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Abstract

We presenta methodfor learningappearancemodelsthat canbe used
to recogniseand track both 3D headposeand identitiesof novel subjects
with continuousheadmovementacrossthe view-sphere. We describean
automaticfacedataacquisitionsystembasedon a magneticsensorand a
calibratedcamera.Thesystemenabledusto obtainsystematicallyadatabase
of faceimageswith labelled3D posesacrossaview-sphereof ������� yaw and��	
� � tilt at intervals of ��� � . The databasewas usedto learn appearance
modelsof unseenfacesbasedonsimilarity measuresto prototypefaces.The
methodis computationallyefficientandenablesreal-timeperformance.

1 Introduction

To beableto recognisefacesof moving peoplenotonly requirestheability to labelnovel
faceimageswith known identities,but alsoneedsdetectingandtrackingof facesover
time [1]. We referto this asthetaskof associating faces. We adopttheview sucha task
canbebetterachievedusingview-basedappearancemodelsratherthanexplicit 3D mod-
els[2]. Oneof thedifficultiesin associatingfacesusingview-basedrepresentationsis that
faceimagesof thesamepersonfrom differentviewpointsaresignificantlymoredissimi-
lar thanimagesof differentpeopleappearingin thesameview. However, thetaskcanbe
significantlysimplifiedif posesareknown [3]. Theability to estimateandpredictthe3D
orientationof facesandthewaysin which they changeover time alsoimposestemporal
continuityin recognition.Consequently, theability to locate,trackandpredictheadpose
of amoving personis anintegralpartof recognition.Herewepresentamethodfor learn-
ing to associatefacesacrosstheview-spherebasedon similarity measuresto prototypes
in multiple views. Althoughsimilar work wasproposedfor recognitionusingsimilarity
measures[4], andfor novel view generalisationandsynthesisusinglinearcombinationof
prototypes[5], thiswork extendstheideato aunifiedmethodthataddressestheproblems
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of bothposeandidentity recognitionandtrackingover time. Themethodusestraining
datafrom a databaseof 3D poselabelledfaceimagesacrosstheview-spherecapturedby
anautomateddataacquisitionsystem.

Theproblemsaddressedhereare(1) automaticacquisitionof labelledfacedataacross
theview-spherefor learning,(2) real-timerecognitionandtrackingof faceimagelocation,
scale,andposerelative to the image-planeand(3) identitiesover time. For simplicity,
rotationin theimage-planeis ignored,i.e. thesubjectis assumedto beupright.Thepose
refersto the rotationin depthrelative to the imageaxes. A “nodding” headundergoes
x-axis rotationwhilst a “shaking” headundergoesy-axis rotation. The former is also
referredto as“tilt” andthelatteras“yaw”.

Theproposedmethodtakesa view-basedapproachin which faceappearancemodels
arelearnedfrom exampleviewswithout recourseto any explicit 3D model.Furthermore,
theviews arealignedusingonly simpleimage-planetransformationssuchastranslation
andscaling,or atmostaffine transformation.In particular, nodensecorrespondencesbe-
tweenfeaturepointsondifferentfacesarerequiredandasaresult,real-timeperformance
is obtained.Themodelsareconstructedfrom alignedimagedatalabelledwith posean-
gles. Efficient focusof attentionbasedon colour andmotion cuesis usedto bootstrap
faceimagesearchin theimageplane[6, 7].

2 Acquisition of Labelled Views across the View-sphere

In orderto build appearancemodels,exampleviews labelledwith 3D poseangles(both
tilt andyaw) arerequired. A systemwasdesignedthat utilisesboth a magneticsensor
attachedto thesubject’s headanda cameracalibratedrelative to thesensor’s transmitter.
Thesensorwasthenusedtoprovideposelabelsfor thefaceimagesof thesubjectcaptured
by thecamera.Figure1 showstheacquisitionsystem.

Figure1: Thesystemfor acquiringlabelledviewsacrosstheview-sphere.

More precisely, an electromagnetic6 DOF Polhemoustracker with a sensoranda
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Figure2: An examplelabelledheadimageset. The imagesof labelledviews arefrom
+90� to -90� in yaw andfrom +30� to -30� in tilt at10� intervals.

transmitterwasusedto provide3D coordinates(in ��� ) andorientationof thesensorrel-
ative to the transmitter. Thetilt, yaw androll correspondto rotationsaboutthex, y and
z axesrespectively andareEulerangles(in degrees).Thesensoris rigidly attachedto a
head-bandwornby theusersothatit followsthehead’smovementsandchangesin orien-
tation.Theimageacquisitionsystemusedhasa singlecamerawhichhasbeencalibrated
to thesensor’s coordinatesystem.Thelocationandsizeof theheadin theimagearede-
terminedby back-projectionontotheimage-planeandanappropriatelycroppedimageis
thusacquired.Thesensororientationis usedto labeltheimagewith headpose.In order
to locateandalign the2D headimages,cameracalibrationwith respectto thesensoris
needed.This involvesdeterminingcameraparametersusingthe3D positionsprovidedby
thesensorandtheir corresponding2D projectionson thecamera’s image-plane.Both in-
trinsicandextrinsicparameterswereestimated.Theintrinsicparametersarefocal length
and radial distortion. The extrinsic parametersare the position and orientationof the
camerarelative to thesensor’scoordinates.We adoptedthecameramodelusedby [8].

Thepositionof thesensorwith respectto theheadis somewhatarbitrary. However,
the positionandscaleof the headsin the imagesacquiredneedto be consistentacross
differentpeople.Therefore,a few facialfeaturesweremanuallylocatedfor eachsubject
in order to bootstrapthe acquisitionprocessby determininga scalingfactoranda 3D
point insidethe head.This point wasrigidly “attached”to the facial features(eyesand
upperlip) andwasusedto projectontothecentreof theacquiredheadimages.In other
words,thefacialfeatures’3D coordinateswereusedto determinethecoordinatesof a3D
point insidetheheadrelativeto thesensor’s3D coordinates.Theimagewasthencropped
asdeterminedby thescalefactorandre-sampledto a fixednumberof pixels. Labelled
imageswerecapturedwith � -axis rotationin the range ������� and � -axis rotationin the
range��	
��� at intervalsof ����� . Examplesfor onesubjectcanbeseenin Figure2.

3 View-based Face Appearance Models using Prototypes

Faceappearancemodelsare essentiallyview-basedholistic templates. A simple way
to obtain a genericappearancemodel is to estimatean averagefacetemplateat each
pose. Thesemeantemplatescould conceivably be usedto associatefaceimagesin or-
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der to recogniseand track posesof facesacrossviewpoints. Figure 3 shows someof
themeantemplatescomputedby averagingfilteredviews of 11 differentsubjects.How-
ever, althoughtheseview-basedmeantemplatescanbeusedto performreasonablywell
in recognisingandtrackingposes,they aresensitive to illumination changesandimage
noise. Furthermore,they do not captureidentity information. More elaboratedappear-
ancemodelsuselinear combinationsof training samples. Given sufficient data,such
linearcombinationscanalsobestatistical.This includestheuseof PCA [9], LDA [10]
andGaussianmixtures[11].

Figure3: Averagetemplatesfor views from profile to profile.

In orderto generalisebetweenviews, ratherthanassumingthat faceappearancesare
linear combinationof prototypesat given views [5], an imagecanbe representedasa
vector of similarities to prototypeviews [12]. Here we exploit this approachto both
faceposetrackingandview-basedrecognition. Let a faceimagex at a given posebe
representedas a vector � of similarities to � prototypefaces ��� at the sameposeas
follows: ����� ���! "�$#! &%'%'%' "��(*)+ � � �-,/.102 3� �+4 (1)

where 56�7�
 &%'%&%8 "� and ,�. 4 is a similarity function that definesa similarity measure-
ment.A straightforward ,�. 4 canbetheinverseEuclideandistancebetweena faceimage09�7� � �  '%'%&%8 3�;:<) anda prototype �=�>� � �  &%'%&%' 3��:?) at a given view, where @ is the
dimensionalityof the images. To take normalisationfor overall intensityandcontrast
into consideration,a bettermeasurementshouldbe the inverseof the Pearson’s linear
correlationcoefficient:

,/.102 3� 4 � A B :�DC � .E� �/FHGJIK4 # A B :�DC � .E� �JFLGNMO4 #B :�PC � .E� � FLG I 4 .E� � FHG M 4 (2)

where GJI and GNM arethemeanof theelementsof 0 and � respectively. Furthermore,a
deviationweighteddistancemeasurecanalsobeadoptedusingGaussian:,�.E02 3� 4 �RQ'SUTWV FYXPX 0 F � XPX #Z![ # \ (3)

By measuringsimilarity vectorsof imagesof novel facesto prototypesacrosschangesin
yaw (y-axisrotation),it canbeobservedthatthey form separablebut alsoapproximately
linearmanifolds(seeFigure4). Themodelis thereforeusefulfor recognition.Let usfirst
considerits usein poserecognitionandtrackingacrossviews.

4 Person-Independent Pose Recognition and Tracking

McKennaandGong[3] describeda real-timesystemfor trackingandestimatinghead
posebasedon person-specifictemplates.A user-specificheadmodelconsistingof mul-
tiple view templateswas used. Thesetemplateswere filtered with Gaborwaveletsor
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Figure4: Left: Prototypesat profile view. Centre:Posemanifoldsof novel facesin the
vectorspaceof similarity to prototypes.Right: Imagesof novel facesatprofileview.

simplerorientedfilters in orderto obtainadegreeof invarianceto illuminationandto aid
theposeestimation(seeFigure5). Eachtemplatewaslabelledwith poseanglesandin
eachframe,thebestmatchingtemplatewasusedto give theposeestimate.Exploitation
of temporalconstraintsalloweda level of performancesuitablefor driving anavatarin a
mannerperceptuallyacceptableto theuser. This wasachievedin real-timeusingmodest
hardware(133MHz P5 with Matrox Meteorboard). The performanceof suchperson-
specificmodelswasevaluatedagainsttheground-truthmeasuredby themagneticsensor
andit shows acceptableperformance,asshown in Table1. However, it is obviously un-
desirableto requiremodelsfor every individual. Herewe describea person-independent
posetrackingandpredictionsystembasedonsimilarity to prototypes.

Figure 5: Tracking posesusing person-specifictemplates. The pin diagramindicates
estimatedpose.Top: thebestmatchingtemplates’boundingboxesareshown overlaidon
a filteredsequence.Bottom:An unfilteredsequenceis shown herefor visualisation.

Givena databaseof multiple views of differentpeople,a genericview-basedappear-
ancemodelcanconceivably be learnedfor trackingheadposein a person-independent
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mannergiven sufficient training data. In practice,the numberof examplesavailableat
eachview is small. Alternatively, appearancemodelsbasedon similarity vectorsto a
limited number(in tens)of prototypefacesat multiple views canbeadopted.Giventhat
faceimagesat the frontal view canbe readily detected[6], let a similarity vector � to
prototypesfor a detectedfaceimageat thefrontal view bemeasuredusingEquation(1).
Poserecognitionandtrackingcanthenbeperformedby findingthenext pose] (bothyaw
andtilt) whichmaximises ^ .E] 4 � XDX �<_` XDX&acb ,�.1�<_`! K�<_+d � 4 (4)

where XPX � _ ` XDX is the e # norm of the similarity vectorat the most likely poseat time f .
Function ,�.1� _ `  K� _+d � 4 is the similarity measurebetweenthe two similarity vectorsat
thepreviously known poseandthecurrentlylikely pose.Maximising

^ .E] 4 imposestwo
constraints.The first term maximisesthe magnitudeof similarity regardlessidentity in
a neighbourhoodcentredat thelikely poseat time f , thereforeperforminga genericface
matchingat the likely poseat time f . The secondterm assumesidentity constancy in
similarity vectorspace,providedthat all othersourcesof variationsuchaslighting and
translationalshift in theimageshavebeeneliminated(asshown in Figure4). Theconstantb controlsa trade-off betweenthetwo factorsandits valuewill dependon theexpected
smoothnessin theposechangeandthechangesexistedin a face’s similarity measuresto
prototypesin differentviews.

It may alsoseemto be obvious that the tracked poses(tilt andyaw) canbe further
Kalmanfilteredin orderto providea degreeof consistency andprediction.However, our
experimentsshow thatsuchattemptshave little effectdueto thefactthat3D posechange
in real-timesequencestendsto be highly nonlinearandcanvary significantlybetween
frames.Suchlinearpredictivefiltersaremoreeffectivein modellingtemporalchangesin
theimageplane[13].

5 Recognising and Tracking Identities across Views

Facerecognitionof novel identitiesacrossposeusingsimilarity to prototypeswaspro-
posedby Duvdevani-Baret. al. [4]. Themethodwasbasedontheassumptionsthatview-
invariantprototypescanbe learntusingRBF networksandthat therecognitionof static
facesatnovel viewscanbeperformedusingsimilarity measuresto theview-independent
prototypes.We adopta differentapproachbasedon view-specificprototypesandtheas-
sumptionthatsimilarity measuresto prototypesbetweenviews vary smoothly(observed
in Figure4). Theapproachprovidesa modelfor recognisingandtrackingbothposeand
identityof moving faces.

For a chosensetof � prototypesat a givenview ] , let thesimilarity vectors� _ � of g
differentpeopleto theprototypesbetheir identity measuresat view ] . Recognitionof a
novel faceimage0 at time f canthenbeperformedby maximising^ .E5 4 �h,�.1� I  i� _� 4�ajb .Ef F � 4 ,/.k� _ �* K� _+d �� 4 (5)

where 5<�l�
 '%&%'%8 *g , fnmo� and ,/.k� I  i� _� 4 is thesimilarity measurebetweenthesimi-
larity vectorsof image 0 anda known face 5 at view ] , givenby eitherEquation(2) or
(3). Function ,�.1� _ �  i� _+d �� 4 is the similarity measuresbetweensimilarity vectorsof the
previously(at f F � ) andthecurrently(atpose] ) recognisedfaces.In otherwords,whilst
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thefirst termfinds thebestmatchto a known face,thesecondtermimposesan identity
constancy assumptionovertime. Theconstantb controlsa trade-off betweenthetwo fac-
torsandits valuewill alsodependonthedegreeof changein a face’ssimilarity measures
acrossviews.

Now, if similarity vectorsto prototypesareassumedto be invariantacrosstheview-
sphere,therecognitioncouldthenbegeneralisedto novel viewswheresimilarity vectors
of known facesare not available, provided that the poseof the currentimage 0p.Ef 4 is
known. However, ourexperimentsindicatethatsimilarity measuresvaryacrosstheview-
sphere(seeFigure4), althoughslowly or evenlinearly. Let usfirst considerview changes
in yaw only. If similarity measuresof known facesat two views, ]
� and ]q# , areavail-
able,recognitionat novel views ] between]!� and ]q# canthenbeperformedusinglinear
interpolationasfollows:�r.E] 4 �s�r.E] � 4/a ] FLtvuPw .E] �  K] # 4X ]
� F ]q# X .k�r.E] # 4�F �r.E] � 434  ] �<x ] x ] # (6)

Thisinterpolationcanbeeasilyextendedtoa2Dsurfacefor bothyaw andtilt. If similarity
vectorsto prototypesat morethantwo views areknown, Equations(5) and(6) canthen
beusedto recogniseandtrackfaceidentitiesof moving peopleacrosstheview-sphere.

6 Results and Discussions

In our experiments,a databasewereacquiredhaving 4450 faceimagesacrossa view-
sphereof ������� yaw and ��	
��� tilt. It wascomposedof 5 continuoussequencesof different
peoplemoving theirheadsfreely throughtheview-spherewith eachsequencelasting350
framesand20 setsof differentpeoplerandomlyexposingto all the posesin the pose-
spherewith eachhaving 133 frames. An exampleof the view-spherecapturedby the
databasewasshown in Figure2. Amongthem,a disjoint sub-setof 11 differentpeople
wereselectedasprototypes,asshown in Figure3. Theimageswerealigned,intensityand
contrastnormalisedandexpressionchangeswereminimal. Theaim of theexperiments
wasthento recogniseandtrackboth theposesandtheidentitiesof theothersubjectsin
thedatabaseusingsimilarity measuresto the11prototypes.

A person-independentmodelwas learnedbasedon the 11 prototypes. This model
wasthenusedto recogniseandtrack headposeof a novel subjectwho wasnot oneof
theprototypes.Figure6 shows a few examplesin which thetrackedposewascompared
with the ground-truthprovided by the magneticsensor. Overall, the averageerror (in
degrees)over some1300framesfrom differentsequencesof differentpeoplemoving in
poserangeof ������� yaw and ��	���� tilt is shown in Table1. It is worth pointingout that
posetrackingwith Kalmanfilter-basedpredictiondid not improve theperformanceover
trackingwithoutprediction.

For recognisingand tracking identitiesacrossviews, we againused11 prototypes.
Figure7 shows examplesof sequencesof moving faceswith their identitiesbeenrecog-
nisedand tracked acrossviews (1) using interpolationof similarity measuresbetween
known views at -40� and +40� yaw for all the tilt angles(top plot), and (2) between
known views at 20� yaw intervalsfor all tilt (bottomplot). Theaverageerrorrateswith
differentknown views over 400 different imagesfrom differentsequencesis shown in
Table2. Simultaneousposeandidentity recognitionandtrackingcanbe achievedover
20Hz ona 200MHzP5with MatroxMeteorboard.
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Figure6: Headposetrackedby aperson-independentmodelshown with theground-truth
measuredby themagneticsensor, yaw on theleft andtilt on theright. All thefacesbeen
trackedwereunknown to theprototypesusedfor building themodel.

Appearance Errorwith prediction Errorwithoutprediction
models yaw tilt yaw tilt

Person-specific 9.03� 4.50� 10.03� 5.00�
Meantemplates 5.50� 8.02� 6.00� 8.02�

Similarity measures 3.50� 3.50� 3.53� 3.50�
Table1: Averageerror in poserecognitionand trackingof both known and unknown
subjectsusingtheperson-independentmodel.

Known Views (yaw) Error from Generalisationto Novel Views

-90� , 0� , +90� 30.1y
50� , 130� 22.55y
Every20� 3 y

Table2: Averageerrorin identity recognitionandtracking.
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Figure 7: Exampleresultsfor 1-in-6 identity recognitionand tracking of novel faces
acrossthe view-sphereusing view-basedsimilarity measuresto 11 prototypes. Top:
recognitionby interpolationbasedon two known views at -40� and +40� yaw. Bot-
tom: interpolationbetweenevery 20� yaw intervals. The trajectorieswerenormalised
similarity measuresof faceimagesfrom a testsequenceto 6 known faces.Person3 was
recognisedandtrackedacrossviewsover time.

To conclude,themethoddescribedin thiswork canbeextendedin anumberof useful
ways. Firstly, in all of the above experimentswe have establishedonly simplecoarse
alignment.In theory, morecorrespondence(affine,dense)couldbeestablishedsinceim-
agesareonly evercomparedwith similarposes.Secondly, aglobalprincipalcomponents
analysiscould be usedto reducedimensionalityprior to applying the above methods.



British Machine Vision Conference 10

This makescomputationmoreefficient andwill be especiallyusefulas the numberof
prototypesbecomeslarge.It mighthoweverprecludetheuseof densecorrespondence.
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