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Abstract

We presenta methodfor learningappearancenodelsthat canbe used
to recogniseand track both 3D headposeand identitiesof novel subjects
with continuousheadmovementacrossthe view-sphere. We describean
automaticface dataacquisitionsystembasedon a magneticsensorand a
calibratedcameraThesystemenabledisto obtainsystematicallya database
of faceimageswith labelled3D posesacrossaview-sphereof £90° yaw and
+30° tilt at intervals of 10°. The databasavas usedto learn appearance
modelsof unseerfaceshasedn similarity measureso prototypefaces.The
methodis computationallyefficientandenablegeal-timeperformance.

1 Introduction

To beableto recognisdacesof moving peoplenotonly requiresheability to labelnovel

faceimageswith known identities,but also needsdetectingand tracking of facesover
time [1]. We referto this asthetaskof associating faces. We adoptthe view suchatask
canbebetterachievedusingview-basedppearancmodelsratherthanexplicit 3D mod-
els[2]. Oneof thedifficultiesin associatindacesusingview-basedepresentationis that
faceimagesof the samepersonfrom differentviewpointsaresignificantlymoredissimi-
lar thanimagesof differentpeopleappearingn the sameview. However, thetaskcanbe
significantlysimplifiedif posesareknown [3]. Theability to estimateandpredictthe 3D

orientationof facesandthewaysin which they changeover time alsoimposesemporal
continuityin recognition.Consequentlythe ability to locate trackandpredictheadpose
of amoving persoris anintegral partof recognition.Herewe presenta methodfor learn-
ing to associatdacesacrosshe view-spherebasedon similarity measureso prototypes
in multiple views. Although similar work wasproposedor recognitionusingsimilarity

measuref], andfor novel view generalisatiomndsynthesisisinglinearcombinatiorof

prototyped5], thiswork extendstheideato a unifiedmethodthataddressethe problems
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of both poseandidentity recognitionandtrackingover time. The methodusestraining
datafrom adatabasef 3D poselabelledfaceimagesacrosgheview-spherecapturecoy
anautomatediataacquisitionsystem.

Theproblemsaddressetereare(1) automaticacquisitionof labelledfacedataacross
theview-spherdor learning,(2) real-timerecognitionrandtrackingof faceimagelocation,
scale,andposerelative to theimage-planeand (3) identitiesover time. For simplicity,
rotationin theimage-planes ignored,i.e. the subjectis assumedo be upright. The pose
refersto the rotationin depthrelative to the imageaxes. A “nodding” headundegoes
x-axis rotation whilst a “shaking” headundegoesy-axis rotation. The former is also
referredto as“tilt” andthelatteras“yaw”.

The proposednethodtakesa view-basedapproactin which faceappearancenodels
arelearnedrrom exampleviewswithoutrecourseo ary explicit 3D model.Furthermore,
the views arealignedusingonly simpleimage-plandransformationsuchastranslation
andscaling,or at mostaffine transformationin particular no densecorrespondencese-
tweenfeaturepointson differentfacesarerequiredandasaresult,real-timeperformance
is obtained.The modelsareconstructedrom alignedimagedatalabelledwith posean-
gles. Efficient focusof attentionbasedon colour and motion cuesis usedto bootstrap
faceimagesearchn theimageplane[6, 7].

2 Acquidsition of Labelled Views acrossthe View-sphere

In orderto build appearancenodels,exampleviews labelledwith 3D poseangles(both

tilt andyaw) arerequired. A systemwasdesignedhat utilisesboth a magneticsensor
attachedo the subjects headanda cameracalibratedrelative to the sensors transmitter

Thesensomwasthenusedo provide posdabelsfor thefaceimagesof thesubjectcaptured
by thecameraFigurel shovstheacquisitionsystem.

Sensor on
Camera Head-band

Data Aquisition Software

Transmitter

Figurel: Thesystemfor acquiringlabelledviews acrosgheview-sphere.

More precisely an electromagneti& DOF Polhemougracker with a sensoranda
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Figure2: An examplelabelledheadimageset. The imagesof labelledviews arefrom
+90° to -90° in yaw andfrom +30° to -30° in tilt at 10° intervals.

transmitteiwasusedto provide 3D coordinategin ¢m) andorientationof the sensorel-
ative to the transmitter Thetilt, yaw androll correspondo rotationsaboutthe x, y and
z axesrespectrely andare Eulerangles(in degrees).The sensoiis rigidly attachedo a
head-bandvorn by theusersothatit followsthe heads movementsandchangesn orien-
tation. Theimageacquisitionsystemusedhasa singlecameravhich hasbeencalibrated
to the sensors coordinatesystem.Thelocationandsizeof the headin theimagearede-
terminedby back-projectiorontotheimage-planendanappropriately}croppedmageis
thusacquired.The sensolorientationis usedto labeltheimagewith headpose.In order
to locateandalign the 2D headimages,cameracalibrationwith respecto the sensoliis
neededThisinvolvesdeterminingcamergarameterssingthe 3D positionsprovidedby
thesensoandtheir correspondin@D projectionson the cameras image-planeBothin-
trinsicandextrinsic parametersvereestimated Theintrinsic parameterarefocal length
andradial distortion. The extrinsic parametersare the position and orientationof the
cameraelative to the sensors coordinatesWe adoptedhe cameramodelusedby [8].
The positionof the sensomith respecto the headis somavhatarbitrary However,
the positionandscaleof the headsin the imagesacquiredneedto be consistentaicross
differentpeople.Therefore a few facialfeaturesveremanuallylocatedfor eachsubject
in orderto bootstrapthe acquisitionprocessby determininga scalingfactoranda 3D
point insidethe head. This point wasrigidly “attached”to the facial featureseyesand
upperlip) andwasusedto projectontothe centreof the acquiredheadimages.In other
words,thefacialfeatures’3D coordinatesvereusedto determinghecoordinate®f a3D
pointinsidethe headrelative to the sensors 3D coordinatesTheimagewasthencropped
asdeterminecby the scalefactorandre-sampledo a fixed numberof pixels. Labelled
imageswere capturedwith y-axisrotationin the range+90° andz-axis rotationin the
range+30° atintervalsof 10°. Exampledor onesubjectcanbeseenin Figure2.

3 View-based Face Appearance M odels using Prototypes

Face appearancenodelsare essentiallyview-basedholistic templates. A simple way
to obtain a genericappearancenodelis to estimatean averagefacetemplateat each
pose. Thesemeantemplatescould concevably be usedto associatéaceimagesin or-
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der to recogniseand track posesof facesacrossviewpoints. Figure 3 shavs someof
the meantemplatecomputecby averagingfiltered views of 11 differentsubjects.How-

ever, althoughtheseview-basedmeantemplatecanbe usedto performreasonablyvell

in recognisingandtrackingposesthey aresensitve to illumination changesandimage
noise. Furthermorethey do not captureidentity information. More elaboratecappear
ancemodelsuselinear combinationsof training samples. Given sufiicient data, such
linear combinationcanalsobe statistical. This includesthe useof PCA[9], LDA [10]

andGaussiammixtures[11].
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Figure3: Averagetemplatedor views from profile to profile.

In orderto generalisdetweerviews, ratherthanassuminghatfaceappearancesre
linear combinationof prototypesat given views [5], animagecanbe representecsa
vector of similaritiesto prototypeviews [12]. Here we exploit this approachto both
faceposetracking and view-basedrecognition. Let a faceimagex at a given posebe
representeds a vector o of similaritiesto ¢ prototypefacesy, at the sameposeas
follows:

o = [al,aQ,...,aq], oy = h(X,yi) (1)
wherei = 1,...,q and k() is a similarity function that definesa similarity measure-
ment. A straightforvard () canbetheinverseEuclideandistancebetweera faceimage
X = [z1,...,zN] anda prototypey = [y1,...,yn] ata givenview, whereN is the

dimensionalityof the images. To take normalisationfor overall intensity and contrast
into considerationa bettermeasuremenshouldbe the inverseof the Pearsors linear
correlationcoeficient:

\/Ez 1 (@i — pix) \/Ez 1 (Wi — py)?
h(x,y) w )
Zz— (w5 — ) (Y — Ny)
wherepux andpu, arethe meanof the elementsf x andy respectrely. Furthermorea
deviationweighteddistancemeasureanalsobe adoptedusingGaussian:

_ _ 2
noxy) =exp (752210 ©
By measuringsimilarity vectorsof imagesof novel facesto prototypesacrosschangesn
yaw (y-axisrotation),it canbe obsenedthatthey form separabléut alsoapproximately
linearmanifolds(seeFigure4). Themodelis thereforeusefulfor recognition.Let usfirst
considelits usein poserecognitionandtrackingacrossviews.

4 Person-Independent Pose Recognition and Tracking

McKennaand Gong[3] describeda real-timesystemfor tracking and estimatinghead
posebasedon person-specifitemplates.A userspecificheadmodelconsistingof mul-
tiple view templateswas used. Thesetemplateswere filtered with Gaborwaveletsor
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Similarity Manifolds in 3D Space from Frontal to Profile Yiews

person 1 ——
person o pr—
person 3 —a—
persaon [ Q———
person 9

Prototype I

Prototype III
Frototype II

Figure4: Left: Prototypesat profile view. Centre:Posemanifoldsof novel facesin the
vectorspaceof similarity to prototypesRight: Imagesof novel facesat profile view.

simplerorientedfiltersin orderto obtaina degreeof invarianceto illumination andto aid
the poseestimation(seeFigure5). Eachtemplatewaslabelledwith poseanglesandin
eachframe,the bestmatchingtemplatewasusedto give the poseestimate. Exploitation
of temporalconstraintsalloweda level of performancesuitablefor driving anavatarin a
manneiperceptuallyacceptableo the user This wasachievedin real-timeusingmodest
hardware (133MHz P5 with Matrox Meteorboard). The performanceof suchperson-
specificmodelswasevaluatedagainsthe ground-truthmeasuredby the magneticsensor
andit shavs acceptabl@erformanceasshovn in Table1l. However, it is obviously un-
desirableo requiremodelsfor everyindividual. Herewe describea person-independent
posetrackingandpredictionsystembasedn similarity to prototypes.

Figure 5: Tracking posesusing person-specifitemplates. The pin diagramindicates
estimategose.Top: thebestmatchingtemplatesboundingboxesareshovn overlaidon
afilteredsequenceBottom: An unfilteredsequencés shavn herefor visualisation.

Givena databasef multiple views of differentpeople a genericview-basedappear
ancemodelcanconcevably be learnedfor trackingheadposein a person-independent
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mannergiven sufiicient training data. In practice,the numberof examplesavailable at
eachview is small. Alternatively, appearancenodelsbasedon similarity vectorsto a
limited number(in tens)of prototypefacesat multiple views canbe adopted Giventhat
faceimagesat the frontal view canbe readily detected6], let a similarity vectora to
prototypedor a detectedaceimageat the frontal view be measuredisingEquation(1).
Poserecognitionandtrackingcanthenbeperformedoy finding thenext posef (bothyaw
andtilt) which maximises

L(0) = llog|| + & (e, o'~ (4)

where||af|| is the L, norm of the similarity vectorat the mostlikely poseat time .
Functionh(a), a~!) is the similarity measurebetweenthe two similarity vectorsat
the previously known poseandthe currentlylikely pose.Maximising £(8) imposeswo
constraints.The first term maximisesthe magnitudeof similarity regardlesddentity in
aneighbourhooaentredat thelikely poseattime ¢, thereforeperforminga genericface
matchingat the likely poseat time t. The secondterm assumesdentity constang in
similarity vectorspace providedthatall othersourcesf variationsuchaslighting and
translationakhiftin theimageshave beereliminatedasshovn in Figure4). Theconstant
k controlsa trade-of betweernthetwo factorsandits valuewill dependon the expected
smoothnes the posechangeandthe changesxistedin afaces similarity measureso
prototypesn differentviews.

It may alsoseemto be obviousthat the tracked poses(tilt andyaw) can be further
Kalmanfilteredin orderto provide a degreeof consisteng andprediction.However, our
experimentshav thatsuchattemptshave little effectdueto thefactthat3D posechange
in real-timesequencetendsto be highly nonlinearand canvary significantly between
frames.Suchlinearpredictivefilters aremoreeffectivein modellingtemporalchangesn
theimageplane[13].

5 Recognising and Tracking | dentities across Views

Facerecognitionof novel identitiesacrossposeusingsimilarity to prototypeswas pro-
posedby Duvdevani-Baret. al. [4]. Themethodwasbasedntheassumptionthatview-
invariantprototypescanbe learntusingRBF networks andthat the recognitionof static
facesat novel views canbe performedusingsimilarity measure$o theview-independent
prototypes.We adopta differentapproacthasedon view-specificprototypesandthe as-
sumptionthatsimilarity measures$o prototypesbetweerviews vary smoothly(obsened
in Figure4). Theapproachprovidesa modelfor recognisingandtrackingboth poseand
identity of moving faces.

For achosersetof ¢ prototypesata givenview 6, let the similarity vectorsa! of M
differentpeopleto the prototypesbe their identity measureat view 6. Recognitionof a
novel faceimagex attime ¢t canthenbe performedoy maximising

L(3) = h(ax, i) + & (t — 1) h(at, ai ™) (5)

1 (3

wherei = 1,..., M, t > 1 andh(ax, at) is the similarity measurébetweerthe simi-
larity vectorsof imagex anda known faces at view 6, givenby either Equation(2) or
(3). Functionh(ad, aﬁ_l) is the similarity measure®etweensimilarity vectorsof the
previously (att — 1) andthecurrently(at posef) recognisedacesIn otherwords,whilst
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thefirst termfinds the bestmatchto a known face,the secondermimposesanidentity
constang assumptiorovertime. Theconstank controlsatrade-of betweerthetwo fac-
torsandits valuewill alsodependnthedegreeof changan afaces similarity measures
acrossviews.

Now, if similarity vectorsto prototypesareassumedo be invariantacrosghe view-
spheretherecognitioncouldthenbe generalisedo novel views wheresimilarity vectors
of known facesare not available, provided that the poseof the currentimagex(t) is
known. However, our experimentsndicatethatsimilarity measuresary acrosgheview-
sphergseeFigured), althoughslowly or evenlinearly. Let usfirst considewview changes
in yaw only. If similarity measure®f known facesat two views, §; andf-, are avail-
able,recognitionat novel views § betweerf; andf, canthenbe performedusinglinear
interpolationasfollows:

6 — min(01, 02)
|61 — 62|
Thisinterpolationcanbeeasilyextendedo a2D surfacefor bothyaw andtilt. If similarity

vectorsto prototypesat morethantwo views areknown, Equationg5) and(6) canthen
be usedto recogniseandtrackfaceidentitiesof moving peopleacrosgheview-sphere.

a(0) = 0(01) + (0(02) - 0(01)), 01 S 0 S 02 (6)

6 Resultsand Discussions

In our experiments,a databasevere acquiredhaving 4450 faceimagesacrossa view-
sphereof £90° yaw and+30° tilt. It wascomposeaf 5 continuousequencesf different
peoplemoving their headdreely throughthe view-spherewith eachsequencéasting350
framesand 20 setsof differentpeoplerandomlyexposingto all the posesin the pose-
spherewith eachhaving 133 frames. An exampleof the view-spherecapturedby the
databasevasshowvn in Figure2. Amongthem,a disjoint sub-sebf 11 differentpeople
wereselectedisprototypesasshavnin Figure3. Theimageswerealigned,intensityand
contrastnormalisedand expressionchangesvereminimal. The aim of the experiments
wasthento recogniseandtrack boththe posesandtheidentitiesof the othersubjectdn
the databasesingsimilarity measureso the 11 prototypes.

A person-independemodelwas learnedbasedon the 11 prototypes. This model
wasthenusedto recogniseandtrack headposeof a novel subjectwho was not one of
the prototypes Figure6 shavs a few examplesin which thetracked posewascompared
with the ground-truthprovided by the magneticsensor Overall, the averageerror (in
degrees)over somel300framesfrom differentsequencesf differentpeoplemoving in
poserangeof +90° yaw and=+30° tilt is shavn in Tablel. It is worth pointing out that
posetrackingwith Kalmanfilter-basecdpredictiondid notimprove the performancever
trackingwithout prediction.

For recognisingand trackingidentitiesacrossviews, we againused11 prototypes.
Figure7 shows examplesof sequencesf moving faceswith theiridentitiesbeenrecog-
nisedand tracked acrossviews (1) usinginterpolationof similarity measuredvetween
known views at -40° and +40° yaw for all the tilt angles(top plot), and (2) between
known views at 20° yaw intervalsfor all tilt (bottomplot). The averageerrorrateswith
differentknown views over 400 differentimagesfrom differentsequences shown in
Table2. Simultaneougposeandidentity recognitionandtrackingcanbe achieved over
20 Hz ona200MHzP5with Matrox Meteorboard.



British Machine Vision Conference 8

Figure6: Headposetrackedby aperson-independentodelshovn with theground-truth
measuredby the magneticsensoryaw ontheleft andtilt ontheright. All thefacesbheen
trackedwereunknawn to the prototypesusedfor building the model.

Appearance Errorwith prediction || Errorwithout prediction
models yaw | tilt yaw | tilt
Person-specific || 9.03 450 10.02 5.00°
Meantemplates || 5.5C 8.02 6.00 8.02
Similarity measureg| 3.50° 3.5¢° 3.53 3.50¢

Table 1: Averageerrorin poserecognitionand tracking of both known and unknavn
subjectausingthe person-independentodel.

| Known Views (yaw) [| Errorfrom Generalisatioto Novel Views ||

-90°, 0°, +90° 30.1%
50°, 13C 22.55%
Every 20° 3%

Table2: Averageerrorin identity recognitionandtracking.
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Figure 7: Exampleresultsfor 1-in-6 identity recognitionand tracking of novel faces
acrossthe view-sphereusing view-basedsimilarity measuredo 11 prototypes. Top:
recognitionby interpolationbasedon two known views at -40° and +40° yaw. Bot-
tom: interpolationbetweenevery 20° yaw intervals. The trajectorieswere normalised
similarity measuresf faceimagesfrom atestsequencéo 6 known faces.Persor3 was
recognisedndtrackedacrossviews overtime.

To concludethemethoddescribedn thiswork canbeextendedn anumberof useful
ways. Firstly, in all of the above experimentswe have establishednly simple coarse
alignment.In theory morecorrespondencgffine, denseould be establishedinceim-
agesareonly ever comparedvith similar poses Secondlya globalprincipalcomponents
analysiscould be usedto reducedimensionalityprior to applyingthe abose methods.
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This makes computationmore efficient andwill be especiallyuseful asthe numberof
prototypeshecomedarge. It mighthowever precludethe useof densecorrespondence.
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