of Section 3.3: without any note smoothing, with HMM-based note smoothing,
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§3.4 §3.3 §3.2
13 60.3% 48.2% 37.7%
14 47.7% 41.8% 41.0%
15 57.8% 66.8% 50.6%
16 60.1% 70.7% 61.7%
17 52.0% 75.2% 58.3%

Mean 55.5% 60.5% 49.9%

Std. 5.5% 14.7% 10.5%

Table 3.4: Transcription results (Acc2) for RWC recordings 13-17.

and with CRF-based note smoothing. For the system of Section 3.4, two differ-

ent configurations are evaluated, using the complete system for onset and offset

detection, as well as a variant of the system performing only onset detection

for each segment defined by two onsets. It can be seen that for the system of

Section 3.3, there is a significant accuracy improvement when a postprocessing

technique is employed. In specific, the note postprocessing procedures mainly

decrease the number of false alarms (as can be seen in Efp), at the expense

however of missed detections (Efn ). Especially for the HMM postprocessing, a

large number of missed detections have impaired the system’s performance.

As for the MAPS dataset, the recognizer comparison technique described

in [GMSV98] was employed. Even though the independence assumption does

not necessarily hold for time frames within a recording, it can be argued that

performing statistical significance tests between multi-pitch detection rates on

entire pieces (as in the MIREX evaluations) is an over-simplification, especially

given that the problem of detecting multiple pitches out of 88 classes makes the

problem space quite big. This is one of the reasons why to the author’s knowl-

edge no statistical significance tests take place in the transcription literature.

Thus, considering 95% confidence, the performance of the transcription system

of Section 3.3 using CRF postprocessing is significantly better when compared

with the methods in [QRC+10, SKT+08, KNS07] and the systems of Sections

3.2 and 3.4 (the latter using both onset and offset detection). It should also

be noted that the significance threshold was only just surpassed when com-

paring the system of Section 3.3 with the method of [KNS07] and the system

in Section 3.4. For the system of Section 3.3, the accuracy improvement of

the CRF postprocessing step over the HMM one is statistically significant with

95% confidence. Specifically, the significance threshold for this experiment was
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Method Fon Acc1 Acc2 Etot Esubs Efn Efp§3.2 44.1% 50.9% 51.8% 48.2% 7.8% 33.9% 6.5%§3.3 No Post. 33.8% 55.6% 54.5% 45.4% 11.3% 18.5% 15.7%§3.3 HMM Post. 47.1% 58.5% 59.4% 40.5% 4.7% 31.7% 4.1%§3.3 CRF Post. 48.2% 60.3% 60.5% 39.5% 6.0% 25.1% 8.4%§3.4 onset only 46.1% 57.1% 56.9% 43.1% 9.0% 22.2% 11.9%§3.4 onset+offset 51.1% 59.3% 59.6% 40.4% 7.3% 23.5% 9.6%

Table 3.5: Transcription error metrics for the proposed method using RWC
recordings 1-17.

Removed feature none Fl Sm SC PR AM Fl [Res ]
Acc2 60.5% 56.3% 59.2% 58.6% 53.5% 59.4% 29.1%

Table 3.6: Transcription results (Acc2) for the RWC recordings 1-12 using the
method in §3.3, when features are removed from the score function (3.17).

found to be 0.72% in terms of the error rate, which is surpassed by the CRF

postprocessing (being 1.1%).

In order to test the contribution of each feature in the pitch set score function

(3.17) to the performance of the transcription system of Section 3.3, experiments

were made on RWC recordings 1-12. For each experiment, the weight wi, i =

1, . . . , 6 in the score function that corresponds to each feature was set to 0.

Results are shown in Table 3.6, where it can clearly be seen that the most

crucial feature is Fl [Res ], which is the residual flatness. For each experiment,

the weight wi, i = 1, . . . , 6 in the score function that corresponds to each feature

was set to 0. Results are shown in Table 3.6, where it can clearly be seen that

the most crucial feature is Fl [Res ], which is the residual flatness.

When testing the contribution of the inharmonicity estimation in the salience

function which is used in all proposed systems, a comparative experiment us-

ing RWC recordings 1-12 took place with the system of Section 3.3 using

CRF postprocessing, where inharmonicity search is disabled. This results in

Acc2 = 59.7%. By employing the statistical significance test of [GMSV98], the

performance improvement when inharmonicity estimation is enabled is signif-

icant with 90% confidence. It should be noted however that the contribution

of the inharmonicity estimation procedure depends on the instrument sources

that are present in the signal. In addition, by disabling the overlapping partial

treatment procedure for the same experiment, it was shown that Acc2 = 38.0%,

with Efp = 20.4%, which indicates that additional false alarms from the over-
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Method §3.4 §3.3 §3.2 [PE07a] [RK05] [Mar04]
Acc1 47.1% 49.4% 42.5% 56.5% 41.2% 38.4%

Table 3.7: Mean transcription results (Acc1) for the recordings from [PE07a].

lapped peaks are introduced. The 22.5% difference in terms of accuracy for the

overlapping partial treatment is shown to be statistically significant with 95%

confidence, using the method in [GMSV98].

Finally, concerning the performance of the proposed noise suppression al-

gorithm of Section 3.3, comparative experiments were performed using the 2-

stage noise suppression procedure that was proposed for multiple-F0 estimation

in [Kla09b], using RWC recordings 1-12. The noise suppression procedure of

[Kla09b] consists of median filtering on the whitened spectrum, followed by a

second median filtering which does not take into account spectral peaks. Exper-

iments with CRF postprocessing showed that transcription accuracy using the

2-state noise suppression algorithm was Acc2 = 56.0%, compared to the 60.5%

of the proposed method.

Disklavier Dataset

Transcription results using the 10 Disklavier recording test set created by Poliner

and Ellis [PE07a] can be found in Table 3.7, along with results from other state-

of-the-art approaches reported in [PE07a]. It can be seen that the best results in

terms of Acc1 are reported for the method in [PE07a] while the proposed system

of Section 3.3 is second-best, although it should be noted that the training set

for the method by Poliner and Ellis used data from the same source as the

test set. In addition, the method in [PE07a] has displayed poor generalization

performance when tested on different datasets, as can be seen from results shown

in [PE07a] and [QRC+10].

In Table 3.8, several error metrics are displayed for the Disklavier dataset

for the three proposed systems. It is interesting to note that although the best

performing system in terms of frame-based metrics is the one from Section 3.3,

the best performing system in terms of the note-based F-measure is the one

in Section 3.4. This can be attributed to the specific treatment of onsets in

the system of Section 3.4. Since the present recordings are piano-only, cap-

turing hard onsets is a considerably easier task compared to the soft onsets

from the RWC recordings 13-17. As expected, the majority of errors for all
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Method Fon Acc1 Acc2 Etot Esubs Efn Efp§3.2 39.1% 42.5% 42.3% 57.6% 14.2% 32.8% 10.6%§3.3 48.9% 49.4% 49.8% 50.2% 10.1% 31.4% 8.6%§3.4 53.8% 47.1% 47.2% 52.8% 10.7% 33.6% 8.5%

Table 3.8: Transcription error metrics using the recordings from [PE07a].

Method Fon Acc1 Acc2 Etot Esubs Efn Efp§3.2 40.4% 35.0% 39.9% 60.1% 16.2% 42.7% 1.2%§3.3 35.9% 35.4% 41.3% 58.6% 25.9% 27.6% 5.2%§3.4 35.9% 35.5% 41.0% 58.9% 19.5% 37.5% 1.9%

Table 3.9: Transcription error metrics using the MIREX multiF0 recording.

systems consists of missed detections, which typically are middle notes in dense

harmonically-related note combinations.

MIREX MultiF0 Development Dataset

Transcription results for the MIREX woodwind quintet recording [MIR] for the

three proposed methods of this chapter can be seen in Table 3.9. Again, for the

method of Section 3.3 we consider the CRF postprocessing version, and for the

method of Section 3.4 we consider the version with onset and offset detection. In

terms of frame-based metrics, the system of Section 3.3 outperforms the other

two systems, with the method of Section 3.4 falling slightly behind. This is the

only case where the system of Section 3.2 outperforms the other ones, at least in

terms of the onset-based F-measure. This can be attributed to the fast tempo

of the piece, which makes the note smoothing procedure less robust for notes

with small duration compared to the frame-based method of Section 3.2.

The MIREX recording has been used for evaluation in the literature, namely

in [PG11, VBB10, GE11] using the frame-based F-measure (F). The achieved

F for the methods in Section 3.2, 3.3, and 3.4, is respectively 52.3%, 52.9%,

and 52.9%. For the methods in [PG11, VBB10, GE11], it is 59.6%, 62.5%, and

65.0%, respectively. It should be noted that the first 30 sec of the recording were

used for evaluation in [PG11, VBB10] and the first 23 sec in [GE11]. The first

30 sec were used to produce the results reported in Table 3.9. This discrepancy

in performance can be attributed to the fact that the proposed systems were

trained on piano samples instead of woodwind samples or multiple-instrument
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Accuracy Precision Recall

Results 0.468 0.716 0.485
Chroma results 0.545 0.830 0.567

Table 3.10: MIREX 2010 multiple-F0 estimation results for the submitted sys-
tem.

Participants Acc Accc
Yeh and Roebel 0.692 0.71
Duan et al. 0.553 0.594
Cañadas-Quesada et al. 0.49 0.544
Benetos and Dixon 0.468 0.545
Dessein et al. 0.457 0.524
Lee et al. 0.373 0.457
Wu et al. 0.361 0.473
Nakano et al. 0.06 0.109

Table 3.11: MIREX 2010 multiple-F0 estimation results in terms of accuracy
and chroma accuracy for all submitted systems.

templates as in [VBB10, GE11].

Public Evaluation

The transcription system of Section 3.2 was also submitted to the MIREX 2010

Multiple-F0 estimation public evaluation task [MIR, BD10b]. The system was

evaluated using 40 test files from 3 different sources, consisting of several instru-

ment types with maximum polyphony level 5. Results are displayed in Table

3.10, where it can be seen that the chroma accuracy is increased compared to

the note accuracy by 8% (implying octave errors). The system produces very

few false alarms and most of the errors consist of missed detections. Overall,

the system ranked 4th out of the 8 groups that submitted for the task consid-

ering the accuracy measure (Acc) and 3rd using the chroma accuracy (Accc),

as shown in Table 3.11. It should be noted that the system was trained only

on piano chords and that no note tracking procedure took place. Results for

individual files can be found online4.

4http://www.music-ir.org/mirex/wiki/2010:MIREX2010_Results
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3.6 Discussion

This chapter presented several approaches for multiple-F0 estimation and au-

tomatic music transcription based on signal processing-based techniques and

audio features. All proposed systems have been published in international con-

ferences and a journal paper. One system was also publicly evaluated in the

MIREX 2010 contest.

Contributions of this work include a pitch salience function in the log-

frequency domain which supports inharmonicity and tuning changes; audio

features for multiple-F0 estimation which aim to reduce octave errors and to in-

corporate temporal information; a noise suppression algorithm based on a pink

noise assumption; an overlapping partial treatment procedure using a novel har-

monic envelope estimation algorithm; a pitch set score function for joint multi-

pitch estimation; note tracking using conditional random fields; onset detection

incorporating tuning and inharmonicity information; and offset detection using

HMMs.

Multiple-F0 estimation and automatic transcription results showed that pro-

posed systems outperform state-of-the-art algorithms in many cases. Specifi-

cally, the proposed algorithms display robust results in multi-pitch detection of

piano sounds and piano transcription, even in the case where the training and

testing datasets originate from different sources. It was shown that the joint

multiple-F0 estimation algorithm performs better than the iterative multiple-F0

estimation algorithm. Also, in cases where hard onsets were present, explicitly

incorporating note onset information helped in improving results. The main

drawback of a joint multi-pitch detection method is computational complexity.

Finally, it was shown that note smoothing significantly improves transcription

performance.

Although signal processing-based techniques presented in this chapter pro-

vided competitive results with relatively low computational cost, the algorithms

still exhibit a considerable number of missed note detections. Also, expanding

audio feature-based algorithms is not straightforward, since these algorithms

depend on an ever expanding number of sub-modules (e.g. noise suppression,

envelope estimation, score function) that are difficult to isolate and improve.

Moreover, incorporating instrument-specific settings and performing instrument

identification in polyphonic music is not straightforward in audio feature-based

approaches. In order to incorporate more elaborate temporal continuity con-

straints and to support instrument-specific transcription, in the next section we
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will investigate spectral factorization-based approaches for multi-pitch detec-

tion.
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Chapter 4

Spectrogram

Factorization-based

Automatic Music

Transcription

4.1 Introduction

This chapter presents methods for automatic music transcription and mono-

phonic pitch estimation using spectrogram factorization techniques. All pro-

posed models are based on probabilistic latent component analysis (PLCA)

[SRS06], which was presented in detail in subsection 2.3.3. PLCA was selected

because it offers a spectrogram factorization model which is easy to generalise

and interpret; thus it can be used for proposing complex models for multiple-

instrument automatic transcription and at the same time to control these mod-

els using temporal or sparsity constraints. The end goal of this chapter is

to build upon PLCA-based approaches for transcription in order to create a

multiple-instrument AMT system which is able to model the temporal evolu-

tion of sounds.

Firstly, a system for automatic music transcription is presented which ex-

tends the shift-invariant PLCA (SI-PLCA) model [SRS08b] for supporting tem-

plates from multiple instrument sources and at the same time to model fre-
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quency modulations and tuning changes by exploiting shift-invariance in the

log-frequency domain. This model was published in [BD11c, BD12a] and was

publicly evaluated in the MIREX 2011 multiple-F0 estimation and note tracking

task in [BD11b].

Afterwards, a model is proposed for pitch detection which incorporates tem-

poral continuity constraints in order to model the temporal evolution of notes.

The time-frequency representation of a tone is expressed by the model as a

temporal sequence of spectral templates which can also be shifted over log-

frequency. The temporal sequence of the templates is controlled using hidden

Markov models (HMMs) [Rab89]. This model was published in [BD11e].

Finally, a system for multiple-instrument AMT modelling the temporal evo-

lution of sounds is proposed, which is based on the aforementioned models. This

model supports templates for multiple sound states for each note of a set of in-

struments. The order of the sound state templates is controlled using pitch-wise

HMMs. This system was published in [BD12b]. Finally, evaluation results for

pitch detection, multi-pitch detection, and instrument assignment are presented

in this chapter using the proposed spectrogram factorization-based models.

4.2 AMT using a Convolutive Probabilistic Model

The goal of this section is to propose an automatic transcription model which

expands PLCA techniques and is able to support the use of multiple spectral

templates per pitch, as well as per musical instrument. In addition, the model

should also be able to exploit shift-invariance across log-frequency for detect-

ing tuning changes and frequency modulations, unlike other PLCA- and NMF-

based transcription approaches [GE10, DCL10]. Finally, the contribution of

each source should be time- and pitch-dependent, contrary to the relative pitch

tracking method of [MS09]. As in the transcription systems of Chapter 3, note

smoothing is performed using hidden Markov models trained on MIDI data from

the RWC database [GHNO03]. The output of the system is a semitone resolu-

tion pitch activity matrix and a higher resolution time-pitch representation; the

latter can also be used for pitch content visualization purposes. A diagram of

the proposed transcription system can be seen in Fig. 4.1.
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Figure 4.1: Diagram for the proposed automatic transcription system using a
convolutive probabilistic model.

4.2.1 Formulation

The model takes as input a log-frequency spectrogram Vω,t, where ω denotes log-

frequency and t time, and approximates it as a joint time-frequency distribution

P (ω, t). This distribution can be expressed as a factorization of the spectrogram

energy P (t) (which is known) and the conditional distribution over the log-

frequency bins Pt(ω) = P (ω|t). By introducing p as a latent variable for pitch,

the model can be expressed as:

P (ω, t) = P (t)
∑

p

Pt(ω|p)Pt(p) (4.1)

where Pt(p) is the time-varying pitch activation and Pt(ω|p) denotes the spec-

tral template for pitch p at the t-th frame. The model of (4.1) is similar to

the standard PLCA model, albeit with time-dependent observed spectra. By

introducing latent variables for instrument sources and for pitch shifting across

log-frequency, the proposed model can be formulated as:

P (ω, t) = P (t)
∑

p,s

P (ω|s, p) ∗ω Pt(f |p)Pt(s|p)Pt(p) (4.2)

where p is the pitch index, s denotes the source, and f the shifting factor. In

(4.2), P (ω|s, p) denotes the spectral templates for a given pitch and instrument

source, while Pt(f |p) is the time-dependent log-frequency shift for each pitch,

convolved with P (ω|s, p) across ω. Pt(s|p) is the time-dependent source contri-

bution for each pitch and finally Pt(p) is the time-dependent pitch contribution,

which can be viewed as the transcription matrix.
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By removing the convolution operator in (4.2), the model becomes:

P (ω, t) = P (t)
∑

p,f,s

P (ω − f |s, p)Pt(f |p)Pt(s|p)Pt(p) (4.3)

where P (ω−f |s, p) = P (µ|s, p) denotes the shifted spectral template for a given

pitch and source. It should be noted that as a time-frequency representation,

we employ the constant-Q transform (CQT) with a spectral resolution of 120

bins per octave [SK10]. In order to utilise each spectral template P (ω|s, p) for

detecting a single pitch, we constrain f to a range of one semitone. Thus, f has

a length of 10.

4.2.2 Parameter Estimation

In order to estimate the unknown parameters in the model we employ the

Expectation-Maximization algorithm [DLR77]. Given the input spectrogram

Vω,t, the log-likelihood of the model given the data is:

L =
∑

ω,t

Vω,t log
(
P (ω, t)

)
(4.4)

For the Expectation step, we compute the contribution of latent variables

p, f, s over the complete model reconstruction using Bayes’ theorem:

Pt(p, f, s|ω) =
P (ω − f |s, p)Pt(f |p)Pt(s|p)Pt(p)∑
p,f,s P (ω − f |s, p)Pt(f |p)Pt(s|p)Pt(p)

(4.5)

For the Maximization step, we utilise the posterior of (4.5) for maximizing

the log-likelihood of (4.4), resulting in the following update equations:

P (ω|s, p) =

∑
f,t Pt(p, f, s|ω + f)Vω+f,t∑
ω,t,f Pt(p, f, s|ω + f)Vω+f,t

(4.6)

Pt(f |p) =

∑
ω,s Pt(p, f, s|ω)Vω,t∑
f,ω,s Pt(p, f, s|ω)Vω,t

(4.7)

Pt(s|p) =

∑
ω,f Pt(p, f, s|ω)Vω,t∑
s,ω,f Pt(p, f, s|ω)Vω,t

(4.8)

Pt(p) =

∑
ω,f,s Pt(p, f, s|ω)Vω,t∑
p,ω,f,s Pt(p, f, s|ω)Vω,t

(4.9)
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Equations (4.5-4.9) are iterated until convergence (the algorithm is guaranteed

to converge to a local minimum). By keeping the spectral templates P (ω|s, p)

fixed (using pre-extracted templates in a training step), the model converges

quickly, requiring about 10-20 iterations. For the present experiments, we have

set the number of iterations to 15. The runtime for the proposed system is about

50 times real-time. We set p = 1, . . . , 89, where the first 88 indices correspond

to notes A0-C8, and the 89th index corresponds to a residual template (which

is also shifted). The spectral template update rule of eq. (4.6) is applied only

to the 89th template, while all the other pitch templates remain fixed. The

residual template is updated in order to learn the possible noise shape of the

recording, or any other artifacts that might occur in the music signal.

The output of the transcription model is a MIDI-scale pitch activity matrix

and a higher-resolution pitch activation tensor, respectively given by:

P (p, t) = P (t)Pt(p)

P (f, p, t) = P (t)Pt(p)Pt(f |p) (4.10)

By stacking together slices of P (f, p, t) for all pitch values, we can create a

10-cent resolution time-pitch representation:

P (f ′, t) = [P (f, 21, t) · · ·P (f, 108, t)] (4.11)

where f ′ = 1, . . . , 880. The time-pitch representation P (f ′, t) is useful for pitch

content visualization and for the extraction of tuning information.

In Fig. 4.2, the pitch activity matrix P (p, t) for an excerpt of a guitar record-

ing from the RWC database can be seen, along with the corresponding pitch

ground truth. Also, in Fig. 4.3, the time-pitch representation P (f ′, t) of an

excerpt of the ‘RWC MDB-C-2001 No. 12’ (string quartet) recording is shown,

where vibrati in certain notes are visible. It should be noted that these vibrati

would not be captured in a non-shift-invariant model.

4.2.3 Sparsity constraints

Since the proposed model in its unconstrained form is overcomplete (i.e. it con-

tains more information than the input), especially due to the presence of the

convolution operator and its commutativity property, it would be useful to en-

force further constraints in order to regulate the potential increase of information
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Figure 4.2: (a) The pitch activity matrix P (p, t) of the first 23s of of ‘RWC
MDB-J-2001 No. 9’ (guitar). (b) The pitch ground truth of the same recording.

from input to output [Sma09]. To that end, sparsity is enforced on the piano-

roll matrix P (p|t) and the source contribution matrix P (s|p, t). This can be

explained intuitively, since we expect that for a given time frame only few notes

should be active, while each pitch for a time frame is produced from typically

one or few instrument sources.

In [Sma09], sparsity was enforced in the shift-invariant PLCAmodel by using

an entropic prior, while in the PLSA model of [Hof99], a scaling factor to select

update equations was applied, which is related to the Tempered EM algorithm.

This approach was used for automatic transcription in [GE10] and is used in

this work as well, since it is simpler and easier to control. Essentially, equations

(4.8) and (4.9) are modified as follows:

Pt(s|p) =

(∑
ω,f Pt(p, f, s|ω)Vω,t

)ρ1

∑
s

(∑
ω,f Pt(p, f, s|ω)Vω,t

)ρ1 (4.12)
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Figure 4.3: The time-pitch representation P (f ′, t) of the first 23s of ‘RWC
MDB-C-2001 No. 12’ (string quartet).

Pt(p) =

(∑
ω,f,s Pt(p, f, s|ω)Vω,t

)ρ2

∑
p

(∑
ω,f,s Pt(p, f, s|ω)Vω,t

)ρ2 (4.13)

As mentioned in [GE10], when ρ1 and ρ2 are greater than 1, the probability

distributions Pt(s|p) and Pt(p) are “sharpened” and their entropy is lowered.

This leads to fewer weights being close to 1 and keeping most near 0, thus

achieving sparsity.

Concerning sparsity parameters, after experimentation, the sparsity for the

instrument contribution matrix was set to ρ1 = 1.1, while the sparsity coefficient

for the piano-roll transcription matrix was set to ρ2 = 1.3. Although the optimal

value of ρ1 is 1 when ρ2 = 1, the combination of these two parameters after

experimentation yielded the optimal value of ρ1 = 1.1.

4.2.4 Postprocessing

The output of spectrogram factorization techniques for automatic transcription

is typically a non-binary pitch activation matrix (e.g. see Fig. 4.2(a)) which

needs to be converted into a series of note events, listing onsets and offsets.

Most spectrogram factorization-based approaches extract the final note events
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by simply thresholding the pitch activation matrix, e.g. [GE10, DCL10]. As in

the audio feature-based transcription methods of Chapter 3, we employ hidden

Markov models (HMMs) [Rab89] for performing note smoothing and tracking.

Here, we apply note smoothing on the pitch activity matrix P (p, t).

As in Chapter 3, the activity/inactivity of each pitch p is modeled by a

2-state, on/off HMM. MIDI files from the RWC database [GHNO03] from the

classic and jazz genres were employed in order to estimate the pitch-wise state

priors and transition matrices. For estimating the time-varying observation

probability for each active pitch P (o
(p)
t |q

(p)
t = 1), we use a sigmoid curve which

has as input the piano-roll transcription matrix P (p, t):

P (o
(p)
t |q

(p)
t = 1) =

1

1 + e−P (p,t)−λ
(4.14)

where λ controls the smoothing as in the postprocessing methods of the previ-

ous chapter. The result of the HMM postprocessing step is a binary piano-roll

transcription which can be used for evaluation. An example of the postprocess-

ing step is given in Fig. 4.4, where the transcription matrix P (p, t) of a piano

recording is seen along with the output of the HMM smoothing.

4.3 Pitch Detection using a Temporally-constrained

Convolutive Probabilistic Model

In this section, a temporally-constrained shift-invariant model for pitch detec-

tion will be presented. The model expresses the evolution of monophonic music

sounds as a sequence of sound state templates, shifted across log-frequency.

The motivation behind it is to address drawbacks of current pitch detection

approaches by: i) explicitly modeling sound states instead of using a constant

spectral template for a complete note event, as in [Sma09, MS09, GE11] and the

system of Section 4.2 ii) incorporating shift-invariance into the model in order to

support the detection of notes which exhibit frequency modulations and tuning

changes, extending the work done in [Mys10, NRK+10]. Finally, compared to

the NMF-based work in [NRK+10], the parameters for the temporal constraints

are learned from a hidden Markov model instead of being pre-defined.
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Figure 4.4: (a) The pitch activity matrix P (p, t) of the first 23s of ‘RWC MDB-
C-2001 No. 30’ (piano). (b) The piano-roll transcription matrix derived from
the HMM postprocessing step.

4.3.1 Formulation

The proposed method can be named as HMM-constrained SI-PLCA. The notion

is that the input log-frequency spectrogram1 Vω,t is decomposed as a sum of

sound state spectral templates that are shifted across log-frequency, producing

a pitch track. Each sound state q is constrained using an HMM. Here, ω ∈ [1,Ω]

is the log-frequency index and t ∈ [1, T ] the time index. The model in terms of

the observations is defined as:

P (ω̄) =
∑

q̄

(
P (q1)

∏

t

P (qt+1|qt)

)(∏

t

P (ω̄t|qt)

)
(4.15)

where ω̄ is the complete sequence of draws for all time frames (observable via

Vω,t), q̄ is the sequence of draws of q, P (q1) is the sound state prior distribution,

P (qt+1|qt) is the state transition matrix, P (ω̄t|qt) is the observation probability

1As in [Mys10], a magnitude spectrogram can be scaled as to yield integer entries.

105



given a state, and ω̄t is the sequence of draws of ω at the t-th frame.

The observation probability is calculated as:

P (ω̄t|qt) =
∏

ωt

Pt(ωt|qt)
Vω,t (4.16)

since Vω,t represents the number of times ω has been drawn at time t. Pt(ωt|qt)

is decomposed as:

Pt(ωt|qt) =
∑

ft

P (ωt − ft|qt)Pt(ft|qt) (4.17)

Eq. (4.17) denotes the spectrum reconstruction for a given state. P (ω− f |q) =

P (µ|q) are the shifted sound state templates and Pt(f |q) is the time-dependent

pitch shifting factor for each state (f ∈ [1, F ]). The subscript t in ft, ωt, qt

denotes the values of the random variables f, ω, q taken at frame t. It should

also be noted that the observation probability of (4.16) is computed in the log-

domain in order to avoid any underflow errors.

Thus, the generative process for the proposed model is as follows:

1. Choose an initial state according to P (q1).

2. Set t = 1.

3. Repeat the following steps Vt times (Vt =
∑

ω Vω,t):

(a) Choose µ according to P (µt|qt).

(b) Choose f according to Pt(ft|qt).

(c) Set ωt = µt + ft.

4. Choose a new state qt+1 according to P (qt+1|qt).

5. Set t = t+ 1 and go to step 3 if t < T .

4.3.2 Parameter Estimation

The unknown parameters P (µt|qt) and Pt(ft|qt) can be estimated by maxi-

mizing the log-likelihood of the data, using the EM algorithm [DLR77]. The

update equations are a combination of the SI-PLCA update rules and the HMM

forward-backward algorithm [Rab89]. The posterior distribution of the model is
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given by P (f̄ , q̄|ω̄), where f̄ is the sequence of draws of f . Analytical derivations

for the proposed model are presented in Appendix C.

For the Expectation step, we compute the contribution of the latent variables

f, q over the complete model reconstruction:

Pt(ft, qt|ω̄) =
Pt(ft|ω̄, qt)Pt(ω̄, qt)

P (ω̄)
= Pt(ft|ωt, qt)Pt(qt|ω̄) (4.18)

where

Pt(ft|ωt, qt) =
P (ωt − ft|qt)Pt(ft|qt)∑
ft
P (ωt − ft|qt)Pt(ft|qt)

(4.19)

Pt(qt|ω̄) =
Pt(ω̄, qt)∑
qt
Pt(ω̄, qt)

=
αt(qt)βt(qt)∑
qt
αt(qt)βt(qt)

(4.20)

Equation (4.18) is the posterior of the hidden variables over the observations

and is computed using the fact that Pt(ft|ω̄, qt) = Pt(ft|ωt, qt). Equation (4.19)

is computed using Bayes’ rule and the notion that P (ωt|ft, qt) = P (ωt − ft|qt).

Equation (4.20) is the time-varying contribution of each sound state and is

derived from the following:

Pt(ω̄, qt) = P (ω̄1, ω̄2, . . . , ω̄t, qt)P (ω̄t+1, ω̄t+2, . . . , ω̄T |qt)

= αt(qt)βt(qt) (4.21)

where T is the total number of frames and αt(qt), βt(qt) are the HMM forward

and backward variables [Rab89], respectively.

The forward variable αt(qt) can be computed recursively using the forward-

backward algorithm as follows:

α1(q1) = P (ω̄1|q1)P (q1)

αt+1(qt+1) =

(∑

qt

P (qt+1|qt)αt(qt)

)
·P (ω̄t+1|qt+1)

(4.22)

while the backward variable βt(qt) can be computed as:

βT (qT ) = 1

βt(qt) =
∑

qt+1

βt+1(qt+1)P (qt+1|qt)P (ω̄t+1|qt+1)

(4.23)
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The posterior for the sound state transition matrix is given by:

Pt(qt, qt+1|ω̄) =
Pt(ω̄, qt, qt+1)∑

qt

∑
qt+1

Pt(ω̄, qt, qt+1)
=

αt(qt)P (qt+1|qt)βt+1(qt+1)P (ω̄t+1|qt+1)∑
qt,qt+1

αt(qt)P (qt+1|qt)βt+1(qt+1)P (ω̄t+1|qt+1)
(4.24)

For the Maximization step, we derive the update equations for the unknown

parameters P (µ|q), Pt(ft|qt), P (qt+1|qt), and P (q1) using the computed poste-

riors:

P (µ|q) =

∑
f,t Vω,tPt(f, q|ω̄)∑
ω,f,t Vω,tPt(f, q|ω̄)

(4.25)

Pt(ft|qt) =

∑
ωt
Vω,tPt(ft, qt|ω̄)∑

ft,ωt
Vω,tPt(ft, qt|ω̄)

(4.26)

P (qt+1|qt) =

∑
t Pt(qt, qt+1|ω̄)∑

qt+1

∑
t Pt(qt, qt+1|ω̄)

(4.27)

P (q1) = P1(q1|ω̄) (4.28)

After estimating the unknown parameters, the activation of each sound state is

given by:

Pt(qt|ω̄)
∑

ω

Vω,t (4.29)

An example of the single-source model is given in Fig. 4.5, where the 10-

cent resolution log-frequency spectrogram of a B1 piano note from the MAPS

database [EBD10] is used as input. Here, a 4-state left-to-right HMM is used.

The temporal succession of spectral templates can be seen in Fig. 4.5(d).

4.4 AMT using a Temporally-constrained Con-

volutive Probabilistic Model

In this Section, the single-source model of Section 4.3 is extended for support-

ing multiple sources, as well as multiple components per source. The goal is

to create a multi-pitch detection system for multiple instruments, supporting

also multiple sets of sound state templates per source. At the same time, the

model will be able to support tuning changes and frequency modulations using

a shift-invariant formulation. For modeling the temporal evolution of the sound

state templates, one HMM will be linked with each pitch. Sparsity will also
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Figure 4.5: (a) Log-frequency spectrogram Vω,t of a B1 piano note (b) Approx-
imation of the spectrogram using estimated parameters from the single-source
model (c) Spectral templates P (µ|q); the first template corresponds to the at-
tack state, the second and third to the sustain states, and the fourth to the
release state (d) Sound state activation Pt(qt|ω̄)

∑
ω Vω,t (e) Sound state tran-

sition matrix P (qt+1|qt) (f) Sound state priors P (q1)

be enforced on certain distributions, as in [GE11], for further constraining the

solution. All of the above features will allow for an informative representation

of the input music signal, addressing some drawbacks of current multi-pitch

detection systems.

4.4.1 Formulation

This model decomposes an input log-frequency spectrogram Vω,t as a series of

sound state templates per source and pitch, a shifting parameter per pitch, a

pitch activation, a source activation, and a sound state activation. The sound

state sequence for each pitch p = 1, . . . , 88 (denoting notes A0 to C8) is con-

strained using a corresponding HMM. The proposed model can be given in terms
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of the observations as:

P (ω̄) =
∑

q̄(1)

· · ·
∑

q̄(88)

P (q
(1)
1 ) · · ·P (q

(88)
1 )

(∏

t

P (q
(1)
t+1|q

(1)
t )

)
· · ·

(∏

t

P (q
(88)
t+1 |q

(88)
t )

)

(∏

t

P (ω̄t|q
(1)
t , . . . , q

(88)
t )

)
(4.30)

where q̄(p) refers to the state sequences for a given pitch, P (q
(p)
1 ) is the sound

state prior distribution for pitch p, P (q
(p)
t+1|q

(p)
t ) is the sound state transition

matrix, and P (ω̄t|q
(1)
t , . . . , q

(88)
t ) is the observation probability.

The observation probability is calculated as:

P (ω̄t|q
(1)
t , . . . , q

(88)
t ) =

∏

ωt

Pt(ωt|q
(1)
t , . . . , q

(88)
t )Vω,t (4.31)

where

Pt(ωt|q
(1)
t , . . . , q

(88)
t ) =

∑

st,pt,ft

Pt(pt)Pt(st|pt)P (ωt − ft|st, pt, q
(pt)
t )Pt(ft|pt) (4.32)

In (4.32), s denotes the instrument sources, f is the log-frequency pitch shifting

parameter, and q(p) is the sound state sequence linked to pitch p. Pt(p) is

the pitch activity matrix (which is the output of the transcription system),

and Pt(s|p) is the contribution of each instrument source for each pitch across

time. P (ω − f |s, p, q(p)) = P (µ|s, p, q(p)) denotes a spectral template for the

q-th sound state, p-th pitch and s-th source, and Pt(f |p) is the time- and pitch-

dependent log-frequency shifting distribution. For computing (4.32), we exploit

the fact that P (ωt − ft|st, pt, q
(1)
t , . . . , q

(88)
t ) = P (ωt − ft|st, pt, q

(pt)
t ). In order

to constrain the pitch shifting f so that each sound state template is associated

with a single pitch, the shifting occurs in a semitone range around the ideal

position of each pitch. Due to memory and computational speed issues, we are

using a log-frequency representation with a spectral resolution of 60 bins per

octave instead of 120 as in the system of Section 4.2. Thus, f ∈ [−2, 2].

Thus, the generative process for the multi-pitch model is as follows:

1. Choose initial states for each p according to P (q
(p)
1 ).
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2. Set t = 1.

3. Repeat the following steps Vt times (Vt =
∑

ω Vω,t):

(a) Choose p according to Pt(pt).

(b) Choose s according to Pt(st|pt).

(c) Choose f according to Pt(ft|pt).

(d) Choose µ according to P (µt|st, pt, q
(pt)
t ).

(e) Set ωt = µt + ft.

4. Choose new states q
(p)
t+1 for each p according to P (q

(p)
t+1|q

(p)
t ).

5. Set t = t+ 1 and go to step 3 if t < T .

4.4.2 Parameter Estimation

As in Section 4.3, the unknown model parameters can be estimated using the

EM algorithm [DLR77]. For the Expectation step, the posterior of all hidden

variables is given by:

Pt(ft, st, pt, q
(1)
t , . . . , q

(88)
t |ω̄) =

Pt(q
(1)
t , . . . , q

(88)
t |ω̄)Pt(ft, st, pt|ωt, q

(1)
t , . . . , q

(88)
t ) (4.33)

Since we are using independent HMMs, the joint probability of all pitch-wise

sound states over the observations is given by:

Pt(q
(1)
t , . . . , q

(88)
t |ω̄) =

88∏

p=1

Pt(q
(p)
t |ω̄) (4.34)

where

Pt(q
(p)
t |ω̄) =

Pt(ω̄, q
(p)
t )

∑
q
(p)
t

Pt(ω̄, q
(p)
t )

=
αt(q

(p)
t )βt(q

(p)
t )

∑
q
(p)
t

αt(q
(p)
t )βt(q

(p)
t )

(4.35)

and αt(q
(p)
t ), βt(q

(p)
t ) are the forward and backward variables for the p-th HMM

[Rab89], which can be computed recursively using equations (4.22)-(4.23). The

second term of (4.33) can be computed using Bayes’ theorem and the indepen-
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Figure 4.6: (a) Time-pitch representation P (f ′, t) of an excerpt of “RWC-MDB-
J-2001 No. 7” (guitar). (b) The pitch ground truth of the same recording.

dence of the pitch-wise HMMs as:

Pt(ft, st, pt|ωt, q
(1)
t , . . . , q

(88)
t ) = Pt(ft, st, pt|ωt, q

(pt)
t ) =

Pt(pt)P (ωt − ft|st, pt, q
(pt)
t )Pt(ft|pt)Pt(st|pt)∑

pt
Pt(pt)

∑
st,ft

P (ωt − ft|st, pt, q
(pt)
t )Pt(ft|pt)Pt(st|pt)

(4.36)

Finally, the posterior probability for the p-th pitch transition matrix is given

by:

Pt(q
(p)
t+1, q

(p)
t |ω̄) =

αt(q
(p)
t )P (q
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P (ω̄t|q
(p)
t ) is given from

∑
q
(p)
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∑
q
(88)
t

.

For the Maximization step, the unknown parameters in the model can be

computed using the following update equations:

P (µ|s, p, q(p)) =

∑
f,s,t

∑
q
(p)
t

Vω,tPt(f, s, p, q
(1), . . . , q(88)|ω̄)

∑
ω,f,s,t

∑
q
(p)
t

Vω,tPt(f, s, p, q(1), . . . , q(88)|ω̄)
(4.38)
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(4.39)
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P (q
(p)
1 ) = P1(q

(p)
1 |ω̄) (4.43)

We should note that the proposed multi-pitch transcription system uses pre-

extracted sound state templates using the single-pitch model of Section 4.3,

thus the spectral template update rule of (4.38) is not utilised, but is included

here for completeness. The runtime for the proposed system is about 100 times

real-time. After convergence using the update equations from the EM steps,

the output of the system is a semitone resolution pitch activity matrix and a

pitch activity tensor in the resolution of the input time-frequency representation,

given respectively by:

Pt(p)
∑

ω

Vω,t

Pt(p)Pt(f |p)
∑

ω

Vω,t (4.44)

A time-pitch representation can be created by stacking together matrix slices of

tensor Pt(p)Pt(f |p)
∑
ω Vω,t for all pitch values. We will denote this time-pitch

representation as P (f ′, t), which can be used for pitch visualization purposes

or for extracting tuning information. An example from the proposed model is

given in Fig. 4.6, where the output time-pitch representation P (f ′, t) and the

MIDI ground-truth of a guitar recording can be seen.

4.4.3 Sparsity constraints

The multi-pitch model can be further constrained using sparsity restrictions.

Sparsity was enforced in the shift-invariant models of [Sma09, MS09], using an

entropic prior. However, those models were completely unconstrained, since the

spectral templates were not pre-extracted. Since we know that for a transcrip-

tion problem few notes are active at a given time frame and that few instrument
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Figure 4.7: Log-likelihood evolution using different sparsity values for ‘RWC-
MDB-J-2001 No.1’ (piano).

sources are responsible for creating a note event at a time frame, we impose

sparsity on the pitch activity matrix Pt(pt) and the pitch-wise source contri-

bution matrix Pt(st|pt). This is achieved in a similar way to [GE10] and the

shift-invariant model in Section 4.2, by modifying update equations (4.40) and

(4.41):
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(∑
ωt,ft,q
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(88)
t
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(88)
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t , . . . , q

(88)
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)ρ2 (4.46)

By setting ρ1, ρ2 > 1, the entropy in matrices Pt(s|p) and Pt(p) is lowered and

sparsity is enforced [GE10]. It should be mentioned that this solution does not

guarantee convergence, although it is observed in practice. In Fig. 4.7, the evo-

lution of log-likelihoodL =
∑

ω,t Vω,t log
(∑

pt,q
(pt)
t

Pt(ωt|q
(p)
t )Pt(q

(pt)
t |ω̄)

∑
ω Vω,t

)

can be seen when using different values for sparsity parameter ρ2, for the pi-

ano piece ‘RWC-MDB-J-2001 No.1’. It can be seen that by enforcing sparsity

convergence is still observed, although a higher sparsity value might result in a

worse approximation.
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4.4.4 Postprocessing

The same postprocessing technique as the one used in subsection 4.2.4 is em-

ployed for the temporally-constrained multi-pitch model. Here, for the pitch-

wise two-state HMMs we use as observations the pitch activation Pt(p)
∑

ω Vω,t.

Thus, we define the observation probability for an active note event as:

P (o
(p)
t |q

(p)
t = 1) =

1

1 + e−Pt(p)
∑

ω
Vω,t−λ

(4.47)

As in subsection 4.2.4, eq. (4.47) is a sigmoid curve with Pt(p)
∑

ω Vω,t as

input. Parameter λ controls the smoothing (a high value will discard pitch

candidates with low probability). Essentially, in a case of high values in the

pitch activation for a given note, where a gap might occur due to an octave

error, a high self-transition probability in an active state would help filling in

that gap, thus performing note smoothing. The output of the postprocessing

step is a piano-roll transcription, which can be used for evaluation. An example

of the HMM-based note tracking step for the proposed model is given in Fig. 4.8,

where the input pitch activity matrix and the output transcription piano-roll of

a string quartet recording can be seen.

4.5 Evaluation

4.5.1 Training Data

For the transcription systems of Section 4.2, spectral templates are extracted for

various orchestral instruments, using their complete note range. The standard

PLCA model of (2.8) using only one component z is employed in order to extract

a single spectral template. For extracting piano templates, the MAPS database

is employed [EBD10], where templates from three different piano models were

extracted. In addition, note templates are extracted for bassoon, cello, clarinet,

flute, guitar, harpsichord, horn, oboe, pipe organ, and violin using isolated

notes from the RWC musical instrument samples database [GHNO03]. In total,

source parameter s has a size of 13 (3 sets of templates from the piano and 10

for the rest of the instruments). The note range of each instrument used for

sound state template extraction can be seen in Table 4.1. As a time-frequency

representation, the CQT with 120 bins per octave is used [SK10].

For demonstrating the potential of the temporally-constrained pitch detec-

tion system of Section 4.3, sound state templates are extracted for piano, cello,
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Figure 4.8: (a) The pitch activity matrix Pt(p)
∑
ω Vω,t of the first 23s of ‘RWC-

MDB-C-2001 No. 12’ (string quartet) (b) The piano-roll transcription output
of the note tracking step.

and oboe, using samples for note C4 from the RWC Musical Instrument Sound

database [GHNO03]. The time-frequency representation that is employed for

analysis is the resonator time-frequency image (RTFI) [Zho06] using a spectral

resolution of 120 bins/octave. The reason the RTFI is selected instead of the

more common CQT is because it provides a more accurate temporal resolution

in lower frequencies, which is attributed to the use of an exponential decay fac-

tor in the filterbank analysis. For extracting the templates, the model in (4.17)

is employed, using left-to-right HMMs with Q = 4 hidden sound states.

Finally, for the automatic transcription system of Section 4.4, sound state

templates are extracted for the same list of instruments as in the transcription

system of Section 4.2, using their complete note range as shown in Table 4.1.

Ground-truth labels were given for each note and instrument type, but the

sound state templates for each note segment are computed in an unsupervised

manner, where the model learns the templates using the single-pitch model of

Section 4.3. Three sound states were set in the model of equation (4.17). As

a time-frequency representation, the constant-Q transform with 60 bins/octave

was used [SK10]. The reason for using 60 bins/octave instead of 120 bins/octave
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Instrument Lowest note Highest note

Bassoon 34 72
Cello 26 81
Clarinet 50 89
Flute 60 96
Guitar 40 76
Harpsichord 28 88
Horn 41 77
Oboe 58 91
Pipe Organ 36 91
Piano 21 108
Violin 55 100

Table 4.1: MIDI note range of the instruments employed for note and sound
state template extraction.

is due to computational speed and memory issues.

4.5.2 Test Data

For testing the transcription systems of Sections 4.2 and 4.4, the same recordings

that were used for transcription experiments in Section 3.5 are used, namely the

17 RWC recordings [GHNO03], the 10 Disklavier recordings from [PE07a], and

the MIREX multiF0 development dataset [MIR]. It should be noted that the

system of Section 4.4 is also evaluated for instrument identification experiments

in polyphonic music (also called instrument assignment [GE11]) using the multi-

track MIREX recording.

For testing the temporally-constrained pitch detection system of 4.3, three

monophonic excerpts are utilised: a piano melody from the beginning of J.S.

Bach’s Chromatic Fugue synthesized using the Native Instruments soundfonts2,

a cello melody from the RWC database [GHNO03] (RWC-MDB-C-2001 No. 12),

and an oboe melody from the MIREX multi-F0 development set [MIR].

4.5.3 Results

Monophonic Excerpts

For the pitch detection experiments, the update rules in (4.18) - (4.27) were

used, excluding the update rule for the spectral templates in (4.25), since the

2Available at: http://www.eecs.qmul.ac.uk/~emmanouilb/WASPAA.html
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patterns for each sound state were considered fixed. The detected pitch for the

recordings is summed from the pitch distribution for each sound state:

∑

qt

Pt(qt|ω̄)Pt(f |qt)
∑

ω

Vω,t (4.48)

Using the detected pitch track, a piano-roll representation was created by

summing every 10 pitch bins (which make for one semitone). The output piano-

roll representation was compared against existing MIDI ground truth for the

employed recordings. In Fig. 4.9, an excerpt of the employed piano melody

can be seen along with the weighted sound state transitions using the employed

model with a left-to-right HMM. For each tone, the transition from the attack

state to two sustain states, followed by a brief decay state can clearly be seen.

For evaluation, the frame-based transcription metrics presented in Section 2.5

are utilised, namely the overall accuracy (Acc), the total error (Etot ), the sub-

stitution error (Esubs), missed detection error (Efn ), and false alarm error (Efp).

For comparative purposes, the shift-invariant PLCA method in [Sma09] is also

employed for transcription. In this case, one spectral template per source is

employed, using the same training data as in the proposed method.

Pitch detection results using the proposed model are displayed for each

recording in Table 4.2. Experiments using the proposed method are performed

using left-to-right and ergodic HMMs (where all possible transitions between

states were allowed). Although the use of an ergodic model might not be

ideal in cases where the sound evolves clearly between the attack, transient,

sustain, and decay states, it might be useful for instruments where different

sustain states alternate (e.g. tremolo). It can be seen that in all cases, the pro-

posed temporally-constrained convolutive model outperforms the shift-invariant

PLCA method in terms of overall transcription accuracy. Also, the accuracy is

relatively high for the piano and cello recordings, but significantly lower for the

oboe recording. This can be attributed to the fact that the spectral pattern of

oboe notes is not constant for all pitches, but in fact changes drastically. Most

of the missed detections are located in the decay states of tones, whereas most

false alarms are octave errors occurring in the attack part of notes. Finally,

when comparing the HMM topologies, it can be seen that the ergodic model

slightly outperforms the left-to-right one.
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Figure 4.9: (a) Log-frequency spectrogram of a segment of the piano melody
employed for experiments (b) Weighted state transitions Pt(qt|ω̄)

∑
ω Vω,t.

RWC Dataset

Transcription results using the 12 excerpts from the RWC database [GHNO03]

are shown in terms of Acc2 in Table 4.3, for the polyphonic transcription meth-

ods presented in this chapter. Comparisons are also made with the proposed au-

dio feature-based methods of Chapter 3. It should be noted that for the method

of Section 4.2, the input T/F representation has a resolution of 120 bins/octave,

while for the method of Section 4.4, the resolution is 60 bins/octave. For the

latter case, this was done due to computational speed and memory purposes,

since the system supports sound state templates for multiple pitches and instru-

ments. From Table 4.3, it can clearly be seen that the proposed spectrogram

factorization methods outperform the proposed audio feature-based methods.

In addition, all proposed methods outperform state-of-the-art results for the

same dataset, for the GMM-based method of [QRC+10], the specmurt method

of [SKT+08], and the HTC method of [KNS07] (detailed results for the afore-

mentioned methods can be seen in Table 3.3).

In terms of specific recordings, the lowest performance of all systems is re-

ported for recording 12, which is a piano-tenor duet. On the other hand, the best
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Method Instrument Acc Etot Esubs Efn Efp§4.3
(LtR)

Piano 81.5% 17.8% 2.2% 9.8% 5.8%
Cello 80.3% 22.1% 8.3% 5.6% 15.7%
Oboe 55.0% 39.1% 13.3% 22.6% 3.2%§4.3

(ergodic)

Piano 82.2% 16.9% 2.2% 9.5% 5.2%
Cello 80.5% 22.2% 5.6% 5.4% 16.2%
Oboe 55.6% 37.5% 14.9% 19.3% 3.2%

SI-PLCA
Piano 80.1% 20.2% 1.6% 10.7% 7.9%
Cello 75.0% 28.5% 1.2% 9.2% 18.0%
Oboe 54.1% 41.9% 13.7% 20.5% 7.7%

Table 4.2: Pitch detection results using the proposed method of Section 4.3 with
left-to-right and ergodic HMMs, compared with the SI-PLCA method.

performance for the spectrogram factorization systems is reported for record-

ing 10, which was performed by a string quartet. This demonstrates that this

method can well support the transcription of recordings of non-ideally tuned

instruments which also exhibit vibrati, which is not as well supported by signal

processing-based methods. In addition, results using RWC recordings 13-17,

which have not been evaluated by other methods in the literature, can be seen

in Table 4.4. Again, the temporally-constrained system outperforms all other

proposed systems.

Additional transcription metrics for RWC recordings 1-17 using the system

of Section 4.4 along with two variants of the system of Section 4.2 (with a

frequency resolution of 60 and 120 bins per octave) can be seen in Table 4.5. By

comparing the two systems with a frequency resolution of 60 bins per octave, it

can be seen that incorporating temporal constraints for the evolution of notes

significantly improves transcription accuracy. Octave errors counting as note

substitutions have been diminished in the temporally-constrained system due

to modeling the decay state of tones, where in some cases the higher harmonics

might be suppressed (e.g. piano). It can also be seen that a greater spectral

resolution helps improve performance. In all three cases, the most common

errors occurring in the system are missed detections, usually occurring in dense

chords, where only the root note is detected and the higher notes are considered

as harmonics. Another source of missed detections in the frame-based evaluation

also occurs when the decay part of a note is not recognised due to low energy.

Given the fact that estimating note durations is a challenging task even for

a human annotator, missed detections due to different note durations are not

considered as serious as e.g. octave errors. Note substitutions can also be
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§4.4 §4.2 §3.4 §3.3
1 65.1% 65.9% 60.0% 60.2%
2 65.0% 66.7% 73.6% 75.0%
3 65.3% 66.2% 62.5% 57.9%
4 66.8% 67.3% 65.2% 66.8%
5 57.1% 61.0% 53.4% 54.8%
6 76.6% 78.1% 76.1% 74.4%
7 67.0% 67.3% 68.5% 64.0%
8 67.9% 63.6% 60.1% 58.9%
9 50.4% 49.7% 50.3% 53.9%
10 80.7% 76.9% 72.4% 74.1%
11 57.6% 57.2% 56.2% 50.0%
12 34.0% 30.4% 33.0% 35.7%

Mean 62.8% 62.5% 61.2% 60.5%

Std. 12.1% 12.6% 11.2% 11.5%

Table 4.3: Transcription results (Acc2) for the RWC recordings 1-12.§4.4 §4.2 §3.4 §3.3
13 61.2% 58.5% 60.3% 48.2%
14 51.3% 50.4% 47.7% 41.8%
15 66.2% 64.2% 57.8% 66.8%
16 60.4% 59.6% 60.1% 70.7%
17 69.2% 70.0% 52.0% 75.2%

Mean 61.7% 60.6% 55.5% 60.5%

Std. 6.8% 7.2% 5.5% 14.7%

Table 4.4: Transcription results (Acc2) for RWC recordings 13-17.

octave errors when the lower note is missing, or can be semitone errors when an

instrument might be severely untuned or might momentarily change pitch.

A comparative experiment was made by disabling the convolution operator

in the system of Section 4.4, resulting in a non-shift-invariant system. For RWC

recordings 1-12, the resulting Acc2 = 58.6%, which indicates that by including

shift-invariance a more reliable transcription can be achieved. Most of the ad-

ditional errors introduced by the non-shift-invariant system note substitutions,

with the majority being semitone errors due to the inability of the non-shift-

invariant model to estimate fine tuning or frequency modulations. It should be

noted though that the improvement of a shift-invariant model over a linear one

is also dependent on the overall tuning of a dataset; it is expected that tran-
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Method Fon Acc1 Acc2 Etot Esubs Efn Efp§4.4 60 bins/octave 47.7% 62.0% 62.5% 37.5% 7.8% 19.4% 10.2%§4.2 60 bins/octave 46.8% 60.4% 60.2% 39.8% 9.3% 16.7% 13.8%§4.2 120 bins/octave 47.0% 61.3% 61.9% 38.1% 8.4% 19.0% 10.6%

Table 4.5: Transcription error metrics for the proposed methods using RWC
recordings 1-17.

scribing an untuned dataset will cause additional errors in a non-shift-invariant

transcription model.

In order to test the effect of the HMM-based postprocessing step, a compar-

ative experiment is made which replaces the smoothing procedure with simple

thresholding on the pitch activity matrix P (p, t). Using the set of 12 RWC

recordings, the best result for the system of Section 4.2 is Acc2 = 61.9%, which

is 0.7% worse compared to the HMM postprocessing step. For the system of Sec-

tion 4.4, Acc2 = 61.9%, which again shows that the HMM-based postprocessing

helps achieve improved performance compared to simple thresholding.

Regarding sparsity parameters ρ1 and ρ2, the accuracy rates for the RWC

recordings 1-12 using different sparsity values for the two parameters are pre-

sented in Figs. 4.10 and 4.11 for systems of Sections 4.2 and 4.4 respectively. It

can be seen that with increased source contribution sparsity the accuracy of the

system diminishes, while enforcing sparsity on the pitch activation leads to a

significant improvement. However, after experimentation the optimal combina-

tion of sparsity parameters was found to be ρ1 = 1.1 and ρ2 = 1.4 for the system

of Section 4.4, due to the interaction between parameters. For the system of

Section 4.2 the combination of sparsity parameters was found to be ρ1 = 1.1

and ρ2 = 1.3.

Concerning the statistical significance of the accuracy improvement of the

proposed system compared to the other reported systems from the literature,

the same recogniser comparison technique of [GMSV98] that was used in Chap-

ter 3 was used. For the experiments using the RWC dataset, the significance

threshold with 95% confidence is 0.72% in terms of Acc2, which makes the

improvement significant for the spectrogram factorization-based systems com-

pared to the audio feature-based systems. Although the 0.3% improvement for

the temporally-constrained system of Section 4.4 over the system of Section 4.2

is not significant, the inclusion of the temporal constraints using the same T/F

representation is actually significant, as can be seen from Table 4.5.
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Figure 4.10: Transcription results (Acc2) for the system of Section 4.2 for RWC
recordings 1-12 using various sparsity parameters (while the other parameter is
set to 1.0).

Method §4.4 60 b/o §4.2 120 b/o §4.2 60 b/o [PE07a] [RK05]
Acc1 58.2% 58.9% 57.6% 56.5% 41.2%

Table 4.6: Mean transcription results (Acc1 ) for the piano recordings from
[PE07a].

Disklavier Dataset

Transcription results using the Disklavier dataset from [PE07a] are presented

in Table 4.6. For that case, the proposed spectrogram factorization systems of

Sections 4.2 and 4.4 utilised only the sets of piano templates extracted from

the MAPS database [EBD10]. It can be seen that both proposed spectrogram

factorization-based systems outperform the methods in [PE07a] and [RK05], as

well as the proposed audio feature-based methods (results shown in Table 3.7).

The best accuracy is reported for the system of Section 4.2 with a CQT of 120

bins/octave, although the temporally-constrained system still outperforms the

non-temporally-constrained system with the same CQT resolution.

Additional metrics for the Disklavier dataset are presented in Table 4.7,

where a similar trend can be seen when using the note-based F-measure for the

proposed spectrogram factorization-based systems. Another experiment using

the Disklavier dataset was reported for the sparse coding system of [LYC11]
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Figure 4.11: Transcription results (Acc2) for the system of Section 4.4 for RWC
recordings 1-12 using various sparsity parameters (while the other parameter is
set to 1.0).

Method Fon Acc1 Acc2 Etot Esubs Efn Efp§4.4 60 b/o 55.5% 58.2% 57.7% 42.3% 9.8% 18.6% 13.9%§4.2 120 b/o 60.3% 58.9% 58.2% 41.8% 9.6% 17.7% 14.5%§4.2 60 b/o 55.0% 57.6% 56.7% 43.3% 10.9% 16.9% 15.5%

Table 4.7: Transcription error metrics for the piano recordings in [PE07a].

using the frame-based F-measure as a metric. In that case, the reported F

from [LYC11] was 70.2%, while for the system of Section 4.4 it reaches F =

73.1%. For the Disklavier dataset the statistical significance threshold with 95%

confidence is 0.44% in terms of Acc1, which makes the performance difference of

proposed systems compared to the state-of-the-art significant (cf. discussion on

statistical significance in Subsection 3.5.2). As far as the choice of templates is

concerned, comparative experiments were made using the full template set for

the Disklavier recordings. For the system of Section 4.4, the full set produced

Acc1 = 59.4% and Acc2 = 57.8%, which outperforms the results using only the

piano templates. This can be attributed by the fact that by the model can utilise

additional templates from different instruments in order to better approximate

the input sounds.
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Method §4.4 60 b/o §4.2 120 b/o §4.2 60 b/o [PG11] [VBB10]
F 65.9% 60.5% 63.7% 59.6% 62.5%

Table 4.8: Frame-based F for the first 30 sec of the MIREX woodwind quintet,
comparing the proposed methods with other approaches.

MIREX MultiF0 Development Dataset

Results using the MIREX 2007 woodwind quintet recording are shown in Tables

4.8 and 4.9. In Table 4.8, results using the first 30 sec of the recording are

reported using the frame-based F-measure, compared with the harmonic NMF

method of [VBB10], and the likelihood search method using a Poisson process

in [PG11]. The proposed method of Section 4.4 outperforms other methods

in the literature, including the non-temporally-constrained proposed method

of Section 4.2. It should be noted that the corresponding precision and recall

for the system of Section 4.4 are Pre = 63.7% and Rec = 68.7%. Perhaps

surprisingly, the system of Section 4.2 with 60 bins per octave outperforms the

same system with a CQT of 120 bins per octave, which can be attributed to

convergence issues due to the larger matrix sizes.

Experiments using the MIREX recording were also made in [GE11], where

the authors employed the first 23 sec of the piece and reached an F-measure of

65.0%. Using the first 23 sec of the MIREX recording, the system of Section

4.4 reaches F = 65.8%. It should be noted that additional results are reported

in [GE11] when the eigeninstrument matrices that are employed in that model

are initialised to their optimal values, which are not directly comparable to the

unsupervised experiments in the present work.

Additional transcription metrics for the proposed spectrogram factorization

systems using the complete 54 sec recording are shown in Table 4.9. From

these metrics it can clearly be seen that the proposed spectrogram factorization

systems outperform the proposed audio feature-based systems, for which results

can be seen in Table 3.8. A similar trend as with the RWC dataset can be seen,

where the number of missed detections is significantly greater than the number

of false alarms.

In addition, the first 30 sec of the piece were also utilised in [OVC+11],

resulting in Fn = 66.9%. However, in the case of [OVC+11] the number of

instruments present in the signal is known in advance, making again the ex-

perimental procedure not directly comparable with the present one. It should
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Method Fn Acc1 Acc2 Etot Esubs Efn Efp§4.4 60 b/o 58.4% 47.8% 51.5% 48.5% 23.7% 12.7% 12.2%§4.2 120 b/o 51.3% 42.2% 47.1% 52.8% 27.6% 13.5% 11.6%§4.2 60 b/o 57.3% 45.2% 50.9% 49.2% 18.5% 25.7% 5.0%

Table 4.9: Transcription error metrics for the complete MIREX woodwind quin-
tet.

be noted that for the MIREX quintet Fn is much higher than the frame-based

accuracy measures, while the opposite occurs for the RWC database. This can

be attributed to the fact that the majority of the tones in the MIREX recording

are flute trills (with extremely short duration) that are successfully detected by

the system.

Finally, as far as the choice of templates is concerned, we also transcribe the

MIREX recording using only woodwind templates in the temporally-constrained

system of Section 4.4. The frame-based F-measure reaches 65.2%, which is

about 1% lower compared to the full set of templates. This indicates that

having a large set of templates that might include instruments not present in

the recording does in fact improve transcription accuracy, since the combination

of different instrument templates might better approximate the spectra of the

tones.

Instrument Assignment

An evaluation on the performance of the systems in Sections 4.2 and 4.4 for

instrument identification in polyphonic music is also performed, using the first

30 sec of the MIREX woodwind quintet recording. In this instrument assign-

ment task, a pitch is only considered correct if it occurs at the correct time

and is assigned to the proper instrument source [GE11]. Two variants of the

system are utilised, one using templates from the instruments that are present

in the signal (bassoon, clarinet, flute, horn, and oboe) and another using the

complete set of instrument templates. The instrument-specific output is given

by P (s = i, p, t) = Pt(p)Pt(s = i|p)
∑

ω Vω,t, where i is the index for the se-

lected instrument. Postprocessing using the HMM-based methods described in

Sections 4.2 and 4.4 is applied to each instrument-pitch activation in order to

produce a binary piano-roll, which is compared to the MIDI ground truth of the

specific instrument track.

Results for the non-temporally-constrained system of Section 4.2 are pre-

126



 

 

Full Set

Woodwinds

F
%

Bassoon Clarinet Flute Horn Oboe Mean
0

10

20

30

40

50

60

70

Figure 4.12: Instrument assignment results (F) for the method of Section 4.2
using the first 30 sec of the MIREX woodwind quintet.

sented in Fig. 4.12, while results for the temporally-constrained system of Sec-

tion 4.4 are presented in Fig. 4.13. It can be seen that the temporally-constrained

system outperforms the non-temporally-constrained one for instrument assign-

ment, for both variants of the system. In the case of the temporally-constrained

system, using the complete set of templates has a higher instrument identifica-

tion accuracy compared to the system that uses only woodwind templates (a

similar trend was reported in [GE11]). This can be attributed to the fact that

combining several instrument templates can help in better approximating tones.

In both systems, clarinet and flute are more accurately transcribed compared

to the rest of the instruments, which might be attributed to the spectral shape

of the clarinet templates and the pitch range of the flute (where the specific

flute notes in the recording were mostly outside the pitch range of the other

woodwind instruments).

The same segment was also evaluated in [OVC+11] where F = 37.0% in

the case where the instrument sources are known. A 22 sec segment of the

same recording was also evaluated in [GE11], where for the proposed system

the F-measure using the woodwind templates is 43.85% and rises to 45.49%

for the complete template set. For the method in [GE11], the reported F-

measure for the complete set of templates was 40.0% and the performance for

127



 

 

Full Set

Woodwinds

F
%

Bassoon Clarinet Flute Horn Oboe Mean
0

10

20

30

40

50

60

70

Figure 4.13: Instrument assignment results (F) for the method of Section 4.4
using the first 30 sec of the MIREX woodwind quintet.

the instrument-specific transcription case drops to 35.0%. Thus, the proposed

systems show promising results for instrument assignment in polyphonic music.

Public Evaluation

The transcription system of Section 4.2 was submitted to the MIREX 2011

Multiple-F0 estimation and Note Tracking public evaluation task [MIR, BD11b],

using an input T/F representation of 60 bins/octave, for computational speed

purposes. As in the MIREX 2010 evaluation for the system of Section 3.2, the

evaluation was made using 40 test files from 3 different sources, consisting of sev-

eral instrument types with maximum polyphony level 5. Results for individual

files can be found online3.

Multiple-F0 estimation results are displayed in Table 4.10, where it can

be seen that the chroma accuracy is 5.5% greater than the frame-based pitch

accuracy. The precision and recall of the system are fairly balanced compared

to the system of Section 3.2. Overall, the system ranked 3rd out of the 5 groups

that submitted for the Multiple-F0 estimation task, as shown in Table 4.11.

Compared to the public evaluation of the system of Section 3.2 however, there

3http://www.music-ir.org/mirex/wiki/2011:MIREX2011_Results
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Accuracy Precision Recall

Results 0.574 0.637 0.683
Chroma results 0.629 0.700 0.754

Table 4.10: MIREX 2011 multiple-F0 estimation results for the submitted sys-
tem.

Participants Acc Accc
Yeh and Roebel 0.683 0.702
Dressler 0.634 0.664
Benetos and Dixon 0.574 0.629
Reis et al. 0.492 0.550
Lee et al. 0.474 0.557

Table 4.11: MIREX 2011 multiple-F0 estimation results in terms of accuracy
and chroma accuracy for all submitted systems.

is a reported improvement of +10.6% in terms of Acc, using the same data and

evaluation.

Note tracking results are displayed in Table 4.12, where the submitted system

ranked 2nd out of the 4 groups that submitted for the task. For the note tracking

task, each system must return as an output a list of active notes in MIDI-like

format. It can be seen that for all systems, the note-based onset-offset results

are significantly lower than the onset-only ones.

4.6 Discussion

This chapter proposed models for decomposing sound spectrograms which can

be used for automatic music transcription and instrument identification. The

first model expands upon the shift-invariant probabilistic latent component anal-

ysis (SI-PLCA) method [SRS08b], and represents an input music signal as a

series of templates per pitch and instrument, which can also be shifted across

log-frequency. The second model utilises sound state templates and introduces

temporal constraints for modeling the temporal evolution of notes. The third

and final system builds upon the previous methods and proposes a model for

multiple-pitch and multiple-instrument sound state templates which is able to

model the temporal evolution of notes in a polyphonic scenario. All proposed

systems have been published in international conferences and a journal paper.
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Participants Fon Fof
Yeh and Roebel 0.5601 0.3493
Benetos and Dixon 0.4506 0.2077
Lee et al. 0.3862 0.2076
Reis et al. 0.4078 0.1767

Table 4.12: MIREX 2011 note tracking results for all submitted systems.

One system was also publicly evaluated in the MIREX 2011 contest.

Evaluation results showed that the proposed spectrogram factorization-based

transcription systems of this chapter outperform the proposed audio feature-

based systems of Chapter 3 and also outperform in most cases state-of-the-art

systems in the transcription literature. In addition, the proposed spectrogram

factorization-based systems can easily be modified for transcribing different in-

struments or for instrument-specific transcription, through the use of appropri-

ate templates. Also, they offer a mathematically grounded and transparent way

of operation, without resulting to ad hoc solutions or heuristics, which can be

found in several transcription systems in the literature. In addition, the time-

pitch representation that is the output of the proposed systems can also be used

for pitch visualization purposes, as in [Kla09b].

Specific aspects of the proposed models which help improve transcription

performance are a high log-frequency resolution in the front-end; incorporat-

ing sparsity constraints for the pitch activation and source contribution in the

model; incorporating temporal constraints for the evolution of notes in the

model; and performing note smoothing in the back-end.

Although the performance of the proposed systems is better than past ap-

proaches in the literature, the overall accuracy is still well below that of a

human expert. The proposed systems can however be used as a basis for cre-

ating a yet richer model. For example, instead of using temporal constraints

for sound state templates, whole-note templates can be used, with an addi-

tional parametrisation on note durations. Also, a joint note tracking step along

with the multi-pitch detection step could possibly improve performance. The

postprocessing module could also be expanded, by introducing information on

key or chord transitions. Also, the number of sound states could also be made

instrument-dependent by performing slight modifications to the model. To that

end, an analysis of the number of sound states needed to approximate each

instrument source is needed. It should be noted however, that creating more
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complex models also signifies the need to introduce additional constraints in

order to control the convergence of the model. Also, computational speed is an-

other issue, especially in convolutive models; to that end, sparse representations

(e.g. [LYC12, ONP12]) can be used, substituting for the EM algorithm.

As far as instrument identification in polyphonic music is concerned, al-

though results outperformed the state-of-the-art for the same experiment, addi-

tional work needs to be done in order to improve the current instrument recog-

nition performance of the proposed systems. This can be achieved by utilizing

the information provided by the source contribution matrix Pt(s|p), combined

with features for characterising music timbre [Pee04].
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Chapter 5

Transcription Applications

This chapter presents proposed applications of produced transcription systems

to computational musicology, music information retrieval, and computational

auditory scene analysis. Also included is a short piano piece created from the

output of a transcription system. Thus, the aim of this chapter is to demonstrate

the impact that automatic transcription has in music technology as well as in

other audio processing applications.

Firstly, a system for automatically detecting key modulations from J.S. Bach

chorale recordings is presented. A comparison between an audio input and a

symbolic input is made for the key modulation detection task, showing that

transcribed recordings reach almost the same accuracy as the symbolic data for

that task. This work was published in [MBD11] (joint work with Lesley Mearns)

and to the author’s knowledge, this is the first study which utilises polyphonic

music transcription for systematic musicology research.

In Section 5.2, a system for estimating the temperament of harpsichord

recordings is presented, which is based on a harpsichord-specific transcription

front-end. The measured temperaments are compared with the specified tem-

perament found in CD sleeve notes of harpsichord recordings. This work was

published in [DTB11] (joint work with Simon Dixon and Dan Tidhar).

A method for score-informed transcription for automatic piano tutoring is

presented in Section 5.3. The method takes as input a recording made by a

student which may contain mistakes along with a reference score and estimates

the mistakes made by the student. This work was published in [BKD12] (joint

work with Anssi Klapuri).

Finally, in Section 5.4, the proposed transcription models based on temporally-
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Figure 5.1: Key modulation detection diagram.

constrained shift-invariant probabilistic latent component analysis presented in

Chapter 4 are utilised in the context of computational auditory scene analysis

[WE06], specifically for the characterization of acoustic scenes in train station

recordings. This work was published in [BLD12] (joint work with Mathieu La-

grange).

5.1 Automatic Detection of Key Modulations in

J.S. Bach Chorales

In this section, experiments for the automatic detection of key modulations in

J.S. Bach chorale recordings are presented. Transcribed audio is processed into

vertical notegroups, and the groups are automatically assigned chord labels. For

comparison, MIDI representations of the chorales are also processed. HMMs are

used to detect key change in the chord sequences, based upon two approaches

to chord and key transition representations. The initial hypothesis is that key

and chord values which are derived from pre-eminent music theory will produce

the most accurate models of key and modulation. The music theory models are

tested against models resulting from perceptual experiments about chords and

harmonic relations. Experiments show that the music theory models produce

better results than the perceptual data. The transcribed audio gives encouraging

results, with the key detection outputs ranging from 79% to 97% of the MIDI

ground truth results. The diagram for the proposed key modulation detection

system can be seen in Fig. 5.1.

It should be noted that for this work the author contributed in the collection

of the dataset, the transcription experiments using the proposed system, and

the implementation of the HMMs for key detection.

5.1.1 Motivation

The aims of this work are to test the possibility of obtaining musicological

information directly from audio, which if successful, has the potential to open

up new opportunities for musicological research based on musical recordings,
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BWV Title

1 1.6 Wie schön leuchtet der Morgenstern
2 2.6 Ach Gott, vom Himmel sieh’ darein
3 40.6 Schwing dich auf zu deinem Gott
4 57.8 Hast du denn, Liebster, dein Angesicht gänzlich verborgen
5 85.6 Ist Gott mein Schild und Helfersmann
6 140.7 Wachet auf, ruft uns die Stimme
7 253 Danket dem Herrn heut und allzeit
8 271 Herzlich tut mich verlangen
9 359 Jesu meiner Seelen Wonne
10 360 Jesu, meiner Freuden Freude
11 414 Danket dem Herrn, heut und allzeit
12 436 Wie schön leuchtet der Morgenstern

Table 5.1: The list of J.S. Bach chorales used for the key modulation detection
experiments.

and to ascertain whether perceptual or music theory data is more effective in

the modelling of harmony. To the author’s knowledge, this is the first study

which utilises AMT for systematic musicology research. Although key detection

could also be achieved using an audio-based chord or key detection system,

thus skipping the transcription step, we claim that fully transcribing audio is

appropriate, as it provides a framework for extracting information from a music

piece that is not limited to a specific music information retrieval (MIR) task.

5.1.2 Music Transcription

12 J.S. Bach chorales are randomly selected for experiments from www.jsbchorales.net,

which provides organ-synthesized recordings along with aligned MIDI reference

files. The list of the chorales employed for the key detection experiments can

be seen in Table 5.1. Sample excerpts of original and transcribed chorales are

available online1.

Firstly, the chorale recordings are transcribed into MIDI files using a modi-

fied version of the automatic transcription system of Section 3.4, which is based

on joint multiple-F0 estimation and note onset/offset detection. Since the appli-

cation of the transcription system concerns chorale recordings, the pitch range

was limited to C2-A#6 and the maximum polyphony level was restricted to 4

voices. Since the recordings are synthesized, tempo is constant and it can be

computed using the onset detection functions from Section 3.4. The estimated

pitches in the time frames between two beats are averaged, resulting in a series

1http://www.eecs.qmul.ac.uk/~emmanouilb/chorales.html
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Figure 5.2: (a) The pitch ground-truth of BWV 2.6 ‘Ach Gott, vom Himmel
sieh’ darein’. (b) The transcription output of the same recording.

of chords per beat. Transcription accuracy is 33.1% using the Acc2 metric. An

example of the transcription output of BWV 2.6 ‘Ach Gott, vom Himmel sieh’

darein’ is given in Fig. 5.2.

5.1.3 Chord Recognition

Transcribed audio, and for comparison, ground truth MIDI files, are segmented

into a series of vertical notegroups according to onset times. The algorithm,

which was proposed by Lesley Mearns, can be seen in detail in [MBD11].

To measure the competence of the chord labelling process, the automatically

generated chord sequences are compared to hand annotated sequences. Due to

the laboriousness of hand annotation, six files in the set have been annotated

with ground truth chord sequences (annotations done by Lesley Mearns). It

should be noted that all 12 recordings were annotated for key modulations.

Each pair of chord index values in the sequences is compared, and a basic differ-

ence measure is calculated by counting the number of matches. The final counts

are normalised, resulting in a proportional measure of matched or mismatched

values between the two files (Table 5.2). If two index values differ, the Leven-

shtein distance is calculated for the two pitch class sets represented as strings, to
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Transcribed Audio Ground Truth Midi

Match Levenshtein Match Levenshtein

0.56 0.64 0.85 0.15

Table 5.2: Chord match results for the six transcribed audio and ground truth
MIDI against hand annotations.

find out the degree of difference between the pitch class sets. The Levenshtein

distances calculated for each file are summed and normalised by the length of

sequence to produce a combined measure of accuracy and distance.

A greater quantity of label mismatches are found with the transcribed files

than the ground truth MIDI files, depicting some of the pitch and timing errors

resulting from the automatic transcription. Total chord mismatches between the

transcribed data and the hand annotated data (i.e. where there are no pitches

in common between the two pitch class sets), indicate an error in timing or

quantisation. The greatest difficulty posed to the chord recognition algorithm by

the transcribed data however is the frequent presence of diads rather than triads

in the groups. The transcription algorithm has a low false alarm error rate and

a high missed detection rate, consequently the transcription process produces

an output which assists the chord recognition method where the MIDI data

poses problems; groups with suspended 9th and 13th notes, or other notegroups

containing complex chord tones which are not defined in the chord dictionary,

are captured from the transcribed data as simple triads whereas the MIDI data

may result in a ‘no chord’ value. Complex chords such as 9ths and 13ths are less

adaptable to the pitch class set match approach due to the fact that internal

tones must be omitted from such chords to fit with four part harmony. Overall,

the average accuracy levels for the ground truth files are in the upper range of

accuracy results reported in [PB02]. The transcribed audio achieves an average

of 65% correct of the ground truth result.

5.1.4 Key Modulation Detection

Key change detection is performed using a set of HMMs [Rab89]. The obser-

vation sequence O = {ot}, t = 1, . . . , T is given by the output of the chord

recognition algorithm in the previous section. The observation matrix therefore

defines the likelihood of a key given a chord. Likewise, the hidden state sequence

which represents keys is given by Q = {qt}. Each HMM has a key transition

matrix P (qt|qt−1) of size 24×24, (representing the 12 major and 12 minor keys)
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which defines the probability of making a transition from one key to another.

For a given chord sequence, the most likely key sequence is given by:

Q̂ = argmax
q

∏

t

P (qt|qt−1)P (ot|qt) (5.1)

which can be estimated using the Viterbi algorithm [Rab89].

Five observation matrices and four key transition matrices are compared in

total. Three of the observation matrices are derived from music theory, and

are designed to represent and test Schönberg’s theory with regard to the chord

membership of the 24 major and minor modes [Sch11]. Two further observation

matrices use data from Krumhansl’s perceptual experiments [Kru90]. The four

different versions of the key transition matrix are used in conjunction with all

five of the observation matrices. For details on the observations and transition

matrices, the reader is referred to [MBD11].

5.1.5 Evaluation

To provide a rigorous measure of accuracy of the outputs of the HMMs, each key

value in the output sequences is compared to the corresponding hand-annotated

key, and an error rate (Err) is calculated (definition can be found in [MBD11]).

For the triadic models of Schönberg, error rates range from 0.26 to 0.35 for

the transcribed data and 0.20 to 0.33 for the ground truth MIDI data sets,

using different transition and observation matrices (detailed results given at

[MBD11]). The key output accuracy of the twelve transcribed audio recordings

for all models is encouragingly high when compared to the ground truth MIDI,

achieving an average of 79% of the accuracy of the ground truth accuracy, de-

spite the higher quantity of chord recognition errors for the transcribed data.

For the Sevenths Model, this more complex HMM containing 132 chords demon-

strates a greater level of disparity from the hand annotated key sequences than

the triad based models. For this model, the error rates for the transcribed data

are very close to the MIDI data achieving a relative best accuracy of 97%.

5.1.6 Discussion

This approach to key detection and key modulation using automatic chord clas-

sification of transcribed audio and ground truth MIDI data showed that key

error rates for the audio recordings are only slightly higher than the key error
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rates for the ground-truth MIDI. Also, the key error rates are slightly higher for

transcribed data using the triadic models, but the complex chord HMM exhibits

remarkable alignment of results for both transcribed audio and MIDI data, sug-

gesting that the quality of the transcribed chorales is of sufficiently high quality

for the task. Results are considered promising for the use of automatic tran-

scription research in computational musicology. By combining key outputs with

chord sequences, functional harmony could be obtained for the chorales.

5.2 Harpsichord-specific Transcription for Tem-

perament Estimation

In this section, a system for estimating the temperament of harpsichord record-

ings is described. Temperament refers to the compromise arising from the fact

that not all musical intervals can be maximally consonant simultaneously. The

front-end of the system is based on a conservative (high precision, low recall)

harpsichord-specific transcription system. Over 500 harpsichord recordings, for

which the temperament is specified on the CD sleeve notes, are transcribed and

analysed. The measured temperaments are compared with the annotations and

it is found that while this information is mostly correct, there are several cases in

which another temperament matches the data more closely than the advertised

one, thus raising an interesting issue about the nature of human annotations

and their use as “ground truth”.

It should be noted that for this work, the author proposed and implemented

an efficient harpsichord-specific transcription system and performed transcrip-

tion experiments on the dataset of over 500 harpsichord recordings.

5.2.1 Background

More information on temperament can be found in subsection 2.1.2. In [DTB11]

it is mentioned that temperament models ignore the inharmonicity effect. How-

ever, although stringed instruments are slightly inharmonic, this effect on harp-

sichord is negligible [DMT12].

Precise frequency estimation is the main tool for estimating temperament.

However, despite the vast literature on frequency and pitch detection (reviewed

in [dC06, KD06]), there is no general purpose method suitable for all signals

and applications. Only few papers address high-precision frequency estimation
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to a resolution of cents, which is required for the present work. The highest

precision is obtained using the FFT with quadratic interpolation and correction

of the bias due to the window function [AS04], which outperforms instantaneous

frequency estimation using phase information [TMD10].

5.2.2 Dataset

The dataset used for this study consists of 526 tracks from 22 CDs and 48 tracks

from [TMD10]; details of the dataset can be found online2. The CDs present

a rather balanced sample of recorded solo harpsichord music, including famous

and less famous players, and a range of composers including J. S. Bach, D.

Scarlatti, F. Couperin, M. Locke, and J. P. Sweelinck. The CDs also provide

details of the temperament used for the recordings. A few CDs provide details

of the reference frequency as well (e.g. 415Hz); there are also cases where the

temperament information is precise and unambiguous or underspecified.

5.2.3 Harpsichord Transcription

For performing precise pitch estimation, the existence and timing of each note

must be known. Therefore a transcription system for solo harpsichord is de-

veloped, using pre-extracted harpsichord templates, NMF with beta-divergence

[Kom07] for multiple-F0 estimation, and HMMs [Rab89] for note tracking. As

explained in subsection 2.3.3, NMF with beta-divergence is a computationally

inexpensive method which has been used for piano transcription [DCL10]. It

has been shown to produce reliable results for instrument-specific transcription,

being highly ranked in the MIREX 2010 piano-only note tracking task.

Extracting Pitch Templates

Firstly, spectral templates are extracted from three different harpsichords, from

the RWC musical instrument sounds database [GHNO03]. For extracting the

note templates, the constant-Q transform (CQT) is computed with spectral

resolution of 120 bins per octave. The standard NMF algorithm [LS99] with

one component is employed for template extraction.

For template extraction, the complete harpsichord note range is used (E1 to

E6). Thus, three spectral template matrices were extracted,W(1),W(2),W(3) ∈

2http://www.eecs.qmul.ac.uk/~simond/ismir11
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R
Ω×61, corresponding to each harpsichord model (where Ω is the log-spectrum

length).

Multiple-F0 estimation

For the multiple-F0 estimation step, we use the NMF algorithm with beta-

divergence [Kom07]. The basic model is the same as in the standard NMF

algorithm as shown in (2.6). Since in our case the spectral template matrix is

fixed, only the gains H are updated as:

h← h⊗
WT ((Wh)β−2 ⊗ v)

WT (Wh)β−1
(5.2)

where v ∈ R
Ω×1 is a single frame from the test signal, β ∈ R the divergence

parameter, set to 0.5 for this work, as in [DCL10], and ⊗ is the elementwise

product. Although the update rule (Equation 5.2) does not ensure convergence,

non-negativity is ensured [DCL10].

For the harpsichord transcription case, the spectral template matrix was

created by concatenating the spectral templates from all instrument models:

W = [W(1) W(2) W(3)] (5.3)

thus, W ∈ R
Ω×183. After the NMF update rule was applied to the input log-

spectrumV, the pitch activation matrix was created by summing the component

vectors from H that correspond to the same pitch p:

H′
p,t = Hp,t +Hp+61,t +Hp+122,t (5.4)

where p = 1, . . . , 61 is the pitch index (corresponding to notes E1-E6) and t the

time index.

Note tracking

As in the proposed automatic transcription systems of Chapters 3 and 4, note

tracking is performed on the pitch activations using on/off pitch-wise HMMs. In

this case, the pitch activation matrix is H′
p,t. For details on the note tracking

procedure, the reader is referred to subsection 4.2.4.

For setting the parameter λ in (4.14), a training dataset is used, that consists

of the 7 harpsichord recordings present in the RWC classical music database
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Figure 5.3: (a) The piano-roll transcription of J.S. Bach’s Menuet in G minor
(RWCMDB-C-2001 No. 24b). (b) The pitch ground truth of the same recording.

[GHNO03]. As a ground truth for the recordings, the syncRWC MIDI files

are used3. Since for the present system a conservative transcription with high

precision is favorable, λ is set to 0.25, which results in a false alarm error rate

of 5.33% with a missed detection error rate of 46.49% (see section 2.5 for metric

definitions). An example of the harpsichord transcription procedure is shown

in Fig. 5.3, where the piano-roll transcription of recording RWC MDB-C-2001

No. 24b is seen along with its respective MIDI ground truth.

5.2.4 Precise F0 and Temperament Estimation

Based on the transcription results, we search for spectral peaks corresponding

to the partials of each identified note. For identification of the correct peaks,

the tuning reference frequency and inharmonicity of the tone also need to be

estimated. For information on the precise F0 estimation algorithm along with

the tuning and inharmonicity estimation procedure, the reader is referred to

3http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/SyncRWC
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[DTB11]. The output of the precise F0 estimation step is a 12-dimensional tem-

perament vector, which can be compared with the profiles of known theoretical

temperaments.

The temperament classifier recognises the following temperaments: equal,

fifth comma, Vallotti, quarter comma meantone (QCMT), fifth comma mean-

tone (FCMT), sixth comma meantone (SCMT), Kellner, Werckmeister III,

Lehman, Neidhardt (1,2 and 3), Kirnberger (2 and 3) and just intonation. It

also recognises rotations of these temperaments, although this is not a typi-

cal tuning practice for all temperaments, as illustrated by the example of the

Young II temperament, a rotation of the Vallotti temperament, which is consid-

ered a different temperament in its own right. For details on the temperament

classification procedure the reader is referred to [DTB11]. It should be noted

that in [DTB11], the proposed divergence between a temperament estimate and

profile is weighted by the pitch activation H′
p,t, which is the output of the

harpsichord-specific transcription system.

5.2.5 Evaluation and Discussion

Detailed temperament estimation results can be found online4 and in [DTB11].

The results for tuning show agreement with the ground truth values where they

were available. The temperament estimation results vary from close agreement

to the metadata (CDs 4,5,8,9,16,21,22) to moderate agreement (e.g. CDs 15,

18) to disagreement (e.g. CDs 12,13, 17).

Since a claim is made that CD sleeve notes are a questionable source of

“ground truth”, we need an independent means of ascertaining the reliability

of our system. Thus, experiments are also made using the 4 pieces recorded

with six different temperaments from [TMD10]. These tracks are all classified

correctly from the set of 180 possible temperaments (15 temperaments by 12

rotations).

It was found that while temperament information provided in CD sleeve

notes mostly matches the detected temperament, there were several cases in

which another temperament matches the data more closely than the specified

one. This raises an interesting issue about the nature of human annotations and

their use as “ground truth”, as well as a dichotomy between temperament as a

mathematical system and temperament in performance practice, where a more

pragmatic approach might be applied [DTB11].

4http://www.eecs.qmul.ac.uk/~simond/ismir11
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Figure 5.4: Diagram for the proposed score-informed transcription system.

5.3 Score-informed Transcription for Automatic

Piano Tutoring

In contrast with unsupervised tasks such as automatic music transcription, cer-

tain applications can also incorporate score information. One such example is

the emerging field of informed source separation (e.g. [HDB11]). One applica-

tion that can exploit score information is automatic tutoring, where a system

evaluates a student’s performance based on a reference score. Thus, the prob-

lem that needs to be addressed is score-informed transcription. In the past, the

problem of informed transcription has received limited attention, with the most

notable work done in automatic violin tutoring in [WZ08], which fuses audio

and video transcription with score information.

In this section, a score-informed transcription method for automatic piano

tutoring is proposed. The method takes as input a recording made by a stu-

dent which may contain mistakes, along with a reference score. The recording

and the aligned synthesized score are automatically transcribed using the NMF

algorithm [LS99], followed by pitch-wise HMMs [Rab89] for note tracking. By

comparing the two transcribed recordings, common errors occurring in tran-

scription algorithms such as extra octave notes can be suppressed. The result

is a piano-roll description which shows the mistakes made by the student along

with the correctly played notes. In Fig. 5.4, the diagram for the proposed

score-informed transcription system is depicted.

5.3.1 MIDI-to-audio Alignment and Synthesis

For automatically aligning the reference MIDI score with the recording made by

the student, the windowed time warping (WTW) alignment algorithm proposed

in [MD10] is employed. This algorithm is computationally inexpensive, and

can be utilised in a real-time automatic piano tutoring application. In the
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experiments performed in [MD10], it was shown that the alignment algorithm

can correctly align 97% of the audio note onsets in the test set employed, using

a 2 sec tolerance (accuracy drops to 73.6% using a 100ms tolerance).

The result is an aligned MIDI file, which afterwards is synthesized using the

TiMidity synthesizer using the Merlin Vienna soundfont library5. For compar-

ative purposes, manually-aligned MIDI files are also produced and synthesized,

which are described in subsection 5.3.5.

5.3.2 Multi-pitch Detection

As in the harpsichord-specific transcription system of Section 5.2, for transcrib-

ing piano recordings we employ the NMF algorithm with β-divergence [Kom07],

using pre-extracted piano templates. As explained in the previous section, the

NMF algorithm with β-divergence is computationally inexpensive and it has

been shown to produce reliable results in piano-specific transcription [DCL10].

Firstly, spectral templates for the complete piano note range are extracted,

corresponding to notes from A0 to C8. We use recordings from 3 chromatic

scales from a Yamaha U3 Disklavier, which is also used for the test recordings. In

addition, we employ isolated note samples from 3 piano models from the MAPS

database [EBD10]. The fact that we are using training templates from the same

piano source as in the test set is a reasonable assumption given the specific

tutoring application, since the student can provide training examples in a setup

stage. If templates from the same source are not available, general-purpose

templates from e.g. the MAPS database can be used (related experiments shown

in subsection 5.3.5). For extracting the templates, the CQT [SK10] is employed

using a resolution of 120 bins/octave and lowest frequency 27.5 Hz. Next,

the NMF algorithm [LS99] as shown in eq. (2.6) using a single component is

employed for extracting the template from an isolated note recording.

For the multi-pitch detection step, the NMF model with β-divergence is

employed [Kom07] (details of the algorithm are given in subsection 2.3.3). For

the present experiments, we used β = 0.5, which was shown to produce the

best results for piano transcription in [DCL10]. Since in our case the spectral

template matrix is fixed, only the gain is iteratively updated (after random

initialization) using eq. (5.2). Convergence is observed at 10-15 iterations.

For piano transcription, the spectral template matrix W is created by con-

catenating the spectral templates from either the 3 sets of the Disklavier or the

5http://ocmnet.com/saxguru/Timidity.htm
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MAPS templates:

W = [W(1) W(2) W(3)]. (5.5)

Thus, W ∈ R
Ω×264, where Ω is the log-spectrum size. After the NMF update

rule of (5.2) is applied to the input log-spectrogram V ∈ R
Ω×T (where T is the

frame length), the pitch activation matrix is created by adding the component

vectors from H that correspond to the same pitch:

H′
p,t = Hp,t +Hp+88,t +Hp+176,t (5.6)

where H′ ∈ R
88×T .

5.3.3 Note Tracking

As in the automatic transcription systems presented in Chapters 3 and 4, note

tracking is performed on the pitch activations of the original and synthesized

audio using on/off pitch-wise HMMs, using as input in the observation function

of (4.14) the pitch activation H′. For details on the note tracking procedure,

the reader is referred to subsection 4.2.4.

In order to set the value of parameter λ in (4.14) for the original recording, we

use one piece from the dataset for training (detailed in subsection 5.3.5). Also,

two additional piano-rolls from the transcribed recording using different values

for λ are extracted, thus creating a ‘strict’ transcription (with high precision

and low recall) and a ‘relaxed’ transcription (with high recall and low precision),

which will be utilised in the output of the proposed system. The values of λ

that are used for the normal, strict, and relaxed transcription, are respectively

{1.3, 1.0, 2.1}.

Finally, the resulting piano-rolls are processed in order to detect any repeated

notes which might appear in the final piano-roll as a continuous event (e.g.

trills). For the piano, detecting note onsets can be achieved by simply detecting

energy changes. Thus, peak detection is performed using the activation matrix

for each detected note. If a peak is detected at least 200ms after the onset, then

the note is split into two.

5.3.4 Piano-roll Comparison

In order to compare the performance of the student with the aligned score,

additional information is utilised using the transcribed synthesized score, as well
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Algorithm 1 Piano-roll comparison for score-informed transcription

Input: prStudent, prSynth, prGT
1: for each onset(p, t) ∈ prGT do

2: if onset(p, t) ∈ prStudent then
3: prResult(p, t) = correct note
4: else

5: if onset(p, t) ∈ prSynth then

6: prResult(p, t) = missed note
7: else

8: prResult(p, t) = correct note
9: end if

10: end if

11: end for

12: for each onset(p, t) ∈ prStudent do
13: if onset(p, t) /∈ prGT ∪ prSynth then

14: prResult(p, t) = extra played note
15: end if

16: end for

17: return prResult

as the strict and relaxed transcriptions of the recording. The motivation is that

automatic transcription algorithms typically contain false alarms (such as octave

errors) and missed detections (usually in the case of dense chords). However,

the transcribed synthesized score might also contain these errors. Thus, it can

assist in eliminating any errors caused by the transcription algorithm instead of

attributing them to the student’s performance.

Two assumptions are made in the algorithm: firstly, the recording does not

contain any structural errors. Thus, only local errors can be detected, such as

missed or extra notes played by the student. Secondly, evaluation is performed

by only examining note onsets, thus discarding note durations.

The process comparing the piano-roll for the transcribed recording (prStudent),

the synthesized MIDI (prSynth), and the aligned MIDI (prGT ) is given in Al-

gorithm 1. The tolerance for onset(p, t) is set to ±200ms. In line 8, when an

onset is present in the ground truth but is absent in both transcriptions, then

we do not have enough knowledge to determine the existence of that note and

it is set as correct.

After Algorithm 1 is completed, the extra and missed notes present in

prResult are re-processed using the ‘strict’ piano-roll prStrict and the ‘relaxed’

piano-roll prRelaxed, respectively. The notion is that if that same extra note

is not present in prStrict, then it is simply caused by a deficiency in the tran-
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Figure 5.5: (a) The score-informed transcription of a segment from Johann
Krieger’s Bourrée. (b) The performance ground-truth. Black corresponds to
correct notes, gray to missed notes and empty rectangles to extra notes played
by the performer.

scription algorithm of the original recording. Likewise, if a missed note appears

in prRelaxed, then it is taken that it was played but was not detected due to

the transcription of the original recording.

The final output of the comparison step is the resulting piano-roll, which

contains information on correct notes, missed notes, and extra played notes. In

Fig. 5.5, the score-informed transcription of a piece can be seen, compared to

the ground-truth of the student’s performance.

5.3.5 Evaluation

Dataset

Since no dataset exists for score-informed piano transcription experiments, 7

recordings are made using a Yamaha U3 Disklavier. The piano is slightly out

of tune, making the recording conditions more realistic. The recordings were

selected from the Associated Board of the Royal Schools of Music 2011/12 syl-

labus for grades 1 and 2. A list of the recorded pieces can be seen in Table

5.3. Each recording contains mistakes compared to the original score and MIDI

ground-truth was created detailing those mistakes. The first recording is used for

development, whereas the other six recordings are used for testing. The dataset

is available online at the Centre for Digital Music Research Data Repository6.

6http://c4dm.eecs.qmul.ac.uk/rdr/
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Composer Title

1 Josef Haydn Andante from Symphony No. 94
2 James Hook Gavotta, Op. 81
3 Pauline Hall Tarantella
4 Felix Swinstead A Tender Flower
5 Johann Krieger Bourrée from Sechs musicalishe Partien
6 Johannes Brahms The Sandman, WoO 31
7 Tim Richards (arr.) Down by the Riverside

Table 5.3: The score-informed piano transcription dataset.

Metrics

Since the task of score-informed transcription is a relatively unexplored one, a

set of metrics will be presented for evaluating the performance of the proposed

method. Firstly, we will evaluate the method’s efficiency for the task of auto-

matic transcription by employing the onset-based note-level accuracy also used

in [DCL10]. This evaluation will be performed on the transcribed recording and

synthesized score. A returned note event is assumed to be correct if its onset

is within a ±100 ms range of a ground-truth onset. As in the metrics defined

in Section 2.5, we define the number of correctly detected notes as Ntp , the

number of false alarms as Nfp and the number of missed detections as Nfn . The

accuracy metric is defined as:

Accon =
Ntp

Ntp +Nfp +Nfn

(5.7)

In addition, the note-based precision (Preon), recall (Recon), and F-measure

(Fon), presented in Section 2.5, are also employed for evaluating the automatic

transcription performance of the employed methods.

For the score-informed transcription experiments, each detected note from

the student’s recording can be classified as correct, or mistaken. Mistaken notes

are treated as either missed notes or extra notes. Thus, for each piece, three

layers of ground-truth exist, which are compared with the corresponding outputs

of Algorithm 1. Using (5.7) we will define Acccorr as the algorithm’s accuracy for

the notes that were correctly played by the student. Likewise, Accmn denotes

the accuracy for the notes that the student omitted and Accen the accuracy

for the extra notes produced. Using the F-measure, a similar set of metrics is

defined for the score-informed transcription evaluation: Fcorr , Fmn , Fen .

Finally, we define weighted metrics joining all three layers of the ground-
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Accon Fon Preon Recon
Recording 83.88% 91.13% 93.34% 89.11%

Manual MIDI 84.73% 91.57% 93.56% 89.73%
Automatic MIDI 89.77% 94.55% 95.05% 94.09%

Table 5.4: Automatic transcription results for score-informed transcription
dataset.

truth. Given that Ncorr is the number of correctly played notes in the perfor-

mance of the student, Nmn is the number of notes missed and Nen is the number

of extra notes, the weighted accuracy is defined as:

Accw =
NcorrAcccorr +NmnAccmn +NenAccen

Ncorr +Nmn +Nen

(5.8)

A similar definition can be made for a weighted F-measure, denoted as Fw.

Results

In Table 5.4, the automatic transcription results for the original recording and

the synthesized MIDI (using manual and automatic alignment) are shown. In all

cases the performance of the NMF-based transcription algorithm is quite high,

with the Fon always surpassing 90%. The performance difference between the

transcription of the manual and automatic MIDI is due to the fact that the note

velocities (dynamics) are preserved in the synthesized manually-aligned MIDI.

It should be stressed that when transcribing the synthesized MIDI, templates

from the MAPS database [EBD10] were used, whereas when transcribing the

original recording, templates from the Disklavier were utilised. When using the

MAPS templates for transcribing the recordings, Fon drops to 80.43%. When

simple thresholding on H′ is employed instead of the HMM-based note tracking

procedure, the average Fon for the recordings drops to 84.92%.

In Table 5.5, score-informed transcription results are presented, using either

manually-aligned or automatically-aligned MIDI. For the manually-aligned case,

it can be seen that the method reaches very high accuracy for the correctly

played notes by the student, while the detection performance for missed or

extra notes is lower. However, the overall performance of the method in terms

of Fw is quite high, reaching 96.76%. When automatically-aligned MIDI is used,

the system performance is diminished, which is expected, as additional errors

from imperfect alignment are introduced. The biggest decrease in performance
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Fw Accw Acccorr Accmn Accen
Manual MIDI 96.76% 94.38% 97.40% 70.63% 75.27%

Automatic MIDI 92.93% 88.20% 93.17% 49.16% 60.49%

Table 5.5: Score-informed transcription results.

can be observed for the missed notes by the student. This can be attributed

to the fact that the alignment algorithm might place the non-played notes at

different positions compared to the ground-truth. Still, the overall performance

of the system using automatically-aligned MIDI files reaches an Fw of 92.93%.

In order to test the performance of different components of the proposed

method, comparative experiments are performed by disabling the process for de-

tecting repeated notes, using both manually-aligned and automatically-aligned

MIDI. Using the manually-aligned score, Fw = 92.79%while using the automatically-

aligned score, Fw = 89.04%. Another experiment is performed using the tem-

plates from the MAPS dataset [EBD10] for transcribing the recording. Using

the manually-aligned MIDI, Fw = 90.75% while using the automatically-aligned

MIDI, Fw = 85.94%. Without processing prResults with the ‘strict’ and

‘relaxed’ piano-rolls, the score-informed transcription results using manually-

aligned scores reach Fw = 94.92% and using automatically-aligned scores reach

Fw = 90.82%. A final comparative experiment is performed by utilizing only

the piano-roll of the aligned ground-truth for score information, instead of also

using the piano-roll of the transcribed synthesized score. In this case, using the

manually-aligned score Fw = 93.55% and using the automatically-aligned score

Fw = 89.47%, which demonstrates that transcribing the synthesized score can

assist in improving performance for a score-informed transcription system.

5.3.6 Discussion

This section proposed a system for score-informed transcription which is ap-

plied to automatic piano tutoring. Results indicate that using manually-aligned

scores, the proposed method can successfully analyze the student’s performance,

making it useful for real-life applications. Using automatically-aligned scores

produces somewhat lower performance especially when the student deviates

from the score.

Score-informed transcription is a relatively unexplored research field and

several of its sub-problems could be improved, for example creating robust
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instrument-specific transcription algorithms. Future directions include the cre-

ation of a MIDI-to-audio alignment algorithm specifically tailored for the piano

alignment task, operating with higher precision as this was shown to be an

important factor in the proposed method’s performance. In addition, the detec-

tion of structural errors such as missed or replicated segments can be achieved

through a more sophisticated alignment algorithm.

5.4 Characterisation of Acoustic Scenes using

SI-PLCA

The temporally-constrained shift-invariant transcription model that was pro-

posed in Section 4.4 can also be utilised in other audio modelling applications.

In this section, the model of Section 4.4 is modified and applied to the field of

computational auditory scene analysis (CASA) [WE06], and more specifically

to the problem of acoustic scene characterization.

5.4.1 Background

The problem of modeling acoustic scenes is one of the most challenging tasks

in the CASA field [WE06]. It is closely related to the problem of detecting

and classifying acoustic events within a scene, and has numerous applications

in audio processing. In the literature the problem is also called context recogni-

tion [EPT+06]. In the case of scene categorisation or characterization, we are

interested in specifying the environment of the recording, which is informed by

the types of events that are present within the scene of interest. The problem

is especially challenging in the case of a real-world scenario with an unlimited

set of events which could also overlap in time.

Regarding related literature, Mesaros et al. [MHK11] proposed a system for

sound event detection which employed PLCA [SRS06] (also presented in sub-

section 2.3.3) for separating and detecting overlapping events. The system was

tested in a supervised scenario using a dataset of 103 recordings classified into

10 different scenes, containing events from 61 classes. In [CE11], Cotton and El-

lis utilised the NMD algorithm [Sma04a] (also presented in subsection 2.3.3) for

non-overlapping event detection. A comparison was made between NMD with a

frame-based approach using Mel-frequency cepstral coefficients (MFCCs). Ex-

periments performed on a dataset collected under the CHIL project, consisting

151



of 16 different event classes, showed that a combination of the NMD system and

the frame-based system yielded the best results.

In some cases, the salient events that characterise the scene are not known

a priori, or may be hard to learn from training data due to the large discrep-

ancy between two acoustic realizations of the same event. This leads to an

unsupervised formulation of the scene description problem, where we want the

algorithm to be able to extract in an unsupervised manner the events that de-

scribe the scene. Following this approach, Cauchi [Cau11] proposed a method

for classifying auditory scenes in an unsupervised manner using sparse NMF.

After extracting spectral basis vectors from acoustic scenes, each basis is con-

verted into MFCCs for compactness. A distance metric is defined for measuring

the difference between extracted dictionaries from different scenes. Evaluation

is performed on a corpus of 66 recordings taken from several train stations

[TSP+08], originally created for a perceptual study on acoustic scene categori-

sation, resulting in six acoustic scene classes. Experiments made by comparing

the sparse NMF with a bag-of-features approach from [ADP07] showed that the

NMF algorithm is able to successfully extract salient events within an acoustic

scene.

5.4.2 Proposed Method

In this section, we build upon the work by Cauchi [Cau11] and propose a method

for modeling and classifying acoustic scenes in an unsupervised manner using a

temporally-constrained shift-invariant model. This level of temporality will con-

trol the appearance of the time-frequency patches in a recording and can be sup-

ported by using the proposed HMM-constrained SI-PLCA model presented in

Section 4.4, also modified for supporting time-frequency patches instead of one-

dimensional spectra. In the model, the component activation function would

consist of zeros in case of inactivity and ones at the time instants where an

event would appear. Each HMM in the model can represent a certain compo-

nent, which would be represented using a two-state, on/off model. This on/off

model would serve as an event indicator function, which would enforce temporal

constraints in the auditory scene activation matrix. Fig. 5.6 shows the diagram

for the proposed system.
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Figure 5.6: Diagram for the proposed acoustic scene characterisation system.

Formulation

This proposed temporally-constrained model takes as input a normalised spec-

trogram Vω,t and approximates it as a series of time-frequency patches. Also

produced is a component activation matrix, as well as component priors. The

activation of each acoustic component is controlled via a 2-state on/off HMM.

The model can be formulated as:

P (ω, t) =
∑

z

P (z)
∑

q
(z)
t

P (ω, τ |z) ∗τ P (t|z)P (q
(z)
t |t) (5.9)

where q
(z)
t is the state sequence for the z-th component, z = 1, . . . , Z. P (ω, τ |z)

is the time-frequency patch for the z-th component, P (z) is the component prior,

P (t|z) is the activation for each component, and P (q
(z)
t |t) the state activation

for each component. Thus in the model, the desired source activation is given

by P (z|t)P (q
(z)
t = 1|t).

The activation sequence for each component is constrained using a corre-

sponding HMM, which is based on the produced source activation P (z, t) =

P (z)P (t|z). In terms of the activations, the component-wise HMMs can be

expressed as:

P (z̄) =
∑

q̄(z)

P (q
(z)
1 )

∏

t

P (q
(z)
t+1|q

(z)
t )

∏

t

Pt(zt|q
(z)
t ) (5.10)

where z̄ refers to the sequence of activations for a given component z, P (q
(z)
1 ) is

the prior probability, P (q
(z)
t+1|q

(z)
t ) is the transition matrix for the z-th compo-

nent, and Pt(zt|q
(z)
t ) is the observation probability. The observation probability

for an active component is:

Pt(zt|q
(z)
t = 1) =

1

1 + e−P (z,t)−λ
(5.11)

where a high value of λ will lead to a low observation probability, leading to
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an ‘off’ state. The formulation of the observation function is similar to the one

used for note tracking in subsection 4.2.4.

Parameter Estimation

As in the model of Section 4.4, the unknown parameters in the model can

be estimated using the EM algorithm [DLR77]. For the Expectation step, we

compute the posterior for all the hidden variables:

P (z, τ, q
(1)
t , . . . , q

(Z)
t |z̄, ω, t) = P (q

(1)
t , . . . , q

(Z)
t |z̄)P (z, τ |q

(1)
t , . . . , q

(Z)
t , ω, t)

(5.12)

Since we are utilising independent HMMs, the joint probability for all hidden

source states is given by:

Pt(q
(1)
t , . . . , q

(Z)
t |z̄) =

Z∏

z=1

Pt(q
(z)
t |z̄) (5.13)

where

Pt(q
(z)
t |z̄) =

Pt(z̄, q
(z)
t )

∑
q
(z)
t

Pt(z̄, q
(z)
t )

=
αt(q

(z)
t )βt(q

(z)
t )

∑
q
(z)
t

αt(q
(z)
t )βt(q

(z)
t )

(5.14)

and αt(q
(z)
t ), βt(q

(z)
t ) are the forward and backward variables for the z-th HMM

[Rab89], which are computed recursively using (4.22)-(4.23).

The second term of (5.12) can be computed using Bayes’ theorem:

P (z, τ |q
(1)
t , . . . , q

(Z)
t , ω, t) = P (z, τ |ω, t) =

P (z)P (ω, τ |z)P (t− τ |z)∑
z

∑
τ P (z)P (ω, τ |z)P (t− τ |z)|t)

(5.15)

Finally, the posterior for the component transition matrix is given by:

Pt(qt, qt+1|z̄) =
αt(qt)P (qt+1|qt)βt+1(qt+1)Pt(zt+1|qt+1)∑

qt,qt+1
αt(qt)P (qt+1|qt)βt+1(qt+1)Pt(zt+1|qt+1)

(5.16)

For the Maximization step, the update rules for estimating the unknown

parameters are:

P (z) =

∑
ω,τ,t

∑
q
(z)
t

Vω,tP (z, τ, q
(1)
t , . . . , q

(Z)
t |ω, t)

∑
z,ω,τ,t

∑
q
(z)
t

Vω,tP (z, τ, q
(1)
t , . . . , q

(Z)
t |ω, t)

(5.17)
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∑
t

∑
q
(z)
t

Vω,tP (z, τ, q
(1)
t , . . . , q

(Z)
t |ω, t)

∑
ω,τ,t

∑
q
(z)
t

Vω,tP (z, τ, q
(1)
t , . . . , q

(Z)
t |ω, t)

(5.18)

P (t|z) =

∑
ω,τ

∑
q
(z)
t

Vω,t+τP (z, τ, q
(1)
t , . . . , q

(Z)
t |ω, t+ τ)

∑
t,ω,τ

∑
q
(z)
t

Vω,t+τP (z, τ, q
(1)
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(Z)
t |ω, t+ τ)

(5.19)

P (q
(z)
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(z)
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∑
t P (q

(z)
t , q

(z)
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q
(z)
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∑
t P (q

(z)
t , q

(z)
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(5.20)

P (q
(z)
1 ) = P1(q

(z)
1 |z̄) (5.21)

where
∑

q
(z)
t

=
∑
q
(1)
t

· · ·
∑

q
(Z)
t

. Eq. (5.21) updates the component prior using

the posterior of eq. (5.14). The final event activation is given by the activation

for each component given by the model and the probability for an active state

for the corresponding component:

P (z, t, q
(z)
t = 1) = P (z)P (t|z)P (q

(z)
t = 1|t) (5.22)

As in the model of Section 4.4, sparsity constraints are applied to P (t|z) using

the entropic prior of [Bra99] applied in the PLCA context in [Sma09] in order

to obtain a sparse component activation. For all the experiments performed in

this paper, the length of each basis has been set to 400ms.

Acoustic Scene Distance

For computing the distance between acoustic scenes, we first compute the CQT

[SK10] of each 44.1 kHz recording with a log-frequency resolution of 5 bins per

octave and an 8-octave span with 27.5 Hz set as the lowest frequency. The step

size is set to 40 ms. Afterwards, time-frequency patches are extracted using the

proposed HMM-constrained SIPLCA algorithm with Z ∈ {10, 25, 50} bases and

λ = 0.005 (the value was set after experimentation). Sparsity was enforced to

P (t|z) with sparsity parameter values sH ∈ {0, 0.1, 0.2, 0.5}. In all cases the

length of each basis is set to 400 ms.

For each basis Wz = P (ω, τ |z), very small values (< 0.001) are replaced

by the median value of Wz. Afterwards, a vector of 13 cepstral coefficients

is computed for each basis frame w[k] = Wz[k, t], k = 1, . . . ,K, in order to

result in a compact representation for computational speed purposes. In order to

convert a vector w[k] into cepstral coefficients, we employ the formula presented
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in [Bro99]:

ci =

K∑

k=1

log(w[k]) cos

(
i

(
k −

1

2

)
π

K

)
(5.23)

where i = 1, . . . , 13. Each vector of cepstral coefficients is then normalised to

the [0,1] region. The first coefficient, which corresponds to the DC component

of the signal, is dropped. Finally, for each time-frequency basis, the coefficients

are summed together over time, thus resulting in a single vector representing

a basis. This compressed basis vector is denoted as wz, where z denotes the

component index.

For computing the distance between a scene l and a scene m, we employ

the same steps as in [Cau11]. Firstly, we compute the elementwise distance

between a basis w
(l)
z , z = 1, . . . , Z and the nearest basis of dictionary W(m)

(which includes all vectors w
(m)
z ):

dz(l,m) = min
j∈[1,Z]

||w(l)
z −w

(m)
j || (5.24)

The final distance between two acoustic scenes is defined as:

D(l,m) =

Z∑

z=1

dz(l,m) + dz(m, l) (5.25)

Equation (5.25) is formulated in order for the distance measure between two

scenes to be symmetric. In the end, the acoustic scene distance matrix D is

used for evaluation.

It should be noted that quantifying the distance between two basis vectors

by considering the Euclidean distance of their time average most probably leads

to a loss of descriptive power of our model. This choice is made for tractability

purposes. Indeed, for the corpus used in this study and 50 bases per item,

building the matrix D involves making about 1012 comparisons. Finding an

efficient way of considering the time axis during the distance computation is left

for future research.

5.4.3 Evaluation

Dataset

For the acoustic scene classification experiments we employ the dataset created

by J. Tardieu [TSP+08]. The dataset was originally created for a perceptual
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Scene Platform Hall Corridor Waiting Ticket Office Shop
No. Samples 10 16 12 13 10 5

Table 5.6: Class distribution in the employed dataset of acoustic scenes.

study on free- and forced-choice recognition of acoustic scenes by humans. It

contains 66 44.1 kHz files recorded in 6 different train stations (Avignon, Bor-

deaux, Lille Flandres, Nantes, Paris Est, Rennes). Each file is classified into

a ‘space’, which corresponds to the location this file was recorded: platforms,

halls, corridors, waiting room, ticket offices, shops. The recordings contain nu-

merous overlapping acoustic events, making even human scene classification a

nontrivial task. In Table 5.6, the class distribution for the employed dataset can

be seen. In addition to the ground truth included for each recording, an addi-

tional scene label is included as a result of the forced-categorisation perceptual

study performed in [TSP+08].

Evaluation metrics

For evaluation, we employ the same set of metrics that were used in [Cau11]

for the same experiment, namely the mean average precision (MAP), the 5-

precision, and the classification accuracy of a nearest neighbour classifier. The

MAP and 5-precision metrics are utilised for ranked retrieval results, where in

this case the ranking is given by the values of the distance matrixD. MAP is able

to provide a single-figure metric across recall levels and can describe the global

behaviour of the system. It is computed using the average precision, which is the

average of the precision obtained for the set of top n documents existing after

each relevant document is retrieved. The 5-precision is the precision at rank 5,

i.e. when the number of relevant samples is equal to 5. It corresponds to the

number of samples in the smallest class, which describes the system performance

at a local scale.

Regarding the classification accuracy metric, for each row of D we apply

the k-nearest neighbour classifier with 11 neighbours, which corresponds to the

average number of samples per class.

Results

Acoustic scene classification experiments are performed using the SI-PLCA algo-

rithm of [SR07] and the proposed SI-PLCA algorithm with temporal constraints
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Figure 5.7: Acoustic scene classification results (MAP) using (a) the SI-PLCA
algorithm (b) the TCSI-PLCA algorithm, with different sparsity parameter
(sH) and dictionary size (Z).

(named TCSI-PLCA for brevity). Comparative results are also reported using

a bag-of-frames (BOF) approach of [ADP07] reported in [Cau11]. The bag-of-

frames method computes several audio features which are fed to a Gaussian

mixture model classifier. The NMF method of [Cau11] is also implemented and

tested. Results are also compared with the human perception experiment re-

ported in [TSP+08]. Experiments are performed using different dictionary sizes

Z and sparsity parameters sH (details on the range of values can be seen in the

previous subsection).

The best results using each employed classifier are presented in Table 5.7.

The proposed temporally-constrained SIPLCAmodel outperforms all other clas-
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Model MAP 5-Precision

Human Perception [TSP+08] 0.62 0.73

Random 0.25 0.18
BOF [ADP07] 0.24 0.18

NMF (Z = 50, sH = 0.99) 0.32 0.29
SI-PLCA (Z = 25, sH = 0.2) 0.33 0.35
TCSI-PLCA (Z = 25, sH = 0.2) 0.34 0.36

Table 5.7: Best MAP and 5-precision results for each model.

sifiers using both metrics, apart from the human forced categorisation experi-

ment. The proposed method slightly outperforms the standard SI-PLCA algo-

rithm, which in turn outperforms the NMF algorithm. It can also be seen that

the BOF method is clearly not suitable for such an experiment, since the au-

dio features employed in this method are more appropriate for non-overlapping

events, whereas the dataset that is utilised contains concurrent events and a

significant level of background noise. However, the human categorisation exper-

iment from [TSP+08] outperforms all other approaches.

More detailed results for the SI-PLCA algorithm using different sparsity

parameter values and different numbers of extracted bases (Z) can be seen in

Fig. 5.7 (a). In all cases, enforcing sparsity improves performance. It can

also be seen that the best performance is reported for Z = 25, although the

performance of the system using Z = 50 improves when greater sparsity on

P (t|z) is encouraged. Detailed results for the proposed TCSI-PLCA method

can be seen in Fig. 5.7 (b), using different dictionary sizes and sparsity values.

It can be seen that the performance reaches a peak when sH = 0.2, for the case

of Z = 25. When using a dictionary size of Z = 50, the performance of the

proposed method is slightly decreased. Thus, selecting the appropriate number

of components is important in the performance of the proposed method, since

using too many components will lead to a parts-based representation which in

the unsupervised case will lead to non representative dictionaries. Likewise,

selecting too few bases will lead to a less descriptive model of the input signal.

Regarding classification accuracy using 11-nearest neighbours, results are

shown in Table 5.8. Again, the TCSI-PLCA method outperforms all the other

automatic approaches. In this case however, the non-negative matrix factoriza-

tion approach from [Cau11] outperforms the SIPLCA algorithm by 0.5%. For

the TCSI-PLCA algorithm, the best performance is again reported for sH = 0.2,

159



Classifier Accuracy %

Human Perception [TSP+08] 54.8%

Random 16.6%
BOF [ADP07] 19.7%

NMF (Z = 50, sH = 0) 34.1%
SI-PLCA (Z = 25, sH = 0.5) 33.6%
TCSI-PLCA (Z = 50, sH = 0.2) 35.0%

Table 5.8: Best classification accuracy for each model.

while for the NMF approach the best performance is reported for sH = 0. Re-

garding dictionary size, the best results are reported for Z = 50.

Comparative experiments are performed by selecting only basis vectors that

correspond to a sparse activation P (t|z). In the PLCA domain, the sparseness

criterion can be given by maximizing the l2 norm as in [Sma11], due to the fact

that all elements of the activation matrix take values between 0 and 1. However,

the performance of the SI-PLCA and TCSI-PLCA algorithms in fact decreased

slightly when selecting only the basis vectors that corresponded to the sparsest

activations. This issue may be addressed in the future by enforcing sparsity

only to certain components that represent salient events and keeping the rest of

the components (which could represent noise) without enforcing sparsity.

5.4.4 Discussion

In this section we proposed a method for modeling and classifying acoustic scenes

using a temporally-constrained shift-invariant model similar to the one proposed

for automatic music transcription purposes in Section 4.4. In the classification

stage, each extracted time-frequency basis is converted into a compact vector of

cepstral coefficients for computational speed purposes. The employed dataset

consisted of recordings taken from six types of scenes at different train stations.

Comparative experiments were performed using a standard non-negative matrix

factorization approach, as well as a bag-of-frames algorithm which is based on

computing audio features. Results show that using shift-invariant models for

learning time-frequency patches improves classification performance. Moreover,

incorporating temporal constraints in the SI-PLCA model as well as enforcing

sparsity constraints in the component activation result in improved classification

performance.
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However, the classification performance of the proposed computational meth-

ods is still significantly lower than the human forced categorisation task pre-

sented in [TSP+08]. We acknowledge that this performance is in our case an

upper bound that may not even be reached by purely data-driven methods since

humans most probably make extensive use of prior knowledge but the significant

gap between the human and computational performances indicates that there

is potentially room for improvement on the computational side.

In order to improve spectrogram factorization techniques such as NMF and

SI-PLCA, additional constraints and knowledge need to be incorporated into

the models. A hierarchical model which would consist of event classes and

component subclasses would result in a richer model, but would also require

prior information on the shape of each event in order to result in meaningful

time-frequency patches. Prior information can be provided by utilising training

samples of non-overlapping acoustic events. Also, an additional sparseness con-

straint could be imposed on the activation matrix, in order to control the number

of overlapping components present in the signal (instead of enforcing sparsity as

in the present work). In addition, instead of using a first-order Markov model

for imposing temporal constraints, a more complex algorithm which would be

able to model the duration of each event, such as a semi-Markov model [Yu10]

could be employed. Finally, finding an efficient way of comparing extracted

time frequency patches is also important. In this respect, we believe that lower

bounding approaches to the dynamic time warping technique are of interest

[Keo02, RCM+12].

5.5 Discussion

This chapter presented applications of proposed automatic music transcription

systems. The first two systems were applications of AMT to computational mu-

sicology, namely for modulation detection and temperament estimation. For the

system presented in Section 5.3, an algorithm for score-informed transcription

was proposed, which was applied to the problem of automatic piano tutoring.

Finally, in Section 5.4, the temporally-constrained shift-invariant model that

was proposed for automatic music transcription in Section 4.4 was applied to

the field of computational auditory scene analysis, namely for acoustic scene

characterisation.

The applications of automatic music transcription presented in this chapter
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are but a small subset of the potential applications of AMT to music technology.

The creation of a robust AMT system can help in solving several problems in

the field of music information retrieval (MIR), such as music genre classification,

music similarity, cover song identification, and artist identification. It can also

improve the performance of problems which are based on low-level descriptors,

such as instrument identification and chord estimation. AMT can also bridge the

gap in systematic and computational musicology between current symbolic mu-

sic processing approaches and the use of audio recordings for addressing related

problems. Interactive systems for automatic improvisation and accompaniment

as well as for automatic tutoring can also benefit from automatic transcription

methods. Finally, the techniques developed for automatic transcription such

as the ones presented in Chapter 4 can also be used for other problems which

require the analysis and decomposition of time series data, such as the case of

acoustic scene characterisation that was presented in this chapter.
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Chapter 6

Conclusions and Future

Perspectives

In this thesis, several methods for automatic music transcription have been pro-

posed using audio feature-based techniques and spectrogram factorization-based

techniques, in an attempt to exploit characteristics of the temporal evolution

of sounds. In addition, several applications of automatic transcription systems

were proposed, demonstrating the impact of AMT research in music technol-

ogy and audio processing. The majority of the work presented in this thesis

has been presented in international peer-reviewed journals and conferences, as

shown in Section 1.4. In this chapter, the main contributions of the thesis are

summarised and directions for future work are presented.

6.1 Summary

6.1.1 Audio feature-based AMT

In Chapter 3, methods for audio feature-based automatic music transcription

were proposed and evaluated. Initial work consisted of a system for multiple-F0

estimation of isolated piano sounds, which used pitch candidate selection and

rule-based refinement steps (Section 3.2). Contributions of that system were

a pitch salience function in the log-frequency domain which supported inhar-

monicity and tuning changes; a feature measuring spectral irregularity which

is robust to overlapping partials; and a feature based on the common ampli-
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tude modulation assumption for eliminating octave errors. Experimental results

showed that the proposed system outperforms several state-of-the-art systems

for the task of multiple-F0 estimation of isolated piano sounds. A variant of the

proposed system for supporting complete recordings instead of isolated sounds

was publicly evaluated in the MIREX 2010 multiple-F0 estimation task [MIR].

Afterwards, a joint multiple-F0 estimation system was proposed for AMT,

followed by note tracking (Section 3.3). Contributions of that work were a noise

suppression algorithm based on a pink noise assumption; an overlapping partial

treatment procedure using the harmonic envelopes of pitch candidates; a pitch

set score function which incorporated several spectral and temporal features; an

algorithm for spectral envelope estimation in the log-frequency domain; and a

note tracking procedure using conditional random fields [LMP01]. The system

was evaluated using several datasets commonly used in AMT literature, where it

was shown that the proposed system outperforms several state-of-the-art AMT

systems for the same experiments. It was also shown that the joint multiple-F0

estimation algorithm of Section 3.3 performs better than the iterative multiple-

F0 estimation algorithm of Section 3.2, at the expense of increased computa-

tional cost. In addition, it was shown that the note tracking procedures using

hidden Markov models [Rab89] and conditional random fields [LMP01] helped

improve transcription performance compared to simple thresholding.

Finally, an extension of the joint multiple-F0 estimation system was pro-

posed, by explicitly incorporating information about note onsets and offsets

(Section 3.4). Contributions of this work include a note onset detection proce-

dure which incorporates tuning and pitch information from the pitch salience

function and a note offset detection procedure using pitch-wise hidden Markov

models [Rab89]. This system was evaluated using the same datasets as the

system of Section 3.3, and results demonstrate an improved transcription per-

formance using note-based metrics (instead of frame-based metrics), since this

system explicitly models note events. Also, in cases where hard onsets are

present, is was shown that explicitly incorporating note onset information im-

proves transcription performance.

6.1.2 Spectrogram factorization-based AMT

In Chapter 4, methods for automatic music transcription using spectrogram

factorization techniques were proposed and evaluated. Proposed systems ex-

tended the shift-invariant probabilistic latent component analysis (SI-PLCA)
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model [SRS08b], for supporting multiple templates per pitch and instrument,

as well as for introducing temporal constraints for sound evolution, while at

the same time being able to model frequency modulations as shifts in the log-

frequency domain. Additionally, the proposed spectrogram factorization models

can be modified easily for instrument-specific transcription by changing instru-

ment templates.

The first proposed system consisted of a model based on SI-PLCA which

supported the use of multiple spectral templates per pitch, as well as per mu-

sical instrument (Section 4.2). The contribution of each source is time- and

pitch-dependent, making the model also suitable for instrument identification

in polyphonic music. Finally, the high-resolution time-pitch representation that

is the output of the system can also be used for pitch visualization purposes. The

system was evaluated using the same set of recordings as in Chapter 3, where

it was shown that the proposed model outperformed the audio feature-based

approaches in most cases. It was shown that a convolutive model can help im-

prove transcription accuracy compared to a non-convolutive linear model (e.g.

using PLCA [SRS06] or NMF [LS99]). Also, incorporating sparsity constraints

in the pitch and source activations improved transcription performance. The

system of Section 4.2 was also publicly evaluated in the MIREX 2011 contest,

where it ranked 2nd in the multiple-instrument note tracking task [MIR].

In Section 4.3, temporal constraints were incorporated within a single-source

SI-PLCA model using hidden Markov models [Rab89] for modelling the tempo-

ral evolution of notes. The proposed model expressed the evolution of mono-

phonic music sounds as a sequence of sound state templates, shifted across log-

frequency. Experimental results on pitch detection showed that the temporally-

constrained shift-invariant model outperformed a non-temporally-constrained

model for the same experiment, indicating that incorporating temporal con-

straints in multiple-instrument multi-pitch detection can further improve tran-

scription performance.

Finally, the temporal constraints of Section 4.3 were combined with the

multiple-instrument multi-pitch model of Section 4.2 in the proposed model of

Section 4.4. Thus, the contribution of this section was a system for multi-pitch

detection and multiple instrument assignment, supporting also multiple sets

of sound state templates per source. At the same time, the model supported

tuning changes and frequency modulations due to its shift-invariant nature.

Experiments showed that the proposed model outperforms the non-temporally

constrained model of Section 4.2, both for automatic transcription and instru-
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ment assignment, and also outperforms state-of-the-art transcription systems in

the literature for the same experiments.

6.1.3 Transcription Applications

In Chapter 5 applications of the proposed AMT systems were presented, in order

to demonstrate the potential impact of automatic music transcription research

in music technology and audio processing.

In Section 5.1, the AMT system of Section 3.4 was utilised as front-end

for an automatic modulation detection system for J.S. Bach chorales. To the

author’s knowledge, this is the first study which utilised AMT for systematic

musicology research. Results comparing an audio input and a symbolic input

showed that although there are many differences between the transcribed audio

and the original score, the performance of the two systems for key detection is

similar, showing that AMT can be used as an audio front-end for certain tasks

in the systematic musicology field.

A computationally efficient harpsichord-specific transcription system was

proposed in Section 5.2 as a front-end for estimating temperament in harpsi-

chord recordings. The system was used to transcribe over 500 complete harpsi-

chord recordings taken from 22 CDs. The measured temperaments are compared

with the annotations found in CD sleeve notes and it was found that while this

information is mostly correct, there were several cases where a discrepancy in

temperament was found, raising an interesting issue about the nature of “ground

truth”.

A method for score-informed transcription was proposed in Section 5.3 and

was applied to automatic piano tutoring, in an effort to detect mistakes made by

piano students. It should be noted that the problem of score-informed transcrip-

tion is relatively unexplored, and a contribution of this work is the transcription

of the synthesized score along with the original recording. A score-informed pi-

ano transcription dataset was created by the author and is available online.

Results indicated that using manually-aligned scores, the proposed method can

successfully analyze the student’s performance. Also, it was shown that tran-

scribing the synthesized score helped improve score-informed transcription per-

formance.

Finally, in Section 5.4, the temporally-constrained shift-invariant transcrip-

tion model of Section 4.4 was modified for the problem of acoustic scene charac-

terisation in an unsupervised manner. Experimental results using train station
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recordings showed that the proposed model outperforms NMF-based models

and that temporal constraints help improve classification accuracy. It was also

shown that the proposed transcription models can be used in non-music audio

processing applications.

6.2 Future Perspectives

Although the proposed systems outperform state-of-the-art systems, the overall

transcription performance is still considerably below that of a human expert,

and will most likely continue to be for some years, as the transcription problem

is inherently complex and the field has only recently started to grow.

As shown in this work, signal processing-based systems are computationally

inexpensive and have demonstrated encouraging transcription results, but have

problems with respect to generalisation (e.g. to different instrument sources).

Thus, signal processing-based systems cannot straightforwardly be used as a

basis for a more general system for analysing music signals, which could ad-

ditionally address the problems of instrument identification, source separation,

extraction of rhythmic information, etc. On the other hand, spectrogram fac-

torisation models produced competitive results, offering at the same time a

transparent model of operation which helps in extending these models for the

creation of more complex systems for music signal analysis. The main drawback

of spectrogram factorisation models is that they are computationally expensive.

It was also shown that AMT systems can effectively be used in other music

technology applications. Current tasks in music information retrieval (MIR)

such as genre classification, music similarity, and chord detection typically em-

ploy low-level features instead of utilising information from the transcribed

score. Although transcription-based techniques for MIR will most likely be

more computationally demanding compared to low-level feature-based tech-

niques, they can also offer a more complete framework for analysing music sig-

nals. This framework can be used as a basis for addressing many tasks (instead

of proposing task-specific MIR techniques) and can also be used for the extrac-

tion of high-level musicological features for music analysis. Another field where

AMT systems can be used is computational musicology; current applications

use symbolic data as input, whereas using an AMT system, research could be

performed from an audio front-end.

Proposed systems can be used as a basis for creating improved transcription
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systems as well as systems for music signal analysis. In the process of carrying

out research and writing for the thesis, many ideas for future research emerged

regarding automatic transcription, note tracking, and instrument identification,

which will be detailed below.

Regarding improving transcription performance, the temporally-constrained

model of Section 4.4 can be modified to support whole-note templates instead of

a series of spectra for each sound state, resulting in a more constrained model,

albeit more demanding computationally. Since the duration of each note event

is arbitrary, each whole-note template can be scaled over time using dynamic

time warping techniques (e.g. [MD10]).

Different time-frequency representations can also be used as input to the

proposed AMT systems, in an effort to further improve transcription perfor-

mance. For example, the auditory models by Yang et al. [YWS92] can be used

instead of the constant-Q transform. Also, the use of spectral reassignment

was shown to outperform the short-time Fourier transform for automatic tran-

scription in [Hai03] and could be tested using the proposed systems. Another

avenue of research would be the use of several time-frequency representations,

using e.g. different window sizes. This would result in a tensorial input, which

could be transcribed by modifying currently proposed techniques for SI-PLCA

to probabilistic latent tensor factorization (PLTF) [CŞS11].

Another way of improving transcription performance would be fusing differ-

ent AMT systems at the decision level (late fusion). In [HS10], it was shown

that combining several conservative onset detectors (with high precision and

low recall), an improvement can be achieved in onset detection; the same idea

can be utilised in the context of automatic transcription.

Computational efficiency is another issue, especially in the convolutive tran-

scription models of Chapter 4, which employ the EM algorithm. One way of

addressing this issue would be to keep the same model formulation but to utilise

a different algorithm for parameter estimation, which would be more computa-

tionally efficient, e.g. convolutive sparse coding [Vir04].

For further improving the SI-PLCA-based models of Chapter 4, in [DCL10]

it was shown that the NMF algorithm with β-divergence performed better than

the standard NMF algorithm. Since in [SRS08a] it was shown that the NMF

algorithm using the KL divergence is equivalent to the PLCA algorithm, in-

troducing β-divergences in the PLCA and SI-PLCA models could also further

improve transcription performance.

Regarding note tracking, all proposed transcription systems in Chapters 3
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and 4 performed multiple-F0 estimation and note tracking separately. Tran-

scription performance could potentially improve by proposing a joint model

for multiple-F0 estimation and note tracking (similar to the one in [KNS07]),

which however would be less computationally efficient. One other way to im-

prove transcription performance with respect to the note tracking process would

be to utilise a key induction procedure which would assist in assigning priors

and transition probabilities using training data in the same key (instead of hav-

ing one transition matrix for all keys). Also, the present 2-state on/off models

for note tracking could be further extended by incorporating a musicological

model of note transitions at one level and chord transitions at a higher level, as

in [ROS09b].

Current note tracking models however do not explicitly model note dura-

tions, but only express note or chord transitions. Instead of using a first-order

Markov model for imposing temporal constraints, a more complex algorithm

which would be able to model the duration of each event, such as a semi-Markov

model [Yu10] can be employed. Such a development would also be of interest

for the acoustic scene characterisation experiments of Section 5.4, for modelling

the duration of specific events.

Finally, regarding instrument assignment, although the proposed model of

Section 4.4 outperformed other approaches for the same experiment, instrument

identification performance is still poor. However, the proposed spectrogram

factorization-based models could potentially improve upon instrument assign-

ment performance by utilizing the information provided by the source contri-

bution matrix Pt(s|p), combined with features for characterizing music timbre

(e.g. [Pee04]). Also, in the model of Section 4.4, the number of sound states

can also be made instrument-dependent by performing slight modifications to

the model, thus providing a more realistic model for each instrument.
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Appendix A

Expected Value of Noise

Log-Amplitudes

We present the derivation for the expected value of noise log-amplitudes, which

is used in the proposed noise suppression algorithm for the joint multi-pitch

detection system of Section 3.3. We assume that the noise amplitude follows

an exponential distribution. In order to find the expected value of the noise

log amplitudes E{log(|Nc(ω̂)|)}, we adopt a technique similar to [Yeh08]. Let

Θ = log(Nc(ω̄)) = Φ(N):

E{Θ} =

∫ +∞

−∞

θP (θ)dθ =

∫ +∞

−∞

θP (Φ−1(θ))

∣∣∣∣
dΦ−1(θ)

dθ

∣∣∣∣

=

∫ +∞

−∞

χθe−χe
θ

eθdθ =

∫ +∞

0

χ log(ψ)e−χψdψ

= −γ − χ log(χ) ·

∫ +∞

0

e−χψdψ

= log(χ−1)− γ (A.1)

where γ is the Euler constant:

γ = −

∫ +∞

0

e−ψ log(ψ)dψ ≈ 0.57721. (A.2)
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Appendix B

Log-frequency spectral

envelope estimation

An algorithm for posterior-warped log-frequency regularized spectral envelope

estimation is proposed, which is used in the joint multi-pitch detection sys-

tem of Section 3.3. Given a set of harmonic partial sequences (HPS) in the

log-frequency domain, the algorithm estimates the log-frequency envelope using

linear regularized discrete cepstrum estimation. In [DR03] a method for estimat-

ing the spectral envelope using discrete cepstrum coefficients in the Mel-scale

was proposed. The superiority of discrete cepstrum over continuous cepstrum

coefficients and linear prediction coefficients for spectral envelope estimation

was argued in [SR99]. Other methods for envelope estimation in the linear

frequency domain include a weighted maximum likelihood spectral envelope es-

timation technique in [BD08], which was employed for multiple-F0 estimation

experiments in [EBD10]. The proposed algorithm can be outlined as follows:

1. Extract the harmonic partial sequence HPS [p, h] and corresponding log-

frequency bins ωp,h for a given pitch p and harmonic index h = 1, . . . , 13.

2. Convert the log-frequency bins ωp,h to linear angular frequencies ω̃p,h

(where the sampling rate is fs = 44.1 kHz and the lowest frequency for

analysis is flow = 27.5 Hz):

ω̃p,h = 27.5 ·
2π

fs
· 2

ωp,h
120 (B.1)
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3. Perform spectral envelope estimation on HPS [p, h] and ω̃p,h using the

linear regularized discrete cepstrum. Coefficients cp are estimated as:

cp = (MT
pMp + ρK)−1MT

p ap (B.2)

where ap = [ln(HPS [p, 1]), . . . , ln(HPS [p,H ])],K = diag([0, 12, 22, · · · , (K−

1)2]), K is the cepstrum order, ρ is the regularization parameter, and

Mp =




1 2 cos(ω̃p,1) · · · 2 cos(Kω̃p,1)
...

...
...

1 2 cos(ω̃p,H) · · · 2 cos(Kω̃p,H)


 (B.3)

4. Estimate the vector of log-frequency discrete cepstral coefficients dp from

cp. In order to estimate dp from cp, we note that the function which

converts linear angular frequencies into log-frequencies is given by:

g(ω̃) = 120 · log2

(
fs · ω̃

2π · 27.5

)
(B.4)

which is defined for ω̃ ∈ [ 2π·27.5fs
, π]. Function g(ω̃) is normalized using

ḡ(ω̃) = π
g(π)g(ω̃), which becomes:

ḡ(ω̃) =
π

log2(
fs

2·27.5 )
· log2

(
fs · ω̃

2π · 27.5

)
(B.5)

The inverse function, which converts angular log-frequencies into angular

linear frequencies is given by:

ḡ−1(ω̂) =
2π · 27.5

fs
· 2

ω̄ log2(
fs

2·27.5
)

π (B.6)

which is defined in [0, π]→ [ 2π·27.5fs
, π]. From [DR03], it can be seen that:

dp = A · cp (B.7)

where

Am+1,l+1 =
(2− δ0l)

Ω

Ω−1∑

ω=0

cos

(
lḡ−1(

πω

Ω
)

)
cos

(
πωm

Ω

)
(B.8)
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Figure B.1: Log-frequency spectral envelope of an F#4 piano tone with P = 50.
The circle markers correspond to the detected overtones.

where Ω is the size of the spectrum in samples, and m, l range from 0 to

P − 1.

5. Estimate the log-frequency spectral envelope SE from dp. The log-frequency

spectral envelope is defined as:

SEp(ω̂) = exp

(
d0p + 2

P−1∑

i=1

dip cos(iω̂)

)
. (B.9)

In Fig. B.1, the warped log-frequency spectral envelope of an F#4 note produced

by a piano (from the MAPS dataset) is depicted.
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Appendix C

Derivations for the

Temporally-constrained

Convolutive Model

In this appendix, the derivations for the temporally-constrained model of Sec-

tion 4.3 are presented. The derivations follow closely the one in [Mys10]. As

mentioned in Section 4.3, the parameters of the model are as follows:

1. Sound state templates P (µt|qt) = P (ωt − ft|qt)

2. Pitch shift per sound state Pt(ft|qt)

3. Sound state transition matrix P (qt+1|qt)

4. Initial state probabilities P (q1)

The parameters are estimated using the EM algorithm [DLR77], by maximizing

the log-likelihood of the data. The posterior distribution of the model is given

by:

P (f̄ , q̄|ω̄) (C.1)

where f̄ is the sequence of draws of f .
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C.1 Log likelihood

The complete data log likelihood is given by:

logP (f̄ , q̄, ω̄) = logP (q1) +

T−1∑

t

logP (qt+1|qt)+

T∑

t

Vt∑

v

logP (ωt,v − ft,v|qt) +

T∑

t

Vt∑

v

logPt(ft,v|qt) (C.2)

where Vt =
∑

ω Vω,t and ωt,v, ft,v denote draw v at frame t of random variables

ω, f , respectively.

The expected value of the complete data log likelihood wrt to the posterior

distribution is given by:

L = Ef̄ ,q̄|ω̄ logP (f̄ , q̄, ω̄)

=
∑

q̄

∑

f̄

P (f̄ , q̄|ω̄) logP (f̄ , q̄, ω̄)

=
∑

q̄

∑

f̄

P (f̄ , q̄|ω̄) logP (q1)

+

T−1∑

t

∑

q̄

∑

f̄

P (f̄ , q̄|ω̄) logP (qt+1|qt)

+

T∑

t

Vt∑

v

∑

q̄

∑

f̄

P (f̄ , q̄|ω̄) logP (ωt,v − ft,v|qt)

+
T∑

t

Vt∑

v

∑

q̄

∑

f̄

P (f̄ , q̄|ω̄) logPt(ft,v|qt) (C.3)
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By marginalizing certain variables in L:

L =
∑

q1

P (q1|ω̄) logP (q1)

+
T−1∑

t

∑

qt

∑

qt+1

Pt(qt, qt+1|ω̄) logP (qt+1|qt)

+
T∑

t=1

Vt∑

v

∑

qt

∑

ft,v

Pt(ft,v, qt|ω̄) logP (ωt,v − ft,v|qt)

+

T∑

t=1

Vt∑

v

∑

qt

∑

ft,v

Pt(ft,v, qt|ω̄) logPt(ft,v|qt) (C.4)

We change the summations to be over frequencies rather than draws:

L =
∑

q1

P (q1|ω̄) logP (q1)

+
T−1∑

t

∑

qt

∑

qt+1

Pt(qt, qt+1|ω̄) logP (qt+1|qt)

+
T∑

t

∑

qt

∑

ft

∑

ωt

Vω,tPt(ft, qt|ωt, ω̄) logP (ωt − ft|qt)

+

T∑

t

∑

qt

∑

ft

∑

ωt

Vω,tPt(ft, qt|ωt, ω̄) logP (ft|qt) (C.5)
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We incorporate constraints using Lagrange multipliers ζ(1), ζ
(2)
qt , ζ

(3)
f,q , ζ

(4)
qt

L =
∑

q1

P (q1|ω̄) logP (q1)

+

T−1∑

t

∑

qt

∑

qt+1

Pt(qt, qt+1|ω̄) logP (qt+1|qt)

+

T∑

t

∑

qt

∑

ft

∑

ωt

Vω,tPt(ft, qt|ωt, ω̄) logP (ωt − ft|qt)

+

T∑

t

∑

qt

∑

ft

∑

ωt

Vω,tPt(ft, qt|ωt, ω̄) logP (ft|qt)

+ ζ(1)
(
1−

∑

q1

P (q1)

)
+
∑

qt

ζ(2)qt

(
1−

∑

qt+1

P (qt+1|qt)

)

+
∑

f

∑

q

ζ
(3)
f,q

(
1−

∑

ω

P (ω − f |q)

)

+

T∑

t

∑

qt

ζ(4)qt

(
1−

∑

ft

Pt(ft|qt)

)
(C.6)

We need to estimate the parameters that maximize the above equation. For

the E-step, we compute the following marginalizations:

1. Marginalized posterior for state priors: P (q1|ω̄)

2. Marginalized posteriors for state transitions: Pt(qt, qt+1|ω̄)

3. Marginalized posteriors for state templates and pitch shift: Pt(ft, qt|ωt, ω̄)

C.2 Expectation Step

The marginalized posteriors for state templates and pitch track is computed as

follows:

Pt(ft, qt|ω̄) =
Pt(ft, qt, ω̄)

P (ω̄)

= Pt(ft|ω̄, qt)
Pt(ω̄, qt)

P (ω̄)

= Pt(ft|ωt, qt)Pt(qt|ω̄) (C.7)
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Pt(qt|ω̄) is computed using (4.20) and (4.21), which utilize the forward and

backward variables αt(qt) and βt(qt), defined in (4.22) and (4.23), respectively.

For the computation of αt(qt) and βt(qt) we also need the likelihoods P (ω̄t|qt)

which are computed as:

P (ω̄t|qt) =

Vt∏

v

Pt(ωt,v|qt)

=
∏

ωt

Pt(ωt|qt)
Vω,t (C.8)

where Pt(ωt|qt) is computed using (4.17).

We also need to compute Pt(ft|ωt, qt), which using Bayes’ theorem and the

notion that P (ωt|ft, qt) = P (ωt − ft|qt) is:

Pt(ft|ωt, qt) =
P (ωt|ft, qt)Pt(ft|qt)∑
ft
P (ωt|ft, qt)Pt(ft|qt)

=
P (ωt − ft|qt)Pt(ft|qt)∑
ft
P (ωt − ft|qt)Pt(ft|qt)

(C.9)

The marginalized posterior for the sound state transitions is computed as:

Pt(qt, qt+1|ω̄) =
Pt(ω̄, qt, qt+1)

P (ω̄)

=
Pt(ω̄, qt, qt+1)∑

qt

∑
qt+1

Pt(ω̄, qt, qt+1)
(C.10)

where

Pt(ω̄, qt, qt+1)

= P (qt+1, ω̄t+1, . . . , ω̄T |ω̄1, . . . , ω̄t, qt)P (ω̄1, . . . , ω̄t, qt)

= P (qt+1, ω̄t+1, . . . , ω̄T |qt)αt(qt)

= P (ω̄t+1, . . . , ω̄T |qt+1)P (qt+1|qt)αt(qt)

= P (ω̄t+1|qt+1)βt+1(qt+1)P (qt+1|qt)αt(qt) (C.11)

which leads to the computation of the marginalized posterior for the sound state

transitions using (4.24).

The marginalized posterior for the state priors is given by P (q1|ω̄), computed

from (4.20).
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C.3 Maximization Step

In order to estimate the sound state spectral templates P (µ|q) we take the

derivative of (C.6) wrt µ, q, which gives the set of equations:

∑
ft

∑
t Vω,tPt(ft, qt|ωt, ω̄)

P (ωt − ft|qt)
− ζ

(3)
f,q = 0 (C.12)

By eliminating the Lagrange multiplier:

P (ω − f |q) =

∑
f,t Vω,tPt(f, q|ω, ω̄)∑
ω,f,t Vω,tPt(f, q|ω, ω̄)

(C.13)

For estimating the pitch track Pt(ft|qt), we take the derivative of (C.6) wrt

f, q: ∑
ωt
Vω,tPt(ft, qt|ωt, ω̄)

Pt(ft|qt)
− ζ(4)qt = 0 (C.14)

By eliminating the Lagrange multiplier:

Pt(ft|qt) =

∑
ωt
Vω,tPt(ft, qt|ωt, ω̄)∑

ft,ωt
Vω,tPt(ft, qt|ωt, ω̄)

(C.15)

For estimating the sound state transitions P (qt+1|qt), we take the derivative

of (C.6) wrt qt+1, qt, which gives the set of equations:

∑T−1
t=1 Pt(qt, qt+1|ω̄)

P (qt+1|qt)
− ζ(2)qt = 0 (C.16)

By eliminating the Lagrange multiplier:

P (qt+1|qt) =

∑T−1
t=1 Pt(qt, qt+1|ω̄)∑

qt+1

∑T−1
t=1 Pt(qt, qt+1|ω̄)

(C.17)

For estimating the state priors P (q1) we take the derivative of (C.6) wrt q1,

which gives the set of equations:

P1(q1|ω̄)

P (q1)
− ζ(1) = 0 (C.18)
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By eliminating the Lagrange multiplier:

P (q1) =
P1(q1|ω̄)∑
q1
P1(q1|ω̄)

= P1(q1|ω̄) (C.19)
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[BS12] S. Böck and M. Schedl. Polyphonic piano note transcription

with recurrent neural networks. In IEEE International Confer-

ence on Audio, Speech and Signal Processing, pages 121–124,

Kyoto, Japan, March 2012.

[Cau99] G. Cauwenberghs. Monaural separation of independent acousti-

cal components. In IEEE International Symposium on Circuits

and Systems, volume 5, pages 62–65, Orlando, USA, May 1999.

[Cau11] B. Cauchi. Non-negative matrix factorisation applied to audi-

tory scenes classification. Master’s thesis, ATIAM (UPMC /

IRCAM / TELECOM ParisTech), August 2011.

[CDW07] A. Cont, S. Dubnov, and D. Wessel. Realtime multiple-pitch and

multiple-instrument recognition for music signals using sparse

non-negative constraints. In International Conference on Digital

Audio Effects, Bordeaux, France, October 2007.

[CE11] C. Cotton and D. Ellis. Spectral vs. spectro-temporal features

for acoustic event detection. In IEEE Workshop on Applications

of Signal Processing to Audio and Acoustics, pages 69–72, New

Paltz, USA, October 2011.

[Cem04] A. T. Cemgil. Bayesian music transcription. PhD thesis, Rad-

boud University Nijmegen, Netherlands, September 2004.

[Chu92] C. K. Chui. An Introduction to Wavelets. Academic Press, San

Diego, USA, 1992.

[CJ02] Y.R. Chien and S.K. Jeng. An automatic transcription system

with octave detection. In IEEE International Conference on

Acoustics, Speech, and Signal Processing, volume 2, pages 1865–

1868, Orlando, USA, May 2002.

[CJAJ04] M. G. Christensen, S. H. Jensen, S. V. Andersen, and A. Jakobs-

son. Subspace-based fundamental frequency estimation. In Eu-

ropean Signal Processing Conference, pages 637–640, Vienna,

Austria, September 2004.

[CJJ06] M. G. Christensen, A. Jakobsson, and S. H. Jensen. Multi-pitch

estimation using harmonic MUSIC. In Asilomar Conference on

Signals, Systems, and Computers, pages 521–525, 2006.

187



[CJJ07] M. G. Christensen, A. Jakobsson, and S. H. Jensen. Joint

high-resolution fundamental frequency and order estimation.

IEEE Transactions on Audio, Speech, and Language Process-

ing, 15(5):1635–1644, July 2007.

[CK11] N. Cho and C.-C. Jay Kuo. Sparse music representation with

source-specific dictionaries and its application to signal sepa-

ration. IEEE Transactions on Audio, Speech, and Language

Processing, 19(2):337–348, February 2011.

[CKB03] A. T. Cemgil, B. Kappen, and D. Barber. Generative model

based polyphonic music transcription. In 2003 IEEE Workshop

Applications of Signal Processing to Audio and Acoustics, New

Paltz, New York, USA, October 2003.

[CKB06] A. T. Cemgil, H. J. Kappen, and D. Barber. A generative model

for music transcription. IEEE Transactions on Audio, Speech,

and Language Processing, 14(2):679–694, March 2006.

[CLLY07] C. Cao, M. Li, J. Liu, and Y. Yan. Multiple F0 estimation in

polyphonic music. In 3rd Music Information Retrieval Evalua-

tion eXchange, volume 5, September 2007.

[CM60] G. Cooper and L.B. Meyer. The rhythmic structure of music.

University of Chicago Press, 1960.

[Con06] A. Cont. Realtime multiple pitch observation using sparse non-

negative constraints. In 7th International Conference on Music

Information Retrieval, Victoria, Canada, October 2006.

[CPT09] G. Costantini, R. Perfetti, and M. Todisco. Event based tran-

scription system for polyphonic piano music. Signal Processing,

89(9):1798–1811, September 2009.

[CQ98] P. Fernandez Cid and F.J. Casajus Quirós. Multi-pitch esti-

mation for polyphonic musical signals. In IEEE International

Conference on Acoustics, Speech, and Signal Processing, pages

3565–3568, Seattle, USA, May 1998.

[CQRSVC+10] F.J. Canadas Quesada, F. Rodriguez Serrano, P. Vera Candeas,

N.R. Reyes, and J. Carabias Orti. Improving multiple-F0 esti-

mation by onset detection for polyphonic music transcription. In

188



IEEE International Workshop on Multimedia Signal Processing

(MMSP), pages 7–12, October 2010.

[CRV+10] F. Canadas, F. Rodriguez, P. Vera, N. Ruiz, and J. Carabias.

Multiple fundamental frequency estimation & tracking in poly-

phonic music for MIREX 2010. In Music Information Retrieval

Evaluation eXchange, Utrecht, Netherlands, August 2010.

[CSJJ07] M. G. Christensen, P. Stoica, A. Jakobsson, and S. H. Jensen.

The multi-pitch estimation problem: some new solutions. In

IEEE International Conference on Acoustics, Speech, and Sig-

nal Processing, pages 1221–1224, Honolulu, USA, April 2007.

[CSJJ08] M. G. Christensen, P. Stoica, A. Jakobsson, and S. H. Jensen.

Multi-pitch estimation. Elsevier Signal Processing, 88(4):972–

983, April 2008.
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[FHAB10] M. O. Faruqe, M. A.-M. Hasan, S. Ahmad, and F. H. Bhuiyan.

Template music transcription for different types of musical in-

struments. In 2nd International Conference on Computer and

Automation Engineering, pages 737–742, Singapore, February

2010.

[FK11] X. Fiss and A. Kwasinski. Automatic real-time electric gui-

tar audio transcription. In IEEE International Conference on

Audio, Speech and Signal Processing, pages 373–376, Prague,

Czech Republic, May 2011.

[Fon08] N. Fonseca. Fragmentation and frontier evolution for genetic al-

gorithms optimization in music transcription. In Lecture Notes

in Computer Science, volume 5290, pages 305–314. October

2008.

[FR98] N. F. Fletcher and T. D. Rossing. The Physics of Musical In-

struments. Springer, New York, 2nd edition, 1998.

[GB03] R. Gribonval and E. Bacry. Harmonic decomposition of audio

signals with matching pursuit. IEEE Transactions on Audio,

Speech, and Language Processing, 51(1):101–111, January 2003.

[GBHL09] R. Gang, M. F. Bocko, D. Headlam, and J. Lundberg. Poly-

phonic music transcription employing max-margin classification

of spectrographic features. In IEEE Workshop on Applications

of Signal Processing to Audio and Acoustics, pages 57–60, New

Paltz, USA, October 2009.

193



[GBL+11] R. Gang, G. Bocko, J. Lundberg, S. Roessner, D. Headlam,

and M.F. Bocko. A real-time signal processing framework of

musical expressive feature extraction using MATLAB. In 12th

International Society for Music Information Retrieval Confer-

ence, pages 115–120, Miami, Florida, USA, October 2011.

[GD02] S. Godsill and M. Davy. Bayesian harmonic models for musical

pitch estimation and analysis. In IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing, pages 1769–

1772, Orlando, USA, May 2002.

[GE09] G. Grindlay and D. Ellis. Multi-voice polyphonic music tran-

scription using eigeninstruments. In IEEE Workshop on Appli-

cations of Signal Processing to Audio and Acoustics, New Paltz,

USA, October 2009.

[GE10] G. Grindlay and D. Ellis. A probabilistic subspace model

for multi-instrument polyphonic transcription. In 11th Inter-

national Society for Music Information Retrieval Conference,

pages 21–26, Utrecht, Netherlands, August 2010.

[GE11] G. Grindlay and D. Ellis. Transcribing multi-instrument poly-

phonic music with hierarchical eigeninstruments. IEEE Journal

of Selected Topics in Signal Processing, 5(6):1159–1169, Octo-

ber 2011.

[GHNO03] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka. RWC music

database: music genre database and musical instrument sound

database. In International Conference on Music Information

Retrieval, pages 229–230, Baltimore, USA, October 2003.

[GJ97] Z. Ghahramani and M. Jordan. Factorial hidden Markov mod-

els. Machine Learning, 29:245–273, 1997.

[GMSV98] I. Guyon, J. Makhoul, R. Schwartz, and V. Vapnik. What size

test set gives good error estimates? IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 20(1):52–64, January

1998.

[Got00] M. Goto. A robust predominant-F0 estimation method for real-

time detection of melody and bass lines in CD recordings. In

194



IEEE International Conference on Acoustics, Speech, and Sig-

nal Processing, volume 2, pages 757–760, Istanbul, Turkey, June

2000.

[Got04] M. Goto. A real-time music-scene-description system:

predominant-F0 estimation for detecting melody and bass lines

in real-world audio signals. Speech Communication, 43:311–329,

2004.

[Gro08] M. Groble. Multiple fundamental frequency estimation. In 2008

Music Information Retrieval Evaluation eXchange, September

2008.

[GS07a] Z. Guibin and L. Sheng. Automatic transcription method for

polyphonic music based on adaptive comb filter and neural net-

work. In 2007 IEEE International Conference on Mechatronics

and Automation, pages 2592–2597, August 2007.

[GS07b] D. Gunawan and D. Sen. Identification of partials in polyphonic

mixtures based on temporal envelope similarity. In AES 123rd

Convention, October 2007.

[Hai03] S. W. Hainsworth. Techniques for the automated analysis of

musical audio. PhD thesis, University of Cambridge, UK, De-

cember 2003.

[HBD10] R. Hennequin, R. Badeau, and B. David. NMF with time-

frequency activations to model non stationary audio events. In

IEEE International Conference on Audio, Speech and Signal

Processing, pages 445–448, Dallas, USA, March 2010.

[HBD11a] R. Hennequin, R. Badeau, and B. David. NMF with time-

frequency activations to model non stationary audio events.

IEEE Transactions on Audio, Speech, and Language Process-

ing, 19(4):744–753, May 2011.

[HBD11b] R. Hennequin, R. Badeau, and B. David. Scale-invariant prob-

abilistic latent component analysis. In IEEE Workshop on Ap-

plications of Signal Processing to Audio and Acoustics, pages

129–132, New Paltz, USA, October 2011.

195



[HDB11] R. Hennequin, B. David, and R. Badeau. Score informed au-

dio source separation using a parametric model of non-negative

spectrogram. In IEEE International Conference on Audio,

Speech and Signal Processing, pages 45–48, Prague, Czech Re-

public, May 2011.

[HM03] S. W. Hainsworth and M. D. Macleod. The automated music

transcription problem. Technical report, Engineering Depart-

ment, Cambridge University, UK, 2003.

[Hof99] T. Hofmann. Probabilistic latent semantic analysis. In Uncer-

tainty in AI, pages 289–296, Stockholm, Sweden, July 1999.

[HS10] A. Holzapfel and Y. Stylianou. Three dimensions of pitched in-

strument onset detection. IEEE Transactions on Audio, Speech,

and Language Processing, 18(6):1517–1527, August 2010.

[Joh03] M. Johansson. Automatic transcription of polyphonic music

using harmonic relations. Master’s thesis, Royal Institute of

Technology, Sweden, April 2003.
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Reyes, and F. J. Cañadas Quesada. Musical instrument sound

multi-excitation model for non-negative spectrogram factoriza-

tion. IEEE Journal of Selected Topics in Signal Processing,

5(6):1144–1158, October 2011.

[PAB+02] M. Plumbley, S. Abdallah, J. P. Bello, M. Davies, G. Monti, and

M. Sandler. Automatic music transcription and audio source

separation. Cybernetics and Systems, 33(6):603–627, 2002.

[PB02] B. Pardo and W.P. Birmingham. Algorithms for chordal anal-

ysis. Computer Music Journal, 26(2):22–49, 2002.

[PCG10] P. H. Peeling, A. T. Cemgil, and S. J. Godsill. Generative spec-

trogram factorization models for polyphonic piano transcrip-

204



tion. IEEE Transactions on Audio, Speech, and Language Pro-

cessing, 18(3):519–527, March 2010.

[PE07a] G. Poliner and D. Ellis. A discriminative model for polyphonic

piano transcription. EURASIP Journal on Advances in Signal

Processing, (8):154–162, January 2007.

[PE07b] G. Poliner and D. Ellis. Improving generalization for polyphonic

piano transcription. In 2007 IEEE Workshop on Applications

of Signal Processing to Audio and Acoustics, New Paltz, USA,

October 2007.

[Pee04] G. Peeters. A large set of audio features for sound description

(similarity and classification) in the CUIDADO project. Tech-

nical report, CUIDADO I.S.T. Project, 2004.

[Pee06] G. Peeters. Music pitch representation by periodicity measures

based on combined temporal and spectral representations. In

IEEE International Conference on Acoustics, Speech, and Sig-

nal Processing, volume 5, pages 53–56, Toulouse, France, May

2006.

[PEE+07] G. Poliner, D. Ellis, A. F. Ehmann, E. Gómez, S. Streich, and
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[QCR+08] F.J. Cañadas Quesada, P. Vera Candeas, N. Ruiz Reyes,

R. Mata Campos, and J. J. Carabias Orti. Multipitch estima-

tion of harmonically-related note-events by improving harmonic

matching pursuit decomposition. In Audio Engineering Society

124th Convention, Amsterdam, Netherlands, May 2008.
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and S. Sagayama. Polyphonic pitch estimation and instru-

ment identification by joint modeling of sustained and attack

sounds. IEEE Journal of Selected Topics in Signal Processing,

5(6):1124–1132, October 2011.

[WVR+11b] J. Wu, E. Vincent, S. A. Raczyński, T. Nishimoto, N. Ono, and
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