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Abstract

Applications that aim to transcribe singing performances automatically into music notation are

mostly concerned with representing the singing voice in terms of pitch over time. Little research

has focused on the automatic transcription of lyrics and their representation alongside music

notes on staff notation. Song lyrics are one of the core building blocks of singing performances

and an essential part of the music listening experience. Thus, the automatic retrieval of song

lyrics has a huge potential for impact across many applications such as songwriting tools,

audio/video captioning, karaoke applications, music catalogue creation, music recommendation,

playlist generation and royalty forecasting. This study formalises lyrics transcription by means

of Large Vocabulary Continuous Speech Recognition (LVCSR) from the singing voice and aims

to develop an automatic lyrics transcription system that has a robust and scalable performance

across varying domains. In particular, challenges and opportunities within two major paradigms

of Deep Neural Network (DNN)-based LVCSR systems are investigated: the �rst one is the

hybrid DNN - Hidden Markov Model (DNN-HMM) trained on the Lattice-free Maximum

Mutual Information (LFMMI) objective. For the DNN-HMM framework, a number of novel

methods are proposed: using a lyrics-speci�c corpus for building the language model, a singing-

adapted pronunciation dictionary for modelling common pronunciation variants in singing,

a compact multistream neural network architecture to enhance performance against noisy

environments, and a cross-domain acoustic model with music informed silence modelling. The

second approach to lyrics transcription focuses on the end-to-end models, where transfer learning

is applied via �ne tuning a pretrained speech recognition model on singing data. Speci�cally,

the end-to-end model has a transformer architecture and is trained on the hybrid CTC / Attention

objective.

Some of the key �ndings of this study can be summarised as follows: song lyrics have
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diverse lexical and prosodic characteristics to spontaneous or read speech, thus a lyrics-speci�c

language model often performs better than one trained on speech transcriptions. Secondly,

adapting a pronunciation dictionary to singing data leads to consistent but modest improvements.

The multistream neural network architecture for the acoustic model leads to an improved

word error rate and faster inference performance compared to its single stream counterpart.

Domain invariant transcription performance can be achieved by including both monophonic and

polyphonic recordings during training. Using distinct target class labels for non-vocal silent and

music instances helps improve lyrics transcription rates on polyphonic recordings. The �nal

DNN-HMM model achieves the state-of-the-art by a considerable margin through combining the

aforementioned methods. The experiments on the end-to-end approach show that in the presence

of low data resources, end-to-end models can achieve comparable transcription results to the

DNN-HMM models on solo singing through speech-to-singing transfer. However, the word

error rates of end-to-end models on polyphonic recordings are still much higher than those of

the state-of-the-art DNN-HMM-based ALT. Furthermore, a new evaluation metric is introduced

which measures a model's performance drop across multiple datasets. As a conclusion, this

study elaborates the opportunities and challenges of the DNN-HMM and end-to-end approaches,

provides benchmark results, and contributes to reducing the research and literature gaps between

lyrics transcription and speech recognition with the goal of setting a point of reference for the

next generation of lyrics transcription systems. For reproducibility, the codebase of this thesis is

shared publicly and a tutorial is provided to retrieve the data used in the experiments.
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Chapter 1

Introduction

Music and lyrics co-occur through singing in most human populations around the globe (Clarke,

1952; Levitin, 2006; Donald et al., 2012). In particular, singing with lyrics is a medium of

communication where two of the most complex auditory cognitive abilities of humans coexist:

speech and music (Slevc, 2012). Contrary to spontaneous speech, the intended information

is conveyed with singing lyrics through the complex interaction between musical and lyrical

structure in addition to the linguistic content. In this regard, automatic lyrics transcription (ALT)

is a computational task that is located at the junction of music, speech and language processing.

This dissertation aims to tackle this problem using deep neural networks (DNN) and explores a

number of methods for an improved and generalisable lyrics transcription performance.

1.1 Motivation

Previous psychological studies that examined the function of song lyrics showed that in certain

situations, lyrics can be used to express, explore, and discuss emotions (Ali and Peynircio�glu,

2006; Barradas and Sakka, 2021), feelings, problems, personal ideas (MacDonald et al., 2002;

Gardstrom, 1987) and political views (Van Sickel, 2005), help deal with everyday problems

(Gibson et al., 2000), and in�uence and re�ect listener's daily actions and decisions as well their

music listening behaviour (Ballard et al., 1999; North and Hargreaves, 2008). For instance, Strat-

ton and Zalanowski (1994) argued that listeners may prefer richer, more thoughtful, persuasive,

and emotional lyrics. The authors also found evidence for the addition of lyrics to instrumental
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songs invoked stronger emotions on listeners. Furthermore, the same study argued that when

the music and the lyrics have contradictoryaffectioninformation, the lyrics would be more

in�uential on the induced mood. Song lyrics may give clues about listeners' socioeconomic

status as well (Pettijohn and Sacco Jr, 2009a,b). In particular, the recent study by Putter et al.

(2021) found evidence from lyrics that people in the UK and US with lower socioeconomic

status listened to lyrics that re�ect social isolation and lower satisfaction, during the COVID-19

pandemic. In this regard, lyrics constitute one of the core elements of music that establish a

communication ground between the singer/composer and the audience.

With the digital media revolution, song lyrics have also been exploited extensively to

organise and navigate music collections. While song lyrics can be directly processed from text,

these are often not available or not correctly paired with their music recordings. From this point

of view, the automatic transcription of lyric information has a great potential to enhance the

creation, listening and distribution of music. Such automatic transcription tools are generally

referred to asAutomatic Lyrics Transcription(ALT) systems, which are speci�cally designed to

transcribe the sung lyrics from audio into text.

At �rst sight, the above described systems can be considered to be similar to speech-

to-text machines. Although this perspective would not be terribly invalid as the inputs to

both systems are human voice and the expected output is their orthographic transcriptions,

singing has speci�c attributes compared to natural speech, which stand out as challenges for

the industry-standard speech-to-text machines in transcribing sung lyrics accurately. Similar

to such machines, transcribing sung lyrics is already challenging for human listeners. The

experiments held by Collister and Huron (2008) showed that the word intelligibility is lower for

singing than speech by human listeners. One of the most obvious reasons for this is the way

that vowels are uttered in singing. Collister and Huron (2008) suspected that confusions due to

the timbral and the temporal changes of vowels (which also lead to confusion in the perception

of the surrounding consonants) can be a candidate cause for the lower word intelligibility.

Sundberg and Rossing (1990) considered word intelligibility of sung vowels as a function of

the fundamental frequency of vowel syllables. Palmer and Kelly (1992) showed that vowel

duration variances and extensions change the rate at which syllables are uttered, hence affecting

the prosody. Leanderson et al. (1987) highlighted the physiological differences between natural
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speech and singing, and observed higher glottal pressure variance for the latter. The authors

argued that this is related to the greater emotional expression in singing. (Sundberg, 1995)

showed that vocal styles like vibrato also in�uence word intelligibility. A number of studies

focused on the cluster of powerful formants in the spectrum observed for singing performances,

i.e. the singer's formant (Smith and Scott, 1980; Gregg and Scherer, 2006; Sundberg and

Romedahl, 2009), which is mostly observed in Western opera. These arguments are mostly

concerned with performer (singer) related factors affecting word intelligibility, though listener

and environment related factors are not to be omitted. Due to the hearing effects (like masking),

the listeners' understanding of sung words might be affected by the background noise, especially

when there is are instruments accompanying the vocals (Di Carlo, 2007). The acoustics and the

reverberation of the auditory environment (Sato and Prodi, 2009), and vocal effects (like arti�cial

reverberation, chorus, etc.) are some other major factors that in�uence the word intelligibility.

Furthermore, the pilot study by Ibrahim et al. (2017) highlighted the importance of music genres.

Above mentioned research outlines the major contradictory elements between natural speech

and singing, and must be taken into account when attempting to build a lyrics transcriber.

The automatic retrieval of sung lyrics and transcribing natural speech do not only differ by

their physical attributes. The semantics of both domains are also distinct. Lyrics are somehow

closer to poetry, and natural speech is to prose. Song lyrics are often temporally and structurally

aligned with the underlying musical piece. Non-linguistic words are often neglected during the

automatic transcription of natural speech, however they contribute to the sung melody, hence

should be included in the transcription output. More about these differences between speech

and singing are scrutinised further through a few examples in Section 2.1 - Problem De�nition.

The research in ASR has been developing since long before its applications found place in

the industry. The efforts of numerous researchers and research groups has helped establishing

standardised methods, open-source data resources, and training / testing schemes for model

evaluation. ALT is an emerging �eld, and hence lacks the research and literature that ASR

research has been developing. To reduce this research and literature gap is one of the main

driving factors that motivated the progression of this research.

Until recently, studies in ALT had used private datasets for model evaluation (Fujihara et al.,

2006; Mesaros and Virtanen, 2010a; Hansen, 2012; Kruspe, 2016), which made the model
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comparison across different publications dif�cult. Secondly, the availability of large-scale

training data resources has been among the major bottlenecks for ALT research. For instance, a

benchmark training set in ASR, namely Librispeech (Panayotov et al., 2015) has nearly 1000

hours of transcribed natural speech. The size of the training sets used previously for ALT are

around 150 hours (Meseguer-Brocal et al., 2019), which weren't available until recently. The

curation and distribution of large-scale datasets is not only a bottleneck for ALT, but also for

music information retrieval (MIR) research, due to copyright issues that emerge when sharing

music recordings. From this perspective, this dissertation provides experiments and results

exploiting the available training and evaluation data resources commonly used in research, with

the goal of establishing benchmark ALT results.

Some of ALT's direct use cases include music video captioning/subtitling (e.g. for Karaoke),

music recognition, and query by singing (Watanabe and Goto, 2019). For the task of audio-to-

lyrics alignment - the automatic retrieval of word timings in music signals - the best performing

approaches include a pretrained ALT acoustic model in their core (Gupta et al., 2020). On the

other hand, the language model within ALT modules can be used for lyrics generation (Hopkins

and Kiela, 2017). ALT models also �nd utility in using lyrics for song mood/emotion detection

(Rachman et al., 2018) or improving vocal source separation (Schulze-Forster et al., 2020;

Meseguer-Brocal and Peeters, 2020) and cover song identi�cation (Correya et al., 2018; Vaglio

et al., 2021). In addition, these systems can be utilised in musical therapy methods that are

developed to treat language de�cits (Schlaug et al., 2010). Some other potential applications

of ALT include music composition, playlist generation, music recommendation, and royalty

forecasting. Considering the above mentioned applications that will be enabled and enhanced

via ALT, this research is motivated to improve the applicability of this technology.

1.2 Research Aim

As will be discussed later in Section 2.1, the task of ALT is similar to automatic speech

recognition (ASR), or speci�cally Large Vocabulary Continuous Speech Recognition (LVCSR),

as the �nal desired output of such systems is the transcription of uttered (or sung) words and

characters. LVCSR has already been acknowledged as one of the most challenging tasks within
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the overall machine learning domain, yet ALT is no less challenging, considering the speci�c

characteristics of singing performances and song lyrics mentioned above. Despite the unique

characteristics of song lyrics compared to natural speech, not as much research has been done

on the ALT domain that could potentially enable its application in the industry. This dissertation

is aimed at contributing towards reducing the research and the literature gaps between ASR and

ALT to accelerate the development of the latter research �eld. Within this respect, it strives to

adapt the state of the art deep neural network-based LVCSR techniques to the singing domain.

Therefore, it ponders which of those techniques is more suitable given the open-source data

resources that could be leveraged to build a lyrics transcriber.

This thesis tackles the task of ALT by means of a speci�c data domain of the LVCSR

problem. Although there are several aspects of lyrics to be handled to achieve more context-

aware transcriptions, such as the semantics, rhythmic components, rhyming and the segmentation

of lyrical lines, this study focuses on adapting the existing state-of-the-art methods in ASR to

singing data. The adaptation considers the a number of contrastive dimensions of lyrics and

natural speech, like the lexical diversities, utterance lengths, and the pronunciation variances

which will be quantitatively examined later in Sections 3.3 and 4.2.1. Furthermore, this study

proposes methods to improve transcription performance when there is music accompaniment to

singing.

In recent years, ASR systems in research have reached to a performance level that can be

comparable to human transcribers. For instance, the professional transcribers in the experiments

conducted by Saon et al. (2017) and Xiong et al. (2017) had 5.9 % and 5.1 %word error rates

(WERs)1 respectively on the Switchboard corpus (Godfrey et al., 1992)2. In 2016, Microsoft

reportedWERs below 6 % on the Switchboard corpus (Saon et al., 2017). Recently, IBM's

Research A.I. Team achieved below 5 %WER(Tüske et al., 2021). However, at the time

when the author of this thesis started his Ph.D. research, the lowestWERscore reported on

solo singing was around 34 % (Gupta et al., 2018), which was even higher when there is

musical accompaniment (around 50-60 %WER(Gupta et al., 2020)). This highlights the

large gap in the performances of word recognition systems for speech and singing data. This

1WERis the most commonly used evaluation metric in ASR research, which will be studied later in Section 3.4.
2The Switchboard corpus is a research benchmark dataset for ASR and consists of human conversational speech

data.
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poor performance prevented researchers and engineers from developing the above-mentioned

applications that would leverage lyrics transcriptions. Moreover, being an amalgamation point

for multiple complex information domains, namely music, speech and language, ALT has been

considered to be among the most challenging tasks within Music Information Retrieval (MIR)

research (Humphrey et al., 2018). Therefore, this research aims to improve lyrics transcription

performance through leveraging available data resources and adapting the state-of-the-art in

ASR to singing data.

1.3 Thesis Structure

The content of this thesis is organised according to the following structure:

• Chapter 2 - Related Work provides the background knowledge, goes through the related

previous work, and gives a comparison of the common open-source toolkits used in the

relevant research �eld.

• Chapter 3 - Singing Data for Word Recognitionexamines the singing data available for

research in lyrics transcription, and gives an explanation of the metrics used to evaluate

ALT models.

• Chapter 4 - Hybrid DNN-HMM Lyrics Transcription describes the details of the �rst

approach (as the chapter title implies) for building an ALT system included in this study,

and

• Chapter 5 - End-to-end Lyrics Transcription describes the second approach, which is

end-to-end training, where a number of possibilities to apply speech-to-singing transfer

learning are explored.

• Chapter 6 - Discussion & Conclusioncompares the DNN-HMM and end-to-end ap-

proaches, discusses the future challenges and opportunities in this research �eld, and

summarises the novel contributions of this thesis.
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1.4 Associated Publications

Certain sections in this thesis work were previously published at international peer-reviewed

conferences. The related publications are listed below:

• Emir Demirel, Sven Ahlbäck, and Simon Dixon,Automatic lyrics transcription using

dilated convolutional neural networks with self-attention: The baseline DNN-HMM

model presented in Chapter 4, where the around 5%WERimprovement reported through

self-attention and RNNLM3, compared to the previously best work by the time publication

(Dabike and Barker, 2019).

• Emir Demirel, Sven Ahlbäck, and Simon Dixon,A recursive search method for lyrics

alignment: The model in the above publication is also used in the MIREX 2020: Auto-

matic Lyrics Transcription challenge where it achieved the best results on the monophonic

evaluation set (Demirel et al., 2020b). In addition, a recursive audio-to-lyrics alignment

procedure is presented in this work.

• Emir Demirel, Sven Ahlbäck, and Simon Dixon,Computational pronunciation analysis

in sung utterances: The pronunciation analysis and singing-adapted lexicon presented in

Sections 4.2 were published in this paper (Demirel et al., 2021c).

• Emir Demirel, Sven Ahlbäck, and Simon Dixon,MSTRE-Net: Multistreaming acoustic

modeling for automatic lyrics transcription: Three of the novel methods in building the

DNN-HMM model in Chapter 4, namely the compact multistream TDNN architecture,

music-informed silence modeling and cross-domain training were proposed (Demirel

et al., 2021b). A new polyphonic evaluation set was also presented in this work, which is

discussed in Section 3.1.2.

Note that all the codework and the papers are written by the author of this thesis, and

supervised by the co-authors, Sven Ahlbäck and Simon Dixon.

In addition, further work is done on audio-to-lyrics alignment and sung note segmentation,

which resulted in the following publications:

3RNNLM refers to Recurrent Neural Network-based Language Model, which will be discussed later in Section
4.1.2
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• Emir Demirel, Sven Ahlbäck, and Simon Dixon. Low resource audio-to-lyrics alignment

from polyphonic music recordings. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2021 (Demirel et al., 2021a) : This work pro-

poses a novel audio-to-lyrics alignment method that can operate on long music recordings

with low memory requirements.

• Yukun Li, Emir Demirel, Polina Proutskova, and Simon Dixon. Phoneme-Informed

Note Segmentation of Monophonic Vocal Music. In 2nd Workshop on NLP for Music

and Audio (NLP4MusA), 2021 (Li et al., 2021): This work presents a novel method for

leveraging the output of the ALT system for the sung note segmentation task.

The details of the last two publications are not included in this document as their topics are

not within the main scope of this thesis.

1.5 Reproducibility

For the reproducibility of the results of this research, the author used and developed open-source

software. These are summarised below:

• Open source ASR Toolkits: Two open-source toolkits are used for building the lyrics

transcribers studied in this thesis, namely Kaldi (Povey et al., 2011) and SpeechBrain

(Ravanelli et al., 2021) packages. A more detailed discussion regarding these toolkits is

provided in Section 2.4.

Links:

Kaldi - https://github.com/kaldi-asr/kaldi

SpeechBrain -https://github.com/speechbrain/speechbrain

• The (A)utomatic (L)yrics (T)r(A)nscription - ALTA package: The package contains

two Kaldi-based recipes for the DNN-HMM lyrics transcription (studied in Chapter 4)

approach and the data retrieval is explained in the instructions. The �rst recipe is for

monophonic lyrics transcription which is used to produce the results by Demirel et al.

(2020a). The second recipe is for training the MStreNet model (Demirel et al., 2021b).

The pretrained models are not shared due to licensing restrictions.
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Link: https://github.com/emirdemirel/ALTA

• A repository is shared with the community to retrieve the newly introduced polyphonic

evaluation set which is curated from a portion of the DALI dataset (Meseguer-Brocal

et al., 2019). The repository contains lyrics annotations, the relevant metadata information

and a Jupyter notebook tutorial to automatically retrieve the audio recordings.

Link: https://github.com/emirdemirel/DALI-TestSet4ALT

• The novel DNN-HMM based lyrics alignment software is developed as an open-source

toolkit. This software uses the pretrained acoustic model from the ALTA package.

Link: https://github.com/emirdemirel/ASA_ICASSP2021

• In addition to the open-source software, all publications and research outcomes are shared

online including video presentations. The list of related talks can be found at:

https://emirdemirel.github.io/alt.html. Speci�cally, the summary of this thesis is presented

at: https://www.youtube.com/watch?v=r-4JEqyDGPs.

1.6 Contributions

The novel contributions of this thesis are listed below:

• Chapter 3: A quantitative comparison between speech and singing data is given. Eval-

uation metrics are explained and a novel metric is proposed in 3.4.2, which measures a

model's performance drop across multiple test sets or different domains. A lyrics-based

corpus for constructing the language model and a new evaluation set for ALT (DALItest240)

is presented in this chapter.

• Chapter 4: The state-of-the-art DNN-HMM based system is presented. Novel methods

proposed in this chapter are: a quantitative pronunciation analysis and a singing adapted

pronunciation dictionary, cross-domain training for building a more robust acoustic model

on polyphonic recordings, the use of the `music' token in the target class set to model

non-vocal (instrumental) instances in polyphonic recordings (i.e. music-informed silence

modeling), and the multistream time delay neural network (TDNN) architecture. In
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addition, an extensive cross-dataset evaluation is performed to measure the proposed

methods' generalisability across all benchmark test sets used in research.

• Chapter 5: The state-of-the-art end-to-end ASR approach is applied on the available

singing data. As a novelty, transfer learning from speech to singing is applied. This

showed that some information between speech and singing is transferable. In addition, a

cascaded transfer learning approach is proposed to adapt the monophonic acoustic model

to the polyphonic domain. Finally, the cross-domain training approach is tested for the

end-to-end models.

• Chapter 6: Comparison of the DNN-HMM and the end-to-end approaches, and an

exploratory error analysis are conducted. Both models are compared with the previous

literature. According to this, the DNN-HMM model outperforms the previous state-of-the-

art in ALT by a large margin. While the end-to-end models have considerably higher error

rates than the DNN-HMM method, the best performing end-to-end model still has better

results than other end-to-end systems reported in the literature. Furthermore, the current

challenges and the future opportunities in ALT research are discussed in this chapter.



Chapter 2

Related Work

This chapter introduces the relevant concepts for understanding the lyrics transcription models

proposed in the following chapters. It begins by de�ning the ALT problem, and proceeds with

the essential theoretical details of two of the most competitive frameworks in speech recognition,

namely Deep Neural Networks - Hidden Markov Models (DNN-HMM) with Lattice-Free

Maximum Mutual Information (LFMMI) training and transformer-based end-to-end (E2E)

systems using the hybrid Connectionist Temporal Classi�cation (CTC) / Attention objective.

After the theoretical introduction, a comparison of the ASR toolkits available for research is

given. Finally, the literature on the recent advances in ALT is studied excluding what is presented

in the following chapters of this thesis.

2.1 Problem De�nition

The task of Automatic Lyrics Transcription (ALT) can be de�ned as the procedure of trans-

forming a singing voice performance with lyrics that has a �nite length of data into a string

of text which is targeted to match that of the original lyrics written by the lyricist. From this

perspective, it is possible to consider this task as ASR in the singing voice domain. Following the

statistical modeling approach presented by Gales and Young (2008), this task can be translated

to estimating the posterior probability that any given stream of sung words or lyrics will be

uttered. This is equivalent to �nding the most probable word sequences,w, given the acoustic

observationsX , and can be formalised as:
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bw = argmax
w

(P(w jX )) (2.1)

Similar to the art of poetry, prosody is a main concern for song lyrics, which is often

in�uenced by the rhythmic patterns of the underlying musical piece (Palmer and Kelly, 1992;

Rasinski, 2006). Likewise the pitch and the melodic structure have an in�uence when uttering

words, which affects how words are pronounced and thus their intelligibility (Fine and Ginsborg,

2014). For instance, consider the following phrase from Act 2 - Scene 2 from Shakespeare's

Twelfth Night:

O time, thou must untangle this, not I.

It is too hard a knot for me to untie!

The prosodic elements would not be identical if the above lines were uttered in prose form

or natural speech, considering words at the beginnings and the ends of lines, the choice and the

articulation of words, and how the sequence of words is ordered. However, the composition

and the singing of lyrics are not in�uenced only by prosody or stress, but also the musical

information conveyed through melodic lines. Consider the same phrase by Shakespeare sung

with the melodic lines shown in Figure 2.11.

Notice the duration, pitch and transition variances between syllables and different interpre-

tations of the piece with the same underlying musical harmonic structure, considering their

corresponding musical notes, and the rhythmic patterns. In addition, there are certain words

repeated multiple times by the singers that are not in the original lyrics. Although the examples

are not necessarily representative of speci�c music styles, they are provided as a re�ection on

how the manner of utterance or pronunciation can be varied depending on the content creator's

musical creativity. In this respect, generalising rules regarding the acoustics, the linguistics and

the semantics of lyrics would not necessarily be a comprehensive perspective when attempting to

solve the ALT problem. Broadly, this research considers ALT as a sequence prediction problem,

and mainly employs relevant concepts of the state-of-the-art Large Vocabulary Continuous

Speech Recognition (LVCSR) frameworks. In this regard, the main approach is developing

1The sheets are generated using the ScoreCloud app which can be downloaded fromhttps://scorecloud.com.
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