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Abstract

The human voice presents a rich and powerful medium for expressing sonic

ideas such as musical sounds. This capability extends beyond the sounds used

in speech, evidenced for example in the art form of beatboxing, and recent

studies highlighting the utility of vocal imitation for communicating sonic con-

cepts. Meanwhile, the advance of digital audio has resulted in huge libraries of

sounds at the disposal of music producers and sound designers. This presents

a compelling search problem: with larger search spaces, the task of navigating

sound libraries has become increasingly difficult. The versatility and expres-

sive nature of the voice provides a seemingly ideal medium for querying sound

libraries, raising the question of how well humans are able to vocally imitate

musical sounds, and how we might use the voice as a tool for search. In this

thesis we address these questions by investigating the ability of musicians to

vocalise synthesised and percussive sounds, and evaluate the suitability of dif-

ferent audio features for predicting the perceptual similarity between vocal

imitations and imitated sounds.

In the first experiment, musicians were tasked with imitating synthesised

sounds with one or two time–varying feature envelopes applied. The results

show that participants were able to imitate pitch, loudness, and spectral cen-

troid features accurately, and that imitation accuracy was generally preserved

when the imitated stimuli combined two, non-necessarily congruent features.

This demonstrates the viability of using the voice as a natural means of

expressing time series of two features simultaneously.

The second experiment consisted of two parts. In a vocal production task,

musicians were asked to imitate drum sounds. Listeners were then asked to

rate the similarity between the imitations and sounds from the same category

(e.g. kick, snare etc.). The results show that drum sounds received the highest

similarity ratings when rated against their imitations (as opposed to imita-

tions of another sound), and overall more than half the imitated sounds were

correctly identified with above chance accuracy from the imitations, although

this varied considerably between drum categories.

The findings from the vocal imitation experiments highlight the capacity

of musicians to vocally imitate musical sounds, and some limitations of non–

verbal vocal expression. Finally, we investigated the performance of different
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audio features as predictors of perceptual similarity between the imitations and

imitated sounds from the second experiment. We show that features learned

using convolutional auto–encoders outperform a number of popular heuristic

features for this task, and that preservation of temporal information is more

important than spectral resolution for differentiating between the vocal imi-

tations and same–category drum sounds.
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Chapter 1

Introduction

1.1 Motivation

A music producer is working on a piece of music. Most of the fundamental

components are in place (rhythm section, harmonic structure and melody) but

the producer is not entirely satisfied with some of the sounds. The electronic

hi–hat lacks the acoustic nuances of a real instrument. The kick drum needs

a long, slower decay. The move from verse 2 to the chorus could do with

an exciting transitory sweeping sound. She has a good idea of the sounds she

wants, and a large collection of audio samples. Yet despite this she is struggling

to find the sounds she hears so clearly in her head.

This is a common scenario for musicians and producers. From the novice

to seasoned professional, there are many situations where the search for a

particular sound is hampered, obstructed and diverted as a consequence of

the technology being used. Searching for audio samples, particularly drum

sounds, is a core part of the electronic music making process, yet has been

identified as a frustrating and time consuming task [Andersen and Grote,

2015], presenting a key area for future technological development. Despite

a rapid evolution in the way electronic instruments and sound libraries are

used to produce music, common approaches to searching for sounds remain

elementary and limited. These typically involve browsing lists of badly labelled

files, relying on file names such as ‘big kick’ or ‘hi-hat22’. Such methods for

browsing sound libraries limit the users’ ability to efficiently find the sounds

they are looking for, and most notably, makes no use of the rich information
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Chapter 1. Introduction 15

content available in the audio.

One major issue with sound search interfaces is enabling the intuitive

expression of sonic ideas. The constituent parts of a particular sound may

be specified as low level audio features related to semantic descriptors such

as pitch, dynamics, timbre and timing. Expressing widely varying combina-

tions of these components along with continuous temporal evolution requires

an interface that offers a very high level of control with precision, accuracy

and most importantly, ease of use. Audio based search systems should ideally

encapsulate these qualities.

The voice is an attractive medium for this as it can be used to express tim-

bral, tonal and dynamic temporal variations [Sundberg, 1989]. It is arguably

one of the most versatile tools at our disposal for expressing sonic ideas. From

India to Ghana, Cuba, and America, this extraordinary versatility is exploited

to communicate, teach and perform non–verbal musical sounds [Atherton,

2007]. Most people have spent their entire lifetime developing the control of

their vocal tract, and are able to exhibit a high degree of control for vocalis-

ing non–verbal sounds. For example, studies on non–verbal vocalisations have

demonstrated the effectiveness of vocal imitations for describing and commu-

nicating sounds [Lemaitre and Rocchesso, 2014; Lemaitre et al., 2011], and

highlighted the ability of musicians to accurately imitate sounds with respect

to basic acoustic features [Lemaitre et al., 2016b], however to date there has

been limited research focussed on the vocal imitation accuracy and imitability

of musical sounds.

If we are to apply the voice for audio search purposes, i.e. query by vocalisa-

tion (QBV) for musical sounds, then we require knowledge of how accurately

people can imitate the salient acoustic features in such sounds. If people

are indeed able to accurately imitate these features, it validates the potential

for using the voice for audio search, whilst furthering understanding of the

capabilities of the voice. This application also requires understanding of the

perceptual similarity between the domains of the voice and searchable sounds,

in order to ascertain which audio features are best suited to the task of map-

ping between these domains. In this thesis we address these requirements by

means of a series of vocal production and listening experiments, culminating in

an analysis of heuristic and learned features for measuring similarity between

vocal imitations and imitated sounds1.

1the sounds being imitated (i.e. the ‘target’ sound), as opposed to the imitation
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1.2 Research questions and approach

The aim of this thesis is to further understanding of how accurately people are

able to vocalise musical sounds, in terms of both acoustic features and percep-

tual similarity between vocal imitations and imitated sounds. In addition, we

aim to establish which audio features can be used to best represent the per-

ceptual similarity between vocalisations and the musical sounds, in particular

percussion sounds. Rather than adopting a hypothesis driven approach, we

will address these objectives in an exploratory manner, in order to probe the

relationship between vocal imitations and imitated sounds. Here we define the

fundamental research questions, outline our approach to answering them, and

clarify the scope of the work.

1. How accurately can people vocalise salient acoustic features in musical

sounds?

a) How accurately can people imitate sounds with time–varying acous-

tic features?

b) What happens to this accuracy when people are asked to imitate

two feature envelopes simultaneously?

We address question 1a by conducting a vocal production experiment

where participants were asked to vocally imitate sounds with controlled

parameters for three important acoustic features: pitch, loudness, and

spectral centroid. To answer question 1b we combine each of the sounds

varying in pitch with each of those varying in spectral centroid and

loudness. The acoustic features were extracted from the vocalisations

and compared to those from the stimuli, providing a measure of feature–

level accuracy for each of the vocal imitations.

2. Can people vocally imitate percussion sounds such that listeners can

identify the sounds being imitated?

This question is addressed by a two part experiment consisting of a

vocal production task and a listening test. In the vocal production task,

participants were asked to vocally imitate percussion sounds. In the

listening test participants were asked to rate the perceptual similarity

between the vocal imitations and percussion sounds. The percussion

sounds were limited to five categories (kick drum, snare drum, cymbal,
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hi–hat, and tom–tom), and the similarity ratings were limited to same–

category sounds (e.g. the similarity between a vocal imitation of a kick

and real kick drum sounds).

3. Which audio features best predict the perceptual similarity between

vocalisations of sounds and actual sounds?

We address this question by conducting an evaluation of audio features

for predicting the similarity ratings from the listening test. Specifically,

we compare a large number of heuristic audio features typically used

for music information retrieval (MIR) tasks and the analysis of vocal

imitations, and suitable subsets thereof, to features learned using con-

volutional neural networks (CNNs). In addition, we compare a range of

CNN architectures and the resulting encoded layers (i.e. feature repre-

sentations) in terms of size (number of features) and shape (temporal

vs. spectral resolution).

1.3 Thesis structure

Chapter 2 introduces the existing research and themes upon which the work

of this thesis is based. We first present the human vocal apparatus, in terms

of its physiology and acoustic characteristics. This is followed by a discus-

sion on the various modes of vocal expression: speech, singing, vocalisation

of non–verbal, non–singing sounds, and how such sounds might be communi-

cated by means of vocal imitation. We identify the problem space and common

methods for addressing the issue of searching for sounds, followed by an exam-

ination of the literature specific to the research strands presented in each of

the subsequent chapters. These include vocal control of acoustic parameters,

vocalisation of percussion sounds, quantifying perceptual similarity between

sounds, and audio features for the analysis of non–verbal, non–singing vocali-

sations.

Chapter 3 presents a vocal production experiment investigating the accu-

racy with which musicians can vocally imitate synthesised sounds in terms of

3 salient acoustic characteristics: pitch, loudness, and spectral centroid. In

particular we explore the imitation accuracy of sounds with 1 or 2 features

varying over time, and the effects of these features on imitation accuracy.

Methods are proposed for quantifying the accuracy of modulation and ramp
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envelopes, upon which the experimental results are based.

Chapter 4 investigates vocal imitation of percussion sounds in terms of the

perceptual similarity between imitations and imitated sounds. This is explored

by means of a 2 part experiment, consisting of a production and perception

task. In the first part musicians were tasked with imitating 30 percussion

sounds. In the second part listeners were asked to rate the similarity between

the imitations and percussion sounds.

Chapter 5 explores the suitability of a number of audio features for pre-

dicting the similarity ratings from Chapter 4. We compare a large set of

heuristic features and subsets of spectral and temporal features, along with

descriptors used in the MPEG–7 standard for describing percussion sounds,

and a spectrogram based method that has been shown to be highly corre-

lated with the perceptual similarity between percussion sounds. In addition

to the comparison between these features, we demonstrate the effectiveness of

CNNs for learning features that represent the similarity between vocal imi-

tations and percussion sounds, with networks trained on a dataset of vocal

imitations, percussion sounds, synthesised sounds, and musical instruments.

In a similar vain to the heuristic feature comparison, we explore the relative

importance of temporal vs. spectral information for this task.

Chapter 6 concludes the preceding work, drawing on the potential impact

of our findings for the application of query by vocalisation, and more generally,

for the fields of non–verbal vocal analysis and vocal imitation research. We

end this thesis by considering some potential paths for future research in these

fields.

1.4 Contributions

The main contributions of this thesis are:

• Results of the vocal production task in Chapter 3, demonstrating the

degree to which musicians can exercise simultaneous control over differ-

ent acoustic characteristics of their voice.

• The dataset2 of vocal imitations from Chapter 3, including the extracted

audio features and annotated parameters for each of the feature envelopes.

2https://zenodo.org/record/1215802

https://zenodo.org/record/1215802
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• Results from the vocal production and perception tasks in Chapter 4,

investigating the communicability of percussion sounds via vocal imita-

tion. In doing so we determine which types of drum sounds are more

imitable than others, and identify some of the imitation strategies that

might contribute to this.

• The dataset3 of vocal imitations, percussion sounds, and listener rating

data from the experiments of Chapter 4.

• A comprehensive comparison of heuristic features for predicting the per-

ceptual similarity between vocal imitations and percussion sounds.

• Application of convolutional neural networks for feature learning from

percussion sounds and vocal imitations, and comparison of different net-

work architectures that place emphasis on the detail of either spectral

or temporal learned representations. This includes a novel evaluation of

learned features using perceptual similarity measures.

The vocal production and listening experiments that were conducted as

part of this work were approved by the research ethics committee of Queen

Mary University of London, under reference numbers (QMREC) 1413, 1491,

and 1717a. All participants gave written consent to take part in the experi-

ments and were free to withdraw at any time.

1.5 Associated publications

Much of the work presented in this thesis has been published or is currently

under review in the following publications.

[1] A. Mehrabi, S. Dixon, and M. Sandler, “Vocal imitation of synthesised

sounds varying in pitch, loudness and spectral centroid.”, The Journal

of the Acoustical Society of America, 141(2):783–796, 2017.

[2] A. Mehrabi, S. Dixon, and M. Sandler, “Vocal imitation of percussion
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Chapter 2

Background

The topic of this thesis spans multiple disciplines, including vocal production,

audio analysis, audio perception, information retrieval, music production, and

machine learning. In this chapter we discuss the related background research

from each of these domains, and how this may inform the directions taken in

the subsequent chapters. We first review the human voice in Section 2.1, in

terms of the physical properties of the vocal apparatus, and how this can be

used to control the acoustic output for both speech and musical expression

such as singing and extended singing techniques. Beyond these domains, the

application of the voice for communicating sonic ideas is discussed in Section

2.2. In Section 2.3 we set the scene for the application of the work in this thesis:

query by vocalisation. In Section 2.4 we review the literature specific to the

strands of research in each of the following chapters. This is divided into vocal

control of key vocal acoustic characteristics in Section 2.4.1, vocalised percus-

sion sounds in Section 2.4.2, measuring perceptual similarity between sounds

in Section 2.4.3, and finally, audio features for representing vocalisations of

sounds in Section 2.4.4.

2.1 The human voice

It is difficult to overstate the importance of the human voice. Of

all the members of the animal kingdom, we alone have the power

of articulate speech [...] In addition, the human voice is our oldest

musical instrument [Rossing et al., 2001, p. 335].

22
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The human voice is capable of producing a vast array of sounds for commu-

nication (speech), music creation (singing), and emotional expression (laugh-

ter, crying etc.). The physical constraints of the vocal tract create a well-

defined ‘vocal sound space’, which as humans we utilise, explore and push the

limits of far more than any other vocal–producing animal. In this section we

describe how sound is produced by the human voice, and what types of sounds

are used for speech, singing, and vocal imitation of non–verbal sounds.

2.1.1 The vocal production system

A functional model of the vocal tract is given in Figure 2.1. The vocal pro-

duction system can be considered as a source–filter model, where voiced sound

is produced at the vocal folds before being filtered by the subsequent sections

of the vocal tract. Voiced sound (or phonation) is created by vibration of

the vocal folds according to the myoelastic–aerodynamic theory of phonation

[Titze, 1980]. First, air is forced up through the vocal tract from the lungs. If

the vocal folds are adducted (brought together from a relaxed position), when

the air passes the folds, air flow on the outside of the pathway is forced to

travel a longer path than that in the middle (where a direct path through the

vocal folds exists). This difference in air flow between the outside and central

point in the larynx creates a Bernoulli force, forcing the vocal folds together

and closing the glottis [Sundberg, 1989, p. 12]. The pressure produced by the

lungs then forces the vocal folds open again, and the process repeats until

the muscles attached to the vocal folds (the laryngeal musculature) are no

longer contracted. This cycle causes a periodic vibration at the oscillation

rate (F0, given in Hz), and voiced sound is created. The phonation frequency

is largely determined by the laryngeal musculature, which controls the length,

tension and mass of the vocal folds, and to a lesser extent the subglottal pres-

sure from the lungs, which is primarily responsible for the phonation intensity

[Sundberg, 1989, p. 16]. The F0 range (FFR) of the voice varies between

males and females, and is dependent on a number of factors including body

size and the laryngeal musculature, however for adults this typically spans up

to 3 octaves [Kent et al., 1987].
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Figure 2.1: Functional components of the vocal tract, after Flanagan [1965].

2.1.2 Voice quality

Beyond the frequency and intensity of phonation, it may also differ in terms of

voice quality, for example the difference between normal speech and a whisper.

Voice quality can be described in terms of phonation modes, which are deter-

mined by the amplitude of vocal fold vibration, i.e. glottal adduction [Sund-

berg, 1994a], and the way in which the folds vibrate. Interestingly, phonation

modes are typically described in categorical terms, some of which we lay out

below, but as noted by Ladefoged [1971] they actually represent a contin-

uum, from voiceless, through varying degrees of voicing, to full glottal closure.

There is some ambiguity in the literature on phonation modes, both on the

number of categories and how they are defined. For our purposes we are not

so concerned with the division of categories or their boundaries, but rather the

general space of phonation modes and the types of sounds that can be made

by manipulating the vocal fold apparatus.

Modal voice (sometimes referred to as ‘normal’ voice) is the most com-

mon phonation mode in speech and singing. It occurs when the vocal

fold vibration is regular and periodic, with no fricative airflow through
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the vocal folds [Hewlett and Beck, 2006, p. 274].

Breathy voice is created when the vocal folds are tense but part of the

glottis (i.e. the space between the vocal folds) remains slightly open dur-

ing phonation, allowing air to flow past. This airflow causes turbulence,

generating a fricative noise, or a breathy sound, such as is heard in the

/h/1 in aha [Ladefoged, 1993, p. 139]. This is closely related to whis-

per voice, which occurs when the vocal folds are held rigid such that

they are not able to vibrate, yet with a small opening in the glottis that

allows air to flow through. As a consequence, whisper voice occurs with-

out voicing, whereas breathy voice tends to occur as an augmentation of

modal voice [Hewlett and Beck, 2006, p. 279].

Creaky voice occurs the vocal folds are constricted but sub glottal

pressure is low, resulting in an irregular F0. This creates a creak that

is audible as discrete events of the glottal opening and closing, typi-

cally at low F0 values of 7Hz–78Hz [Gerratt and Kreiman, 2001], with

sub–harmonics at half F0. Whilst people rarely speak whole phrases in

creaky voice, in English speech it is often used at the end of words or

phrases with falling intonation contours [p .277 Hewlett and Beck, 2006;

Ladefoged, 1993, p. 141].

Falsetto (or head voice) is created by stretching the vocal folds such

that they are thinner than with the modal voice, giving rise to higher F0

values [Hewlett and Beck, 2006, p. 274]. It is more commonly used in

singing than speech, to achieve higher F0 values than are possible using

the modal voice [Sundberg, 1989, p.50], although it can also be used to

imitate female or young characters, or to voice non–verbal expressions

of emotion.

Harsh voice is caused by irregular vibration of the vocal folds in terms

of either frequency or amplitude, often as a result of adduction of the

ventricular folds (see below), and typically occurs as a modification of

modal or falsetto voice [Hewlett and Beck, 2006, p. 278].

Ventricular fold vibration. The ventricular folds (also called the false

vocal folds) are small ligament structures situated just above the vocal

folds. They can be made to vibrate harmonically with the vocal folds,

1throughout this thesis phonemes will be notated in line with the International Phonetic
Alphabet (IPA)
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typically creating overtones at double F0. This effect is rarely used in

speech, but exists as a core part of certain singing styles, such as Asian

throat singing and Mediterranean folk polyphony [Bailly et al., 2010].

As mentioned earlier, both the acoustic and physiological space of phona-

tion modes is actually a continuum, and as such this list is by no means

exhaustive. For example, there are several types of creaky voice, each char-

acterised by both acoustic and physiological markers [Keating et al., 2015],

and the National Center for Voice and Speech2 identifies no less than 25 cate-

gories of voice quality. Nonetheless, these categories highlight the wide range

of sounds possible in this space, which can be produced by relatively minor

adjustments of the vocal folds. Phonation modes are used in English speech

to convey emotion or mood [Gobl et al., 2003], but in general they are not

used for linguistic contrasts (other than the voiced/voiceless contrast). How-

ever, many other languages make use of modes such as creaky and breathy

to distinguish between otherwise similar vowels (see Gordon and Ladefoged

[2001] for an excellent review on this topic). Furthermore, as noted by Stowell

[2010], vocal artists such beat boxers make use of phonation modes to imitate

different types of musical sounds, for example employing falsetto for sound

effects or ventricular voice for bass lines.

2.1.3 Articulation

After being generated in the glottis, voiced sound is filtered by the articulatory

components of the vocal tract (all components above the vocal folds in Figure

2.1), which can be considered as a resonating tube. By tuning this tube–like

structure, a wide range of sounds can be sculpted out of the voiced sound, as is

required to produce vowel phonemes in speech. Although all parts of the vocal

tract can be somewhat tuned, the oral cavity is arguably the most important

for producing different voiced phonemes [Rossing et al., 2001, p. 342]. Varying

the configuration of the oral cavity gives rise to different resonant frequencies,

called formants, which exist as peaks in the spectrum of voiced sounds. The

configuration of the oral cavity and lips may remain constant, to produce con-

stant vowel sounds (monophthongs), or varied over time to produce vowels

which shift between two or three vowels (diphthongs and triphthongs). For-

mants are numbered from F1 – F5, where typically F1 – F3 contribute most

to differentiating between the voiced phonemes in speech. Typical ranges for

2http://www.ncvs.org/ncvs/tutorials/voiceprod/tutorial/quality.html
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F1, F2, and F3 are between 250Hz – 1000Hz, 600Hz – 2500Hz, and 1700Hz –

3500Hz respectively [Sundberg, 1989, p. 23]. Finally, the radiation efficiency

is controlled by the lips, where higher frequencies are radiated most efficiently

(as the wavelength is more aligned with the size of the mouth opening).

In addition to filtering voiced sounds, the oral cavity (most notably the

tongue) and lips can be manipulated to produce a wide range of consonant

sounds, such as clicks, stops, trills, and fricatives. In phonetics, the articula-

tions required to produce these sounds are categorised based on the place and

manner of articulation (i.e. the position and motion of the tongue in relation

to the oral cavity and lips), the source of airflow (from the lungs [pulmonic]

or from the glottis [non–pulmonic]), the degree of stricture (airflow restric-

tion), and the path of airflow (through the centre of the oral cavity [central]

or around the sides of a blocking articulator [lateral]). The manners of artic-

ulation are typically divided into the below mentioned categories [Ladefoged,

1993, p. 172], however, Ladefoged notes that there are further considerations

required to describe consonants fully, including the primary place of articula-

tion and secondary articulations such as rounding of the lips.

Stops: these occur when a part of the vocal tract is fully blocked as

a result of the complete closure of articulators. This blockage can be

followed by the release of pressure either outwardly (i.e. ejectives) or

inwardly (i.e. implosives). They include glottal stops (closing of the

glottis), oral stops (closing of the lips or the oral cavity by bringing the

tongue against the roof of the mouth), and nasal stops (where the oral

cavity is blocked and air is released through the nasal cavity).

Fricatives: where two articulators are brought together, causing partial

restriction of airflow and therefore turbulence.

Approximants: where two articulators are brought together, but not

close enough to cause turbulence.

Trills, taps and flaps: trills occur when an articulator vibrates period-

ically, such as rolling of the tongue, whereas taps and flaps occur when

the tongue strikes the roof of the mouth or another part of the oral cavity

(i.e. a single cycle of a trill).

This section serves to illustrate the core mechanisms behind how the voice

can be used to produce speech, and highlight the vast array of sounds that
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might be created. Much of this literature is based on research on speech, which

is relevant to our work because it has been shown that the same mechanisms

used to produce speech can be employed to vocalise non–verbal sounds such as

percussion [Proctor et al., 2013]. Beyond speech, phonation and articulation

can be viewed as a multi–dimensional continuum in which the space between

categories may be explored to vocalise sounds. This is important to bear in

mind when asking people to vocalise non–verbal sounds:

2.1.4 Singing vs. speech

Many of the aforementioned characteristics of speech also apply to singing.

We are not particularly concerned with differentiating between speech, singing

and vocal imitation of non–speech, non–singing sounds, however, in order to

imitate musical sounds we expect people to employ techniques from these

two predominant applications of the voice. As such there are some notable

characteristics specific to the singing voice that do not necessarily apply to

speech, and are worthy of mention here.

The most notable differences between speech and singing are in the use of

pitch range and vowel duration. In tonal languages pitch is used to determine

lexical meaning, and in many non–tonal languages pitch is continuously varied

to convey linguistic information (such as a rising pitch to indicate a question),

and non–linguistic information such as the speaker’s emotional state. The

production of music and melody often necessitates that singers make full use

of their vocable range (this is discussed further in the following paragraphs),

whereas the pitch range of spoken English is generally much lower, at less

than an octave [Andreeva et al., 2014]. In addition, professional (particularly

opera) singers tend to produce vibrato: a periodic modulation of F0, which

is not normally used in speech [Sundberg, 1989, pp. 163–176]. Singing also

typically requires that vowels are somewhat aligned to the rhythmic pattern of

the music, and therefore the vowel duration can be extended beyond that used

in speech [Reigado and Rodrigues, 2017]. Perhaps the most interesting and

less obvious difference between speech and singing is that professional singers

(especially male) tend to modify the formant frequencies of certain vowels,

in particular F3, F4 and F5 to be in the range of 2.5kHz–3kHz, in order to

add brilliance and power to the voice, a phenomenon known as the ‘singer’s

formant’ [Sundberg, 1974].
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2.1.5 Singing voice quality

We may also view voice quality from a singing perspective, in terms of vocal

registers, singing phonation modes and vocal timbre. These are all fuzzy terms

in the literature, in that they are generally ill–defined. However, collectively

they serve to quantify the variety of ways the voice might sound, beyond

simply describing sung notes in terms of pitch and loudness.

Vocal register is closely related to phonation mode, which we discussed in

2.1.2, and indeed there is some overlap in terminology for certain modes,

namely modal and falsetto. However, although the concept of phonation

modes is generally well understood and agreed upon, there is a considerable

lack of clarity on the definition of vocal register [Sundberg, 1989, pp. 49–50].

Hollien [1974] defines vocal register as “ a series or range of consecutive vocal

frequencies which can be produced with nearly identical voice quality ... [with]

little or no overlap in fundamental frequency (F0) between adjacent registers.”.

The pioneering work of Garcia [1854] in the 19th century investigated vocal

register in terms of mechanical principles, as opposed to perceptual acoustic

voice qualities. Using elementary instruments such as mirrors placed in the

throat of singers, Garcia identified 3 vocal registers, increasing in F0: chest,

falsetto and head, which he differentiated by musculatory configurations of

the larynx. These two approaches to understanding registers are somewhat at

odds, because changes in musculatory configurations do not necessarily lead

to timbral variations [Henrich, 2006]. Indeed, professional singers are often

trained to reduce the acoustic effect of a change in the laryngeal musculature,

in order to eliminate timbral variation between registers and increase the F0

range in which their voice timbre remains constant [Sundberg, 1989, p. 51].

To quote Henrich [2006]:

If a vocal register is defined as a series of consecutive tones pro-

duced by the same laryngeal mechanism, the human voice can be

characterized by four different voice registers, i.e., laryngeal regis-

ters such as Hollien’s pulse, modal, loft registers, and the whistle

register. If a vocal register is defined as series of consecutive tones

produced with similar voice quality, other registers exist in the

human singing voice, such as head, belting, middle, upper, voix

mixte,...

Vocal registers can be described in terms of where the sound appears to
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radiate from or resonate (chest, middle, head, upper) the nature of the pro-

duced sound (pulse, falsetto), or even musical instruments (bell, flute, whistle,

flageolet). Perhaps the most unambiguous labelling form for labelling regis-

ters is the number system described by Henrich [2006], where labels M0–M3

define four laryngeal mechanisms (vocal fold configurations) that are associ-

ated with increasing phonation frequency. M0 produces very low registers

such as pulse, vocal fry and strohbass, where the voicing is distinguishable by

a series of short pulses (similar to the creaky voice phonation mode discussed

in Section 2.1.2). M1 is the normal laryngeal mechanism, used for producing

modal, chest, male head and belting registers. M2 is used for registers that

occur towards the mid–high part of the vocal range, such as falsetto, loft,

female head, and upper. Finally, M3 is the laryngeal mechanisms in which

the highest possible F0 values can be produced, in the bell, whistle, flute, and

flageolet registers. M3 is not commonly used in classical singing or speech.

In summary, the abundance of terms and categories used to define registers

highlight a common thread that is relevant to the studies in this thesis, namely

that we cannot expect people to produce sounds across their entire phonation

range without there being noticeable changes in the vocal fold configuration,

and consequently the timbral characteristics of the produced sound.

Another measure of voice quality is singing phonation mode. Confusingly,

this is conceptually similar to the phonation modes commonly referred to by

phoneticians, however the categories are primarily based on two parameters:

sub–glottal pressure and glottal airflow [Sundberg, 1989, p. 80]. Sundberg

defines four singing modes within this 2D space: neutral, pressed, breathy,

and flow, where flow and breathy have higher glottal airflow than pressed and

neutral, and flow and pressed have higher sub–glottal pressure than neutral

and breathy. In terms of usage, Proutskova et al. [2013] note that pressed

and breathy voice are used in some popular music styles for affect, whereas

some styles and performers try to only use a single mode (such as operatic

baritone singers using mostly flow), and some styles (such as classical Ottoman

singing) make use of all four modes. Acoustically, changing phonation mode

changes the spectrum of the sung sounds; for example increasing glottal airflow

can substantially increase the amplitude of F0 (without affecting the formant

amplitudes) [Sundberg, 1989, p. 80], and with breathy mode there will be

considerable fricative noise introduced as a result of the airflow through a

small opening in the glottis during phonation. Finally, voice quality might

be described in terms of timbre. Timbre is a poorly defined concept in the
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singing literature, where it can be interchangeably used to describe phonation

mode, registers, singer sex, and age [Sundberg, 1989].

2.1.6 Extended singing techniques

Much of the above mentioned research into singing voice has focussed on West-

ern classical and popular music. We note that beyond these singing styles a

much broader range of vocal techniques exist, some of which may bring the

definition of singing voice into question. We will now discuss some notable

examples of such practices.

Firstly, in terms of pitch, we note that an equal tempered 12 tone scale is

not always used. For example, in classical Indian singing the 12 tone scale is

often extended as a type of ornamentation technique [Krishnaswamy, 2003]. In

this case singers may voice inflexions above or below the standard 12 intervals

in the musical scale, exploring the space in between the standard intervals.

Another use of pitch not typically found in Western music styles is in yodelling,

where rapid and large changes in pitch are accentuated by concurrent changes

in register [Echternach and Richter, 2010]. This results in distinct timbral

changes within ‘melodies’ with large pitch intervals, where a note change may

not only differ in pitch, but also voice quality. A particularly unconventional

use of pitch comes from Tuvan throat singing, particularly the Mongolian

Kargyraa singing. It is thought that this singing style originates from the

desire to imitate natural phenomenon such as animal calls or sounds echoing

off a cliff [Levin and Edgerton, 1999]. Singers of this style are famous for their

ability to create vocalisations that give the impression of two sources with

different F0 values, an effect that is achieved by forcing the ventricular folds

to oscillate at a different F0 to the vocal folds [Bailly et al., 2010; Levin and

Edgerton, 1999].

Beyond pitch, vocal styles and music genres can be (at least in part) defined

by voice quality. For example, different voice qualities have been observed

across music styles (pop, rock, soul, Swedish dance band), predominantly

exhibited as an effect of spectrum shift by slight adjustment of the F1–F4

formant frequencies [Borch and Sundberg, 2011]. At the extreme end, these

differences are apparent when comparing the typically pure, clean tone of vocal

performance in western classical music with that of punk and rock styles for

example, where growls, grunts and screams are vocalised [Jahn, 2013, p. 355].
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These vocalisations are typically achieved by a tightening of the larynx, restric-

tion of the glottal airflow and vibration of the supra-glottal structure [Borch

et al., 2004], creating a noisy sound with many inharmonic partials [Kato and

Ito, 2013; Tsai et al., 2010]. In addition to musical applications of the voice, the

Irish mourning vocal practices of keening and other cultural funerary practices

employ vocal techniques such as voiced inhalation, creaky voice, exhalatory

gasps and amplitude–frequency–modulation to generate a series of vocal cries

and weeps that have a voice quality not often heard in music [Harvey, 1993].

Many music–related vocal practices do not use words (as with the grunt-

ing and screaming discussed above), and instead use nonsensical vocalisations,

relying solely on the pitch, rhythm and voice quality for musical effect. Such

practices have been observed in African pygmy and bushmen vocal perfor-

mances, which use vocal effects including hoots, calls, shouts, grunts and

screams [Frisbie, 1971]. Voice artists including Phil Minton3 and Mikhail

Karikis4 also make use of extended vocal techniques in musical performance,

including voiced inhalations and exhalations, groans, grunts, and heaves. This

kind of non–verbal voiced inhalation and exhalation is also used in the vocal

practice of eefing, that originated in Tennessee around 100 years ago [Sharpe,

2006], however in eefing the inhalation and exhalation is performed in a rapid,

rhythmic manner, typically as an accompaniment to music or ‘hand slapping’

percussion.

Although it is beyond the scope of this thesis, we note that the singing

voice may also be used as a controller for synthesised sound, either of the

voice or other musical instruments. Such applications include parameter con-

trol [Cartwright and Pardo, 2014; Janer, 2008; Loscos and Aussenac, 2005;

Santacruz et al., 2016], vocal morphing [Young, 2014] and mapping vocal tim-

bre to percussion samples [Stowell, 2010]. Typically these methods work by

extracting audio features from the voice and mapping them to parameters on

a synthesiser. The types of audio features used vary across studies, however

they generally include pitch (e.g. F0) and timbre based (e.g. spectral centroid)

features [Cartwright and Pardo, 2014; Janer, 2008; Stowell, 2010], along with

amplitude and markers for the start and end of notes. The work of Young

[2014] explores extreme transformations of the voice using granular synthesis,

time–stretching and filtering methods. In addition to research on this topic,

3https://youtu.be/yXg3sr16Xww
4https://youtu.be/qND-XvZvOJo

https://youtu.be/yXg3sr16Xww
https://youtu.be/qND-XvZvOJo
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commercial products such as Vochlea5 and The Mouth6 exist, both of which

enable vocal control of synthesiser parameters, sound effects, and triggering of

drum samples. These examples present interesting and novel applications of

the voice, however they do not address the question of how well people might

be able to control the features that are being used for the mapping.

2.1.7 Summary

In this section we have deliberately avoided addressing vocalised percussion

sounds such as beatboxing and vocal imitation of musical instruments in the

north Indian tradition of vocally imitating percussion (tabla bols and kon-

nakol), because we will discuss these topics in Section 2.4.2. What the research

addressed in this section highlights most is that humans, particularly singers

(or more generally, vocal performers), are able to apply a range of vocal tech-

niques that involve sculpting and manipulation of the vocal tract, to generate

a remarkable array of sounds. This illustrates the multi–dimensional nature of

voice quality, which clearly stretches far beyond simply pitch and dynamics, to

include elements of noisiness, inharmonicity, formant structure, and spectral

slope to identify but a few. Vocal performers might change their timbre using

any combination of the techniques discussed here, in order to imitate specific

characteristics of sound.

2.2 Vocal imitation and communication of sonic ideas

Vocal imitation can be described, at least from a cognitive perspective, as

“vocal re–enactment of previously experienced auditory events” [Mercado III

et al., 2014]. This plays an important role in early language development, for

example when learning how to pronounce vowel sounds [Kuhl and Meltzoff,

1996] and prosodic contours [Gratier and Devouche, 2011]. Indeed, the faculty

of language would not exist without imitation of spoken language. The way

in which humans have utilised the voice for speech is remarkable, yet perhaps

even more compelling is that spoken language represents only a small subset

of sounds that humans are able to vocalise. Verbally describing sounds can

be difficult, particularly if the source of the sound is unknown or when trying

5http://www.vochlea.co.uk/
6https://youtu.be/zzyr66QhrOw

http://www.vochlea.co.uk/
https://youtu.be/zzyr66QhrOw
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to describe the differences between two sounds from similar sources. When

suitable words or onomatopoeia do not exist, the expressive nature of the voice

can be harnessed to effectively communicate sonic concepts. Recent studies

have shown that in such cases vocal imitations can be more effective than

verbal descriptions for conveying a sonic concept and identifying the source of

a sound [Lemaitre and Rocchesso, 2014; Lemaitre et al., 2011], and that when

imitating environmental sounds people make use of articulatory mechanisms

that do not exist in their native spoken language [Helgason, 2014; Helgason

et al., 2016]. In this section we will briefly review the related literature on

the role of vocal imitation for communicating sonic ideas. This research is

generally concerned with imitations of everyday and environmental sounds,

however many of the constraints and mechanisms behind producing them are

applicable to vocalisations of musical, synthesised, and percussion sounds.

Lemaitre et al. [2011] investigated whether listeners were able to identify

the imitated sound from an imitation, and the acoustic correlates that allowed

listeners to do so (we discuss the latter objective in Section 2.4.4). The imi-

tations were all of kitchen sounds, categorised according to their source (elec-

trical appliances, solids, gases, and liquids), and listeners were asked to sort

the imitations to groups on the basis of what was being imitated. The results

showed that most of the imitations were grouped into clusters that coincided

with their source categories (i.e. the sound concept was successfully commu-

nicated via the imitations), except for the liquid based sounds. The authors

suggest that this may have been due to either different classification strategies

adopted by the listeners, or that the imitators were simply not able to suit-

ably imitate the liquid sounds (characterised by short chirps) due to physical

limitations of the vocal apparatus. In a subsequent study, Lemaitre and Roc-

chesso [2014] compared vocal imitations to verbal descriptions of mechanical

and synthesised sounds, in terms of whether listeners could identify the cause

of the sounds from the respective representations. They found that when the

source of the sound was easily identifiable, vocal imitations were equally as

effective as verbal descriptions for this task, yet when the source was not clear

or unidentifiable (such as for artificial synthesised sounds), the vocal imitations

were much more effective for communicating the referent sound. However, as

with the previous study, not all the referent sounds were equally imitable.

In particular, the sound of coins falling on a plate was not recognized from

the imitations, due to the difficulty of vocalising such a high density of rapid

(sometimes overlapping) short events, and the (inaccurate) imitations were
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often confused with sounds that contained a more similar temporal profile.

The same effect was not observed for imitations that were inaccurate in terms

of spectral distribution, indicating that temporal information may be more

important than spectral for communicating a sonic concept.

In a similar vain to the aforementioned studies, Edmiston et al. [2017]

collected vocal imitations of environmental sounds from 4 categories (zipper,

water, tear, glass), and asked listeners to identify the imitated sound from the

imitations. However, they also collected imitations of imitations, in a form

similar to the ‘Telephone’ style game, and tested for the effect of imitation

‘generation’ (i.e. how many imitations from the original sound) on identifica-

tion accuracy. Interestingly, they found that although identification accuracy

started with above chance accuracy for the first generation of imitations, it

decreased almost linearly with subsequent generations. This is somewhat sur-

prising given that we might expect a mismatch between a real sound and a

vocal imitation due to the physical limitations of the vocal apparatus, however

this mismatch should be smaller for imitations of imitations, where the sound

sources are the same. The fact that the imitations became less and less identi-

fiable indicates that each imitator focussed their attention on different salient

characteristics of the sound to be imitated (whether the original sound or an

imitation thereof). This highlights that the communicability of sound sources

via vocal imitations may depend as much on the imitator and listener identi-

fying the same salient characteristics for a given sound than on the ability of

humans to imitate non–vocal sounds.

Instead of focussing on the sound source, Perlman and Lupyan [2017] inves-

tigated the identifiability of vocalisations in terms of ‘iconicity’, i.e. how iconic

vocal imitations are of a given meaning. The vocalisations were produced in

response to 30 meaning terms from 3 categories: actions (e.g. eat, gather,

sleep); nouns (e.g. child, rock, deer); and properties (e.g. big, this, many).

Instead of identifying the imitated sound (or source) from an imitation, listen-

ers were presented with a vocalisation and asked them to select the referent

meaning from a set of (within or between category) labels. The results show

that on average for each condition (within and between category), the mean-

ings were correctly identified with above chance accuracy for all 3 categories.

Vocalisations of the action labels were most frequently correctly identified,

followed by the nouns, and properties. The authors note imitations of ‘tiger’,

‘eat’, and ‘many’ afforded a high iconicity, whereas properties such as ‘this’

and ‘that’ did not. This highlights the strength of verbal communication as a
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system for labelling abstract concepts that are not easily represented sonically.

These properties can be easily differentiated using words, and even visually

and physically using gestures, but it is hard to imagine what sounds, vocal or

otherwise, might best represent them. Finally, we note very high variance in

identification accuracy across imitators, and that the best performing imitators

by this measure were affiliated with academic institutions in linguistics or a

related field. This indicates that the ability to imitate sounds effectively may

be subject to training and experience in phonetics (it is common on many

linguistics–based academic programs to practice phoneme–level vocalisation

and analysis).

The work discussed in this section demonstrates that beyond speech, vocal

imitation of non–verbal sounds presents a powerful and effective means to

communicate sonic ideas. This effectiveness appears to be dependent on a

number of factors, namely i) whether the sounds, in particular the temporal

characteristics are able to be sufficiently produced with the vocal apparatus

(this appears to be less important for spectral characteristics), ii) the degree

of training with respect to linguistics and phonetics, although this may extend

to musical training or other means of developing critical listening skills, and

iii) concordance between imitator and listener regarding the salient charac-

teristics of the sound or concept. In Chapter 4 we investigate whether this

effectiveness applies equally to vocal imitations of percussion sounds as it does

to the everyday sounds discussed here, and explore the potential for applying

vocal imitation to the problem of searching for sounds.

2.3 The problem of searching for sounds

Searching for sounds is a fundamental part of the music production process,

particularly for electronic music production where numerous short samples of

sounds can be arranged to form a piece of music. In this section we briefly

discuss how sounds are typically searched in this domain (text–based search),

following by a review of content–aware search methods. We note that our focus

is on searching for sounds, as opposed to pieces of music or sequences. The

basic idea behind content–aware search is to identify, rank, or group similar

sounds in a library, based on some model of similarity between sounds. This

presents an enticing alternative to the text–based method, and the application

of this thesis – query by vocalisation (QBV) – falls into this category of search



Chapter 2. Background 37

methods.

The traditional, and arguably still the most common method of searching

for sounds is using textual descriptors. Such descriptors may exist in the form

of file names, or meta–data tags associated with sound files. This can be an

effective search method if the file names are relevant, meta–data are of a high

quality and the user possesses expert knowledge of the sound library. This may

be the case for many professional sound libraries; however for crowd–sourced

collections such as freesound7 the file names may not best describe the sound

file, and meta–data are often inconsistent, if any exists at all. In addition,

typically music producers will have collected multiple sound libraries, each

with different labelling schema. This makes it extremely difficult to memorise

what types of tags are used in each library and where all of the sounds exists

in a file system.

Instead of searching through alphabetical lists of sounds, sound libraries

may be navigated in a more exploratory manner. One common such approach

is to map sounds onto a navigable low dimensional space, where similar sounds

are located close to one another. Coleman [2007] proposed such a system for

navigating all short segments in a music library, using spectral and tempo-

ral audio features mapped onto a 2D space. This concept has since been

applied to navigating collections of short audio samples that might be used

in music production [Font and Bandiera, 2017; Fried et al., 2014; Heise et al.,

2009; Turquois et al., 2016]. The feature–space representations are typically

based on acoustic descriptors of timbre such as Mel frequency cepstral coef-

ficients (MFCCs) – as are all four aforementioned systems – however, any

audio descriptors may be used: for example, Font and Bandiera [2017] present

a system where the user is able to choose between a timbre–based search using

MFCCs or a tonality based search using harmonic and pitch related features.

The dimensionality of these feature–spaces can be reduced using techniques

such as Student-t Stochastic Neighbour Embedding (as used by Turquois et al.

[2016] and Font and Bandiera [2017]), Self-Organising Maps (as used by Heise

et al. [2009]) and kernalised sorting (as used by Fried et al. [2014]). This

approach to search lends itself well to free exploration of sound libraries, how-

ever often it is not clear how well the measurement of similarity between sounds

relates to the users’ understanding of similarity. Despite research highlighting

the perceptual relevance of MFCCs to perceived timbral similarity [Terasawa

et al., 2005], evaluations of these types of systems tend to focus on the user

7freesound.org

freesound.org
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experience of exploring the 2D space, and not on the perceptual merit of the

similarity measures.

An alternative search paradigm that is more relevant to the topic of this

thesis is query by example (QBE) – indeed, as we will discuss in Section 2.4.4,

QBV is a special case of QBE. QBE allows a dataset to be queried using an

example of the item one wishes to retrieve [Wold et al., 1996]. For example, a

sample of an electric guitar may be used to search for all electric guitar sounds

in a sample library. Applying QBE to audio requires a means of measuring

similarity between example sounds and the sounds in the dataset to be queried.

As noted by Mitrović et al. [2010] and Slaney [2011], measuring the similarity

between sounds is an ill–posed problem, in that typically the aim is to estimate

similarity or class labels using model parameters such as acoustic features and

distance measures. Given the lack of a universal model for human perception

of sound (indeed, the concept of what constitutes the perceptual attribute

of ‘timbre’ is still poorly understood [Siedenburg and McAdams, 2017]), no

unique solution to this problem exists. Nonetheless, the concept of sound

similarity is central to many audio–based music information retrieval (MIR)

tasks: ultimately, in such tasks one will want to measure the similarity between

sounds at some level and in terms specific to the problem. This is highlighted

in that a keyword search on the proceedings of the International Society for

Music Information Retrieval Conference (ISMIR)8 from 2000–2017 reveals 130

articles that include the term ‘similarity’ in the title. Feature–based measures

such as those described in this section use audio features extracted from the

query sound, which can then be compared to the audio features of the sounds

in the dataset, with distance between the sounds w.r.t. the descriptors taken

as a measure of similarity [Aucouturier and Pachet, 2002, 2008; Herrera et al.,

2003]. The results can then be presented as a ranked list of all sounds, or

a list of sounds in the same class as the example. The two core questions

when designing such systems are 1) which audio features to use, and 2) how

to compare sounds based on the audio features. These questions are not trivial

to answer, and have been the focus of much of the research into MIR.

The suitability of different features and similarity metrics will depend on

the types of sounds in the sample library. A common and relatively basic

approach is to use the Euclidean distance between MFCCs of the query exam-

ple and each of the sounds in the library. As well as being used for mapping

sounds on the 2D spaces described above, this method has also been applied

8http://www.ismir.net/proceedings/
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to querying short segments of music [Spevak and Favreau, 2002]. Alternative

approaches have been applied to classifying example sounds as either music

instruments, speech, noise, and environmental sounds using the Euclidean

distance between Gaussian mixture models of MFCCs and spectral descrip-

tors [Helén and Virtanen, 2007], or applying hidden Markov models to model

sounds based on raw spectrograms [Casey, 2001] and MFCCs [Helén and Lahti,

2006; Wichern et al., 2007]. Although much of this work has focussed on spec-

tral descriptors, possibly including local differences between frames, one can-

not ignore the importance of the global temporal evolution of sounds. Esling

and Agon [2013] and Parekh et al. [2016] investigated similarity measures

for QBE based on the morphological profile of spectral and loudness features

respectively. However, we note that this type of approach is most fruitful when

the sounds to be queried are expected to exhibit notably different morpholog-

ical profiles such as rising, falling, impulsive [Parekh et al., 2016], because

morphological features struggle to discriminate between sounds with similar

profiles [Esling and Agon, 2013]. Finally, we note that measuring the similarity

between a query and all sounds in a library can be computationally expensive,

and pre–processing or clustering of the sounds in a library can greatly reduce

the search time [Helén and Lahti, 2007; Xue et al., 2008; Zhang and Kuo,

1999].

As we have seen in this section, QBE and other audio search systems typ-

ically rely on similarity measures derived from audio features. However, we

might also consider the perceptual similarity between sounds, which can be

derived from similarity ratings provided by listeners [International Telecom-

munication Union, 2003; Scavone et al., 2001; Wickelmaier et al., 2009] (we

provide an overview of methods for quantifying perceptual similarity in Section

2.4.3). There is considerable overlap between feature–based and rating–based

similarity measures: the former can be evaluated using perceptual listening

tests (see, for example Terasawa et al. [2005] and Pampalk et al. [2008]), and

conversely acoustic descriptors are often investigated to explain perceptual

ratings [Berenzweig et al., 2004; Elliott et al., 2013; Freed, 1990; Grey, 1977;

Gygi et al., 2007; McAdams et al., 1995]. As such, the two paradigms are

not independent and we might argue that any measure of similarity for QBE

should incorporate both.
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2.4 Research context

2.4.1 Vocal control of pitch, loudness, and spectral shape

As we identified in Sections 2.1 and 2.2, the ability to vocalise sounds is deter-

mined by physical constraints. The limits of vocal fold vibration rate, physical

dimensions of the vocal tract and air flow dictate the dynamic range, frequency

range and types of sounds that can be produced. In terms of vocal control,

there has been significant research on pitch range, rate of pitch change, sound

intensity level range, and speed of phoneme transitions. In this section we will

discuss this literature and highlight some of the findings that are relevant to

the aims of this thesis concerning the accuracy with which people can vocalise

salient acoustic features in musical sounds. In doing so we aim to identify

where further research is required to establish if people, in particular musi-

cians, are able to control the types of acoustic characteristics that might be

required to imitate musical sounds, and inform the design of sounds that we

will ask people to imitate in Chapter 3.

2.4.1.1 Base pitch and range

There are two vocal characteristics of interest here: speaking F0 (SFF) and F0

range (FFR). In terms of SFF, Baken and Orlikoff [2000] present a comprehen-

sive overview of the literature for both reading and spontaneous speech. They

show that for participants aged 18–62, mean SFF varies between 100–129Hz

for males, and 189–224Hz for females. Fitch and Holbrook [1970] recorded the

speech of 100 male and 100 female participants aged between 17.5 and 25.5.

They report mean SFF of 117Hz for males and 217Hz for females, in line with

Baken and Orlikoff [2000] and several related studies. Fitch and Holbrook

[1970] also report SFF range values of 85–155Hz for males and 165–255Hz for

females. In a study of 57 male singers and non-singers aged between 20–55,

Morris et al. [1995] reported an average SFF of 128Hz (with average FFR of

85–822Hz). In another study where the same method was applied to female

singers and non–singers, the same authors report average SFF (and FFR) of

203.5Hz (129–1340Hz) [Brown et al., 1993].

Kent et al. [1987] present an excellent review of 7 studies into FFR. Ignoring

the results for children and elderly adults, the presented mean FFR values

span from 26.6 semitones (ST) to 37.9ST. The largest FRR was presented
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by Hollien et al. [1971], who reported mean FFRs of 78–698Hz for males and

139–1108Hz for females. It is worth noting the variance in results presented by

Kent et al. [1987] may be due to a number of factors including the stimuli and

measurement methods used. Additionally, FFR does not remain stable over

time and has been shown to exhibit mean variation of +/− 2 semitones of the

lowest frequency within a day, and up to 6ST over a 4–6 week period [Gelfer,

1986]. Finally, in a study of 30 female participants, Zraick et al. [2000] found

mean FFR to be approximately 1kHz (equating to 34ST), and notably, he

found no significant difference between the FFR when participants produced

their full pitch range in either discrete steps or glissando.

2.4.1.2 Speed of pitch change and vibrato

In the experiment presented in Chapter 3 we investigate the ability of peo-

ple to vocalise vibrato–like effects (pitch modulations), however when con-

sidering the extremities of production ability we can cannot rely on vibrato

studies, because many are concerned with the natural vibrato rates of singers

as opposed to limits of their range. Nonetheless, there appears to be some

consensus across studies that the singing average vibrato rate is in the region

of 5–7Hz [Sundberg, 1994b]. This is in agreement with the range considered

to be ‘musically useful’ by Martens et al. [2006]. Hakes et al. [1988] reported

data on the extreme rates for a study of 10 singers, at 4.81Hz and 6.77Hz.

This is slightly less than the extreme rates reported by Prame [1994], at 4.6Hz

and 7.4Hz, (although these values are for individual vibrato cycles and not

means as in Hakes et al. [1988]). In both of these studies the participants

were not asked to maximise or minimise their vibrato rate, although in Hakes

et al. [1988] the singers were asked to extend their vibrato to the maximum

depth, and report depths ranging from 1.01ST - 3.6ST (mean within singers).

In this case the depth was measured as the difference between the minimum

and maximum F0 values within a cycle.

It has been shown that trained singers are able to elicit control over both

vibrato rate and depth [Dromey et al., 2003; King and Horii, 1993], although to

our knowledge no such studies have been conducted on non–singers. King and

Horii [1993] showed no effect of base pitch on the ability of singers to imitate

the rate and extent of pitch modulations, and that rate can be controlled much

more accurately than depth even when the target differences in depth were

within producible and perceivable ranges. They state that target rates of 3Hz
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and 5Hz were matched more accurately than 7Hz, although the accuracy was

good for all rates (on average the targets were matched to within 13% (0.6Hz)

of the target rate).

The maximum speed of pitch change has been studied for both singers

and non–singers [Ohala and Ewan, 1973; Sundberg, 1973], however it should

be noted that these studies consider the transition area of a pitch change to

be the middle 75% of the curve from starting to target pitch, not the entire

transition period. It is only relatively recently that the time taken to complete

100% of a pitch change has been measured [Xu and Sun, 2000, 2002]. Xu and

Sun [2002] present results from a study where 36 participants aged 18–45

were asked to vocalise two types of carrier sounds (sustained vowel and a

syllable sequence) with 3 excursion sizes (4, 7 and 12ST) at a rate of 6Hz.

The base pitch was selected by the participants, and two patterns were used,

starting on either ascending or descending trajectories. The mean excursion

sizes for the intervals were actually 3.8, 4.7 and 6.6ST, indicating that we

cannot realistically expect people to produce excursion sizes much greater

than 6ST at this rate. Is it worth noting that these interval sizes are much

greater than those presented by Hakes et al. [1988]. This could be due to the

fact that this study was not measuring pitch modulation in a singing context,

whereas the subjects in Hakes’ study were probably trying to reach extreme

intervals whilst maintaining a suitably musical singing output. It could also

be due to the methods used to determine excursion size. Xu and Sun [2002]

found that excursion speed and size have a linear relationship, where excursion

speed increases with interval size. In other words, larger intervals take longer,

but people also perform them with a faster rate of pitch change (so a 4ST

interval will not take twice as long as a 2ST interval).

It should also be noted that the rate and depth of vocal vibrato interacts

with amplitude and timbre. Due to resonances in the vocal tract, changes

in phonation frequency will also change the relationship between harmonic

partials and formant frequencies, causing amplitude modulations at specific

frequencies [Sundberg, 1989]. This effectively means that it is unreasonable

to expect anyone to reproduce a target sound containing pitch modulations

without introducing timbral and amplitude modulations. In the experiment

of Chapter 3 we ask participants to imitate sounds with pitch, amplitude

and spectral modulations. We can therefore expect participants to be limited

in their ability to imitate sounds containing modulations of more than one

feature, although to our knowledge the effect of the interaction between these
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features has not been previously studied.

2.4.1.3 Effects of pitch scaling on imitation accuracy

In addition to the aforementioned limits of pitch production, it is important

that we consider the scaling of pitch envelopes that we might expect people

to imitate, particularly whether to use linear or logarithmic pitch scales. In

terms of imitating pitch ramps, we may refer to studies on singing of glissando.

There is some evidence that the change in frequency is linear over time, at

least below 400Hz [Henrich et al., 2005; Hoppe et al., 2003], but the results

from other studies on glissando are ambiguous on this point. In an example

presented by Roubeau et al. [2009], pitch production appears to be logarithmic

above 500Hz but linear below 500Hz. Fujisaki [1983] shows curves that do not

look definitively logarithmic or linear. However, it is well understood that we

perceive pitch on a non–linear scale, and for the study of pitch range it seems

sensible to use a musical scaling (i.e. pitch in ST), as per d’Alessandro et al.

[1998].

2.4.1.4 Control of voiced intensity

The dynamic range of the voice is dependent on phonation fundamental fre-

quency, and is approximately 50dB at normal SFF values [Coleman et al.,

1977; Colton, 1970]. We can expect singers to have a larger dynamic range

than non–singers [Sulter et al., 1995], but there does not appear to be any

effect of vocal training on the upper limit of vocal intensity, only minimum

producible intensity values [DeLeo LeBorgne and Weinrich, 2002]. The maxi-

mum rate of amplitude change has been studied as part of pitch modulation,

and the two effects are generally considered to be closely coupled [Sundberg,

1989, pp. 164–166]. As a result it might be reasonable to apply the same mod-

ulation constraints for pitch (see Section 2.4.1.2) to amplitude. However, it

is worth considering how people might achieve amplitude modulation without

pitch modulation. This could be using physical gestures (such as thumping on

the chest), for which the maximum rate would be limited by motor control of

the arm/hands. It could also be achieved by modulating lips and size/shape

of the oral cavity. If so, this would have an effect on the vocalised timbre,

or vowels, and we could expect the modulation rate to be similar to that for

diphthong durations.
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2.4.1.5 Control of spectral shape

Although we can expect pitch and voice quality to have an effect on the spec-

tral shape of the vocalised sounds, spectral shape is arguably most determined

by articulation (as discussed in Section 2.1.3). As such, changes in spectral

shape of voiced sounds, particularly vowels, may be produced by continu-

ous formant changes as are used to produce diphthongs. The spectral shape

of vocalised sound can vary from almost broadband noise with no harmonic

relationship between the partials and (achieved for example using the post–

alveolar fricative, /S/) to pure, pitched vowels, for which the spectral shape

will depend on the formant frequencies. The speed with which the spectral

shape can be changed is determined by the speed at which people can con-

trol the articulatory musculature, primarily the tongue, jaw, and lips, all of

which are manipulated to produce different vowel sounds. Therefore we can

consider the speed of vowel changes to be a good indicator of how fast people

might be able to change their vocalised spectral shape (as a lower bound - it

is conceivable that people may produce faster utterances beyond speech). The

upper limits for this motion in speech been previously demonstrated by asking

people to utter sentences made up of words containing diphthongs at different

speaking rates (slow, moderate, fast) [Gay, 1968]. In doing so, Gay observed

durations of 123–172ms at slow speaking rates for the diphthongs /aI/ and

/eI/oV/ respectively, and 84–98ms at fast speaking rates for the diphthongs

/eI/ and /aV/ respectively. As such, it seems reasonable to consider the max-

imum speed of changes in spectral shape of voiced sounds to be (at least)

between ∼100–200ms.

2.4.1.6 Biases regarding ramp directions of pitch and intensity

In addition to the physical aspect of vocalising sounds, studies on loudness

and pitch have highlighted perceptual biases related to the temporal envelopes

of these features. For example, there is evidence of perceptual asymmetries

between ascending and descending ramps: people tend to be more accurate

at identifying the end pitch for ascending ramps compared to descending

[d’Alessandro et al., 1998]; and there is a tendency to overestimate the range

of a ramp that increases in loudness compared to one that decreases [Neuhoff,

1998, 2001]. These perceptual biases may influence the ability to vocalise a

sound (or even a sonic idea), if there is a difference between what one thinks
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they are vocalising and the actual acoustic properties of the vocalisation. It

is important to note that in this thesis we are not concerned with testing the

extremities of the vocal system or perception of different feature envelopes

of sounds. For this reason, when designing sounds for people to imitate in

Chapter 3, we use features and parameters that are comfortably within both

the physically producible and perceivable limits in terms of the range and rate

of change of the features.

2.4.1.7 Summary

The literature discussed in this section provides a solid grounding for specify-

ing the parameters of the stimuli that we might ask participants to imitate,

yet regarding vocal control of pitch, loudness, and spectral shape we note two

major gaps in current research: i) much of the literature on vocal control is

from the fields of singing voice and speech research, which although relevant,

is not always applicable to vocal imitations in general. In addition, this tends

to focus on vocal ranges, for example of pitch and intensity; ii) this literature

mainly focusses on single features, with the exception of studies on phone-

tograms [DeLeo LeBorgne and Weinrich, 2002; Sulter et al., 1995]. There

is very little work that has investigated imitation accuracy at the acoustic

feature level when people try to exercise control over multiple time varying

features related to pitch, dynamics, and spectral shape. In a study with sim-

ilar motivations to our own, the accuracy of vocal imitations with respect to

pitch, tempo, sharpness, and onset features was investigated [Lemaitre et al.,

2016b]. The authors found that participants were able to accurately imitate

pitch and tempo in absolute terms and sharpness in relative terms, with onset

(i.e. attack time) imitated least accurately out of the four features. In this

thesis we investigate similar features: pitch; loudness (related to onset); spec-

tral centroid (related to sharpness). As we will discuss in Chapter 3, instead of

using constant (flat) temporal envelopes for pitch and spectral shape, we will

investigate the accuracy with which people can imitate ramp and modulation

envelopes for each of the features independently, and the extent to which peo-

ple can control interaction between pitch and loudness, or pitch and spectral

shape.
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2.4.2 Vocalising percussion sounds

In Chapters 4 and 5 we turn the focus from vocal imitation of synthesised

sounds to that of percussion sounds. One of the most prominent cases of

vocalised percussion sounds is the art form of beatboxing – a vocal perfor-

mance technique where the performer imitates percussion sounds and rhyth-

mic patterns. As we identified in Section 2.3, the application of QBV is of

particular interest for musicians and music producers, who will not necessar-

ily be proficient beatboxers. For this reason we did not specifically recruit

beatboxers for the vocal production task in Chapter 4, but rather recruited

musicians, most of whom did not have previous experience of vocal imitation

practice. However, the similarities between beatboxing and vocal imitation of

percussion sounds warrant a brief discussion of the related literature.

Beatboxing originates in the hip hop music culture, and many of the vocal

techniques were developed to imitate the types of percussion sounds typically

used in the music of this genre, such as electronic drum machines. We note

some important distinctions between beatboxing and the work presented in

Chapters 4 and 5. Beatboxing is a performance practice, with a focus on

rhythm as much as imitation accuracy of a given percussion sound. This is

notable because when imitating patterns certain vocal techniques might be

adopted to enable fast repetition of short sounds, and this constraint does

not exist when vocalising a single sound as might be done in the QBV use

case. In addition, beatboxed sounds are often convincing imitations of actual

percussion sounds, however beatboxers will typically be primed with a set of

go–to techniques to produce different ‘standard’ types of percussion sounds

and effects (see Stowell and Plumbley [2008] for an overview of such sounds

and techniques). Nonetheless, it is also likely that an experienced beatboxer

will possess a much wider repertoire of vocal percussion sounds than a non–

beatboxer.

In the experiments of Chapters 4 and 5 we are particularly interested in

the perceptual similarity between vocalised percussion sounds and the imi-

tated sounds. To our knowledge there have been no such studies comparing

beatboxed sounds and their real–world counterparts, however Lederer [2005]

compared spectral and temporal acoustic metrics such as rise time, fade rate

and resonant frequency of (professionally) beatboxed versions of 6 popular

electronic drum sounds. The author found that beatboxed sounds contained

more partials than their electronic drum counterparts and that fade rate was
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not accurately imitated, particularly for transient sounds such as clicks, where

the vocalist had little or no control over the decay portion of the sound. In

general, electronic sounds were identifiable from the vocalisations and it was

noted that the more complex sounds were imitated less accurately than simple

ones (i.e. hi–hats were imitated less accurately than clave clicks). In terms of

vocal technique, Proctor et al. [2013] examined the mechanisms that a profes-

sional hip hop vocalist and beatboxer used to imitate percussion sounds, using

real–time magnetic resonance imaging. The beatboxer demonstrated use of

articulation and air stream mechanisms found in speech, and also used artic-

ulation patterns that did not exist in their native language. More recently,

Blaylock et al. [2017] conducted a similar study using 5 beatboxers, and found

that the beatboxers used non–linguistic articulations and air stream methods,

such as lingual egressive and pulmonic ingressive airstreams, indicating that

when imitating percussion sounds people may use vocal techniques beyond

those found in any known language.

As noted by Atherton [2007], the pedagogical practice of vocalising percus-

sion sounds is commonplace in some musical cultures such as Cuban conga and

northern Indian tabla drumming. In such practices the prototypical sounds

and rhythmic patterns of the drums are memorised as vocalisations that have

some symbolic relationship to the actual sounds of the instruments. Patel and

Iversen [2003] investigated this relationship by conducting both acoustic and

perceptual analysis of vocalised tabla sounds, or bols. They found evidence

of onomatopoeia being used to represent the sounds of the tabla, with strong

acoustic correlates between bols and their respective tabla sounds for spectral

centroid, decay time, F0, and the duration between consonants in clusters. In

the perceptual test they asked listeners who were unfamiliar with tabla play-

ing to match bols to tabla sounds in a forced–choice test with vocable pairs

(similar to minimal pairs in phonetics), and found that for 3 out of 4 vocable

pairs listeners were able to match the bols to the correct tabla sounds.

The work discussed in this section demonstrates the ability of humans to

imitate a broad range of percussion sounds using their voice, by both employ-

ing onomatopoeia and using sounds and vocal techniques not encountered in

speech production. Furthermore, there is some evidence of the perceptual rel-

evance of certain acoustic features used to vocalise prototypical drum sounds,

and the ability of lay listeners to identify representative sounds from vocalisa-

tions. However, excepting only the study by Patel and Iversen [2003], which

was limited in both the number and type of sounds used, to our knowledge
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there is no work that has focussed on the vocal imitation accuracy and imitabil-

ity of percussion sounds, in terms of perceptual similarity between imitations

and imitated sounds, and whether listeners are able to identify imitated sounds

from the imitations.

2.4.3 Methods for measuring the perceptual similarity between

sounds

As we discussed in Section 2.3, quantifying the similarity between sounds is a

core aspect of many MIR and audio signal processing tasks, including QBV,

where we are interested in the similarity between vocalisations and sounds to

be searched. In the experiments of Chapter 4 we are specifically interested

in the subjective similarity between imitations and imitated sounds from a

listener perspective. This raises the important question of how best to measure

perceptual similarity, therefore in this section we will review common methods

for collecting and analysing such measures.

Forced–choice tests are commonly used in psychology for testing per-

sonality traits (often referred to as ipsative measurement). However,

they can also be used in audio perception tasks, where typically a lis-

tener is asked to select a stimulus sound from a set of 2 or more sounds.

The task may be to identify the actual stimulus in the set (i.e. the same

sound), or to select the sound in the set that is most similar to the stim-

ulus [Ellis et al., 2002]. In the latter case, it can be assumed the selected

sound is the most similar to the stimulus, and subject to collecting com-

parisons of all sounds in the set, similarity between the sounds can be

quantified using a similarity matrix of the frequencies with which each

sound is selected for a given stimulus. Forced–choice tests appear as a

popular choice for vocal imitation studies, where the stimulus is typically

a vocal imitation, which is compared to a set of referent sounds, one of

which is the imitated sound [Cartwright and Pardo, 2015; Lederer, 2005;

Lemaitre and Rocchesso, 2014; Lemaitre et al., 2011; Patel and Iversen,

2003]. In addition to the similarity matrix, this provides a measure of

imitation accuracy, in terms of how often an imitated sound is identified

from its respective vocal imitations.

Pairwise comparison tasks require the listener to rate the similarity

between a pair of sounds on a scale from from very similar to very dis-
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similar [Caclin et al., 2005; Grey, 1977; McAdams et al., 1995]. As with

forced choice tests, the similarity between all sounds in a test set can

be quantified in a similarity matrix. This method is commonly used

in timbre perception studies, where dimensionality reduction techniques

such as multi–dimensional scaling (MDS) can be applied to the similarity

matrix in order to find an n–dimensional Euclidean space that preserves

the perceptual similarity between sounds [Kruskal, 1964] (such spaces

are useful for visualising the distances between sounds and investigating

acoustic correlates of the salient dimensions). One notable drawback

of pairwise comparison and forced–choice tasks is the number of trials

that must be conducted in order to construct a full similarity matrix of

N sounds (N2 if all presentation orders are included). This can quickly

lead to more comparisons than is reasonable for a single listener to make,

meaning that often the number of sounds in a test set must be kept

small (16–18 sounds were used in the above mentioned studies, resulting

in 256–324 ratings per listener).

Sorting tasks involve asking listeners to freely sort sounds into cat-

egories based on similarity [Dessein and Lemaitre, 2009; Gygi et al.,

2007; Parizet and Koehl, 2012; Scavone et al., 2001] or according to rep-

resentative sounds from each category [Rocchesso et al., 2016a]. In the

free sorting scenario, listeners are free to choose both the number of cat-

egories and the number of sounds per category. Although listeners do

not explicitly provide information about the similarity between sounds

within each category or the similarity between categories, as noted by

Parizet and Koehl [2012], a full similarity matrix may be constructed

by averaging the co–occurrence matrices of all sounds based on the fre-

quency of being grouped together, which can then be subjected to MDS.

In addition, hierarchical clustering may be conducted using the similar-

ity matrix, as in [Dessein and Lemaitre, 2009]. This approach permits

the salient perceptual attributes for each cluster to be learned, inform-

ing, for example whether people group sounds based on the source or

acoustic properties, and the acoustic correlates for the clusters may be

investigated for the purposes of automatic classification of sounds.

Odd–one–out tasks require listeners to identify the least similar sound

(or song) from a triplet (set of 3 sounds) [Wolff and Weyde, 2014], or iden-

tify the most and least similar pairs from a triplet [Novello et al., 2006].

In the first case this suggests the 2 remaining sounds are more similar to
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one another than they are to the eliminated sound, whereas the second

case provides a 3–way pairwise comparison. As with the above men-

tioned methods, from the 3–way comparison a similarity matrix can be

constructed by assigning values to each pair of conditions (most similar,

least similar, and ‘middle–similar’) [Novello et al., 2006]. In the least–

similar odd–one–out scenario, a similarity matrix may be constructed

by first learning the distances between sounds using metric learning or

neural networks [Wolff and Weyde, 2014]. For a complete (i.e. fully bal-

anced) design the number of trials required is actually greater than for

the pairwise comparison method: using the formula from Novello et al.

[2006], a stimulus set consisting of 10 sounds would require 120 trials.

This makes the method infeasible for large stimulus sets if a balanced

design is required, however the number of trials may be reduced if the

number of comparisons including the same pairs is limited.

Multiple comparison rating tasks may be used where is it desir-

able to compare 2 or more sounds to a reference sound using continuous

rating scales. Perhaps the most widely used version of this method

is the Multiple Stimuli with Hidden Reference and Anchor standard

(MUSHRA) [International Telecommunication Union, 2003]. Typically

the MUSHRA format requires that a single known reference sound is

compared to up to 14 test sounds, which include a hidden reference and

(optional) hidden anchor. When used to judge audio quality (for which

the standard was originally intended), the listener rates the audio qual-

ity of each test sound in relation to the reference. The hidden reference

and anchor serve to ensure the listener is able to identify an obvious

‘best’ and ‘worst’ case example and uses the full range of the rating

scale. Although not specified in the standard, similarity (or indeed any

attribute of interest) may be assigned to the scale, instead of audio qual-

ity. Whilst the MUSHRA standard specifies the use of expert listeners,

it has recently been shown that for assessment of source separation audio

quality, lay listeners can provide comparable results to expert listeners

[Cartwright et al., 2016].

In summary, the choice of method for measuring perceptual similarity

between sounds is dependent on i) the types of comparisons that are to be

made, ii) what kind of response data is required for subsequent analysis or

modelling, and iii) to a certain extent, the difficulty of the task presented

to listeners (for example, a pairwise comparison task may be less cognitively
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challenging than a MUSHRA test, but may also require many more individual

tests for the listener, potentially making them more susceptible to fatigue,

whereas the odd-one–out approach can be easily incorporated into a game–

like test [Wolff and Weyde, 2014]). Overall the MUSHRA method provides

a much richer source of information compared to the alternative above men-

tioned methods, namely: a) individual similarity ratings between each test

sound and the reference sound; b) identification of the ‘most–similar’ and

‘least–similar’ sounds to the reference sound; and c) an inherent ranking of

and pairwise comparison between the test sounds (with respect to the ref-

erence sound) [Sporer et al., 2009]. This makes it an attractive method for

the listening task presented in Chapter 4, where we are primarily interested

in both the most similar drum sound to a given imitation, and the relative

similarity ratings between an imitation and set of drum sounds.

2.4.4 Audio features for vocal imitation analysis and QBV

Typically, in QBV systems audio features are extracted from a vocal example

of a target sound and compared to the features of sounds in an audio library,

to return a ranked list of similar sounds [Roma and Serra, 2015; Zhang and

Duan, 2015]. As such, the audio features used to map between vocalisations

and sounds in a sample library are a core part of any QBV system. In this

section we review the literature on both QBV, and more generally, analysis of

vocal imitations, with a specific focus on the types of audio features that might

be useful for QBV applications. We will revisit these features in Chapter 5

in order to investigate their suitability for predicting the similarity between

vocal imitations and percussion sounds. The following review is separated into

heuristic (Section 2.4.4.1) and learned (2.4.4.2) features.

2.4.4.1 Heuristic features for vocal imitation analysis

Heuristic (or hand–crafted) features are based on knowledge of the acoustic

properties of sound, in particular the temporal and spectral characteristics.

They are typically deterministic, in that the feature values depend only on the

signal from which they are extracted. Although we are particularly interested

in representations for vocalised percussion sounds, we also include related work

on features for vocal imitations of non–speech, non–singing sounds, regardless

of whether the imitations are percussion–specific. In this section we will not



Chapter 2. Background 52

cover the definitions of all the features discussed, but in Chapter 5 we provide

the sources and descriptions for each of the features used in our experiments

(further details and definitions of many of the features discussed herein are

given by Bullock [2008]; Peeters [2004]; Peeters et al. [2011], amongst others).

An overview of heuristic features from the literature on vocal imitations

and QBV is given in Table 2.1. These features can be computed over an entire

signal, providing a summary (or global) feature value for a whole sound, or

alternatively, many can be computed in a frame–wise manner. In the frame–

wise approach the signal is split into frames and the feature computed for

each frame. Frame–wise features may be used to compute summary statistics

(mean, variance, etc.) to represent the evolution of a particular feature over

time. For the sake of simplicity, where multiple terms are used in the lit-

erature to describe closely related features, such as relative/absolute/effective

duration, loudness/energy/rms, and spread/variance of the spectrum, we have

assigned a single term in Table 2.1. Some study–specific features have been

intentionally excluded from this list if they are not relevant to the types of

percussion sounds and imitations used in the experiments of this thesis (in

Chapters 4 and 5), such as measures of amplitude modulation and jitter used

by Lemaitre et al. [2017]. Finally, we note that the term morphological fea-

tures is used line with Marchetto and Peeters [2015] and the description given

in Section 2.3, to denote any feature that describes the trajectory or profile of

a low–level feature, such as loudness.

Features for vocalised percussion and musical sounds

As we discussed in Section 2.4.2, there have been a number of studies on

vocalised percussion sounds and beatboxing, although these generally did not

include use of audio features, and where they did the features were not evalu-

ated according to any criteria (with the exception of Patel and Iversen [2003]).

However, in addition to the aforementioned research on beatboxing there have

been a number of studies concerned with classification of beatboxed sounds

into drum categories such as kick, snare etc. [Hazan, 2005; Kapur et al., 2004;

Nakano et al., 2004; Ramires, 2017; Sinyor et al., 2005], for which the audio

features used may transfer well to the task of measuring similarity between

vocalisations and percussion sounds. Kapur et al. [2004] compared individual

and sets of features, and reported the highest performance using zero–crossing

rate alone or a set of linear predictive coding (LPC) coefficients. The authors
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(log) attack time (LAT) X
duration X X X

temporal crest factor X
zero crossing rate X X X X X X X X X

decay time X
energy/loudness X X X X X X X X

morphological features X X X X X
pitch/F0 X X X X X X X X X

pitch clarity/strength X X X X X
noisiness X

inharmonicity X
roughness X X

spectral centroid X X X X X X X X X X X X X X X X
spectral rolloff X X X X X

spectral crest factor X
spectral slope X X

spectral spread X X X X X X
spectral kurtosis X X X
spectral flatness X X X X X

spectral skewness X X X X
spectral entropy X X

spectral compactness X
strongest frequency X

spectral flux X X X X X X
band–specific energy X X

LPC coefficients X
MFCCs/∆MFCCs X X X X X X
wavelet coefficients X

Table 2.1: Heuristic features used in previous studies for the analysis of per-
cussion specific and non–percussion specific vocal imitations.

also included a set of wavelet coefficients in their analysis, but reported higher

accuracy with both LPC and MFCC feature sets. The other above mentioned

studies all report reasonably high classification accuracy results (between 82–

96%), indicating the usefulness of the features highlighted in Table 2.1, how-

ever none include comparisons of the features in terms of their contribution to

classification accuracy, and in particular do not consider their perceptual rele-
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vance. Indeed, excepting the study by Patel and Iversen [2003] there has been

little work that considers the perceptual relevance of features for vocalised

percussion sounds.

Although not focussed on percussion or vocal sounds, Stowell [2010] presents

an analysis of the perceptual relevance of a large set of features (see Table 2.1)

using similarity ratings between musical instruments. This was tested using

the MDS–derived timbre spaces and stimuli sounds from 3 previous studies

[Grey, 1977; Grey and Gordon, 1978; McAdams et al., 1995], and with the

exception of spectral centroid and the 95th percentile of the spectrum, there

were no features that correlated highly with the dimensions across all 3 tim-

bre spaces. This indicates that the features reported in the original studies as

most perceptually relevant for each of the 3 MDS spaces may not be general-

isable to sounds beyond those tested, as has since been confirmed by Siddiq

et al. [2015]. The author also compared the features in terms of robustness to

degraded vocal signals, including beatboxed sounds, using the information the-

ory based measure of mutual information between features extracted on clean

and degraded signals. Interestingly, ∆MFCCs and MFCCs were reported as

being particularly poor by this measure, indicating that these features may

not be suitably robust for vocal signals that are not recorded in acoustically

clean, quiet environments.

Features for vocal imitations of everyday sounds

Beyond percussion, Del Piccolo and Rocchesso [2016] provide an excellent

meta–review of research on non–speech vocal sonic interaction, including the

types of acoustic features commonly used for QBV of generic sounds and

vocal–based synthesiser parameter control. In terms of synthesiser control,

pitch and loudness (or power/energy) appear to be the most frequently used

features, such as are used by Rocchesso et al. [2016b], whereas for QBV,

they note the common use of low level features such as those presented in

Table 2.1. This is understandable given that for many QBV tasks pitch and

loudness features may actually be secondary, particularly when searching for

un–pitched sounds or those with a similar loudness profile, such as percussion

sounds. Any measures that rely on F0, including pitch, clarity, noisiness,

and inharmonicity will be less meaningful for discriminating between these

sounds, whereas timbral or temporal descriptors may prove more useful. As

with percussion sounds, the literature on features for analysing non–percussion
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vocal–imitations tends to be focussed on classification tasks.

Creating meaningful clusters of imitations is useful for 3 reasons: i) dif-

ferent audio features can be compared to human–derived clusters, providing

understanding of what features are perceptually relevant for this task [Des-

sein and Lemaitre, 2009; Lemaitre et al., 2011]; ii) automatic clustering can

be a first step in a QBV system where it may be useful to apply cluster–

specific search models, or alternatively for vocally–controlled synthesis, it may

be desirable to select different synthesiser models depending on the type of

sounds that are being vocalised [Baldan et al., 2016; Rocchesso et al., 2016b];

and iii) imitations can be represented as clusters in low dimensional spaces

for navigation and exploration of the sounds [Mauro and Rocchesso, 2015;

Rocchesso et al., 2016a]. Dessein and Lemaitre [2009] and Lemaitre et al.

[2011] asked listeners to freely cluster vocal imitations of everyday sounds,

and compared how well a number of different audio features (shown in Table

2.1) could be used to predict the listener–provided clusters of each imitation

using simple binary decision tree rules. They found that (loudness weighted)

spectral centroid was useful for discriminating between voiced and unvoiced

imitations, and by combining this with a measure of modulation amplitude

(of the energy envelope), they were able to reliably separate the imitations

of gas and electrical–item based sounds, along with identifying whether or

not imitations in each class included repetitive elements. In addition they

used temporal descriptors (duration) and morphological descriptors (tempo-

ral increase of the energy envelope) to perfectly discriminate imitations of gas

sounds based on the nature of the attack (brutal or smooth) and duration

(long or short).

Marchetto and Peeters [2015] conducted a more in depth study of descrip-

tors for categorising imitations based on their morphological profile (such as

up/down, impulse, repetition, stable). They report high classification accu-

racy (84%) using descriptors based on the signal trend (direction), and the

nature of active regions in the imitation. We note that whilst these types of

descriptors may be useful for categorising everyday or environmental sounds,

they are not suitable for discriminating between sounds that share a similar

profile, such as percussion sounds. Mauro and Rocchesso [2015] and Roc-

chesso et al. [2016a] present a method for exploring a geometric space of vocal

imitations using the features listed in Table 2.1. They apply dimensional-

ity reduction, namely principle components analysis (PCA), to produce a 2D

space in which like–sounds are grouped together (similar to the exploratory
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search methods discussed in Section 2.3). PCA is a projection method that

performs an orthogonal transform on a set of correlated variables into a set

of uncorrelated variables (principle components) [Jackson, 1991]. As such, by

submitting the audio features of all imitations to a PCA, one can obtain the

first n dimensions on which the observed data exhibits the maximum variation.

PCA can be used to identify the latent components that best describe a large

set of audio features for visualisation purposes [Mauro and Rocchesso, 2015;

Rocchesso et al., 2016a; Stowell, 2010], or simply to reduce a large number of

features to a lower number of components to use as predictors in a classifica-

tion or regression model, as we will see in Chapter 5.

Features for QBV

Although all of the above work on classification of vocal imitations may be

applied to QBV, much of the previous research on QBV systems tends to focus

on small numbers of hand–selected features that are specific to the task. For

example, Cartwright and Pardo [2014] apply energy, pitch and spectral fea-

tures for querying a large set of sounds from a single synthesiser in order to

tune the parameters, and Roma and Serra [2015] and White et al. [2017] use

MFCCs to query crowd–sourced sound collections on freesound9 and snippets

of sounds from 1960s popular music recordings respectively. An exception

to this is presented by Blancas and Janer [2014], who use a support vector

machine (SVM) classifier to identify vocal imitations of cat, dog, car and

drum sounds. They extract the full set of features from Peeters et al. [2011]

(many of which are listed in Table 2.1) and select subsets of features using

a correlation based feature selection method from Hall [1999]. They report

improved classification accuracy using the feature–subsets rather than all fea-

tures, and report that spectral crest and spectral variation appeared in the

subsets for every category, yet the authors do not provide details of all the fea-

tures selected. Whilst this this research has helped highlight the potential for

using the voice as a query medium, there has thus far been little consideration

for the effect of different types of features for QBV (i.e. temporal, spectral),

and no in depth, formal comparison of heuristic features for this task.

Furthermore, with the exception of Dessein and Lemaitre [2009] and Lemaitre

et al. [2011], none of the above mentioned studies consider the perceptual rel-

evance of the features used. Lemaitre et al. [2016a] addressed this by investi-

9www.freesound.org
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gating whether acoustic features could be used to predict listener–based classi-

fication accuracy of vocal imitations of everyday sounds. Listeners were asked

to classify vocal imitations in a two–way forced choice experiment (i.e. given

a vocalisation, state whether it is an imitation of a ‘fridge’ or ‘blender’). Two

sets of acoustic features were compared: one based on Euclidean distance

between sounds in a feature space derived using morphological descriptors from

Marchetto and Peeters [2015], and one based on the alignment cost between

the spectrograms of two sounds (using dynamic time warping). The spectro-

gram alignment cost outperformed the morphological descriptors in terms of

predicting listener classification accuracy. Notably, the authors highlight that

the correlation of distance (in terms of alignment cost) over classification accu-

racy varied considerably across the different families of imitated sounds (such

as impulsive, stationary, complex), suggesting that the suitability of acoustic

descriptors for predicting the similarity between a vocal imitation and sound

class may be specific to the type of sound being imitated.

Summary

The work discussed in this section shows that a wide range of temporal, mor-

phological, pitch based, and spectral features have been applied with varying

degrees of success to identify, classify and predict similarity between vocal imi-

tations and imitated sounds. We have seen that for these tasks, features tend

to be either hand–selected, or derived using feature selection and dimensional-

ity reduction methods. Yet there has been little focus on comparing different

types of features in terms of both classification accuracy (i.e. QBV perfor-

mance) and perceptual relevance of the features used. For this reason in the

experiments of Chapter 5 we evaluate the full set of features from Table 2.1 and

suitable subsets thereof, in terms of their perceptual relevance and suitability

for predicting similarity between vocalisations and percussion sounds.

2.4.4.2 Feature learning for QBV

Instead of using domain knowledge to specify heuristic features, and selecting

feature subsets either heuristically or using dimensionality reduction methods

such as PCA, we may apply deep learning methods to learn the features from

the audio data automatically. Recent developments in deep learning have high-

lighted that learned features can outperform heuristic features such MFCCs
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for many audio related tasks, including speech coding [Deng et al., 2010], music

tagging [Hamel et al., 2011], genre classification [Choi et al., 2017], and more

relevant to our task, for QBV of environmental and instrument sounds [Zhang

and Duan, 2015, 2016a,b]. Feature (or representation) learning involves auto-

matically learning some representation of the given data that is useful for a

particular task [Goodfellow et al., 2016, p. 525]. This may be in the context

of a supervised classification model, where the ‘representation learning’ layers

are trained to provide an optimal input to the last layer, typically a linear clas-

sifier [Goodfellow et al., 2016, p. 525]. However, where labelled data is sparse

or non–existent, it can be applied in an unsupervised setting, to learn some

representation of the data such that a desired output may be reconstructed

from the representation. In practice, similar methods are used to learn the

features in both settings, and are typically based on the auto–encoder : a type

of neural network (NN) that can be considered the “quintessential example of

a representation learning algorithm” [Goodfellow et al., 2016, p. 4]. In this

section we will discuss the application of auto–encoders for feature learning

and related work on feature learning for QBV.

Auto–encoders

An auto–encoder (AE) is a type of NN that consists of 2 parts: an encoder

and a decoder. The first part encodes an input, x, using some function,

h = f(x). The decoder produces a reconstructed version of the input, y, using

some function, g(h) [Goodfellow et al., 2016, p. 499]. Typically the model

is designed with constraints such that the AE does not simply directly map

the input to the output, i.e. g(f(x)) = x. This can be achieved by ensuring

the encoded representation, h is smaller than x, adding regularization to the

cost function, or introducing non–linearities into the encoding and decoding

functions. An example of a general case auto–encoder is given in Figure 2.2.

x h y
f g

Encoder Decoder

Figure 2.2: General case of an auto–encoder, after [Goodfellow et al., 2016,
p. 500]
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General overview of auto–encoders

In the minimal form, an AE will have 3 layers: an input layer, a hidden

layer, and an output layer. The input and output layer nodes are populated

with feature vectors, which in the case of audio could be a vectorised time–

frequency representation such as a spectrogram or Mel spectrogram. The

hidden layer consists of ‘nodes’ (or neurons), the number of which determines

the size of the layer. Typically the network is ‘fully connected’ (or ‘dense’),

meaning that all the nodes of each layer are connected to all the nodes of

the proceeding and preceding layers. The inputs to each node of the hidden

layer are multiplied by a weighting, then summed and optionally transformed

with a non–linear transfer (or activation) function. In the training stage, the

weights of the hidden layer are tuned such that the network learns functions

h and g that minimise some loss. Mean squared error (MSE) is commonly

used as a loss function, and the network is typically trained with stochastic

gradient descent (SGD) using back–propagation. For computational efficiency

and faster training times it can often be desirable to train the network in

batches of inputs using mini–batch SGD [Goodfellow et al., 2016, pp. 274–

280]. Finally, a trained AE can be used to extract features from new data by

extracting the encoded representation, h.

Interestingly, when an AE has only one hidden layer, there is no non–linear

activation function, and MSE is used as a loss function, the AE will learn an

orthogonal transformation that is equivalent to PCA, with the number of

principle components determined by the number of nodes in the hidden layer

[Bengio et al., 2009; Bourlard and Kamp, 1988]. It is often desirable to train

a network with more than 1 hidden layer, as it has been shown that increas-

ing the number of hidden layers beyond 1 reduces the reconstruction error

(i.e. loss), when the number of network parameters remains equivalent [Hinton

and Salakhutdinov, 2006]. In addition, we know from the universal approxima-

tion theorem [Hornik et al., 1989] that an AE with a sufficiently large number

of nodes in the hidden layer can represent any continuous bounded function,

yet a sufficiently large network will probably have too many parameters to

train and may not generalise well [Goodfellow et al., 2016, p. 195]. As such,

it is often desirable to increase the depth (i.e. the number of hidden layers)

of a network beyond 1, to make a ‘deep’ or ‘stacked’ auto–encoder (SAE).

This has a number of benefits, namely to i) reduce the number of parameters

required to achieve the same level of representational complexity that would

be possible with a larger, single–layer network, ii) improve generalisability,
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and iii) reduce the amount of training data required [Goodfellow et al., 2016,

p. 506].

Application to feature learning for QBV

Despite the popularity of AEs and SAEs for feature learning, to date there

has been very little research on applying these methods for QBV. The only

related work that we are aware of is a series of studies by Zhang and Duan

[2015, 2016a,b]. In these experiments the authors adopted the VocalSketch

dataset from Cartwright and Pardo [2015]. This dataset consists of 4429 vocal

imitations of 240 stimuli, from 185 unique participants. The stimuli are split

into four categories: acoustic instruments (n=40); everyday sounds (n=120);

commercial synthesisers (n=40); single synthesisers (n=40) (the single synthe-

siser category contains sounds generated by the authors using a 15-parameter

subtractive synthesiser). The imitations were either produced in response to

an audio example (n=2418) or a label (n=2011). In Zhang and Duan [2015]

MFCC and ∆MFCC features were compared to those extracted using an SAE

with 2 hidden layers, comprising 500 and 100 nodes for the first and sec-

ond layers respectively. The network was trained on 525ms patches of the

vocal imitations, which were taken from 20 consecutive frames of a constant

Q transform (CQT) with 26.25ms hop size and 72 frequency bins. The authors

evaluated the features in terms of same–category classification accuracy using

a support vector machine (SVM), and found that for all categories the learned

features outperformed MFCCs (albeit with marginal improvements for some

categories). Similar findings were reported when comparing MFCCs to learned

features with the same AE architecture [Zhang and Duan, 2016a] and a large

set of heuristic features (similar to those in Table 2.1), to those from an AE

with 1000 and 600 nodes in the hidden layers [Zhang and Duan, 2016b] in an

unsupervised classification scenario, based on distance between imitations and

imitated sounds in each of the feature spaces.

One notable issue with dense SAEs such as those used in the above exper-

iments is that the features extracted for a given test sample are not time or

frequency–invariant. For example, assuming the features are extracted from

input representations of an entire drum sound, the distance between 2 drum

samples in the learned feature spaces will vary considerably depending on how

well aligned the sounds are in terms of the attack and decay portions. In Zhang

and Duan [2016b] the authors circumvent this issue by training and testing the

SAE on patches of sounds, then calculating 6 summary statistics for each of
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the extracted features (min, max, mean, interquartile range (IQR), and stan-

dard deviation) to represent an entire sound. However, with 1200 features for

a given patch, and 6 statistics, each sound is represented with 7200 features.

Due to the large number of dimensions, an infeasibly large number of examples

would be required to sufficiently sample the resulting 7200–D Euclidean space

if we are interested in finding groups of similar sounds. If the number of sam-

ples available is small then it will be desirable to learn much lower dimensional

representations of the sounds, ideally using features that are invariant to both

dimensions in a time–frequency representation. In addition, we know from

research in MIR that features captured from such short–time analysis often

do not capture the high level structure of music [Humphrey et al., 2013], and

although the imitations and imitated sounds from the VocalSketch dataset

are much shorter than typical music, a similar sentiment may also apply here.

Fortunately, there is a version of the AE that maybe more suited to feature

learning for QBV: the convolutional auto–encoder.

Convolutional auto–encoders

A convolutional auto–encoder (CAE) is an AE based on a convolutional

neural network (CNN). The general model of AEs also applies to CAEs, follow-

ing the example given in Figure 2.2, however as opposed to the AEs discussed

thus far, in a CAE the hidden layers are not dense (i.e. with fully connected

nodes), but are a set of convolutional filters. DNNs that make use of con-

volutional layers have 3 inherent characteristics that can be useful in many

machine learning applications: sparse interactions, parameter sharing, and, as

briefly mentioned in the previous section, equivariant representation [Good-

fellow et al., 2016, pp. 329–335]. In this section we will i) briefly describe how

CAEs (or more generally CNNs) work, ii) explain how the aforementioned

characteristics are useful for representing percussion sounds (and imitations

thereof), iii) discuss some considerations and inherent constraints for design-

ing and training a CAE/CNN model, and iv) present related work that has

used CAEs/CNNs for feature learning in audio based tasks.

General overview of convolutional auto–encoders

CNNs operate on an input grid, or matrix. This type of input is commonly

found in image processing (where the input may be a matrix containing the

pixel values of an image), and equally for audio when a 2D time–frequency
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representation is used, such as spectrograms or Mel spectrograms. As already

mentioned, a convolutional layer is made up of filters, which are matrices

that are convolved with the input at equally spaced locations across the input

matrix, creating a feature map. The filters can be thought of as masks that

are swept across the input, creating high activations when the shape of the

mask is similar to the shape of the input that it is covering (such as lines,

or edges in the image). The height and width of the filters is typically much

smaller than the input dimensions. Consequently, the number of parameters

required to train the model is much less than for dense, fully connected layers.

This behaviour, where only a subset of input units interact with a subset of

output units, is known as sparse interaction, and is a characteristic of CNNs

that greatly reduces the computational time and memory required to train

the model [Goodfellow et al., 2016, p. 330]. Because each filter is normally

convolved over the entire input, the parameters are shared across input units,

further reducing the memory requirements for model training, compared to

dense layers where every input unit has a unique connection to every node

[Goodfellow et al., 2016, p. 333].

As previously mentioned, perhaps the most attractive characteristic of

CNNs for our application is that of equivariant representation, meaning the

learned features are invariant to spatial shifts in the input matrix [Goodfel-

low et al., 2016, p. 334]. In other words, if a filter is trained to detect a

particular line at a given angle, then it will detect this feature regardless of

where the line exists in the input image. This type of invariance occurs as a

result of the parameter sharing across the input units, although there is also

another source of space–invariance in CNNs, which is due to pooling. To give

an example of how pooling works, we may first give an example of convolu-

tion without pooling. For a given 2D input matrix, I (H = 128,W = 128),

we may apply a 3x3 filter, F , centred at every possible location on I. For

each location the convolution operation is applied, the first step of which is

to conduct an element–wise multiplication of the matrix F and the location

on I. The resulting values are then summed, giving a single value ‘feature’

for that location on I. In this case the resultant feature map would also be

128x128, but it is often desirable for the feature map to be smaller than the

input (particularly in the case of a CAE where we wish to learn a compact

representation of the input).

This can be achieved by including a pooling layer after the convolutional

layer. Pooling layers are used to down–sample the feature map based on some
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property of interest such as the maximum or mean values (e.g. for each 2x2

‘pooling region’ on the feature map one might only take the maximum value as

the feature for further processing). As mentioned, in addition to reducing the

feature map size, pooling can be used to ensure the learned features (i.e. filter

weights) are space–invariant within the pooled region [Scherer et al., 2010].

This can be useful when the approximate location of a feature is more impor-

tant than the exact location, or where it is desirable to focus more or less on a

particular dimension of the input matrix. For example, certain audio related

tasks such as onset detection might require high temporal but low spectral

resolution [Schlüter and Böck, 2013]. In this case the window of information

in each dimension can be determined by the filter shape (e.g. wide in time and

narrow in frequency), and the resolution by the shape of the pooling region

(e.g. narrow in time and wide in frequency). This allows for the less important

dimension to be ‘smoothed’ over. An attractive alternative to pooling is to

shift F across I in steps > 1. The size of the shift is often referred to as

the ‘stride’, and in our example a 2x2 stride would result in a 64x64 feature

map. Following from the pooling example, using strides wide in frequency and

narrow in time will enforce greater temporal resolution. This ‘strided’ convo-

lution can be implemented within the convolution layer, removing the need

for a pooling layer and reducing the complexity of the model, without com-

promising on the performance of the trained network or the space–invariance

of the learned features [Springenberg et al., 2014].

Considerations and network design

The main parameters to select when designing a CAE architecture, par-

ticularly when one is concerned with space–invariance and the importance of

temporal vs. spectral features, are arguably the filter shape and size, number

of filters and shape of the stride. These parameters, along with the num-

ber of layers in the encoder will determine the size and shape of the encoded

representation. However, there are additional considerations that apply more

generally to designing DNN models, such as the choice of activation function,

regularisers, and how the network is trained (data and type of optimiser). Acti-

vation functions are typically applied in DNNs following each hidden layer, to

transform the output of the layer based on some non–linear (and optionally

bounded) function, introducing non–linearities between layers thus enabling

the modelling of complex data. The rectified linear unit (ReLU) function has

been shown to work well for training DNNs because it addresses the ‘vanishing
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gradient’ problem inherent when using sigmoid and hyperbolic tangent func-

tions on networks with many layers [Glorot et al., 2011]. The ReLU function

is defined as being linear for all input values > 0 and 0 elsewhere.

Another consideration is that of regularisation, which is defined as “any

modification we make to a learning algorithm that is intended to reduce its gen-

eralization error but not its training error” [Goodfellow et al., 2016, p. 117].

Essentially, regularisation serves to prevent overfitting the network to the

training data and can be achieved in a number of ways, although popular

methods include i) introducing penalty terms to the objective function (pre-

venting the weights from becoming too large), ii) randomly ignoring (‘drop-

ping out’) some units of the layers during each training round, and iii) using

a ‘hold–out’ validation set to monitor how the trained network performs on

unseen data after each training round (providing a means of identifying when

the network starts overfitting).

We briefly mentioned optimisation methods in relation to AEs, and the

general approach of SGD using mini–batches applies equally to CNNs. To

delve into the pros and cons of different optimisation methods is beyond the

scope of this work, and there is no generally agreed upon ‘best’ optimiser

[Goodfellow et al., 2016, p. 306] (although we refer the interested reader to

an excellent review of commonly used optimisation methods [Ruder, 2016]).

Perhaps one of the most current methods in use today is adaptive momentum

estimation (Adam) [Kingma and Ba, 2014], which is an extension to SGD that

updates the learning rate (i.e. step size of the weight updates) based on the

first and second moments (mean and variance) of the gradient, making use of

previous updates. This essentially applies an exponential moving average to

the weight updates, reducing the magnitude of any oscillations.

Finally, although it may sound obvious, the choice of training data will

determine the usefulness of the learned features. Ideally this data should be

sufficiently large and truly representative of the type of data that the trained

network is intended to be used for, if one wants the network to generalise

beyond the examples used for training. Additionally, the type of input rep-

resentation should be considered. If the aim is to reconstruct audio from the

intermediate layers of a network (as might be used for auralising the learned

features [Choi et al., 2016b] or the decoded output from a CAE), then an

invertible representation such as a power spectrogram might be used (assuming

phase information is available), whereas if the time–frequency representation
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should be more aligned with how humans perceive loudness and frequency, one

might apply equal loudness contours and frequency scaling using Log, ERB,

Mel, or Bark scales.

Application to audio based tasks and QBV

Some of the earliest work on learning audio features using CNNs is pre-

sented by Lee et al. [2009]. The authors present a CNN for feature learn-

ing based on a convolutional deep belief network (CDBN): a type of unsu-

pervised feature learning network that is based on stacked restricted Boltz-

mann machines. Whilst there are some notable differences between a CDBN

and a CAE, both use convolutional layers for learning and extracting fea-

tures from the input data. The authors investigated the performance of the

learned features against MFCCs for many tasks, including speaker identi-

fication, phoneme recognition, gender classification, music artist identifica-

tion, and genre classification. They found that learned features outperformed

MFCCs in all tasks except phoneme recognition (where combining the MFCCs

and learned features gave best results), providing a strong case for using CNN

based features.

More recently, CNNs have successfully furthered the state–of–the–art in

many MIR tasks, including chord recognition [Humphrey and Bello, 2012],

onset detection [Schlüter and Böck, 2013], boundary (i.e. verse and chorus)

detection [Ullrich et al., 2014], singing voice detection [Schlüter and Grill,

2015], denoising and audio source separation [Grais and Plumbley, 2017], genre

classification [Costa et al., 2017], and audio tagging [Choi et al., 2016a], out-

performing many previous systems based on heuristic features such as MFCCs

and others presented in Table 2.1. Many of these examples do not use CAEs

(with the exception of Grais and Plumbley [2017]) but apply CNNs for both

feature learning and classification (with the latter achieved using dense lay-

ers following the convolutional layers). As such it is not always possible to

attribute performance improvements solely to the convolutional part of the

system. Nonetheless, the notable progress that has been achieved using CNN–

based features in MIR confirms the proposals put forward by Humphrey et al.

[2013], namely that feature learning using DNNs presents an attractive means

to overcome the limitations of many, more traditional heuristic audio features.

One useful characteristic of automatically learned CNN–based features is

that they may offer some insight into what types of features are important
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for particular tasks. This can be achieved by extracting the features from

the convolutional layers of a CNN for a given input. Synonymous with the

idea of ‘seeing’ what the network learns in computer vision [Zeiler and Fergus,

2014], the output from a given convolutional layer can be deconvolved into

short–time Fourier transform (STFT) based spectrograms, which can then

be inverted and auralised. Choi et al. [2016b] presents an example of such

auralisation from a CNN that was trained for genre classification, consisting

of 5 convolutional layers followed by 2 dense layers (for classification). They

show that the first layers learned to represent vertical and horizontal lines and

suppressors (performing onset detection and harmonic component selection),

whereas the deeper layers learned more high-level textures and distributions in

the spectrograms. Dieleman and Schrauwen [2014] compared the performance

of a CNN trained on a music tagging task using either raw audio (i.e. time–

domain samples) or Mel spectrograms for training. They found that CNNs

trained on the Mel spectrograms outperformed those trained on raw audio, and

interestingly, the filters trained using raw audio learned to represent individual

(and groups of) frequency components from an input, somewhat similar to an

STFT.

In terms of QBV, to our knowledge there exists only one experiment on

CNN–based features, by Zhang and Duan [2017]. The authors present a single–

network QBV system based on a CNN implemented in a semi-Siamese network

structure, consisting of 2 identical but separate CNNs, one of which is trained

to learn the features for imitations and the other for imitated sounds. The

CNNs are then joined (the features are concatenated) and followed by 3 dense

layers that are used to match input vocalisations to audio samples (i.e. perform

classification). The convolutional layers are trained to learn feature representa-

tions from CQT spectrograms of vocal imitations and the imitated sounds from

the VocalSketch dataset. The system shows promising results, outperforming

the systems using SAEs from Zhang and Duan [2016a] in terms of how highly

the imitated (i.e. target sound) is ranked out of all retrieved sounds. This work

highlights the potential performance increase from using CNN–based features

compared to dense SAEs, however we note 2 downsides to this approach: i)

in the general case, QBV systems require efficient, deployable querying. This

method requires each sample in a sound library to be compared to a given

vocal query, meaning a dataset with N data samples requires N forward–pass

computations of the network, which is computationally demanding, for exam-

ple compared to nearest neighbour search in a feature vector space. As such,
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it may be more desirable to learn the features in the same way, but search for

sounds in the learned feature–space. ii) To train this type of CNN classifier

requires a large number of training examples. Nonetheless, if training data is

scarce one can make use of CNN–based feature learning by training a CAE on

a large dataset of unlabelled data that is representative of the types of sounds

that might be vocalised and queried, as we will demonstrate in Chapter 5.

Summary

In this section we have reviewed the application of deep neural networks for

learning audio features. In general, it is apparent that learned features outper-

form heuristic features for QBV and many other audio based tasks, including

chord recognition, onset detection, and source separation. The go–to models

for these tasks appear to be dominated by one network type: CNNs. These are

attractive for a number of reasons, including the ability to take time–frequency

representations of audio data as input (arguably the most commonly used rep-

resentation in audio–based MIR), the potential to auralise the learned features

at each layer of the trained network (providing insight to what the network is

learning at each layer), and the time–frequency invariance of learned features.

However, whilst some of the literature discussed in this section draws compar-

isons between learned features and heuristic features, these tend to be limited

in scope.

In Section 2.4.4.1 we reviewed a large number of heuristic features that have

been previously applied to analysis of vocal imitations and for QBV. To date

there has been no comprehensive comparison of how these features compare to

those learned from CNNs, for any of the audio related tasks discussed, let alone

QBV. In addition, whilst both SAE and CNN approaches show promising

performance in terms of retrieving an imitated sound from a set of audio

samples, none of the aforementioned feature learning based QBV methods

consider the perceptual similarity between the query and retrieved sounds.

Central to the evaluation of these approaches is the assumption that the target

sound is indeed the sound that was imitated, and the task is to match the

imitations and imitated sounds accordingly. As such the data labels are treated

as a proxy for similarity between sounds. In Chapter 5 we will consider a use

case in which the query is not necessarily an imitation of a sound in the

database, and investigate which features correlate well with the perceptual

similarity between an imitation and a set of audio samples, comparing CNN

based features to the full list of heuristic features discussed in Section 2.4.4.1.
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Vocal imitation of synthesised

sounds

To establish QBV as a viable search method we must first consider whether

people are actually able to vocalise the relevant acoustic features that exist in

the types of sounds that might be searched, specifically where these features

evolve over time. In Section 2.1 we reviewed the literature on physiological

and acoustic analysis of sounds produced in speech and singing, and in doing

so illustrated that differences in vocal features such as pitch, loudness, and

voice quality (or timbre) can be produced by controlling the airflow, laryngeal

musculature and articulatory components of the vocal tract. However, there

is a notable lack of research into acoustic analysis of vocalisations for non–

verbal, non–singing sounds. In this chapter we address this by presenting the

results of a vocal production experiment where musically trained participants

were asked to vocally imitate a range of synthesised sounds with different

time–varying acoustic features.

This chapter is laid out as follows: We first give the scope of the study

and identify the core research questions in Section 3.1. In Section 3.2 we

describe the stimuli, experimental procedure, and methods used to extract

the parameters of interest from the vocalisations. A statistical analysis of the

results is presented in Section 3.3, followed by a discussion in Section 3.4.

Finally, summary conclusions and implications of the results are presented in

Section 3.5.

68
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3.1 Research questions and scope

The main goal of this work is to establish the level of control with which

people can vocalise sounds containing different time–varying acoustic features.

We consider this in 2 scenarios. First, we investigate whether people can

vocalise target temporal envelopes for single features. We then investigate the

case of sounds made up of 2 time–varying features, both congruently and in

opposition.

We limit the scope of stimuli to sounds generated using a subtractive syn-

thesiser controlling for pitch, amplitude, and spectral shape (defined as the

cutoff frequency on a resonant low pass filter). These parameters are varied

over time according to particular envelopes, to control 3 acoustic features:

fundamental frequency (F0), loudness, and spectral centroid. The temporal

envelopes include ramps (up and down) and periodic modulations (2Hz and

5Hz). A detailed description of the method used to generate these sounds

is discussed in depth in Section 3.2.1. We use ramp and modulation enve-

lope shapes because they represent a base group of shapes from which a wide

variety of more complex shapes can be constructed (arguably all non–static

sounds are made up of various combinations of ascending and/or descending

acoustic features), yet are relatively simple, obviously perceptible, and easily

differentiable with respect to one another. We focus on pitch and loudness

because they are fundamental features of singing and music, and we expected

musically trained participants to be able to exercise some degree of control

over these. We include spectral centroid because it serves as an important

timbral feature, and we expected participants to be able to exert control over

this through manipulation of the articulatory components of the vocal tract.

By asking people to vocally imitate these sounds, we address the following

research questions:

1. How accurately can people imitate single features within sounds where

only 1 feature is changing over time?

2. When asked to imitate sounds where 2 features are changing, what is

the effect of the type of feature envelope, and type of feature?

(a) Do the type of envelopes being combined have an effect, and are

some more accurate than others (i.e. are ramp and modulation com-

binations more accurate than modulation combinations, and does
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ramp direction have an effect)?

(b) Do the type of features being combined have an effect (i.e. for the

same envelope combinations, are pitch and amplitude combinations

more accurate than pitch and spectral shape combinations)?

3.2 Method

3.2.1 Stimuli

The stimuli were generated using the basic source-filter model depicted in Fig-

ure 3.1. The sawtooth oscillator is ideal for our task because it is harmonically

simple yet contains enough harmonic content for the effect of the low pass filter

to be well perceived, whilst also not having any inharmonics, giving high pitch

clarity. The synthesiser time–varying parameters for pitch (P), gain (L) and

cutoff frequency (C ) are scaled in semitones (ST), decibels (dB) and linear

Hz respectively. The 4 envelope shapes (Figure 3.2) ramp down RD, ramp up

RU, 5Hz modulation MF, and 2Hz modulation MS were separately applied to

each of the 3 parameters on the synthesiser, giving 12 control stimuli with a

single feature envelope applied: PRD, PRU, PMF, PMS, LRD, LRU, LMF,

LMS, CRD, CRU, CMF, CMS. Each stimulus name indicates the feature and

envelope shape; for example PRD contains a pitch ramp down. Linear rates

of change in the envelope parameters (for ramps and modulations) correspond

with linear rates of change in ST, dB, and spectral centroid in the resultant

stimuli. A further 32 stimuli were then generated by combining the 8 L and

C envelopes with the 4 P envelopes in a pairwise manner, shown in Table

3.1. This design gives 12 control stimuli which can be compared to the 32

double–feature stimuli to test for the effect of different envelope combinations

on imitation accuracy. Each stimulus is 2s in duration, and each of the flat

sections in the envelope shapes are 0.5s. These flat sections were included

to give the participants a clear start and destination value for each feature

envelope.

3.2.2 Parameter selection

Regarding pitch, the literature discussed in Section 2.4.1 indicates that the

differences in SFF due to sex is large enough to warrant different base pitches
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Figure 3.1: Block diagram of the synthesis model used to generate the stimuli.
P = pitch, OSC = sawtooth oscillator, L = gain, LPF = 2nd order IIR low
pass filter, C = cutoff frequency. The parameters relate to the vocal features
of interest: F0, loudness and spectral centroid.

(a) (b) (c) (d)

Figure 3.2: Temporal envelope shapes used for the stimuli. All envelopes are
made up of two 0.5s sections at the start and end, with a 1s middle section.
(a) Ramp down (RD), (b) Ramp up (RU ), (c) 5Hz modulation (MF ), (d) 2Hz
modulation (MS ).

L Controls C Controls

P Controls RD RU MF MS RD RU MF MS

RD PRD+LRD PRD+LRU PRD+LMF PRD+LMS PRD+CRD PRD+CRU PRD+CMF PRD+CMS

RU PRU+LRD PRU+LRU PRU+LMF PRU+LMS PRU+CRD PRU+CRU PRU+CMF PRU+CMS

MF PMF+LRD PMF+LRU PMF+LMF PMF+LMS PMF+CRD PMF+CRU PMF+CMF PMF+CMS

MS PMS+LRD PMS+LRU PMS+LMF PMS+LMS PMS+CRD PMS+CRU PMS+CMF PMS+CMS

Table 3.1: Identifiers for the thirty–two double–feature stimuli. These are
produced by combining each of the four pitch (P) envelopes with each of the
loudness (L) and spectral centroid (C ) envelopes.

for male and female participants. We therefore chose to use base pitches of

110Hz for males and 220Hz for females. These values are comfortably within

the typical producible ranges presented in the above mentioned studies, and

have the same musical note (A). The ranges for FFR are also different for

male and female participants, therefore the pitch envelope ramps are based on

12ST deviations from the SFF. We opted to test a natural vibrato rate and

slower than normal rate, at 2Hz and 5Hz. The depth is 3ST (centered around

the mean F0) for both modulation rates which equated to a pitch change of

30ST/s at 5Hz and 12ST/s at 2Hz. These parameters give the participants

a realistic chance of accurately imitating the modulations. The range of the

loudness ramp envelopes (LRU and LRD) is 24dB. The extent for LMF and
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LMS envelopes is +/− 6dB (total min:max extent of 12dB). This gives a

maximum rate of change of 120dB/sec at 5Hz and 48dB/sec at 2Hz.

As previously mentioned, the spectral shape is controlled by a variable

cutoff frequency on a low pass resonant filter. Without knowing how people

might imitate a varying cutoff frequency it is difficult to decide on realistically

producible parameter values for these envelope shapes. It is also not clear how

the simple filter model used to create the stimuli might map to the spectral

shapes produced by the voice. However, the sound of a modulating cutoff

frequency is somewhat similar to a ‘wah–wah’ sound. It is therefore conceiv-

able that people might use the diphthong /AU/ (such as in the word ‘bout’)

to create this effect. Using the ‘wah-wah’ example, a periodic modulation of

spectral centroid can be achieved by periodically repeating /AU/. The results

from Gay [1968] show that this diphthong glide can be voiced at moderate

and fast speaking rates in a mean duration of 112ms and 98ms respectively.

Ferragne and Pellegrino [2010] present mean values for males as: /U/: 406Hz

and 1358Hz; /A/ 687Hz and 1477Hz, for F1 and F2 respectively. Lloyd [2005]

gives F1 and F2 values for both males and females, as: /U/ male: 286Hz and

1091Hz; /U/ female: 364Hz and 1303Hz; /A/ male: 731Hz and 1550Hz; /A/

female: 951Hz and 1819Hz. The range used for both the ramp and modu-

lation shapes in the stimuli is 300Hz to 1.3KHz, and is the same for both

male and female participants. This corresponds to spectral centroid ranges of

approximately 300Hz–900Hz for males and 400Hz–1kHz for females (note the

difference between male and female is due to the SFF of the stimuli), which

is comfortably within the producible ranges for speech [Přibil and Přibilová,

2012]. At a modulation rate of 5Hz the duration of a complete glide for the

/AU/ diphthong is 100ms, and at 2Hz it is 250ms: both are suitably within

the producible range.

3.2.3 Participants

Nineteen participants took part in the study. Of these, 16 were male and 3

were female. All of the participants had some experience in computer based

music production (this was a stated prerequisite during recruitment), and over

5 years experience playing an instrument. The participant ages were 18–25

(n=2), 26–35 (n=13), and 36–45 (n=4).



Chapter 3. Vocal imitation of synthesised sounds 73

3.2.4 Procedure

The study took place in an acoustically treated, sound deadened room. The

recording chain was an AKG C414 microphone (cardioid polar pattern, low cut

disabled, no pad engaged) and an Apogee Duet 2 audio interface (microphone

preamp and analogue to digital converter). The monitoring chain was an

Apogee Duet 2 interface (digital to analogue conversion), Audient ASP 510

monitor controller and PMC AML monitors. All audio was recorded at a

sample rate of 44.1KHz and bit depth of 24.

The participants were seated at a computer and presented with a basic

interface for auditioning the stimuli and recording their imitations (Figure

3.3). They were advised that the aim of the study was to establish how

accurately they could imitate the sounds with regards to pitch, loudness, and

spectral envelope. The instructor then gave an overview of the interface and

left the room for the duration of the study, to remove any potential influence

on the participants.

Each stimulus could be auditioned as many times as the participant wanted.

The imitation could then be practised and recorded when ready. Participants

were not able to listen back to their recordings, however if they were not

happy with their performance they were able to re–record it as many times

as they wished. Participants were advised that the final recording of each

sound would be used for the analysis. The stimuli were split into two sets:

controls and double–feature stimuli. The order of the stimuli within each set

was randomised.

3.2.5 Feature extraction

The imitation files were manually edited to remove sections of silence (or more

accurately, noise floor). The Sonic Annotator Vamp host [Cannam et al., 2010]

was then used to batch extract F0, loudness, and spectral centroid features.

The autocorrelation Yin based method by Mauch and Dixon [2014] was used to

calculate F0. Spectral centroid and loudness were extracted using the LibX-

tract Vamp plugins [Bullock, 2007]: spectral centroid was calculated as the

barycentre of the spectrum, using the definition given by Peeters [2004]; loud-

ness was calculated in sones, based on an implementation of the the loudness

model by Moore et al. [1997], described by Peeters [2004]. All features were
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Figure 3.3: The participant–facing graphical user interface used for the vocal
imitation study.

extracted with a 1024 sample window size and 256 sample window increment.

This gives one frame–wise feature vector for each of the control imitations and

two for each of the double–feature imitations.

3.2.6 Parameter extraction

Our goal is to test for the effect of single and double feature envelopes on imita-

tion accuracy, therefore we require metrics to compare differences between the

feature time series of an imitation and its corresponding stimulus. To achieve

this we measure imitation accuracy using parameters for each envelope that

capture information about both the range of feature values and the temporal

pattern. These are mean modulation rate and extent for the MF and MS

envelopes, and range and slope of the ramp for the RU and RD envelopes.

The methods for each of these processes are given in this section. Range and

extent are measured in ST for pitch, Hz for spectral centroid, and a ratio of

max:min value in sones for loudness; for pitch and loudness these parameters

are independent of the absolute value that the participant vocalises.

3.2.6.1 Modulation rate and extent

To extract rate and extent parameters we use methods that have previously

been applied to vibrato parameter extraction. The initial steps are similar to

the method used by Ferrante [2011], as follows:
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1. Low pass filter using a zero–phase 6th order IIR filter with a cutoff of

10Hz and 5Hz for imitations of the MF and MS envelopes respectively.

2. Locate local maxima using a peak–picking algorithm.

3. Interpolate the maxima positions using quadratic interpolation to improve

the rate calculation accuracy.

4. Remove any neighbouring maximum within the minimum period thresh-

old (0.1 seconds for 5Hz and 0.2 seconds for 2Hz), keeping the greater

maximum.

5. Find the minima between the maxima and (quadratically) interpolate

the values.

6. Find the modulation area (first and last half–cycle with an extent > 1/6

of the extent in the stimulus, from the mean value). This is to remove

any flat start and end sections in the imitation.

7. Calculate the per cycle rate (Figure 3.4): this is taken as the inverse

of the distance between two maxima/minima [Dromey et al., 2003; Fer-

rante, 2011; Prame, 1994]. Note - whether minima or maxima are used

will depend on whether the modulation area begins with a maxima or

minima

8. Calculate the per cycle extent (Figure 3.4): for pitch and spectral cen-

troid this is the absolute difference between the highest and lowest values

in each cycle [Hakes et al., 1988; Xu and Sun, 2002], measured in ST

and Hz respectively. For loudness this is measured as the ratio between

the highest and lowest sone values in a cycle.

9. Calculate the mean rate and extent for each imitation.

The detected minima and maxima were manually checked and adjusted

where necessary (after step 6 above). In 24 of the 722 feature envelope imita-

tions there were no modulation cycles where the extent was above our mini-

mum threshold, i.e. the participant had failed to vocalise a suitable modula-

tion. This is a relatively small proportion of the imitations, however we note

that they were mostly for the double–feature imitations of pitch (n=13) and

loudness (n=9) envelopes. These cases were removed from the analysis. As an

alternative approach to calculating modulation rate, we applied an FFT based

method by picking the peak magnitude bin from a discrete Fourier transform
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of the feature vector, however the periodicity was typically too noisy to give

satisfactory results.

Figure 3.4: F0 of one participant’s imitation of the PMS envelope (2Hz mod-
ulation). The modulation rate is calculated as the inverse of the distance
between two minima. Extent is the difference between highest and lowest
values in a cycle (measured in ST). The shaded area highlights a single mod-
ulation cycle.

3.2.6.2 Ramp slope and range

There are a number of ways to measure imitation accuracy for the ramp

envelopes (RD and RU ). These include cross correlating the imitation with

the stimulus and taking the error, using dynamic time warping to find the

least cost alignment path, or simply measuring the error of the imitation with

respect to the stimulus by testing the goodness of fit between them. However,

for this analysis we are particularly interested in the range and slope param-

eters of the imitated ramp, therefore we require a model that can be fitted to

each imitation with certain constraints to provide the parameters of interest.

The ramp envelopes used to generate the stimuli are piecewise linear functions

(see Figure 3.2). We therefore fit the frame–wise features of each imitation to

such a function, to determine the range and slope parameters.

We first remove the start and end 5% of the vector, as we are only interested

in the parameters of the middle section of the envelope where the ramp exists,

and these sections can contain a lot of variation (see Figure 3.5). We then fit

a continuous piecewise model that consists of 2 knots (k1 and k2), and where



Chapter 3. Vocal imitation of synthesised sounds 77

Figure 3.5: Pitch track (in ST) of one participant’s imitation of the PRU
envelope, overlaid with the fitted model. The shaded sections (first and last
5%) are ignored for the model fitting as they tend to have a large error due
to variation as people settle on a pitch and end a vocalisation.

the slope for pieces 1 and 3 is 0. This model is given by:

y =


β1 + ε(χ) , χ < k1

β2 + µχ+ ε(χ) , k1 ≤ χ ≤ k2
β3 + ε(χ) , χ > k2,

(3.1)

where β1, β2, β3 are the intercepts for each piece, µ is the slope of piece 2, ε is

the squared error and χ is the frame number. The model is fitted by iterating

through all possible integer values of χ for k1, k2, where k1 < k2 and each

piece consists of at least 5 consecutive frames, minimising the sum of squared

error (SSE), i.e.
∑bN×0.95c

χ=bN×0.05c ε(χ), where N = number of feature frames for

a given imitation. See Algorithm 1 for the operational process used to fit the

model, and figure 3.5 for an example of such a model fitted to an imitated pitch

envelope. Once a best fit is found, the slope and range of the imitation ramp

can be extracted from the model. For pitch and spectral centroid, the slope is

given by µ and range by |β1−β3|. For loudness we measure range and slope as

values relative to the loudness of the vocalisation. The range is therefore given

by max(β1,β3)
min(β1,β3)

, and the slope is taken as the range divided by the duration of

piece 2. To our knowledge this approach has not been previously applied to

ramp–based parameter extraction from acoustic feature vectors, however this

is not surprising as the approach is tailored to our particular problem, where
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we want to extract the range and slope parameters from imitations of 3–piece

continuous linear functions.

Algorithm 1 Continuous linear plateau–ramp–plateau model fitting

1: procedure fitModel(x0...N , y0...N )
2: start ← truncate(N × 0.05)
3: end ← truncate(N × 0.95)
4: best ← 232 − 1 . larger than worst expected model fit
5: for k1 from start + 5 to end − 10 do
6: for k2 from k1 + 5 to end − 5 do
7: β1 ← mean(ystart...yk1)
8: β2, µ← linearRegression(xk1...k2 , yk1...k2)
9: β3 ← mean(yk2 ...yend)

10: error← calculateSSE(x0...N , y0...N , β1...3, µ, k1, k2)
11: if error < best then
12: best← error
13: storeModelParameters(β1...3, µ, k1, k2)

14: function calculateSSE(x0...N , y0...N , β1...3, µ, k1, k2)
15: error ← 0.0
16: for i from 0 to k1 do
17: error = error + (yi − β1)2

18: for i from k1 to k2 do
19: error = error + (yi − (β2 + (xiµ)))2

20: for i from k2 to N do
21: error = error + (yi − β3)2

22: return error

This method is based on the assumption that participants did indeed imi-

tate a linear function for the ramp portion of the envelope. To test this we

first visually inspected each imitation feature vector plotted over its respec-

tive model (as shown in Figure 3.5). We then tested the linearity of the

imitated ramps using the Pearson product–moment correlation, and found a

strong indication of linearity (mean across all feature vectors: |r| = 0.79). Of

the resulting 722 pairs of parameters, 56 had either a middle ramp section

duration < 0.2s, or the slope was in the opposite direction to that in the stim-

ulus. These were mostly for the double–feature imitations of loudness (n=16)

and spectral centroid (n=37) ramps when combined with pitch modulation

envelopes. These cases were removed from the analysis because no meaning-

ful parameters could be extracted for comparison. Two alternative means of

modelling imitations of the ramp envelopes were also investigated: i) using

the breakpoints function from the strucchange package [Zeileis et al., 2001]

for R [R Core Team, 2016], and ii) an iterative mean squared error optimi-
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sation method from Crawley [2012]. However, both these approaches do not

constrain the piecewise function to be continuous, therefore the results were

deemed unsuitable given the continuous nature of the extracted frame–wise

features.

3.3 Statistical analysis

3.3.1 Single feature imitations

We tested for the effect of two factors on imitation accuracy: envelope and

feature, using linear mixed effect regression (LMER). This was used because

it is suited to a factorial analysis for within–participant repeated measures,

controls for variance due to random effects, and can effectively handle missing

data (removal of the failed imitation cases resulted in an unbalanced dataset).

Separate LMER models were built for each parameter, with feature and

envelope as fixed effects (with interaction terms), and a random intercept

for each participant. Normality and homoscedasticity of the residuals were

checked for each model by visual inspection. In cases where these assump-

tions were not clearly met we ran robust models [Koller, 2016] and found no

notable differences in parameter estimates or their variances between robust

and non-robust approaches. All the models were built using the lme4 package

[Bates et al., 2015] for R. The effect of each factor was tested using type III

analysis of variance (ANOVA) with Satterthwaite’s degrees of freedom approx-

imation from the lmerTest package [Kuznetsova et al., 2016], with all p–values

adjusted using the Benjamini & Hochberg false discovery rate correction from

the p.adjust function in R (FDR = 5%).

3.3.1.1 Ramp envelopes

A full factorial ANOVA was conducted on the range and slope LMER mod-

els, testing for the fixed effects of feature (pitch, loudness, and spectral

centroid), envelope (RU and RD), and interactions between the factors.

For imitation range, there is a significant interaction between feature and

envelope (F (2, 93) = 5.1, padj = 0.024). A significant interaction between

factors means that it is not reasonable to analyse this model in terms of main

effects [Nelder, 1977], therefore we conducted a post–hoc analysis of interac-



Chapter 3. Vocal imitation of synthesised sounds 80

tion contrasts using the phia package for R [De Rosario–Martinez, 2015]. This

showed a significant contrast between loudness/pitch features and RU /RD

envelopes (χ2(1) = 9.9, p = 0.005) and a smaller but marginally significant

contrast between loudness/spectral centroid features and RU /RD envelopes

(χ2(1) = 4.1, p = 0.066). This effect is shown in Figure 3.6a, where the rel-

atively large difference between RU and RD envelopes for loudness does not

exist for pitch and spectral centroid.

Participants tended to imitate a larger loudness range for descending ramps

than for ascending, with mean ranges of 1.09 (LRD) and 0.83 (LRU ). The

imitation ranges are generally larger than the stimulus range, except in the

case of LRU, and PRD where it is very close to 1 (0.98). Participants tended to

overshoot the range for PRU (1.01) whereas they undershot for PRD (0.98),

however these differences are small in real terms, equating to a difference of

only 36 cents. Imitations of pitch range are more accurate and have much

lower variance than for loudness and spectral centroid.

In terms of ramp slope (Figure 3.6b), we found no significant interaction

between envelope and feature, and no significant effect of envelope on

imitation accuracy. There is however a significant and large effect of feature

(F (2, 92) = 17.2, padj < 0.001): slope means are most accurate for loudness

(1.01) followed by pitch (1.29) and spectral centroid (1.59). The slopes of the

imitations are steeper than the stimulus slopes for all features and envelopes.

3.3.1.2 Modulation envelopes

As with the ramp envelopes, a full factorial ANOVA was conducted on the rate

and extent LMER models, with the same factors of feature and envelope,

but levels of MF and MS for the envelope factors (instead of RU and RD).

The most striking finding here is the relative consistency of the modulation

rate results across all features, compared to the other parameters. In general

participants managed to imitate the rate with a high level of accuracy, with

mean rates only slightly above the target for all stimuli (Figure 3.6c). There

is a significant effect of envelope on modulation rate (F (1, 113) = 6.4, padj =

0.025): imitation rates are higher than the stimuli for 2Hz envelopes compared

to 5Hz. This effect is observed for all features, but is largest for spectral

centroid.

It is worth noting that an alternative, and perhaps more reasonable way
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to measure imitation accuracy for rate, is to take the error in Hz instead of

using the imitation:stimulus ratio. For example, a ratio of 1.5 at 2Hz equates

to an error of 1Hz, whereas a ratio of 1.5 at 5Hz equates to an error of 2.5Hz.

Conceivably these errors are therefore not comparable in real terms. To test

this we repeated the analysis using error in Hz instead of ratio and found that

the effect of envelope disappears.

For modulation extent there is no significant interaction between feature

and envelope, and no significant effect of feature, but there is a significant

effect of envelope (F (1, 94) = 7.9, padj = 0.024). We note that although the

interaction is not significant, it is marginally so (F (2, 94) = 2.4, padj = 0.093),

and there is clearly some effect of this, as can be seen in Figure 3.6d. This can

be explained in the small difference between fast and slow modulation rates for

loudness (where the extent for the imitations is consistently lower than for the

stimuli), and the fact that a slower modulation rate appears to lead to a larger

imitation extent for pitch and spectral centroid. The lack of significance for

this effect is likely due to the large variance in both pitch and spectral centroid

imitations. Overall, participants performed best when imitating the extent for

PMS, indicating a positive effect of slower rate for pitch. This effect is not

observed for loudness, or spectral centroid where there is an asymmetry in the

direction of error fast and slow rates, but a similar absolute error.

3.3.2 Double–feature imitations

In this section we report how the accuracy of each single feature envelope

(e.g. PRU ) changes when it is combined with envelopes of another feature

(e.g. each of the spectral centroid and loudness envelopes). We perform the

analysis by modelling the imitation accuracy for each feature separately, again

using LMER. This gives 8 LMER models for each feature: 4 for each set

of controls by 2 parameters. Each model was fitted with a fixed effect of

stimulus type, and a random intercept for each participant.

The factor of stimulus type has 3 levels for pitch (pitch, pitch+loudness,

pitch+spectral centroid), and 2 levels for loudness and spectral centroid (loud-

ness and loudness+pitch, spectral centroid and spectral centroid+pitch). We

average over the double–feature stimuli for each level, allowing us to test for

the effect of the different feature combinations on each of the controls. This is

tested by submitting each of the LMER models to a one way type III ANOVA
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(a) (b)

(c) (d)

Figure 3.6: (a) Range, (b) slope, (c) rate, and (d) extent accuracy for imita-
tions of the 12 control stimuli (2 ramp envelopes and 2 modulation envelopes
for each of the 3 features), across all participants. Values are means across
participants with standard error bars.

using Satterthwaite’s approximation for denominator degrees of freedom, with

a factor of stimulus type. As with the single–feature analysis, all p–values

for each feature were adjusted using the Benjamini & Hochberg false discovery

rate correction from the p.adjust function in R (FDR = 5%). The results

for pitch, loudness, and spectral centroid are given in Tables 3.2, 3.4, and 3.6

respectively, and for completeness we also include the full results for every

level of double–feature stimuli (not averaged over stimulus type) in Tables

3.3, 3.5, and 3.7.
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3.3.2.1 Pitch

The results show no significant effect of the double-feature stimuli on accuracy

of the range, rate, or extent parameters (Tables 3.2 and 3.3). There is how-

ever a significant effect of the double-feature stimuli on slope accuracy for both

the PRU (F (2, 152) = 5.6, padj = 0.017) and PRD (F (2, 150) = 7.2, padj =

0.008) envelopes. A Tukey post-hoc analysis of the PRU slope model showed

significant differences between the control and both pitch+loudness (z =

−3.1, padj = 0.003), and pitch+spectral centroid (z = −3.3, padj = 0.003)

stimulus types. This effect is also observed for the PRD slope model, with

significant differences between the control and both pitch+loudness (z =

−3.7, padj < 0.001), and pitch+spectral centroid(z = −3.385, padj = 0.001)

stimulus types. For both models we found no significant differences between

pitch+loudness and pitch+spectral centroid stimulus types.

Figures 3.7a and 3.7b show the effect of each stimulus on slope accuracy

for PRU and PRD : there is an improvement in slope accuracy when the PRD

and PRU envelopes are combined with modulation envelopes of loudness or

spectral centroid, particularly so for PRD. This effect may be due to the loud-

ness and spectral centroid modulation cycles serving as a time–keeping aid

for the pitch ramp stimuli, however it is not observed when loudness or spec-

tral centroid ramp envelopes are combined with pitch modulation envelopes

(Tables 3.5 and 3.7).

Although there are no significant effects of the double–feature stimulus

types for the range, rate and extent parameters, we note the following obser-

vations: accuracy for the range parameter is very high compared to the other

parameters (with max/min 95% confidence intervals of 0.97/1.04 across all

stimulus types), indicating that participants were able to imitate the target

ranges of the ramps even when they were imitating the double-feature stimuli.

The accuracy of modulation rate for double–feature stimuli is lower than for

the single–feature stimuli, however the direction of error is different for the 5Hz

and 2Hz envelopes: with the PMF envelope, the rate is lower for imitations of

double–feature stimuli than for single–feature, whereas for the PMS envelope

the opposite trend is observed. Modulation extent is below the target extent

for the 5Hz pitch envelopes (PMF ), and the double–feature stimuli appear to

have a larger effect on extent accuracy for the PMF envelope than for PMS.
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Range Slope Rate Extent

Stimulus Type PRD PRU PRD PRU PMF PMS PMF PMS

Pitch(Control) 0.98 [0.01] 1.01 [0.01] 1.35 [0.09] 1.23 [0.08] 1.01 [0.04] 1.04 [0.02] 0.94 [0.16] 1.00 [0.05]

Pitch + Loudness 1.00 [0.00] 1.02 [0.01] 1.14 [0.04] 1.03 [0.03] 0.87 [0.03] 1.10 [0.02] 0.83 [0.04] 1.03 [0.03]

Pitch + Sp. Centroid 1.00 [0.00] 1.03 [0.01] 1.15 [0.04] 1.02 [0.03] 0.88 [0.03] 1.11 [0.03] 0.77 [0.05] 0.98 [0.03]

Table 3.2: Means (and standard errors) of pitch imitation accuracy for pitch
vs. the double–feature stimulus types (pitch+loudness, pitch+spectral cen-
troid). Bold values indicate a significant effect of stimulus type (e.g. single
vs. double–feature) on imitation accuracy.

Double-feature stimuli (combined with control)

Control LRD LRU LMF LMS CRD CRU CMF CMS

PRD
Slope 1.35 [0.09] 1.19 [0.08] 1.33 [0.10] 1.01 [0.06] 1.01 [0.06] 1.27 [0.11] 1.24 [0.08] 1.02 [0.06] 1.06 [0.06]
Range 0.98 [0.01] 0.98 [0.01] 0.99 [0.01] 1.01 [0.01] 1.01 [0.01] 0.98 [0.01] 1.01 [0.01] 1.00 [0.01] 1.01 [0.01]
PRU
Slope 1.23 [0.08] 1.21 [0.09] 1.12 [0.06] 0.92 [0.04] 0.89 [0.03] 1.16 [0.08] 1.10 [0.06] 0.91 [0.03] 0.91 [0.03]
Range 1.01 [0.01] 1.02 [0.01] 1.02 [0.02] 1.05 [0.01] 1.01 [0.01] 1.03 [0.01] 1.01 [0.01] 1.03 [0.01] 1.04 [0.01]
PMF
Rate 1.01 [0.04] 0.91 [0.05] 0.90 [0.04] 0.95 [0.04] 0.73 [0.08] 0.88 [0.06] 0.93 [0.05] 0.99 [0.04] 0.73 [0.07]

Extent 0.94 [0.16] 0.83 [0.09] 0.76 [0.06] 0.66 [0.08] 1.05 [0.09] 0.65 [0.08] 0.74 [0.09] 0.70 [0.07] 0.97 [0.11]
PMS
Rate 1.04 [0.02] 1.07 [0.05] 1.08 [0.04] 1.20 [0.06] 1.05 [0.03] 1.06 [0.04] 1.06 [0.03] 1.28 [0.10] 1.06 [0.03]

Extent 1.00 [0.05] 0.96 [0.05] 0.95 [0.06] 1.10 [0.07] 1.10 [0.05] 0.95 [0.06] 0.91 [0.06] 1.06 [0.08] 1.00 [0.06]

Table 3.3: Results (mean and standard error) for imitations of the four pitch
envelopes, both individually (Control) and when combined with each of the
loudness and spectral centroid envelopes.

3.3.2.2 Loudness

The results for loudness envelopes show a significant effect of the double–

feature stimulus type on accuracy of range for the LRD envelope (F (1, 73) =

14.6, padj < 0.001), as can be seen in Table 3.4. Figure 3.8a illustrates how this

effect is driven by an asymmetry in the error between the LRD envelope and

all the double–feature envelopes except LRD+PRD : for LRD and LRD+PRD

participants tended to imitate a larger loudness range, whereas for the other

double–feature envelopes the imitation range is smaller than the stimulus.

This effect is not observed for LRU, where there is very little difference between

the stimulus types. There is also a significant effect of double–feature envelopes

on accuracy of loudness extent for the LMS envelopes (F (1, 71) = 10.7, padj =

0.006). Here there is a small but notable improvement in imitation accuracy

when the LMS envelope is combined with any of the pitch envelopes, as can

be seen in Figure 3.8b.

There are no statistically significant differences between stimulus types for
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(a) (b)

Figure 3.7: Pitch slope accuracy for controls PRD (a) and PRU (b) as single
feature envelopes and when combined with each of the loudness and spectral
centroid envelopes. Values are means across participants and envelopes with
standard error bars.

the other loudness envelope parameters, however there is a notable difference

between accuracy of the ramp slope for the controls compared to the double–

feature stimuli. Participants tend to imitate a steeper slope when the loudness

ramps are combined with pitch envelopes, for both ascending and descending

ramps. This is the case for all double–feature stimuli (Table 3.5).

Range Slope Rate Extent

Stimulus Type LRD LRU LRD LRU LMF LMS LMF LMS

Loudness(Control) 1.09 [0.03] 0.83 [0.03] 1.00 [0.07] 1.02 [0.13] 1.03 [0.02] 1.08 [0.03] 0.93 [0.02] 0.91 [0.02]

Pitch + Loudness 0.92 [0.02] 0.81 [0.01] 1.17 [0.06] 1.28 [0.09] 1.01 [0.02] 1.13 [0.03] 0.92 [0.01] 0.99 [0.01]

Table 3.4: Means (and standard errors) of loudness imitation accuracy for
loudness vs. pitch+loudness stimulus types. Bold values indicate a significant
effect of stimulus type (e.g. single vs. double–feature) on imitation accuracy.

3.3.2.3 Spectral centroid

In terms of spectral centroid envelopes, we found no significant effect of stimu-

lus type on imitation accuracy for any of the parameters (Table 3.6). Interest-

ingly, there is notably lower variance for both the range and extent parameters

when the spectral centroid envelopes are combined with other pitch envelopes,

and the lack of statistical significance for this effect is likely due to the large

amount of variance in the single–feature imitations.
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Double-feature stimuli (combined with control)

Control PRD PRU PMF PMS

LRD
Slope 1.00 [0.07] 1.18 [0.11] 1.22 [0.14] 1.19 [0.13] 1.10 [0.14]
Range 1.09 [0.03] 1.02 [0.05] 0.85 [0.05] 0.92 [0.05] 0.90 [0.04]
LRU
Slope 1.02 [0.13] 1.15 [ 0.12] 1.32 [0.16] 1.23 [0.17] 1.43 [0.25]
Range 0.83 [0.03] 0.77 [0.03] 0.87 [0.03] 0.80 [0.03] 0.80 [0.02]
LMF
Rate 1.03 [0.02] 1.09 [0.03] 1.07 [0.03] 1.00 [0.02] 0.90 [0.05]

Extent 0.93 [0.02] 0.92 [0.02] 0.90 [0.02] 0.90 [0.02] 0.97 [0.02]
LMS
Rate 1.08 [0.03] 1.18 [0.05] 1.10 [0.04] 1.21 [0.08] 1.04 [0.03]

Extent 0.91 [0.02] 0.96 [0.03] 1.00 [0.03] 1.02 [0.03] 0.97 [0.02]

Table 3.5: Results (mean and standard error) for imitations of the four loud-
ness envelopes, individually (Control) and when combined with each of the
pitch envelopes.

(a) (b)

Figure 3.8: Loudness range (a) and extent (b) accuracy for loudness controls
LRD (a) and LMS (b) as single feature envelopes and when combined with
each of the pitch envelopes. Values are means across participants with stan-
dard error bars.

Range Slope Rate Extent

Stimulus Type CRD CRU CRD CRU CMF CMS CMF CMS

Sp. Centroid (Control) 1.23 [0.11] 1.15 [0.08] 1.58 [0.19] 1.61 [0.13] 1.00 [0.03] 1.11 [0.04] 0.88 [0.12] 1.13 [0.09]

Pitch + Sp. Centroid 1.08 [0.06] 1.08 [0.06] 1.89 [0.17] 1.48 [0.13] 1.03 [0.02] 1.15 [0.03] 0.74 [0.03] 0.96 [0.04]

Table 3.6: Means (and standard errors) of spectral centroid imitation accuracy
for spectral centroid vs. pitch+spectral centroid stimulus types.
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Double-feature stimuli (combined with control)

Control PRD PRU PMF PMS

CRD
Slope 1.58 [0.19] 1.72 [0.26] 1.99 [0.39] 1.89 [0.36] 2.00 [0.36]
Range 1.23 [0.11] 0.94 [0.1.0] 1.31 [0.14] 1.01 [0.09] 1.10 [0.13]
CRU
Slope 1.61 [0.13] 1.42 [0.18] 1.57 [0.21] 1.72 [0.35] 0.99 [0.12]
Range 1.15 [0.08] 1.13 [0.13] 1.05 [0.09] 1.13 [0.12] 0.99 [0.17]
CMF
Rate 1.00 [0.03] 1.06 [0.04] 1.05 [0.02] 1.04 [0.02] 0.98 [0.04]

Extent 0.88 [0.12] 0.74 [0.07] 0.69 [0.07] 0.79 [0.07] 0.75 [0.07]
CMS
Rate 1.11 [0.04] 1.14 [0.05] 1.14 [0.06] 1.15 [0.08] 1.18 [0.07]

Extent 1.13 [0.09] 0.92 [0.08] 0.90 [0.09] 1.07 [0.11] 0.96 [0.06]

Table 3.7: Results (mean and standard error) for imitations of the four spectral
centroid envelopes, individually (Control) and when combined with each of the
pitch envelopes.

3.4 Discussion

3.4.1 How accurately can people imitate the temporal envelopes

of pitch, loudness and spectral centroid?

To address this question we focus the discussion on imitations of the control

stimuli, and consider the ramp and modulation envelopes separately. Regard-

ing the ramp envelopes, pitch was clearly the most accurate feature and had

lowest variance in terms of range, with mean ratios of 0.98 for descending

ramps and 1.01 for ascending. This result is somewhat expected as there is

a well established relative scale for pitch, giving a concrete reference point

for start and destination values that may not exist for loudness and spectral

centroid.

There is an asymmetry in the accuracy of pitch range, with a clear effect

of ramp direction. Perceptual accuracy of pitch ramp extreme values has

been shown to be more accurate at the higher extremities [d’Alessandro et al.,

1998]. This may explain why imitation range is more accurate for ascending

ramps, if the participants were better able to perceive the correct ramp end

pitch. Interestingly, these results contrast those for the case of imitating a

pitch interval, where it has been shown that both good and poor pitch singers

tend to compress the interval, irrespective of direction [Pfordresher and Brown,

2007].

In terms of pitch error, the ratios of 0.98 for descending and 1.01 for ascend-

ing equate to errors of -24 cents and +12 cents respectively, with a mean
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absolute error of 23 cents across both ramp envelopes. These results are not

directly comparable to the many studies on singing voice pitch accuracy. Such

studies tend to measure pitch interval error using melodies or intervals with

discrete notes (our stimuli are based on a ramp between 2 notes). Nonethe-

less, previous studies on pitch interval accuracy show higher interval errors for

non-musician adults: Pfordresher et al. [2010] report mean error of 87 cents

for a 5 note melody task; Pfordresher and Brown [2007] report approximate

mean error of 80 cents for good singers, and 155 cents for poor pitch singers

in an interval task. In contrast, our results are similar to that those in Mürbe

et al. [2004], where professional singers exhibited a mean interval error of 19

cents when singing a slow, legato arpeggiated triad.

There does not appear to be any effect of ramp direction on spectral cen-

troid range, however there is a clear asymmetry in the loudness imitations:

participants exceeded the target range for descending ramps, and did not

reach it for ascending, with mean ratios of 1.09 and 0.83 respectively. There

are two factors at play here: ramp direction and autophonic loudness. Auto-

phonic loudness is the perceived loudness of a sound that one produces with

ones own voice. Lane et al. [1961] show that autophonic loudness resembles a

power function with an exponent of 1.1 (slope on a log–log scale of dB SPL

and autophonic loudness). Subsequent studies have validated the presence

of this effect, with autophonic loudness slopes of 1.2 [Lane et al., 1970] and

1.3 [Yadav, 2016] for the phoneme /A/. Ectophonic loudness is the perceived

loudness of sounds external to the body [Yadav, 2016], which also resembles

a power function but with a slope of 0.6. This means that autophonic stimuli

(i.e. one’s own voice) will sound louder than ectophonic stimuli with equivalent

loudness. In accordance with this power law, one would expect a vocalist to

overestimate the actual loudness they produce, stopping short of the target

destination loudness for an ascending ramp and surpassing it for descending.

Our results show this effect, however we must also consider the perceptual

bias of ramp direction.

Neuhoff [1998, 2001] shows that people tend to overestimate the loudness of

rising sounds compared to falling. It is therefore conceivable that participants

may have overestimated the ectophonic loudness range for ascending ramps

and underestimated it for descending, when listening to the stimuli. This has

the opposite effect of autophonic loudness. Our results indicate that the effect

size of the autophonic loudness response counteracts the perceptual bias for

rising tones. This effect is consistent across the participants (see standard
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error bars in Figure 3.6a).

The fact that spectral centroid and sharpness both correlate with bright-

ness [Ilkowska and Mískiewicz, 2006; Schubert and Wolfe, 2006] allows us

to compare the spectral centroid imitations of our participants to those of

Lemaitre et al. [2016b], where participants imitated the sharpness of sounds

(amongst other features). The authors define sharpness as “the sensation that

distinguishes sounds on a continuum ranging from dull to sharp (or bright)”,

which is calculated using the acum descriptor of Fastl and Zwicker [2006].

Lemaitre et al. found a strong correlation between sharpness in the stimuli

and imitations, with all participants producing sharpness levels around 30%

higher than in the stimuli. We also found that participants tended to imitate

sounds with greater spectral centroid values (and ranges) than in the stimuli.

In our study the stimuli spectral centroid ranges are approximately 300–900Hz

for males and 400Hz–1kHz for females. These appear to fit comfortably within

the producible ranges for speech [Přibil and Přibilová, 2012], indicating that

this finding is not due to physical limitations on upper or lower bounds of

spectral centroid in vocalisations. We also note that participants did not pro-

duce upper spectral centroid values near those given in given in Přibil and

Přibilová [2012]. This is likely due to the fact that they were producing voiced

phonemes: speech will typically have higher spectral centroid values due to

the presence of unvoiced phonemes.

The results for slope accuracy are somewhat surprising. Even without a

clear relative scale, such as we have with pitch, we would expect the rate of

change to be similar across features (given equal level of control over each

feature). In fact we see a clear and large effect of feature, with the slopes

imitated remarkably well for loudness (1.0 descending, 1.02 ascending), fol-

lowed by pitch (1.35 descending, 1.23 ascending) and spectral centroid (1.58

descending, 1.61 ascending), and no effect of ramp direction. The high accu-

racy of pitch range means that we can attribute the slope error to a shortening

of the ramp envelopes (participants imitated the correct range over a shorter

period). We also observe high slope values for spectral centroid. This may be

due to participants trying to vocalise the correct duration for the stimuli: as

the ranges tend to be larger, so the slopes must be steeper for the duration

to be accurate. The steep slopes for spectral centroid ramps may be due to

the unfamiliar process of vocalising a diphthong (as in ‘wah’) slowly: this is

normally spoken at a natural, relatively fast rate compared to the ramps in

the stimuli.
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In general, accuracy was high for modulation rate, with mean ratios for

each stimulus ranging from 1.00 (CMF ) to 1.11(CMS ). As noted in Section

3.3.1.2, when measured as a ratio the modulation rate error is higher for the

2Hz stimuli than for 5Hz, across all features. This shows that for the two

rates we have tested here, relative error appears to be inversely proportional

to modulation rate, in contrast to previous findings on accuracy of singing

vibrato at rates of 3 and 5Hz, where no such relationship was observed [King

and Horii, 1993]. This is likely to be influenced by two factors: Firstly, the

5Hz rate is well within the producible range, particularly for pitch change

[Sundberg, 1973; Xu and Sun, 2000] and also at a natural vibrato rate [Hakes

et al., 1988; Prame, 1994; Sundberg, 1994b]; secondly, 2Hz is such a slow

modulation rate that slight deviations in timing would cause a relatively large

error compared to the 5Hz stimuli.

As with ramp range, modulation extent is considerably more accurate for

pitch than loudness and spectral centroid, with ratio scores corresponding to

mean errors of 1 cent at 2Hz and -18 cents at 5Hz (target extent for both rates

was 3ST). The difference between modulation rates indicated that participants

were more able to imitate the target range at 2Hz; an effect that is not observed

for loudness or spectral centroid. The difference in accuracy between pitch,

loudness and spectral centroid is again likely due to the existence of a well

established relative scale for pitch, and the below–target loudness extent is

likely due to the effect of autophonic response [Lane et al., 1961], as previously

discussed.

3.4.2 What happens to imitation accuracy when people are

asked to vocalise multiple feature envelopes simultane-

ously?

In general imitation accuracy was not significantly different between the single

and double–feature stimuli. Imitation accuracy of ramp range is not signifi-

cantly improved for double–feature envelopes of the same shape, nor adversely

affected for double–feature envelopes with inverse shapes (e.g. pitch ramp

down with loudness ramp up). This is surprising as previous studies have

identified interactions between pitch, loudness, and formants. For example,

phonetogram studies have shown positive correlations of pitch and loudness

for speech [Alku et al., 2002; Gramming, 1991; Gramming et al., 1988]. This

has also been shown to exist in singing [Sundberg et al., 1993] and for the sus-
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tained vowel /A/ [Huber et al., 1999] (Huber et al. also identified an increase

in first formant frequency with intensity). In addition to these findings, it is

clear that an increase in pitch would naturally produce an increase in spectral

centroid. This suggests that for us to find no significant change in imitation

accuracy for double–feature envelopes, the participants demonstrated an abil-

ity to control multiple features simultaneously, at least within a similar level

of error to when they were required to control a single feature.

Pitch slope accuracy is improved when pitch ramp envelopes are combined

with modulation envelopes for other features. We believe that this is due to the

modulation cycles acting as a time keeping aid, which combined with accurate

pitch range will naturally bring the slope closer to the target. The effect is not

observed for loudness or spectral centroid ramps. This is interesting because

pitch rate is adversely affected by double–feature stimuli, whereas loudness

and spectral centroid rate are not. Therefore it appears that participants are

not able to retain control over pitch modulation as well as they are for the

other two features.

There is some indication that combining feature envelopes may introduce

conformity amongst how participants imitate the sound. In most cases there

is lower or equal variance in the imitations for the double–feature stimuli com-

pared to those with single features. This effect is unexpected if we consider

double–feature envelopes to be more difficult to imitate than single features:

intuitively one would expect across participant variation to increase with dif-

ficulty.

Finally, when imitating stimuli containing two modulation envelopes with

different rates, participants tended to find a rate somewhere between 2Hz

and 5Hz (for example the pitch rate accuracy ratio for both PMF+LMS and

PMF+CMS is 0.73, which equates to 3.65Hz). This indicates an inability to

accurately vocalise multiple feature envelopes with different modulation rates,

as might be expected.

3.4.3 Effects of singing experience and sex

The effects of singing experience and sex are not within the scope of this

study, therefore we did not control for these when recruiting the participants.

We did however ensure that the stimuli parameters for pitch were suitably

differentiated for male (n = 16) and female (n = 3) participants with regards
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to range and extent (see Section 3.2.2 for details).

In terms of singing training, participants were asked if they play an instru-

ment or sing, and if so, for how many years they had spent doing this. Of the

19 participants, 6 responded as having been a singer for 5 years or more. We

tested for the effect of both singing training and sex on the imitation accuracy

of each parameter using LMER models with participant as a random effect

and the following fixed effects: feature, envelope, singing experience,

and sex. A full factorial ANOVA on the LMER models indicated no signifi-

cant effects of either singing experience or sex on the imitation accuracy

of any of the parameters. It is worth mentioning that this does not mean that

singing experience or sex have no effect on a persons’ ability to imitate the

stimuli used in this study: the lack of a significant effect may be due to a

number of factors such as the limited sample size and ambiguity about what

constitutes singing experience.

3.4.4 Participant feedback

The participants completed a short feedback questionnaire following the study.

A breakdown of the responses is shown in Table 3.8. All participants reported

that they were able to detect which features were changing in each sound, how-

ever only 14/19 felt that they were able to vocalise the features with regards

to timing, and 10/19 with regards to depth/extent. This indicates that par-

ticipants felt that they could always hear and perceive what was happening in

the stimuli, however they were not always confident in the accuracy of their

vocalisations. There was also more uncertainty (‘Neither’ response) in the imi-

tation accuracy of depth or extent, with 6/19 participants unsure of whether

they were able to imitate it accurately (compared to 0/19 for timing). This

feedback is partially reflected in the results, where timing (rate) accuracy for

modulation envelopes is generally higher than extent accuracy for the 5Hz

envelopes, however it is not the case for 2Hz envelopes. Most of the partic-

ipants (17/19) felt that it was more difficult to imitate the double–feature

envelopes than the controls. This is interesting given that results show that

for most double–feature envelopes the control imitations are not significantly

more accurate than the respective double-feature envelopes.
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# Responses

Disagree Neither Agree

“I was able to detect which features were changing in each sound” 0 0 19

“I managed to accurately vocalise the features with regards to timing” 5 0 14

“I managed to accurately vocalise the features with regards to depth/extent” 3 6 10

“It was more difficult to imitate two features changing simultaneously than one” 0 2 17

“I felt comfortable using my voice in this way [as required for the study]” 3 4 12

“I have good vocal control of pitch” 2 6 11

“I have good vocal control of loudness” 3 7 9

“I have good vocal control of timbre” 2 5 12

“If I have a sound in my head, I can describe it using my voice (without using words)” 2 4 13

“When making music with other people, I sometimes use my voice to describe sounds” 3 3 13

Table 3.8: Participant responses from the post study questionnaire. The
responses were recorded on a seven point Likert scale, which is summarised
here on a three point scale.

3.5 Summary and conclusions

The findings of this study complement previous work on vocal imitation by

studying the interactions of three features central to voice quality: pitch,

loudness and spectral centroid, when applied to a foundation set of envelope

shapes. In general participants performed remarkably well at imitating pitch

range and modulation extent, which is likely due to their musical training.

This indicates that musicians can exercise a high level of control over pitch

and perform vibrato, even when they are not singers. This is an encouraging

result that highlights the potential of using the voice as a medium for sound

search in QBV applications. Most importantly though, the results of this

study suggest that the participants were able to exercise control over 2 feature

envelopes simultaneously, at least as well as they were able to imitate single

feature envelopes. In addition, there is a small but consistent effect of double–

feature stimuli on across–participant variation (it is lower for double–feature

stimuli than for single–feature). The main findings are summarised as follows:

1. In most cases, combining two feature envelopes does not have a signifi-

cant effect on imitation accuracy.

2. There is asymmetry in the accuracy and direction of error for both pitch

and loudness ramps. For pitch, participants tended to overshoot the tar-

get range for ascending ramps, and these were imitated more accurately.

The opposite effect is observed for loudness.
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3. Ramp range accuracy is highest for pitch, with considerably less variation

compared to loudness and spectral centroid range.

4. There is a significant effect of feature on slope accuracy: loudness is most

accurate, followed by pitch and spectral centroid.

5. Participants generally imitated modulation rates of 2Hz and 5Hz with

high accuracy for all features.

6. Modulation extent is more accurate for pitch than for loudness and spec-

tral centroid.

7. There are clear effects of modulation rate (2Hz vs. 5Hz) on imitation

accuracy: higher (and overestimated) imitation rates occur at the slower

modulation rate.

8. A similar effect is observed for pitch and spectral centroid extent: higher

extents are vocalised at the lower modulation rate (2Hz). This effect is

not observed for loudness.

9. Slope accuracy tends to improve when the ramp envelope is combined

with a modulation envelope of another feature, if the modulation rate is

reasonably accurate.

10. Double–feature envelopes containing modulation envelopes at different

rates tend to reduce rate accuracy for both features, to a rate somewhere

between the two rates.

In this chapter we have investigated vocal imitation accuracy using com-

putational methods. Whilst this serves to quantify the feature–level accuracy

of the imitations, as was the aim of this experiment, it does not necessarily

inform us about vocal imitation accuracy in perceptual terms. For example,

a less accurate imitation in terms of the features and parameters used here

may be perceptually more similar to the stimuli than a more accurate imi-

tation. This scenario is conceivable if there are specificities or voice quality

indicators beyond the low–level features tested here that contribute to vocal

imitation accuracy. In addition, the stimuli used in this experiment were syn-

thesised to vary only in the low–level features of interest. As such, they are

not ‘real–world’ examples of sounds that might exist in sample libraries for

music production. Now that we have established the potential for the voice as

a medium for QBE, we turn to a more real–world application that was identi-

fied in Section 1.1: QBV for percussion sounds, and investigate the ability of

musicians to vocalise sounds in terms of perceptual similarity.



Chapter 4

Vocal imitation of percussion

sounds

In the previous chapter we investigated vocal control of elementary synthe-

sised sounds. This allowed us to control the individual temporal envelopes for

each of the acoustic features of interest, however, as noted in Section 3.5, these

types of sounds do not necessarily represent the typical sounds that might be

searched for in a music producers sound library. As discussed in Chapters 1

and 2, searching for drum sounds is a core part of the electronic music pro-

duction work flow that might benefit from more intuitive and efficient search

methods such as QBV [Andersen and Grote, 2015], therefore in this chapter we

focus on the vocal imitation of such sounds. In particular, we are interested in

the perceptual quality of vocal imitations, for example, whether musicians can

vocally imitate percussion sounds such that listeners are able to identify the

imitated sound from a set of same–category sounds (e.g. kicks, snares, toms

etc.).

There has been a small but notable amount of research into vocalised per-

cussion sounds such as beatboxing, which we discussed in Chapter 2, however

much of this is concerned with either classifying vocalisations into drum cat-

egories [Kapur et al., 2004; Sinyor et al., 2005], understanding the linguistic–

related mechanisms of producing such sounds [Blaylock et al., 2017; Guinn and

Nazarov, 2018; Proctor et al., 2013], or understanding the relation between

vocalised percussion and actual drum sounds based on acoustic features [Led-

erer, 2005; Stowell, 2010]. In addition, the perceptual relevance and commu-

nicative power of vocal imitations has been researched for non–percussion,

95
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particularly environmental sounds [Lemaitre and Rocchesso, 2014; Lemaitre

et al., 2011], however this type of analysis has not yet been conducted on

vocalised percussion sounds. With the exception of Patel and Iversen [2003],

we are not aware of any research that addresses the perceptual similarity

between vocalised percussion sounds and their real–world counterparts (i.e. the

imitated sounds). In this chapter we aim to address this knowledge gap by

investigating the perceptual similarity between vocal imitations and same–

category drum sounds, and how this might differ between sounds within and

across drum categories.

The chapter is laid out as follows: the research questions and outline of

the study are given in Section 4.1. The method and sounds used for the vocal

imitation task are described in Section 4.2, and the method for collecting

the perceptual similarity ratings is outlined in Section 4.3. Results are given

and discussed in Section 4.4, in terms of how listeners were able to identify

the imitated sounds from the imitations (Section 4.4.3) and the similarity

ratings between imitations and same–category sounds (Section 4.4.4). Finally,

summary conclusions are presented in Section 4.5.

4.1 Experiment outline and research questions

The work in this chapter is split into 2 parts: a vocal production task and a

listening test. In the first part (vocal production), a group of 14 participants

were tasked with imitating 30 drum sounds from 5 categories (cymbals, hats,

kicks, snares, and toms), with 6 sounds in each category. The categories were

chosen because they represent the 5 most common types of drum sounds used

in Western popular music, and as we discuss in Section 4.2.1 the sounds were

chosen to be a representative range of drums from each category. As with the

previous chapter, we recruited musically trained participants to provide the

imitations, as they are the target user group for the intended application of

this work (QBV).

In the second part (listening test), listeners rated the similarity between

the vocal imitations and 6 same–category drum sounds. We limited the scope

of this study to same–category sounds, because whereas the problem of clas-

sifying vocalised percussion sounds into drum categories has been addressed

in previous work [Kapur et al., 2004; Sinyor et al., 2005] (where relatively ele-

mentary methods have demonstrated very good results [classification accuracy
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> 90%], therefore we do not consider this a problem on which we should focus

our efforts), the ability for algorithms or people to differentiate between same–

category percussion sounds is unknown. If we are to apply the voice to search

for such sounds then the potential for this ability must first be demonstrated.

The core research questions are as follows:

1. Are musicians able to differentiate their vocal imitations of same–category

percussion sounds such that listeners are able to identify the sounds

being imitated?

2. How does this ability differ between categories of percussion sounds: are

certain categories more imitable than others?

3. Will imitated sounds receive higher similarity ratings when rated against

their respective imitations, compared to when they are rated against

imitations of other sounds?

4.2 Vocal production task: recording the imitations

4.2.1 Selecting the drum sounds

We are specifically interested in drum samples that might be typically used

by music producers. For this reason we selected the stimuli from a range of

high quality drum sound recordings from the commercial FXpansion1 BFD3

Core and 8BitKit sample libraries. These contain recordings of classic acous-

tic drums (such as Mapleworks and Bosphorus) and popular electronic drum

machines (such as the Roland TR808 and Roger Linn LM–1). The libraries

contain recordings of each drum at up to 127 velocity levels, therefore we

removed all duplicate velocity level samples, taking only the median veloc-

ity recording for each drum. We then selected only the drums for each of 5

categories: cymbals (n=99), hats (n=88), kicks (n=42); snares (n=60); toms

(n=158). This gives 447 drum samples in total, which is too many sounds for

each participant to imitate, so we selected a representative sample of 6 sounds

from each category.

Our criteria for selecting the stimuli was to have a broad range of drum sam-

ples from each category to reflect the variety of sounds in the sample library.

1https://www.fxpansion.com
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To achieve this we extracted samples from each category based on their simi-

larity, using the auditory image2 based drum similarity method from Pampalk

et al. [2008]. This method has been shown to be highly correlated with per-

ceptual ratings of similarity for same–category drum samples, so it is ideal for

our task. In summary, similarity between two drum sounds is measured as

the Euclidean distance between their vectorised auditory images. An auditory

image is essentially a spectrogram image representation of a sound, with three

dimensions: time, frequency and loudness. Pampalk et al. [2008] investigated

a range of parameter settings for generating auditory images, and found the

following settings gave similarity metrics that were most highly correlated with

listener’s perceptual ratings of drum sound similarity.

1. STFT size of 4096 samples (at 44.1kHz) and hop size of 512 samples

(87.5% overlap).

2. Frequency bins grouped using 72 bins on the Bark scale (implemented

using a triangular window).

3. Loudness in dB, scaled using Terhardt’s model for the outer and middle

ear [Terhardt, 1979].

Using these parameters, we constructed a similarity matrix of all pairwise

similarities between the auditory images of samples for each category. The

similarity between two auditory images was measured according to the method

in Pampalk et al. [2008], described in two stages:

1. If the 2 images have a different number of columns (i.e. are of different

duration), the shorter image is zero–padded to the length of the longer

one.

2. The distance between 2 images is then calculated for every possible time

alignment of the images (based on time shift steps of 4096 samples). This

is calculated as the Euclidean distance between the vectorised auditory

images. The lowest distance measure is taken as the similarity between

the sounds (i.e. the similarity at the best time alignment).

We selected a subset of six samples from each similarity matrix. For each

category, we first selected a random seed sample (S1). We then selected the

most and least similar samples to S1 (S2 and S6 respectively). Finally, we

selected samples S3, S4, S5 such that they were equally spaced in distance

2we use the term auditory image in keeping with the authors’ description
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between S2 and S6, with respect to S1. This gave 6 samples spanning the

range from most to least similar to the seed sample. We note that this method

does not guarantee the most diverse selection of samples will be selected from

a category, and the selected samples are dependent on the seed. However,

in practice we found that the selected samples spanned a broad range of the

sounds from each category. The auditory images for the extracted samples

are given in Figure 4.1 and the details of each sound are summarised in Table

4.1. It should be noted that in Figure 4.1 the sample S1 (seed) does not

always appear most dissimilar to S6, however this is likely due to the differ-

ence in durations (for clarity the sounds are all represented by the same size

image, however they differ in duration and therefore require zero–padding to

be compared in the above terms).

4.2.2 Participants

The 14 participants (herein referred to as the imitators) were musicians and

music producers, all of whom reported no hearing or speech impairments. The

age range was 26–43 and the median age was 30.5. One female took part in

the study, and the remaining imitators were male. We note that the severe sex

imbalance means we cannot generalise our results across the sexes, however as

we are not concerned with testing any effects of sex we decided not to exclude

imitations from the female imitator in the proceeding listening study.

All imitators were experienced in making music or producing music con-

taining drum samples on a computer, and reported having more than 5 years’

experience playing an instrument. Three imitators reported experience in

singing but stated the voice was not their sole or main instrument. One imi-

tator was an experienced beatboxer (> 5 years’ experience). All imitators

reported having more than 2 years’ experience in making music using synthe-

sisers and/or samplers, and eleven had more than 5 years’ experience doing

this.
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Category # Drum Articulation

cymbal 1 Paiste 2002 Power Bell Ride bow
cymbal 2 Paiste Signature Dry Heavy Ride edge
cymbal 3 Bosphorus China 20 mallet, edge
cymbal 4 Bosphorus Splash 10 mallet, bell
cymbal 5 Paiste Signature Full Crash bell
cymbal 6 Paiste 2002 Power Bell Ride edge

hat 1 Paiste Signature closed
hat 2 Sequential Circuits DrumTraks closed
hat 3 Zildjian New Beats-Mastersound half open
hat 4 Linn LM-1 open
hat 5 Paiste 2002 open
hat 6 Bosphorus brush, half open

kick 1 DW Mardi Gras Sparkle kick in (mic)
kick 2 DW Mardi Gras Sparkle kick out (mic)
kick 3 Gretsch Purple kick out (mic)
kick 4 Linn LM-1 –
kick 5 Mapleworks Custom kick in (mic)
kick 6 Roland 808 long duration

snare 1 Roland 909 medium duration
snare 2 Oberheim DX medium duration
snare 3 Roland 909 short duration
snare 4 Ludwig Hammered Supraphonic half edge
snare 5 Tama Bell Brass full hit
snare 6 Tama Bell Brass half edge

tom 1 Gretsch Purple High rim
tom 2 Gretsch Purple Mid rim
tom 3 Mapleworks Custom Floor mallet, full hit
tom 4 Mapleworks Custom Mid rim
tom 5 Sequential Circuits DrumTraks –
tom 6 Mapleworks Custom Mid brush, rim

Table 4.1: Selected drum samples used as stimuli for the vocal imitations.
Descriptions and articulations are taken from the sample library documenta-
tion and are not exhaustive descriptions of the recording setup, strike style
or drum machine settings etc. Unless specified otherwise the acoustic drums
were struck with a stick.
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4.2.3 Procedure

The recordings took place in the same space and using the same equipment

described in Chapter 3. The imitators were advised that the aim of the study

was to listen to each drum sound and imitate it as accurately as possible using

their voice. As in the previous vocal imitation study, the participants were

seated at a computer and presented with a basic interface for auditioning the

stimuli and recording their imitations (Figure 3.3). The lead researcher gave

an overview of the interface and left the room for the duration of the study.

The order of the drum sounds was randomised. Each drum sound could be

auditioned and rehearsed as many times as the imitator wanted. The imitators

were not able to listen back to their recordings, however if they were not happy

with their performance they were able to re–record it as many times as they

wished before proceeding to the next drum sound. The imitators were advised

that the final recording of each sound would be used for the analysis.

4.3 Listening study design

In this section we present the method for the listening study, where partici-

pants were asked to rate the perceptual similarity between the vocal imitations

recorded in Section 4.2 and same–category drum sounds.

4.3.1 Participants

63 participants (herein referred to as the listeners) were recruited from profes-

sional and research networks. Of these, 46 were male and 16 were female (one

chose to not disclose their sex). The age range was 18–66, with a median age

of 30. All listeners reported no hearing impairments.

4.3.2 Stimuli and procedure

The 420 vocal imitations and 30 drum sounds from Section 4.2 were used

as stimuli. For a given imitation, listeners rated the similarity between the

imitation and the 6 same–category drum sounds, using a format based on the

MUSHRA protocol described in Chapter 2. In the present study the known
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reference was an imitation, and the 6 test sounds were the sounds from the

same drum category as the imitation. Listeners rated the test sounds in terms

of similarity to the imitation. The imitated sound can be considered a hidden

reference, however we did not necessarily expect this to be rated as the most

similar test sound, as it is possible that an imitation sounds more similar to one

of the other drum sounds. This test format allowed us to collect individual

ratings between an imitation and each of the test sounds, and additionally

determine whether an imitation was similar enough to the imitated sound such

that an independent listener could identify the imitated sound (by taking the

top rated test sound).

The experiment was conducted remotely via a webpage built using the

BeaqleJS framework [Kraft and Zölzer, 2014]. Each imitation was presented

on a separate test page, made up of a reference (imitation) and 6 test items

(same–category drum sounds). An example test page is given in Figure 4.2.

Due to the large number of imitations, each listener only rated a random subset

of 28 imitations plus 2 random duplicate imitations, giving 30 test pages each.

The duplicate test pages were included to assess the intra–rater reliability of

each participant. The listeners were instructed to rate the similarity of the

test items with respect to the reference, using continuous unnumbered sliders

from ‘less similar’ to ‘more similar’. It was possible to navigate forward and

backward through the test pages, adjust volume and loop the samples. The

study took approximately 30 minutes to complete (approximately 1 minute

per test page).

Each listener provided 180 similarity ratings (6 responses per test page,

30 test pages). There were 63 listeners in total, giving 1890 test pages and

11340 responses. We removed test pages if the listener gave the same rating

to all 6 sounds: in every test page there was a notable difference between the

most and least similar drum sounds, therefore this indicates that the listener

did not follow the instructions properly. There were 80 invalid test pages (480

responses). The majority of these were from three listeners (25, 22 and 15

each). The web server was configured to maintain a balanced distribution of

completed valid test pages per imitation: 408 imitations were rated four times

and 12 were rated five times, excluding the duplicate test pages.
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Figure 4.2: An example test page from the web based listening test.

4.4 Results and discussion

4.4.1 Intra–rater reliability

Listener reliability was assessed using the Spearman rank correlation between

the two duplicate test pages for each listener. We used the ranks because

we expected some variability due to the continuous response scale, and were

mainly interested in whether participants could replicate the ordering of their

responses, not the exact rating values. Reliable listeners were defined as those

who were able to replicate their responses for at least one of the duplicates

with ρ >= 0.5. We note that this value is somewhat arbitrary, but it indicates

a large positive correlation [Cohen, 1988] hence was deemed suitable for the

purposes of identifying unreliable listeners. There were 51 reliable listeners,

for whom ρ = 0.63/0.04 (mean/standard error), giving 9126 responses from

1521 test pages.

4.4.2 Concordance of ratings (inter–rater agreement)

Concordant imitations are those for which there was agreement amongst the

listeners regarding the similarity ratings. We computed Kendall’s coefficient

of concordance [Kendall and Smith, 1939] on the ranked ratings for each imi-

tation, excluding those from unreliable listeners and duplicate test pages. The
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mean coefficient for all imitations is 0.61 (standard error = 0.01), indicating

strong to moderate agreement amongst the reliable listeners [Schmidt, 1997].

4.4.3 Identifying the imitated sounds

Here we assessed whether the listeners could correctly identify the imitated

sound from the six same–category drum sounds. We therefore considered only

the highest rated sound from each test page, and calculated the proportion of

instances where this was also the imitated sound. Of 1419 completed test pages

(excluding unreliable listeners and duplicates), there were 516 instances where

the highest rated sound was the imitated sound, and 903 where the imitated

sound did not receive the highest rating. This shows that listeners managed to

identify the imitated sound with above chance accuracy, as per similar previous

studies on vocalisations of everyday sounds [Lemaitre and Rocchesso, 2014]

and text–based meanings [Perlman and Lupyan, 2017], however the overall

identification accuracy was quite low, at 36.3%. Similar identification accuracy

is observed when duplicates are included, at 36.5%. The method we used to

select the drum sounds means that some drum sounds are more similar than

others, and there should be high similarity between certain sounds, where we

might expect some confusion in terms of identification accuracy. This appears

to be the case: in 856 (60.3%) of the tests the imitated sound was rated first

or second highest.

To investigate the effect of this confusion among the drum sounds, we con-

structed contingency tables for each drum class, which are given in Figure

4.3. This shows the proportion of times each sound was rated highest for

each imitated sound. We conducted a one-way z–test for proportions on each

matching imitated and rated sound pair, i.e. the diagonals in Figures 4.3a–

4.3e. This tells us for which drum sounds listeners could identify the imitated

sound. The tests within each contingency table were corrected for using the

Benjamini and Hochberg false discovery rate correction (FDR = 5%). Of the

30 drum sounds, 16 were imitated such that listeners were able to identify the

imitated sound with above chance accuracy. This is an encouraging finding

considering that the imitations were only compared to same–category sounds,

and remarkable given that the imitators were not specifically instructed to imi-

tate the sounds such that they could be differentiated based on the imitations,

or made aware that they would be used for the listening test. Identification

accuracy ranged from 4% to 74%, which is considerably more variable that
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the findings from Lemaitre and Rocchesso [2014] (75%–86% for imitations of

identifiable everyday sounds and artificial sound effects respectively), which is

likely due to there being greater similarity between our same–category stim-

uli. Imitations of all 6 hats, 4 cymbals and 3 kicks were correctly identified

significantly above chance (padj < 0.05). Imitations of snares and toms were

less well identified: Figures 4.3d and 4.3e show that certain sounds in the

snare and tom categories were regularly rated highly, irrespective of the sound

being imitated. This effect is largest for snare6, tom4 and tom6. We will now

discuss the imitation strategies and acoustic characteristics of the imitated

sounds that may result in some sounds being more identifiable than others.

Listeners performed best at correctly identifying the imitated sounds for

the hat category. Here the greatest confusion was between hat1 – hat2, and

hat5 – hat6 : hat1 and hat2 are both closed hats with very short decay times,

whereas hat5 and hat6 are both open hats with relatively longer decay times

(as shown in Figure 4.1). In addition, the interactions of the top and bottom

plates are similar in hat5 and hat6. In contrast, hat3 is a half–open hat,

with a unique and distinguishable amplitude envelope compared to the other

hat sounds, and hat4 has a clear, rhythmic repeating pattern in the decay,

again giving it a unique temporal signature. It was apparent when listening

to the imitations that the imitators tried to imitate these temporal cues, and

listeners mostly struggled to identify the imitated sound when the temporal

signatures for two sounds were similar. The differences in temporal features

(such as duration and decay shape) are less extreme within the other drum

categories, which may be why the hats were identified more successfully.

Identification accuracy was similar for the kicks and cymbals, with 3 and

4 sounds from each category correctly identified with above chance accuracy.

There was notable confusion between kick1, kick2 and kick3 : these are all

acoustic kick drums with similar resonance patterns and amplitude envelopes.

In addition, they are notably brighter than the other kick sounds and have

similar short, click–like attack characteristics (whereas the other kick sounds

contain considerably less high frequency content). There was also confusion

between kick5 and kick6 : these are lower in pitch compared to the other

kick sounds, and are of a similar duration. Indeed, when listening to the

imitations of kick5 and kick6 it was apparent that most imitators used similar

techniques for both sounds, typically vocalising a stop consonant followed by

a voiced decay.
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Imitations of all three acoustic snare sounds (snare4, snare5, snare6 ) were

(on average) rated as being most similar to sound snare6. This sound contains

notably more (and a longer duration of) snare rattle compared to snare4 and

snare5, although they all contain some snare rattle. Many of the imitators

used alveolar, post alveolar or retroflex fricatives to imitate the rattle, and

in the imitations of snare4 and snare5 that were rated as being most simi-

lar to snare6, these fricatives were emphasised more compared to the other

imitations. This indicates that imitators were not able to suitably differenti-

ate their vocalisations with respect to the amount of snare rattle they were

imitating, and instead any use of ‘snare rattle–like’ fricatives was generally

associated with the sound containing the most amount of rattle. It has been

previously demonstrated that imitators will emphasise the salient character-

istics of a sound when imitating it [Lemaitre et al., 2011], therefore it may

be that by over–emphasising the snare rattle on any rattling snare drum, the

imitators inadvertently made their imitation sound most like the most ‘rattly’

snare sound.

As previously mentioned, when selecting the stimulus sounds we inten-

tionally chose a range of sounds from each category, varying in the degree

of similarity to a seed sample. We therefore expected some confusion in the

identification of similar imitated sounds. This is evident for both the hats

and kicks (and to some extent the cymbals), however the same effect is not

observed for toms. Here we observe a kind of hubness [Flexer et al., 2012] in

the perceptual space, where certain drum sounds appear to be closest to all

imitations within a category. For example, tom4 and tom6 are consistently

identified as being more similar to the imitations, even when they are not the

sound being imitated. These sounds are from the same drum but played with

different beaters (tom4 = stick, tom6 = brush – see Table 4.1). As such, the

decay parts of the sounds are very similar, and it is mainly the attack portions

that differ: tom6 is slightly more noisy in the attack portion due to the use

of a brush. When listening to the imitations of these sounds we found that

some of the imitators adopted the same or very similar techniques to produce

both sounds (7 of the 14 imitators used affricates to vocalise the attack for

both sounds), making it difficult to identify which of the sounds were being

imitated.
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(a) Cymbals (b) Hats

(c) Kicks (d) Snares

(e) Toms

Figure 4.3: Contingency tables of the highest rated sound for each imitated
sound, by drum category. Cell values and shading indicate the proportion
(0–1) of tests for a given imitated sound where the rated sound received the
highest rating. Asterisks in the diagonals indicate imitated sounds that were
correctly identified with significantly above chance accuracy (padj < 0.05).
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The sound of the stick striking the rim is particularly audible in tom1 and

tom2. It is difficult to vocalise this rim sound, and many of the imitators

(12/14) seemingly did not attempt to do so: they used the same affricates or

stop consonants for the attack portion as they did for the other tom sounds.

Listeners may have failed to identify imitations of these toms because this dis-

tinguishable attack sound was generally not imitated. Indeed, there are two

imitations for each of tom1 and tom2 where the rim sound was imitated using

non–pulmonic consonant clicks: for these imitations, the imitated sounds were

rated as being most similar when averaging across listeners. This highlights

the importance of imitating the attack characteristics for a sound to be iden-

tified, at least for the types of tom sounds used in the present study. Attack

time is a well known salient timbral descriptor for instrument or sound dis-

crimination tasks [McAdams et al., 1995; Siedenburg et al., 2016], however it

has been shown that people tend to not differentiate between subtle differ-

ences in attack times when imitating sounds [Lemaitre et al., 2016b]. This

presents an interesting problem for modelling similarity between vocalisations

and percussive sounds: if imitators apply the same imitation technique to

vocalise perceptually different attack times then this descriptor may be of

little practical use.

Finally, because the toms are pitched we expected pitch–accurate imita-

tions to be correctly identified, assuming pitch as a salient feature. The F0 for

toms 1–6 is 84, 66, 79, 99, 66 and 102 Hz respectively. Most of the imitations

for tom1 and tom2 were closest in pitch to the imitated sounds (10/14 for

both). Therefore if the listeners based the similarity ratings mainly on pitch,

we would expect these imitations to be correctly identified, or else confused

with sounds of a similar pitch (the pitch differences between tom1 and tom3,

and tom2 and tom5 are very small). However, the majority of these imitations

were rated as being most similar to tom4 and tom6, which have a considerably

different pitch. This indicates that the listeners did not necessarily use pitch

as a cue for similarity between imitations and pitched percussion sounds.

4.4.4 Analysis of the similarity ratings

The results presented in the previous section suggest that vocalisations of

certain sounds were more representative of the imitated sound than others,

in terms of listeners being able to identify the imitated sound. In this sec-

tion we investigate whether similarity ratings between imitations and imitated
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(i.e. ‘target’) sounds are higher than for non–target sounds, and if this varies

between drum categories. The listener similarity ratings were modelled with

LMER using the lme4 package [Bates et al., 2015] for R. LMER is well suited

to this task given that all listeners did not provide ratings for all imitations but

only a randomly–selected set of 28 imitations (giving an unbalanced dataset).

In addition, it allows us to model the dependencies between ratings for each

listener, drum category and imitator.

The full model was specified with rating as the response variable, fixed

effects of drum category and target (a dummy variable indicating whether

the rated sound was the imitated sound) with an interaction term, and ran-

dom intercepts for each listener and imitator. Parameter estimates were

then extracted for each combination of the fixed effect levels, and 95% Wald

confidence intervals (CIs) were calculated. The results are given in Figure 4.4.

For each drum category there is a statistically significant difference (α < 0.05)

between the ratings of target vs. non–target sounds, as indicated by the CIs.

The effect of target is largest for hats, and similar for all the other categories.

This shows that for all categories the target sounds were (at least on average)

rated higher than the non–target sounds, regardless of whether they received

the highest rating.

Figure 4.4: Comparison of similarity ratings between imitations and target
vs. non–target sounds, by drum category. Values are mean rating parameter
estimates with 95% Wald confidence intervals.

To establish whether this effect differed between drum sounds within each

category we modified the above model, replacing the fixed effect of drum
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category with rated sound. All ratings were first normalised for each lis-

tener to remove any bias from a listener not using the full range of the rating

scale (in the MUSHRA standard, use of both hidden reference and anchor

serves to encourage listeners to use the full range). The same parameter esti-

mates were extracted, and are given in Table 4.2. For 22 of the 30 sounds the

rated sound received a significantly higher (α < 0.05) similarity rating when

being rated against its respective imitation, compared to when rated against

an imitation of another sound. For the 8 drum sounds where the upper and

lower CIs overlap, the target sound was still rated higher on average than the

non–target sounds.

Cymbals 1 2 3 4 5 6

target 0.54 (0.46, 0.62) 0.47 (0.39, 0.55) 0.60 (0.52, 0.68) 0.52 (0.43, 0.60) 0.49 (0.42, 0.57) 0.53 (0.44, 0.61)
non–target 0.34 (0.30, 0.38) 0.38 (0.34, 0.43) 0.44 (0.39, 0.48) 0.32 (0.27, 0.36) 0.19 (0.14, 0.23) 0.42 (0.37, 0.46)

Hats 1 2 3 4 5 6

target 0.68 (0.58, 0.75) 0.77 (0.69, 0.84) 0.69 (0.61, 0.77) 0.76 (0.68, 0.84) 0.72 (0.65, 0.80) 0.64 (0.56, 0.72)
non–target 0.22 (0.17, 0.26) 0.16 (0.11, 0.20) 0.28 (0.23, 0.32) 0.30 (0.25, 0.34) 0.33 (0.28, 0.37) 0.29 (0.25, 0.34)

Kicks 1 2 3 4 5 6

target 0.52 (0.44, 0.60) 0.41 (0.34, 0.49) 0.34 (0.26, 0.42) 0.48 (0.40, 0.57) 0.49 (0.41, 0.56) 0.45 (0.37, 0.53)
non–target 0.33 (0.28, 0.37) 0.37 (0.32, 0.41) 0.30 (0.25, 0.34) 0.20 (0.15, 0.24) 0.31 (0.27, 0.36) 0.28 (0.24, 0.33)

Snares 1 2 3 4 5 6

target 0.62 (0.55, 0.70) 0.48 (0.40, 0.56) 0.46 (0.38, 0.54) 0.39 (0.31, 0.47) 0.42 (0.34, 0.50) 0.63 (0.56, 0.71)
non–target 0.35 (0.31, 0.40) 0.32 (0.28, 0.37) 0.22 (0.18, 0.27) 0.34 (0.29, 0.38) 0.38 (0.33, 0.42) 0.38 (0.34, 0.43)

Toms 1 2 3 4 5 6

target 0.48 (0.40, 0.56) 0.40 (0.32, 0.48) 0.33 (0.25, 0.41) 0.57 (0.49, 0.65) 0.50 (0.42, 0.57) 0.75 (0.67, 0.83)
non–target 0.26 (0.22, 0.31) 0.25 (0.20, 0.29) 0.26 (0.21, 0.30) 0.50 (0.45, 0.54) 0.32 (0.28, 0.37) 0.55 (0.51, 0.60)

Table 4.2: Comparison of similarity ratings between imitations and target
vs. non–target sounds, by drum sound. Values are mean rating parameter
estimates with 95% CIs. Cases where the CIs overlap between conditions for
each drum sound are given in bold.

This analysis compares the ratings for the imitated sound to the average

ratings for the five same–category sounds that were not imitated. Therefore,

even if one or two of the ‘non–target’ sounds were perceptually similar to the

imitated sound, the less similar sounds bring down the average rating. The

results in Table 4.2 illustrate that imitators were able to inadvertently identify

and imitate the distinguishing characteristics of different sounds within each

category, to an extent that enabled listeners to discard at least some of the

sounds as less similar to the imitated sound than others, i.e. even when the

‘target’ sound was not rated highest, it was rarely rated low relative to the

other sounds. This effect can be quantified in terms of the mean reciprocal

rank (MRR) for the ratings of the ‘target’ sounds. A random ranking would

give an MRR of 0.41, whereas we found the MRR of all target sounds to be
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0.58, indicating that on average, the target sound was rated first or second.

It is interesting to note that this is also the case for the sounds that were

regularly rated as being most similar to any imitation (e.g. snare6, tom4 and

tom6 ), as mentioned in Section 4.4.3. For example, the non–target ratings

for tom6 are higher than the target ratings for most of the other tom sounds,

although all the toms received their highest rating when they were compared

against a target imitation).

The rank order of the similarity ratings was not the same for all tests from

a single imitated sound, as might be expected if listeners based the similarity

ratings entirely on similarity between the actual drum sounds. Instead, dif-

ferent imitations of the same sounds elicited different rankings. For example,

when averaging across listeners, tom6 was rated as most similar to 10/14 of the

imitations of tom5. However, in 6/10 of these imitations the second most sim-

ilar rated sound was tom5, whereas it was tom4 for 4/10. This highlights that

the ordering of the drum sounds in terms of similarity ranking with respect

to the imitation changed (sometimes considerably) between imitations. It is

apparent from listening to the imitations that for a given drum sound the imi-

tation techniques differed between imitators, and also each imitator employed

different techniques to imitate the different drum sounds: highlighting specific

characteristics of the imitated sounds (such as attack time, pitch, and ampli-

tude envelope). The difference in rankings for the same imitated sound may

therefore be due to these characteristics being more or less perceptually rele-

vant to the listeners. For example, the attack time may be most important for

one imitation, but for another it may be the amplitude envelope, even when

two imitations are of the same sound. A similar effect was previously identified

by Lemaitre et al. [2016a], where similarity between imitations and imitated

sound classes appeared to be based on specificities in each of the imitations. In

addition, listeners may have focussed on different characteristics of the sounds

depending on their critical listening experience [Lemaitre et al., 2010], how-

ever, as previously noted, overall there was moderate to strong concordance

between listeners’ rankings of the same sounds.

The similarity ratings for ‘target’ sounds were notably higher for the hats

than for the other drum categories (all of which had similar rating values),

indicating that the hats may be more imitable than the other drum sounds. It

is conceivable that pitched sounds would lend themselves more to vocal imita-

tion than non pitched sounds, however this is probably not the case when the

sounds contain resonances and inharmonicities that are difficult or impossible
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to reproduce with the voice, which is the case for many pitched percussion

sounds. We found that many of the imitators used speech–related vocal tech-

niques (as used when vocalising fricatives and affricates) to imitate the noisy

spectral shape of the hats, and this, combined with the distinctive temporal

shapes for each hat sound resulted in higher similarity ratings and identifica-

tion accuracy (we note that there was less variance in temporal shape between

the cymbals, which is likely the cause of the lower identification accuracy of

cymbals compared to hats). There is also more contrast in the temporal shapes

of the hat sounds compared to all the other drum categories, due to the inclu-

sion of both open and closed hats (indeed, one might argue that open and

closed hats are ‘different’ instruments: they have been treated as such in pre-

vious work on classifying beatboxed sounds [Sinyor et al., 2005]), and this was

reflected in the way listeners used the scale, with generally greater contrast

between the ratings for ‘target’ vs. ‘non–target’ sounds.

4.5 Summary and conclusions

In this chapter we have presented a 2 part study investigating the imitation of

percussion sounds. In the first part, 14 participants imitated 30 drum sounds

(6 from each of 5 categories - cymbals, hats, kicks, snares, and toms). In

the second part, 63 listeners rated the similarity between the imitations and 6

same–category sounds. In addition to the individual similarity ratings between

imitations and imitated sounds, the experimental design meant that for each

imitation, listeners identified the same–category sound that was most similar

to the imitation, and a rank ordering of similarity between the imitation and

each of the same–category sounds. The main purpose of the work in this

chapter was to establish whether musicians could imitate percussion sounds

such that listeners could identify the sound being imitated, from a set of same–

category sounds. In particular, we were interested in what types of sounds

imitators were not able to differentiate, or where listeners exhibited confusion

between similar percussion sounds.

In general we found that the identification of imitations varied consider-

ably based on i) the imitated sound, and ii) the similarity between same–

category sounds. In the worst case (tom3 ), the imitated sound was almost

never identified from its imitations (4% of instances), and in the best case

(hat4 ) it was correctly identified 74% of the time. This highlights that for
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certain sounds both the imitation and listening tasks were difficult, and there

was considerable confusion when the imitated sounds were similar to other

same–category sounds or imitators adopted similar vocal techniques to imi-

tate different sounds. The difficulty of the task is indicated by the fact that

12/63 listeners did not manage to reproduce their own results to a reasonable

degree, when given duplicate tasks (based on a rank correlation threshold of

0.5). Nonetheless, there was moderate to strong concordance amongst the

(ranked) ratings for the remaining 51 listeners, and they were able to iden-

tify the imitated sounds with above-chance accuracy for 16 of the 30 sounds.

Importantly, when listeners did confuse percussion sounds, on average they

still rated imitations as being more similar to their respective imitated sounds

than the other same–category sounds, with a mean reciprocal rank of 0.58

across all tests. This further demonstrates that the diversity of same-category

sounds was such that imitations were, on average, not confused with the sounds

‘most different’ from the imitated sound.

We limited the scope of this work to comparing imitations to same–category

sounds, many of which have similar spectral distributions. In cases where the

spectral distributions differ, the imitators did not necessarily emphasise these

differences, and in some cases were not able to due to the limitations of the

vocal apparatus (for example complex harmonic patterns in tom drum res-

onances). As such it appears that listeners relied on temporal shape and

specificities: sounds with distinctive temporal signatures (such as the hats)

were generally identified more successfully than those with similar temporal

envelopes (such as the toms). Spectral features are typically used for mea-

suring timbral similarity between percussion sounds, and this highlights an

important issue with QBV for such sounds: the types of features used in drum

category classification tasks may not be suitable to measure same–category

similarity, particularly when the spectral differences are not easily differen-

tiated using the voice. In the next chapter we investigate acoustic features

for predicting the similarity ratings presented here. In particular, we seek to

address the relative importance of temporal vs. spectral features for QBV of

percussion sounds, and compare heuristic vs. learned features for this task.



Chapter 5

Audio features for query by

vocalisation

In this chapter we investigate the suitability of different types of audio features

for QBV of percussion sounds. As we discussed in Chapter 2, existing research

on this topic has previously only considered the performance of QBV methods

(in particular different types of audio features) based on the assumption that

the imitated sound is the sound that should be retrieved, or ranked highest in

a list of retrieved sounds. However, as we have shown in Chapter 4, although

in general listeners considered the vocal imitations of a given drum sound to

be more similar on average to the ‘target’ (i.e. imitated) sound, compared to

other same–category sounds, the imitated sound may not always be the most

perceptually similar sound to the imitation. As such, we approach this topic

from the perspective of perceptual similarity, using the sounds and similarity

ratings presented in Chapter 4. Instead of considering the suitability of audio

features in terms of classification accuracy (i.e. identifying the imitated sound

from the imitation), we will evaluate their suitability as predictors for the

perceptual similarity ratings.

With regards to the audio features, we consider both heuristic and learned

features. We conduct a comprehensive meta–review of the heuristic audio fea-

tures used in previous studies on vocal imitation of both percussion–specific

and non–percussion sounds. Whilst heuristic features have been the main-

stay of many MIR tasks for the last 2 decades, there has been a notable

shift towards using neural networks for learning audio features, particularly

using deep learning methods. As such we compare the comprehensive set

115
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of heuristic features, and suitable subsets thereof, to features derived using

deep learning, namely convolutional–auto–encoders (CAEs). In addition to

the heuristic vs. learned feature comparison, we are also interested in what

elements of the vocal imitations are most salient for listeners when judging

the similarity between imitations and percussion sounds. To address this we

investigate the importance of spectral vs. temporal information for predicting

the ratings, by manually selecting relevant subsets of the heuristic features

and adapting the model architecture of the CAEs.

This chapter is laid out as follows: we outline the research questions and

scope in Section 5.1. In Section 5.2 we present the feature sets that will

be evaluated, for both heuristic (Section 5.2.1) and learned features (Section

5.2.2). In Section 5.2.2 we also discuss the model architecture, training data,

and training procedure for learning the features. The method used to evaluate

the different types of features is explained in Section 5.3, and the results are

given in Section 5.4. Finally, conclusions are presented in Section 5.5.

5.1 Research questions and scope

We limit the heuristically derived audio features to those from the relevant

literature on vocal imitations, excluding those that are not relevant to percus-

sion sounds (see Section 5.2.1 for details). These include many of the standard

audio features commonly used in both speech analysis and MIR tasks. The

features are evaluated using the vocal imitation and similarity rating datasets

from Chapter 4. As such, we limit the scope of this work to the same set of

30 drum sounds: 6 from each of 5 classes (kicks, snares, cymbals, hats, and

toms), and consider only the similarity between the imitations and same–class

sounds (e.g. similarity between the imitation of a kick drum and 6 kick drum

sounds). In terms of the similarity ratings, we only consider those from the 51

reliable listeners (as defined in Chapter 4), which gives 9126 similarity ratings

between imitations and same–category sounds. Our research questions are as

follows:

1. What types of audio features best represent the perceptual similar-

ity between vocalisations of percussion sounds and actual percussion

sounds? In particular, do learned features outperform heuristically derived

features?
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2. How does this differ between categories of percussion sounds: e.g. do

some features work best for kicks, and others for snares?

3. What can we learn from the performance of different types of audio

features about how listeners consider the similarity between vocalisations

and actual sounds?

(a) Do listeners rely on a small subset of particularly salient audio

features?

(b) What is the relative importance of spectral vs. temporal informa-

tion?

5.2 Feature sets

5.2.1 Heuristic features

The sets of heuristic features used in the experiments of this chapter are

detailed below. Unless stated otherwise, all spectral features were computed

from the power spectrum. Prior to any features being extracted the 420 imita-

tions and 30 stimuli were manually edited (to remove sections of silence) and

peak normalised as part of the listening study design from Chapter 4.

Set 1: Full feature set

The full feature set is taken from the review of literature on vocal imitation

of both percussion and non–percussion sounds from Chapter 2, which were

listed in Table 2.1. We exclude morphological features and wavelet coefficients

for the reasons discussed in Section 2.4.4.1, namely the poor performance of

wavelet coefficients for classifying vocalised percussion sounds (compared to

MFCCs and LPC coefficients), and the unsuitability of morphological features

for discriminating between vocalisations with a similar global morphological

profile. The full set of features is given in Table 5.1. After being extracted,

each feature was standardised to have zero mean and unit variance (across all

sounds). The frame–wise features were extracted using a window size of 4096

samples and 87.5% overlap. These parameters were selected according to the

findings in Pampalk et al. [2008], as discussed in Chapter 4. For frame-wise
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features we take summary statistics to capture the temporal variation over

the entire sound, in the form of either the median and IQR, or mean and

variance. Median and IQR are more robust to sections of silence and spurious

feature values at start and end frames [Peeters et al., 2011]. Therefore these

statistics are more suitable for features where we expect the sound to settle

on a value, and are not interested in largely different values around the start

and end frames. This is the case for pitch and other pitch–related features

(clarity, noisiness, roughness, and inharmonicity), where is it reasonable to

expect no useful harmonic information in the attack portion of the sounds. For

this reason these features are only extracted from frames proceeding the end

attack time (see below for definition), ignoring very quiet tails from the sounds

(defined as the part of the tail where the root mean squared (RMS) energy

is below 1% of the maximum RMS in the signal). For the other features, we

expect a skewed distribution of feature values over time, according to the typ-

ical profile of percussion sounds, consisting of only attack and decay portions.

Here we are interested in the comparative weighting of the higher and lower

valued features over time, therefore mean and variance are used. Many of the

features listed in Table 5.1 have been extensively described and investigated

in the MIR literature (see for example Bullock [2008]; Peeters [2004]; Peeters

et al. [2011]; Stowell [2010]), however for completeness the specifications for

features used in the present experiments are given in Appendix A.

The feature set consists of 155 features. It is conceivable that some of these fea-

tures will not be independent, and closely related features will exhibit covari-

ance, sharing mutual information. Stowell [2010] investigated the mutual infor-

mation for many of these features and found high dependence between: spec-

tral centroid and rolloffs; spectral rolloffs and band powers; and spectral spread

and flatness, amongst others. As we will discuss in Section 5.3, for our eval-

uation we treat the feature space derived using these features as a Euclidean

space, and are interested in the distance between vocal imitations and the per-

cussion sounds. As such it is prudent to remove any correlated dimensions in

the feature space, to reduce the computational complexity required to measure

distance between samples and reduce the effect of the curse of dimensionality

(where the sparsity of the data in a sampled space increases with the number

of dimensions used to represent the data [Chávez et al., 2001]). We therefore

apply PCA to the standardised features extracted on all samples. The num-

ber of components used for the final feature set is based on a threshold for

explained variance, i.e. how many components are required to capture n% of
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Feature Global Frame Med/IQR Mean/Var # Feats.

Log attack time X 1
Temporal crest factor X 1
Duration X 1
Zero crossing rate X 1
Decay time X 1
Pitch X X 2
Pitch clarity X X 2
Noisiness X X 2
Roughness X X 2
Inharmonicity X X 2
Spectral centroid X X 2
Spectral rolloffs (×4) X X 8
Spectral crest factor X X 2
Spectral slope X X 2
Spectral spread X X 2
Spectral kurtosis X X 2
Spectral flatness X X 2
Spectral skewness X X 2
Spectral entropy X X 2
Spectral compactness X X 2
Strongest frequency X X 2
Spectral flux X X 2
Overall power X X 2
Band–specific powers (×5) X X 10
LPC coefficients (×10) X X 20
MFCCs (×13) X X 26
∆MFCCs (×13) X X 26
∆∆MFCCs (×13) X X 26

Table 5.1: The full set of global and frame–wise heuristic features extracted
from the imitations and imitated sounds. Spectral rolloff features were cal-
culated for the 95th, 75th, 50th, and 25th percentiles. Band–specific powers
were calculated for 5 log–spaced bands from 50Hz–6.4kHz. Detailed feature
specifications are given in Appendix A.

the variance in the dataset. We tested thresholds between 40–100%, in steps

of 10%, and found that a threshold of 60% (consisting of the first 14 principle

components) showed the best performance based on the evaluation method in

Section 5.3. Consequently, this PCA–reduced feature space was used for the

full feature set.

Sets 2 and 3: MFCCs and ∆/∆∆MFCCs

MFCCs are commonly used descriptors of timbre, and have been shown to

work well for many sound classification tasks, including measuring the per-

ceptual similarity between sounds [Terasawa et al., 2005], genre classification
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[Tzanetakis and Cook, 2002], speech recognition [O’Shaughnessy, 2003], and

have been previously used as a baseline for comparing to learned features for

QBV tasks [Zhang and Duan, 2015, 2016a]. In addition, first or second order

∆MFCCs are also often used to capture the variation of MFCCs over time

[O’Shaughnessy, 2003; Stowell, 2010; Zhang and Duan, 2015]. We therefore

include a subset of features containing only MFCCs (set 2), and to investi-

gate whether the temporal variation in MFCCs is useful for our task, we also

include a subset of ∆MFCCs and ∆∆MFCCs (set 3).

Set 4: Temporal

As noted in the research questions set out in Section 5.1, we are interested

in the relative importance of spectral vs. temporal information for our task.

Given the physical constraints of the vocal tract and transposition of spectral

features discussed in Chapters 2 and 3 respectively, one might not expect

the spectral range of the imitations to map directly to that of the percussion

sounds. However, with the exception of attack time (which as previously

discussed and identified by Lemaitre et al. [2016b], people may not be able to

differentiate), there is no such constraint for accurately imitating the temporal

features such as the overall energy envelope and duration. For this reason we

include for comparison a subset of temporal features, namely the log attack

time, temporal centroid, duration, temporal crest factor, zero crossing rate,

decay time, and overall power.

Set 5: Auditory images (PHG)

We also include for comparison the similarity measure from Pampalk et al.

[2008] that were used to select the drum samples in Chapter 4. This method

(herein referred to as PHG) has been shown to be a good predictor of percep-

tual similarity between same–category drum sounds, therefore we are inter-

ested in whether it is also suitable for predicting the similarity between vocal

imitations and real drum sounds. To recap, the distance between two sounds

is measured as the Euclidean distance between their vectorised spectrograms,

constructed with a 4096 sample window; 512 sample hop size, Bark scale (72

bins), loudness in dB and scaled using Terhardt’s model for the outer and

middle ear Terhardt [1979]. The lengths of the 2 spectrograms are equalised
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by zero padding the shorter one prior to the vectorisation, in order to compare

equal–sized feature vectors.

Set 6: MPEG–7

The final feature set (set 6) is taken from the MPEG–71 standard for a percus-

sive timbre space, described by Peeters et al. [2000]. This is motivated by the

findings of Lakatos [2000] who investigated the acoustic correlates of MDS–

reduced timbre spaces derived from perceptual similarity ratings between per-

cussion sounds. Lakatos found that for a 2D space, the first dimension is best

correlated with a combination of log attack time (LAT ) and temporal centroid

(TC), and the second dimension is best explained by spectral centroid (SC).

This feature set was also tested against the PHG method in Pampalk et al.

[2008], although it did not perform as well for predicting the perceptual sim-

ilarity between same–category sounds. Nonetheless, as it is relativity simple

to implement, we include it here for comparison. The distance, d, between 2

sounds (a and b) is calculated as per Equation 5.1. According to the MPEG

standard the relative weighting of LAT , TC, and SC is dependent on the

dataset. For this reason we conducted a grid search of all possible weightings

between 0–1 (with steps of 0.1), and found that weightings of 0.8, 0.2, and

1.0 worked best for LAT , TC, and SC respectively, based on the evaluation

method in Section 5.3.

d =

√(
(LATa − LATb)

wlat

10
+ (TCa − TCb)

wtc

10

)2
+
(

(SCa − SCb)
wsc

105

)2
(5.1)

5.2.2 Learned features: CAE networks

Having described the heuristic feature sets, we now move on to the learned

features, providing details of the convolutional neural networks, training data

and procedure. In particular, we describe the general model architecture along

with the variants used to generate feature sets with different sizes (128–2048)

and resolution of the spectral and temporal dimensions.

1SO/IEC 15938 Information technology - Multimedia content description interface - Part
4: Audio (2002)
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Model Architecture

The basic architecture is a CAE with four 2D convolution layers in each of the

encoder and decoder sections. Each convolutional layer is followed by batch

normalisation and (ReLU) activation layers. To avoid checker board artefacts

caused by deconvolution layers [Odena et al., 2016] we apply upsampling prior

to each decoding convolutional layer. As such, each decoding deconvolution

layer is an upsampling layer followed by a 2D convolution layer with (1, 1)

stride. We vary the kernel size of the first and last layers while using fixed

(10, 10) kernels for the other convolution layers. The kernel size is varied in

order to compare the shape of the encoded representation (i.e. square, wide,

tall) and how this interacts with the shape of the kernels over layers. The

encoding layers have [8, 16, 24, 32] kernels (layers 1–4 respectively) which is

mirrored in the decoder, i.e. [32, 24, 16, 8]. Finally, a single–channel convolu-

tion layer is used as an output layer. The activation of the last layer of the

encoder is flattened into a 1D vector which is used as the feature vector. All

11 the variants of the above model are presented in Table 5.2.

Training Data

To train the network requires considerably more data than was collected from

the experiment in Chapter 4 (420 imitations and 30 sounds). Therefore we

compiled a dataset consisting of a wide range of vocal and percussion related

sounds including i) short, percussive, non-percussive, pitched, and unpitched

sounds, and ii) a broad range of non–verbal vocalisations. Specifically, there

are 24,294 percussion sounds, 4,884 sound effects and 4,523 single note instru-

ment samples. These samples were all taken from the author’s private sound

library, amassed over a 10+ year period producing music. In addition to the

instrument and sound effect samples, we included 4,429 vocal imitations of

instruments, synthesisers and everyday sounds from Cartwright and Pardo

[2015], and vocal imitations of the short synthesised sounds from Chapter 3.

The combined datasets comprise of ∼39k sounds, of which ∼6k are vocal imi-

tations. We do not include the vocal imitations and drum sounds used for the

evaluation, to ensure the trained network is generalisable beyond the sounds

specific to this task.
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Pre–processing

The audio files were all pre–processed to produce fixed size time–frequency

representations for training the networks. As discussed in Chapter 2, magni-

tude spectrograms with linear, log, or Mel–based frequency scales are often

used as inputs to CNNs, with the latter two used to scale the visual repre-

sentations according to how we perceive frequencies. We are not concerned

with reconstructing the audio from the decoded layer, therefore we are able to

apply non–linear scaling (e.g. log, Mel, Bark) to the frequency axis of the

spectrograms. All 3 scales have similar characteristics, and there is little

difference between them in terms of how well they contribute to predicting

perceptual similarity between same–category drum sounds using the auditory

image method (PHG) for feature set 5 [Pampalk et al., 2008]. We therefore

apply Bark scaling (as opposed to log or Mel), in line with the PHG method.

For each sound in the training set, we compute the bark–grams from power

spectrograms with a 4096 sample window and 512 sample overlap, using 128

Bark bins. As with the PHG baseline, the magnitudes are modified via decibel

scaling and Terhardt’s ear model curves [Terhardt, 1979]. To achieve a fixed

size representation for all sounds, we either zero-pad or truncate the Bark

spectrograms to 128 frames (≈ 1.5 seconds).

Training Procedure

The network models were implemented using Keras [Chollet et al., 2015] and

Tensorflow [Abadi et al., 2016]. The dataset described in Section 5.2.2 was split

70/30% for training and validation respectively, and batch learning was applied

using a batch size of 128. As the training dataset contains 5.5 times more audio

samples than vocal imitations, and we are equally interested in learning both

sound types, a 50/50% split of audio samples/vocal imitations was specified for

each batch. The models were all fitted using the Adaptive Moment estimation

(Adam) optimiser [Kingma and Ba, 2014] with the suggested default learning

rate of 0.001, and mean squared error loss function. We used the early–

stopping scheme for no improvement in validation loss after 10 epochs, to

avoid the model overfitting to the training data. The best model for each

parameter setting is selected for the analysis (i.e. the model with the lowest

validation loss).



Chapter 5. Audio features for query by vocalisation 124

5.3 Evaluation method

In this section we describe the method used to evaluate the different feature

sets (heuristic feature sets 1–6 and 11 variants of the CAE network). The com-

plete evaluation work flow is given in Figure 5.1. The 30 drum sounds, 420

vocal imitations, and 9126 similarity ratings from reliable listeners (as defined

in Chapter 4) were used to evaluate the performance of each of the feature sets.

For a given feature set and drum category, distance is measured between each

of the 84 imitations and the 6 within-category sounds, giving 504 distance val-

ues per category, and 2520 in total. We use Euclidean distance in keeping with

the PHG method and previous approaches to using acoustic features for pre-

dicting similarity between vocalisations and referent sounds [Lemaitre et al.,

2016a] or text–based meanings [Perlman and Lupyan, 2017]. For each feature

set the distances were normalised between 0–1 to make the model parameters

(in particular the slopes) comparable by removing any influence of distance

scale on the estimated parameters. A linear mixed effect regression (LMER)

model was fitted for predicting the continuous ratings from the continuous

predictor variable (distance). LMER is well suited to this task given that all

listeners did not provide ratings for all imitations but only a randomly-selected

set of 28 imitations (giving an unbalanced dataset). In addition, it allows us

to include the dependencies between ratings for each listener, imitator, and

imitated sound, which are inherent in the experimental design from Chapter

4.

Maximum likelihood parameters for the model were estimated using the

lme4 package in R [Bates et al., 2015]. The general model was fitted with

rating as the dependent variable for each response, fixed effects of distance

and imitated sound, with an interaction term between the fixed effects, and

random intercepts for each listener and imitator. The model (as specified

in R) is given by:

lmer(rating∼distance * imitated sound + (1|participant) + (1|imitator))

We then calculated the slope of rating over distance for a given imitated

sound (i.e. the slopes of the interaction term), with 95% Wald CIs. For imi-

tated sounds where the upper CI < 0 we can infer that the slope is signifi-

cantly below 0 (α < 0.05) [Gardner and Altman, 1986]. This indicates that

the feature set is a good predictor for the imitated sound in question. We

note that as with the modelling of the same data in Chapter 4, we observed
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Figure 5.1: Overview of the complete evaluation work flow, for all 3 types of
features (CAE, auditory image and heuristic). Audio features may be gener-
ated from the audio by taking any of the red, green or grey paths. Euclidean
distance between each imitation and its imitated sound is then computed in
the feature space, and fitted with the rating data to an LMER model. Per-
formance of each feature set is measured by 1) AIC for model fit, and 2)
the proportion of imitated sounds that have a significantly negative slopes for
rating ∼ distance.

heteroskedasticity in the residuals of the fitted models due to zero–inflation in

the responses (rating data). Parameter estimates were therefore compared to

those from robust models [Koller, 2016], and no major differences were found.

As such the non–robust models were used for the analysis.

The performance of each feature set was evaluated using two metrics: the

percentage of imitated sounds for which the slope of the interaction is signif-

icantly below 0 (accuracy); and Akaike’s information criterion (AIC), which

gives a measure of model fit (note: lower AIC = better model fit). An ideal

feature set would have a significantly negative interaction slope for all 30 imi-

tated sounds (perfect predictor = -1.0), and be a good fit to the rating data

given the LMER model.

5.4 Results and discussion

The results for all 6 heuristic feature sets and the 11 CAE model variants are

given in Table 5.2. The first notable finding is that all the learned feature sets

outperform the heuristic features tested here, in terms of both evaluation met-

rics. This finding concurs with previous comparisons of heuristic vs. learned

features for QBV tasks [Zhang and Duan, 2015, 2016a,b]. The best perform-
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ing heuristic feature set in terms of AIC is PHG (2389), although both the

MPEG–7 timbre space and the PHG method give the same result in terms of

accuracy, with 53.3%, or 16/30 sounds for which the rating ∼ distance slope

is significantly less than 0 (α < 0.05). The improved model fit with PHG over

the MPEG–7 timbre space concurs with the findings of Pampalk et al. [2008],

however we observe much lower correlation between similarity ratings than

in the aforementioned study (where the similarity ratings were between drum

sounds, not vocal imitations and drum sounds). The weightings of the 3 fea-

tures for the MPEG–7 timbre space (LAT , TC, SC) were optimised via a grid

search, in terms of minimising the AIC. Interestingly, Pampalk et al. [2008]

also optimised the weightings, and identified TC (and to an extent SC) as the

most important features for discriminating between drum sounds, whereas

we found weightings of 0.8, 0.2, and 1.0 for LAT , TC, and SC respectively

gave the best performance. This suggests that whilst LAT is less important

than TC for discriminating between same–category drum sounds, the inverse

applies when comparing vocal imitations. Overall these findings support the

hypothesis that the auditory image similarity measure (and parameters) of

Pampalk et al. [2008] are to some extent transferable for measuring similar-

ity between vocalised and actual percussion sounds, at least compared to the

other features tested here, including the MPEG–7 timbre space.

The other feature sets perform similarly in terms of accuracy (43.3–46.7%),

however there is notable variance in terms of model fit. The accuracy measure

does not consider the steepness of the slope, only that they are negative,

therefore the AIC is a more informative evaluation metric. The AIC values are

worst for MFCCs, although we observe a notable improvement when ∆MFCCs

are included, indicating that the temporal evolution of these features is useful

for predicting perceptual similarity between imitations and imitated sounds.

This, and the fact that the temporal features also outperform MFCCs indicates

that temporal information may be more relevant than the spectral envelope

alone, in terms of how listeners discriminated between the same–category drum

sounds tested here. This concurs with the findings of Lemaitre and Rocchesso

[2014], where recognition of vocalised everyday sounds was more impaired

by temporal inaccuracies than spectral ones, highlighting the importance of

temporal information for judging the similarity between vocalisations and non–

vocal sounds. That is not to say that there is no salient information in the

spectral features of percussion sounds, evidenced in that the PHG method

(which is essentially a comparison between time–frequency representations)
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performs best, and by Tindale [2004], who demonstrated that a combination

of temporal and spectral features outperform temporal features alone for the

task of classifying different snare drums based on playing technique. However,

imitators tend to transpose spectral features, as shown in Chapter 3 and by

Lemaitre et al. [2016b], and listeners may not equate such transposition with

decreased similarity.

To understand what is driving the results in Table 5.2 we may consider

how the heuristic feature sets perform for each of the 30 drum sounds. The

rating ∼ distance slopes for all 30 sounds are given in Figure 5.2. This

shows that the prediction performance for all feature sets varies considerably

between the sounds. The PHG method performs better for snares and toms

compared to kicks, which is similar to the findings of Pampalk et al. [2008],

however, interestingly there does not appear to be any relationship between the

identifiability of imitations of certain sounds and how well the acoustic distance

measure performs: for example, hat4, hat5 and hat6 were all identified from

their imitations with significantly above chance accuracy (see Chapter 4), yet

for these sounds the upper CI of the slope estimates cross 0. Pampalk et al.

[2008] did not include cymbal or hat sounds in their study, therefore it is not

clear how suitable the measure is for comparing similarity for cymbal and

hat sounds, let alone between imitations and imitated sounds for these drum

types. Indeed, we might conclude from Figure 5.2e that this measure is not

particularly good for these drum types unless the sounds are very short (as are

hat1 and hat2 ), and except for these cases, the MPEG–7 timbre space may

be a better feature set for this task.

In terms of the full feature set, there are similar slope trends as for MFCCs+

∆MFCCs (Figures 5.2a and 5.2c), with the exception of only the cymbals.

This indicates that the MFCCs+∆MFCCs are contributing more to the first

14 principle components of the PCA–reduced full feature set compared to the

other features. We calculated the contribution (i.e. loadings) of each subset to

the 14 principle components, and found that ∆MFCCs contribute 38% of the

loadings, whereas the MFCCs alone contribute only 15%. This is somewhat

expected because they make up the majority of the 155 features, and there

are twice as many ∆MFCCs as MFCCs (52 vs. 26), making up 34% and 17%

of the full feature set, respectively. However, this suggests that the ∆MFCCs

are relatively more important than the MFCCs, at least in terms of how much

of the variance they explain in the imitations and drum sounds tested here,

although the difference is small.
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Figure 5.2: Slope estimates for the LMER models fitted using each of the
heuristic feature sets. A negative slope indicates a decrease in perceptual sim-
ilarity with an increase in distance, i.e. sounds for which the method performs
well. Values are mean estimates across all imitations for each drum sound,
with 95% Wald confidence intervals.
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(b) CAET 1024 (10)
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(c) CAEW 128 (17)
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(d) CAET 128 (13)
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(e) CAES 128 (9)
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Figure 5.3: Slope estimates for the LMER models fitted for the wide and tall
CAE models with the largest encoded size: 14 (a), 10 (b); and the smallest
encoded size for all 3 encoded shapes: 17 (c), 13 (d), and 9 (e). A negative
slope indicates a decrease in perceptual similarity with an increase in distance,
i.e. sounds for which the method performs well. Values are mean estimates
across all imitations for each drum sound, with 95% Wald confidence intervals.
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In terms of the learned features and different CAE architectures, the LMER

model from the best performing feature set (17) gives fitted slopes for rating ∼

distance that are significantly less than 0 (α < 0.05) for 83.3% (25/30) of the

imitated sounds, and has the lowest AIC. This feature set is generally a good

predictor of perceptual similarity between the vocal imitations and imitated

sounds tested here. Interestingly, as with the heuristic features, preservation of

the temporal resolution appears to be more important than spectral resolution

for our task. For CAEs with kernels wide in time and narrow in frequency

(14–17), performance improves as the size of the encoded layer decreases.

This indicates there is much redundancy in the spectral information: encoded

shapes with spectral dimensions greater than 1 have an adverse effect on per-

formance. Recall that the similarity ratings are only for sounds in the same

class (e.g. kick, snare etc.), and we can expect high spectral similarity within

each class, particularly for the attack portion of the sounds, which all contain

broadband energy (as per Figure 4.1). As such, overall, energy differences in

time may be more salient than the spectral distribution, providing the cues

used by listeners when giving the ratings. This hypothesis is supported by

comparing the square and tall CAEs: where reducing the temporal resolution

generally decreases performance. However there is also some redundancy in

the temporal information, as can be seen comparing feature sets 16 and 17. As

a post–hoc analysis, we tested variants of CAE 17 using smaller encoded ker-

nel shapes: (1, 2) and (1, 1), and found a decrease in performance below (1, 4).

This effect can also be seen in models 10–13, where performance decreases as

width is reduced from 4 to 1.

Further analysis of the LMER models for the CAE feature sets is presented

in Figure 5.3. Here we compare the slopes for each of the 30 sounds, for the

wide and tall models with the largest encoded size (14 and 10 respectively),

and the wide, tall, and square models with the smallest encoded size (17, 13,

and 9 respectively). Firstly, we note that as with the heuristic features, there

is considerable variation of performance between the sounds for all feature

sets, however, generally the relative slopes within each feature set are similar

across the different models. In other words, all the models presented in Figure

5.3 exhibit similar patterns, and the improvements seen in the best performing

model (17, Figure 5.3(c)) appear to apply to most of the 30 sounds. We observe

that prediction of ratings for cymbals suffered most from reductions in the

temporal resolution, whereas the opposite effect was observed for toms. This

indicates that although temporal resolution may be more important overall, it
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is not the case for all drum categories. For the best performing model, there are

5 sounds for which the upper CI crosses 0 (3 kicks and 2 toms). These are all

pitched sounds (although they are not the only pitched sounds in the dataset,

indeed, all the toms are pitched), and as we showed in Chapter 4, pitch is not

necessarily used by listeners as a salient cue for identifying imitated sounds

from imitations. Nonetheless, this suggests that predictions for some pitched

sounds may suffer from reducing the size of the encoded spectral shape to 1.

Finally, we note that the slopes, although generally below 0, do not approach

-1. Listener rating data is inherently noisy, and the concordance amongst lis-

teners varies across the sounds. As such, there will clearly be a glass ceiling

for performance, and a perfect model fit would not be useful for a real world

application of the LMER model. Indeed, a perfect model fit is not desirable

if one is interested in generalisability of the fitted LMER model.

5.5 Summary and conclusions

In this chapter we investigated the performance of both heuristic and learned

features for predicting the perceptual similarity between vocal imitations and

actual percussion sounds. Seven heuristic feature sets were compared, includ-

ing a set of 155 features from the literature on vocal imitation analysis and

QBV, MFCCs, temporal features, spectrogram–based features, and the MPEG–

7 percussion descriptors. In terms of learned features, we compared the

encoded features from 11 variants of a convolutional auto–encoder (CAE)

trained on over 39k percussion sounds, instruments and vocal imitations.

Specifically, each of the networks varied in both the shape of the encoded

layer in terms of the spectral and temporal dimensions, and the number of

extracted features. Each of the feature sets was evaluated using the vocal imi-

tations, drum sounds, and perceptual similarity ratings from the experiments

of Chapter 4. For a given feature set, the distance between imitations and

same–category drum sounds in the feature space was used as a predictor for the

similarity ratings, in a regression model fitted using linear mixed–effect regres-

sion. The experiments in this chapter serve to identify what types of audio

features best represent the perceptual similarity between vocal imitations and

percussion sounds, in terms of i) whether learned features outperform heuris-

tic features, ii) whether listeners rely on only a small subset of salient features,

iii) the relative importance of spectral vs. temporal resolution in the CAE,
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and iv) if, and how this differs across drum categories.

The results show that CAEs outperform all 7 sets of heuristic features by a

considerable margin. In terms of the heuristic feature sets, we observed little

difference in overall performance between the full set of 155 features (reduced

to the 14 first principle components), MFCCs (with or without ∆MFCCs),

and temporal features, and only marginal improvements for the spectrogram

based features and MPEG–7 percussion descriptors. A category–level analysis

showed that the MPEG–7 descriptors performed particularly well for cymbals

and hats and reasonably well for snares and tom–toms, but poorly for kick

drums. In contrast, the spectrogram based features performed best for snares,

tom–toms, and (closed) hats, with particularly poor performance for cymbals

and open hats. In terms of the CAE based features, the results show that (with

the exception of some tom sounds) reducing the size of the encoded layer height

(frequency) increases the predictive power of the learned features, yet reducing

the width (time) has the opposite effect. This finding is partly unexpected

given that the drum sounds generally have a similar overall temporal envelope

(attack followed by a decay), however understandable given that we compare

only same–category sounds, which also share similar spectral distributions.

These findings indicate that the suitability of different types of features for

this task is dependent on the drum category. Human rating data is particu-

larly noisy when the task requires discrimination between perceptually similar

sounds, however there are instances where there are clear trends in the ratings

that all of the feature sets failed to capture. As we saw in Chapter 4, kick4

and kick5 were identified with above chance accuracy from their imitations,

and in general the target sounds were rated higher than non–target sounds for

them, yet none of the feature sets (learned or heuristic) managed to sufficiently

predict the similarity ratings. This suggests that there are distinguishing char-

acteristics in the sounds that enabled listeners to identify the imitations, which

are not being captured in any of the feature sets presented here, and highlights

the challenge of finding a one–category–fits–all solution to predicting the per-

ceptual similarity between vocalisations and percussion sounds. Nonetheless,

overall, the best performing CAE feature set shows encouraging predictive

power for QBV applications, with good performance for all the cymbals, hats,

and snares, and most of the kicks and toms.
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Conclusions

The extraordinary ability of humans to effectively communicate sonic concepts

and the practical issues associated with navigating large sound libraries give

rise to the question of whether the voice might be a useful medium for sound

search. In this thesis we explored this question by investigating the potential

of musicians to accurately imitate musical sounds, and acoustic descriptors

that might be useful for predicting the similarity between vocalisations and

percussion sounds. In the following section we will outline the main findings of

the work presented in this thesis and consider how these relate to the objectives

set out in Chapter 1. We will then draw upon these contributions and some

limitations of our work, to identify future directions and suggest potential

areas for further research in Section 6.2.

6.1 Summary of contributions

In Chapter 2 we examined the existing literature that informed us to identify

the three main threads of research set out in Chapters 3–5. This review high-

lighted the broad range of sounds that can be produced with the human vocal

apparatus, beyond those used simply for speech and singing, and identified

that the essence of many everyday, artificial, and environmental sounds can

be effectively captured and communicated by means of vocal imitation. How-

ever it was not clear how well this ability applied to salient musical acoustic

characteristics such as pitch, dynamics, and timbre, or musical sounds such as

percussion instruments. The problem of navigating sound libraries was out-

134
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lined, and the case for query by example (QBE) as a promising method for

searching sounds was presented. This, combined with the potential for com-

municating sounds using the voice raised the question of whether the voice

might be a useful means for querying sound libraries, i.e. query by vocali-

sation (QBV), and how the perceptual similarity between vocalisations and

musical sounds might be modelled. We went on to identify many heuristic fea-

tures that have been successfully applied to classification of vocalised sounds,

and the emerging state–of–the–art features for many audio based tasks using

deep learning methods. This raised the question of whether these types of fea-

tures might be useful for QBV of musical sounds, and the merits of different

types of audio representations for this task.

In Chapter 3 we embarked on the first line of enquiry: investigating vocal

imitation of sounds varying in pitch, dynamics, and spectral shape. The focus

of this work was to establish the potential for the voice as a medium for

representing non–vocal sounds, and ascertain the level of control with which

musicians were able to accurately imitate sounds with 1 or 2 features varying

over time (controlled using ramp and modulation envelopes). In order to suf-

ficiently control for each of these features and the interactions between them

we synthesised sounds with parameters controlling for F0 (pitch), loudness,

and spectral centroid (determined by the cutoff frequency of a low pass fil-

ter). The results show that the extent and range of the envelopes were most

accurately imitated for pitch, as one might expect given a well established

relative scale (at least amongst musicians), and asymmetries in the imitations

of pitch and loudness ramps, in agreement with previous findings from stud-

ies on sung pitch ramps [d’Alessandro et al., 1998] and loudness perception

[Lane et al., 1970, 1961; Yadav, 2016]. Imitations of modulation envelopes

showed that for all 3 features the musicians managed to accurately imitate

the modulation rate, with negligible differences between features. Interest-

ingly, on average, combining pitch with either loudness or spectral centroid

envelopes did not have a significant effect on imitation accuracy for any of

the features. To our knowledge this is the first such study on vocal imitation

of these acoustic characteristics that includes combinations of features using

ramp and modulation envelopes, the results of which highlight that musicians

(including non–singers) are able to exercise a remarkable level of simultaneous

control over pitch and loudness or pitch and spectral centroid.

In Chapter 4 we turned the focus to vocalised percussion sounds, with the

aim of identifying whether musicians were able to imitate a set of drum sounds
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such that third party listeners were able to identify the imitated sounds from

the imitations, and establish the similarity between imitations and imitated

sounds relative to other percussion sound from the same category (e.g. kick,

snare etc.). The results showed that on average, the rated imitations were

considered as more similar to their respective imitated sounds than the other

same–category sounds, with a mean reciprocal rank of 0.58 (i.e. the mean

ranking of the imitated sounds was between 1st and 2nd out of 6). The identi-

fication accuracy varied considerably between imitated sounds (ranging from

74% to 4%), which is lower than has been found for similar tasks using every-

day sounds, in terms of classifying vocal imitations into groups [Lemaitre et al.,

2011] and identification of individual referent sounds [Lemaitre and Rocchesso,

2014]. At first sight it therefore appears that percussion sounds may not be

as imitable (in terms of communicative power) as everyday sounds, however

we note that in the aforementioned studies the referent sounds were gener-

ally quite distinct, whereas we conducted a forced choice experiment where

all options were percussion sounds from the same category. To our knowledge

this is the first experiment of its kind, that specifically considers the ability of

musicians to imitate percussion sounds such that same–category sounds can be

differentiated based on the imitations. As such, the results of our experiment

provide a contribution to understanding the effectiveness of vocal imitations

for describing subtle differences between categorically similar sounds.

In Chapter 5 a set of heuristic and learned audio feature spaces were eval-

uated for their suitability for use in QBV of percussion sounds. The distance

between sounds in each feature space was used in a linear mixed effect regres-

sion model to predict the similarity ratings from the listening experiment of

Chapter 4. The results showed that the best performing learned features

(extracted using a convolutional auto–encoder trained on percussion sounds

and vocal imitations) outperformed all of the heuristic features for almost all

sounds, and that temporal resolution of the learned features is more impor-

tant then spectral resolution for this task. However, we found that for certain

sounds, most notably kicks, none of the feature spaces were able to sufficiently

predict the similarity ratings. These results support previous research indi-

cating that learned features generally outperform heuristic features for many

audio based tasks [Lee et al., 2009] including QBV [Zhang and Duan, 2015,

2016b], however there are a number of novel contributions in our work, namely:

i) the range of heuristic features that was compared to the learned features. In

the aforementioned studies only a handful of features are compared (namely



Chapter 6. Conclusions 137

MFCCs), whereas we used a comprehensive set of features from the related

literature specific to our application (vocal imitation analysis). ii) when com-

paring learned features we investigated the relative importance of spectral vs.

temporal information for this task. For many audio tasks it is clear that a

particular dimension will be more important (e.g. spectral for chord recogni-

tion [Humphrey and Bello, 2012], temporal for onset detection [Schlüter and

Böck, 2013]), however for our task this was not the case, therefore we present

an analysis of this factor using a range of different network architectures. iii)

to our knowledge, this is the first such study that compares the perceptual

relevance of different feature spaces including learned features, not only for

QBV but across the field of MIR in general.

6.2 Future directions

The results presented in this thesis demonstrate the ability of musicians to

control some (important) characteristics of the voice and vocalise percussion

sounds, however the research field of vocalised musical sounds is still in its

infancy, and despite a considerable amount of existing research on the singing

voice there are many questions yet to be answered by research into non–verbal

vocalisation of musical sounds, both in terms of what is possible (i.e. what

people can vocalise and how they do it), and how we might model the similarity

between vocalisations and non–vocal sounds. In this section we will highlight

some potential areas for future research. Some of these suggestions came about

as a result of the findings in the experiments of this thesis (not addressed due

to inherent limitations of the presented experiments), and others identify work

beyond the scope of this thesis that might guide future directions in the wider

field of vocalised musical sounds.

Regarding control of vocal characteristics, we have only touched the surface

in terms of i) what might be measured, and ii) the means of quantifying ‘accu-

racy’ or control. The work in Chapter 3 is based on synthesised sounds because

this allowed for control over the parameters for each condition, whilst limiting

any confounding factors from co-variance of characteristics that might exist in

real–world sounds, for example in acoustic instruments. However, the result-

ing stimuli are quite simple both harmonically and in terms of the feature

envelopes, permitting relatively simple methods for extracting the envelope

parameters (slope, range, modulation rate and extent). Real–world sounds
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will generally have more complex envelopes and potentially more interactions

between the features. For these kinds of more complex shapes there may exist

more suitable ways to quantify the difference between imitation envelopes and

those of the imitated sounds, from the domains of time series analysis (such

as dynamic time warping, or simply cross correlation), and curve fitting (such

as smoothing spline ANOVA or additive modelling). In addition, the charac-

teristic of ‘timbre’ was reduced to the audio feature of spectral centroid for

the purposes of this experiment, and we know that the perceptual attributes

of timbre cannot be fully quantified using this single measure (although it is

an important timbral feature). As such, it is not clear how well our findings

translate to real–world sounds. For example, one might consider whether peo-

ple are able to imitate subtle fluctuations of features or whether more complex

envelope shapes and combinations thereof can be imitated just as accurately

as our stimuli. Therefore, a natural extension to this work is to apply a simi-

lar method (comparison of feature envelopes between imitations and imitated

sounds) to a set of real musical instruments or synthesisers, extending the

range of features tested in accordance with the types of sounds in the dataset.

There is an existing dataset of such imitations [Cartwright and Pardo, 2015],

making this an attractive next step for any further research in this area.

Furthermore, we might consider whether imitation accuracy should indeed

be measured in terms of the accuracy of individual audio features, and if so,

whether all features should be weighted equally when quantifying it. As we

have seen in Chapter 4, human listeners appear to be good barometers for mea-

suring imitation accuracy (based on the agreement, or concordance amongst

listeners), yet it is not always possible to quantify their ratings by applying

the same acoustic features (and weightings thereof) to every sound, as pre-

viously demonstrated by Lemaitre et al. [2016a]. This highlights a potential

disjunction between the approach to analysing vocal imitations presented in

Chapter 3 compared to that in Chapter 4. In Chapter 3 we quantitatively

assessed imitation accuracy of synthesised sounds at a frame–based feature

level. This informs us of the relative accuracy with which musicians might

imitate specific feature envelopes, however it does not tell us anything about

the perceptual accuracy of the imitations. Indeed, one might argue that some

of the less accurate imitations in terms of frame–level features are more per-

ceptually similar to the imitated sounds than the more accurate imitations. In

contrast, in Chapter 4, where we turned the focus to percussion sounds, we did

not consider the feature level accuracy, but focussed only on the perceptual
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similarity between imitations and imitated sounds. The different approaches

to quantifying imitation accuracy, whilst both valid, are complementary, and

as such it would be insightful to ‘complete the circle’ of analysis by consider-

ing the perceptual accuracy of imitations in Chapter 3, and the feature–level

accuracy of imitations in Chapter 4. Doing so would allow us to establish

the relationship between and individual merits of these two approaches to

evaluating vocal imitations.

In addition, it has been shown that people tend to agree on what salient

acoustic features have been captured and vocalised from imitated sounds

[Lemaitre et al., 2017], but the strategy of an imitator will depend on the

sound that is to be imitated, and different imitators apply different strategies

to imitate the same sounds (as discussed in Chapter 4 and by Lemaitre et al.

[2016a]). For this reason, even if people are able to accurately imitate the

acoustic features in a target sound, given the same task, 2 people may con-

sider different features to be more or less important for vocalising the essence

of a target sound. Moreover, they may both be correct, in terms of a listener

being able to identify the imitated sound from the imitations! As such, there

is clearly a perceptual bias that should be considered, or attempted to be

controlled for, when quantifying vocal control of multiple acoustic features:

it may not be that the imitator cannot exercise sufficient control over their

vocal tract to imitate a particular sound, but rather that their interpretation

of the sound does not require equally faithful reproduction of all features. In

our experiments we have mostly ignored this perceptual bias (although the

effect of imitator is included in all the statistical models used for inference),

however it is clearly an important factor if one wishes to apply this type of

method to real–world sounds, which are likely to contain variations of more

than 2 features and with considerably more complex feature envelopes.

The objectives in Chapter 5 were focussed on exploring audio features

by comparing distance between sounds in the feature spaces to perceptual

similarity ratings, with the aim of finding a suitable Euclidean space that

best represents the perceptual distance between vocalisations and percussion

sounds. Some obvious ‘low hanging fruits’ for further research are to extend

the presented methods, with variations on the network architectures, distance

measures, feature learning methods, and data augmentation. In addition,

alternative prediction models (such as logistic models and other supervised

classifiers) may be equally, if not more effective than unsupervised models for

the application of QBV, as demonstrated by Zhang and Duan [2017]. One
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such approach would be to use deep neural networks to predict the similarity

ratings directly from the features (similar to the approach by Zhang and Duan

[2017], but using ratings instead of class labels). Such models are however sub-

ject to certain constraints. One major benefit of our approach is that searching

a Euclidean space can be far more efficient than predicting and comparing the

similarity between a query and all sounds in a library, as would be required in

an end–to–end predictive model. Furthermore, to train such a model requires

a large amount of labelled training data, and collecting similarity ratings can

be resource–intensive. However, if the constraints of computational simplic-

ity and data availability are lifted then it would be useful to investigate the

performance of end–to–end models.

We may also consider whether the salient cues that listeners use to decide

if an imitation is more or less similar to an imitated sound are the same for

percussion and non–percussion sounds, and if not, how they differ. A first step

in this direction could be to apply the models from Chapter 5 to new sounds,

by refitting them without any fixed effects that are specific to the experimental

design (such as the imitated sound), and using only the global parameters to

predict the perceptual similarity for new vocalisations and non–vocal sounds.

Both the CAE network and LMER models were trained on percussion sounds

(although vocal imitations of non–percussion sounds and instruments were also

used to train the CAE), therefore we might not expect this model to transfer

well to vocalisations of non–percussion sounds. Nonetheless, applying the

fitted models to different types of sounds will elucidate the generalisability

of the estimated similarity∼distance relationship. On a practical note, this

type of experiment could be evaluated using (additional) similarity ratings

for imitations of non–percussion sounds, or implemented as a complete QBV

system and tested in a more qualitative manner.

Finally, we note that despite being motivated by the problem of search,

the research presented in this thesis does not directly address it, but instead

investigates a number of avenues that offer prerequisites for informing the

design of QBV systems. There are many facets that are yet to be addressed,

such as the user experience of QBV systems. To date there has been little

(if any) research directly addressing how QBV systems compare to alternative

search methods for music production and computer–based musicians. As noted

by Stowell [2010], people behave quite differently when presented with an

actual system that requires them to externalise their musical ideas in the form

of vocalisations. They might feel inhibited or uncomfortable doing so, and the
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way in which people interact with a music–sample based QBV system may,

or indeed, probably does, differ from how they behave in a controlled vocal

production experiment. This highlights some limitations about what we are

able to infer from the results of the present experiments: the gap between

our findings and real–world QBV systems is ripe for future research on user

experience and sonic interaction design. Whilst further research is required to

understand how the voice might be used to solve the problem of audio search,

we have contributed to a number of areas that span far beyond the notion of

QBV, including vocal analysis, communicability of vocal imitations, and audio

feature learning.
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J. Schlüter and T. Grill. Exploring data augmentation for improved singing

voice detection with neural networks. In Proceedings of the International



Chapter 6. Conclusions 157

Conference on Music Information Retrieval, pages 121–126, 2015.

R. C. Schmidt. Managing delphi surveys using nonparametric statistical

techniques. Decision Sciences, 28(3):763–774, 1997.

E. Schubert and J. Wolfe. Does timbral brightness scale with frequency and

spectral centroid? Acta Acustica united with Acustica, 92(5):820–825, 2006.

W. Sethares. Tuning, timbre, spectrum, scale. Springer, New York, 1998.

J. Sharpe. Jimmie riddle and the lost art of eephing. https://www.npr.

org/templates/story/story.php?storyId=5259589, 2006.

S. Siddiq, C. Reuter, I. Czedik-Eysenberg, and D. Knauf. Towards the

comparability and generality of timbre space studies. In Proceedings of the

Third Vienna Talk on Music Acoustics, pages 237–240, 2015.

K. Siedenburg and S. McAdams. Four distinctions for the auditory waste-

basket of timbre. Frontiers in Psychology, 8:1747, 2017.

K. Siedenburg, I. Fujinaga, and S. McAdams. A comparison of approaches

to timbre descriptors in music information retrieval and music psychology.

Journal of New Music Research, 45(1):27–41, 2016.

E. Sinyor, R. Fiebrink, C. McKay, D. McEnnis, and I. Fujinaga. Beatbox

classification using ACE. In Proceedings of the International Conference on

Music Information Retrieval, pages 672–675, London, England, 2005.

M. Slaney. Web-scale multimedia analysis: Does content matter? IEEE

MultiMedia, 18(2):12–15, 2011.

C. Spevak and E. Favreau. Soundspotter-a prototype system for content-

based audio retrieval. In Proceedings of the 5th International Conference on

Digital Audio Effects, 2002.

T. Sporer, J. Liebetrau, and S. Schneider. Statistics of MUSHRA revisited.

In Proceedings of the 127th Audio Engineering Society Convention, pages

323–331, New York, USA, 2009.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for

simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

D. Stowell. Making music through real-time voice timbre analysis: machine

learning and timbral control. PhD thesis, Queen Mary University of London,

2010.

https://www.npr.org/templates/story/story.php?storyId=5259589
https://www.npr.org/templates/story/story.php?storyId=5259589


Chapter 6. Conclusions 158

D. Stowell and M. D. Plumbley. Characteristics of the beatboxing vocal

style: C4dmtr-08-01. Technical report, Queen Mary, University of London,

UK, 2008.

A. M. Sulter, H. K. Schutte, and D. G. Miller. Differences in phonetogram

features between male and female subjects with and without vocal training.

Journal of Voice, 9(4):363–377, 1995.

J. Sundberg. Data on maximum speed of pitch changes. Speech Transmission

Laboratory Quarterly Progress and Status Report, 4:39–47, 1973.

J. Sundberg. Articulatory interpretation of the “singing formant”. The

Journal of the Acoustical Society of America, 55(4):838–844, 1974.

J. Sundberg. The Science of the Singing Voice. Northern Illinois University

Press, Illinois, USA, 1989.

J. Sundberg. Vocal fold vibration patterns and phonatory modes. Speech

Transmission Laboratory Quarterly Progress and Status Report, 35:69–80,

1994a.

J. Sundberg. Acoustic and psychoacoustic aspects of vocal vibrato. Speech

Transmission Laboratory Quarterly Progress and Status Report, 35(2-3):045–

068, 1994b.

J. Sundberg, I. Titze, and R. Scherer. Phonatory control in male singing: A

study of the effects of subglottal pressure, fundamental frequency, and mode

of phonation on the voice source. Journal of Voice, 7(1):15–29, 1993.

H. Terasawa, M. Slaney, and J. Berger. The thirteen colors of timbre. In

IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,

pages 323–326, New Paltz, New York, 2005.

E. Terhardt. Calculating virtual pitch. Hearing Research, 1(2):155–182,

1979.

A. Tindale. Classification of snare drum sounds using neural networks.

Master’s thesis, McGill University, 2004.

I. R. Titze. Comments on the myoelastic-aerodynamic theory of phonation.

Journal of Speech, Language, and Hearing Research, 23(3):495–510, 1980.

C.-G. Tsai, L.-C. Wang, S.-F. Wang, Y.-W. Shau, T.-Y. Hsiao, and W. Auha-

gen. Aggressiveness of the growl-like timbre: acoustic characteristics, musical

implications, and biomechanical mechanisms. Music Perception: An Inter-

disciplinary Journal, 27(3):209–222, 2010.



Chapter 6. Conclusions 159
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Appendix A

Heuristic feature

specifications

This appendix contains further details of the heuristic features used for the

experiments in Chapter 5. Note that unless stated otherwise, the implemen-

tations of these features are based on the definitions given by Peeters [2004].

Global features:

Log attack time is taken as per the fixed threshold method from Peeters

[2004]. This is calculated from the energy envelope, which is the instanta-

neous RMS of the time–domain signal calculated per frame, using a frame

size of 512 samples (11ms). This is considerably shorter than the 100ms win-

dow size suggested by Peeters [2004], however it is more suited to percussion

sounds (where we are interested in relatively high temporal resolution), and

matches the hop size used to extract the spectral features. As the audio files

were manually edited to start at the beginning of the sound, the beginning

of the file and the maximum value are selected as the start and end points

of the attack, respectively.

Temporal crest factor, as defined in Stowell [2010] is the ratio of the

maximum value over the mean, and is also computed on the energy envelope.

Duration is taken as the entire length of the edited audio file (as opposed

to the effective duration defined in Peeters [2004]).

Zero crossing rate is taken as the number of times the time–domain signal
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crosses zero, per second.

Decay time is taken as the time from the maximum value to 50% of the

maximum value in the time–domain, as per Patel and Iversen [2003] (com-

puted from the smoothed energy envelope).

Frame–wise features:

Pitch and (pitch) clarity are computed using the same approach as Stow-

ell [2010], which is an auto–correlation based time–domain method from

McLeod and Wyvill [2005]. This produces a normalised square difference

function, giving the difference between 2 copies of the same signal at each

lag position. The pitch is then calculated from the strongest peak (ignoring

the value at a lag of 0), and clarity is taken as the strength (i.e. magnitude)

of that peak.

Noisiness is the ratio of noise energy over total energy. The noise energy

is computed as the difference between harmonic and total energy, where

harmonic energy is taken as the sum of energy over all harmonics (odd and

even) of F0.

Roughness is calculated using the model from Sethares [1998], which is

similar to the approach used by Lartillot and Toiviainen [2007]. Spectral

peaks are extracted using the contrast method from Lartillot and Toiviainen

[2007] and the sum of sensory dissonances is calculated for each partial pair

(taken from the power spectrum), as per Sethares [1998], weighted by the

product of the loudness for each partial pair (in Sones). The median and

IQR roughness values are calculated using only frames where more than 1

contrasting peak is detected.

Inharmonicity is the energy weighted difference between the partials and

integer multiples of F0. The partials are calculated using the same peak

picking method that is used for roughness.

Spectral centroid is defined as the amplitude weighted mean frequency

(i.e. the barycentre of the spectrum).

Spectral rolloff is the frequency below which n% of the energy exists. A

value of n between 85%–95% is commonly used. In line with Stowell [2010]

we calculate this for a high percentile (95%), the median (50%) and quartiles
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(25% and 75%).

Spectral crest factor is the frequency–domain equivalent to the temporal

crest factor, taken as the maximum amplitude value over the mean [Stowell,

2010].

Spectral slope is the slope calculated from a linear regression of the spec-

trum.

Spectral spread is the variance of the spectral centroid.

Spectral kurtosis is the 4th order moment of the spectrum (i.e. the flatness

or peakiness of the distribution).

Spectral flatness is the geometric mean of the spectrum over the arith-

metic mean.

Spectral skewness is the 3rd order moment of the spectrum (i.e. the

asymmetry of the spectral distribution).

Spectral entropy is the Shannon entropy, calculated from the probability

density function of the spectrum.

Spectral compactness measures the sum of amplitude differences between

adjacent bins. For a given bin, n, the difference, dn is taken as the difference

between the amplitude of n and the mean of the amplitudes for bins: n− 1,

n, and n+ 1, as per the definition by Sinyor et al. [2005].

Strongest frequency is simply the frequency of the highest amplitude bin

[Sinyor et al., 2005].

Spectral flux describes how much the spectrum varies over time, measured

as the difference between 2 successive frames as per Peeters et al. [2011].

For 2 given spectral frames, Xt, Xt−1, this is calculated as 1− Xt·Xt−1

‖Xt‖‖Xt−1‖ .

Band–specific power is the sum of power in a particular frequency band.

There is no standard definition for which band values to select: Hazan [2005]

uses bands 100Hz–2kHz, 2–6kHz, 6–10kHz; Stowell [2010] uses 5 log spaced

bands: 50–400Hz, 400–800Hz, 800Hz–1.6kHz, 1.6–3.2kHz, and 3.2–6.4kHz;

and Herrera et al. [2002] use the relative percentage of energy in each of 8

bands, which were chosen by experimentation and observation of the data.

We use the 5 log spaced bands from Stowell [2010]. We also include a
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measure for overall power, simply calculated as the sum of power in all

bands.

LPC coefficients provide a compact estimation of the spectral envelope

and are commonly used in speech coding. They exploit the source–filter

nature of the voice by estimating the formant frequencies using all–pole

filters [Rabiner and Schaffer, 1978]. This provides both a spectral envelope

(i.e. the LPC coefficients) and a source signal (the residual from inverse

filtering the coefficients with the original signal). We take the 10 coefficients

from an 11th order LPC (ignoring the first coefficient), using the Python

implementation of LPC from the scikits.talkbox1 Python package.

MFCCs and ∆MFCCs. MFCCs are calculated from the discrete cosine

transform (DCT) of the log–magnitude, Mel–scaled spectrum. We take the

first 13 MFCC coefficients (ignoring the first coefficient) from the imple-

mentation in the scikits.talkbox Python package, and include both first and

second order ∆, giving 39 features per frame.

1https://scikits.appspot.com/talkbox
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