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Abstract
Person images captured by public surveillance cameras often have low resolutions (LRs), along with uncontrolled pose
variations, background clutter and occlusion. These issues cause the resolution mismatch problem when matched with high-
resolution (HR)gallery images (typically available during collection), harming the person re-identification (re-id) performance.
While a number of methods have been introduced based on the joint learning of super-resolution and person re-id, they ignore
specific discriminant identity information encoded in LR person images, leading to ineffective model performance. In this
work, we propose a novel joint bilateral-resolution identity modeling method that concurrently performs HR-specific identity
feature learning with super-resolution, LR-specific identity feature learning, and person re-id optimization. We also introduce
an adaptive ensemble algorithm for handling different low resolutions. Extensive evaluations validate the advantages of our
method over related state-of-the-art re-id and super-resolution methods on cross-resolution re-id benchmarks. An important
discovery is that leveraging LR-specific identity information enables a simple cascade of super-resolution and person re-id
learning to achieve state-of-the-art performance, without elaborate model design nor bells and whistles, which has not been
investigated before.
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1 Introduction

Person re-identification (re-id) matches identity classes in
person bounding box images extracted from nonoverlapping
camera views in open surveillance spaces (Gong et al. 2014).
Existing re-id methods typically focus on addressing varia-
tions in illumination, occlusion, and background clutter by
designing feature representations (Liao et al. 2015; Mat-
sukawa et al. 2016;Wu et al. 2016; Qian et al. 2017; Kalayeh
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Camera A Camera B

Varying Resolu�ons

Fig. 1 Illustration of person images with varying resolutions for the
open-space person re-identification (re-id) task. Three images of a per-
son were captured by two camera views at different locations in a
shopping center. The image captured by camera B has a higher resolu-
tion than the two images from camera A. This cross-resolution property
makes person re-id more challenging.

et al. 2018; Sun et al. 2018; Guo et al. 2019; Zhou et al. 2019)
or learning matching distance metrics (Zheng et al. 2013;
Wang et al. 2014; He et al. 2016b; Zhang et al. 2016; Fan
et al. 2018; Zheng et al. 2018; Yu et al. 2018) or their combi-
nation (Li et al. 2014; Ahmed et al. 2015; Xiao et al. 2016; Li
et al. 2017; Zheng et al. 2019b; Dai et al. 2019; Zheng et al.
2019a). The designed re-id models of these works often do
not take the impact of low resolution images into account.
However, surveillance person images often have varying res-
olutions due to variations in the distance from the camera
to the person and the camera deployment settings (Fig. 1),
which gives rise to the resolution mismatch problem (Jiao
et al. 2018; Cheng et al. 2020) (Fig. 2).

It is challenging to reliably match low-resolution (LR)
probe images against high resolution (HR) gallery images
across both camera views and resolutions 1. This requires
addressing the discrepancy in the amount of information in
cross-resolution matching since LR images contain much
less information than HR images with discriminative appear-
ance details largely lost in the image acquisition process. It
is called cross-resolution person re-identification.

To address the nontrivial resolution mismatch problem
in cross-resolution person re-id, a number of early methods
have been proposed (Jing et al. 2015; Wang et al. 2016; Li
et al. 2015). These methods, however, share a few common
weaknesses: (1) Instead of recovering the missing discrimi-

1 Note that in terms of visual surveillance definitions, the quality of so-
called high resolution (HR) images is poorer than that of social media
photos taken by professional photographers. In this context, we define
LR and HR in a relative sense for surveillance-quality image data. By
default, we define the “resolution” as the underlying resolution (Wang
et al. 2010) rather than the image spatial size (scale). A given image
can be arbitrarily resized with little change to its underlying resolution
(Fig. 3). Hence, the image spatial size is not an accurate indicator of the
underlying resolution.
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Fig. 2 Four different strategies for cross-resolution person re-
identification (re-id): (a) Super-resolving LR images to extract the
HR-specific identity features, (b) downsampling HR images to extract
the LR-specific identity features, (c) using multi-resolution images to
extract joint bilateral resolution features for re-id matching, and (d)
aligning image features across resolution to learn resolution-invariant
representations. Our approach is a multi-resolution solution exploiting
both high-resolution specific and low-resolution specific features, con-
sidering the strategies of (a), (b) and (c) jointly. It differs from existing
works that belong to the category of (a) (Wang et al. 2018; Cheng et al.
2020; Jiao et al. 2018) or (d) (Huang et al. 2020; Li et al. 2019a; Mao
et al. 2019)

native appearance information, theyperformcross-resolution
representation transformation in a predefined feature space.
However, these works do not solve the discrepancy in the
amount of information challenge, i.e., as potential discrimi-
nant information fromHR imagesmaynot be effectively used
when matching between low-resolution and high-resolution
images directly. (2) Some of them (Jing et al. 2015; Wang
et al. 2016; Li et al. 2015) rely on handcrafted visual features
without using deep learning for mining the complementary
advantages of feature learning andmatchingmetric joint opti-
mization.

Another intuitive to solve the resolution mismatch prob-
lem in cross-resolution person re-id is to super-resolve theLR
images directly so that super-resolved (SR) images can serve
as a bridge to realistic HR images for identification. Image
super-resolution should offer an effective solution to miti-
gate the discrepancy in the amount of information challenge
due to its capability of synthesizing high-frequency details.
However, a direct combination of super-resolution and re-id
may be suboptimal in compatibility: Generic-purpose super-
resolution methods are designed to improve the image visual
fidelity rather than the re-id matching performance, with
visual artifacts generated in the super-resolution reconstruc-
tion process typically irrelevant and problematic to re-id
matching.

Recently, several works, including our preliminary work
(Jiao et al. 2018), have shown that joint learning of the
image super-resolution and person re-id is a simple yet effec-
tive method for cross-resolution person re-id (Cheng et al.
2020; Chen et al. 2017c; Huang et al. 2020; Li et al. 2019a).

123



138 International Journal of Computer Vision (2022) 130:136–156

However, these methods ignore the exploitation of LR dis-
criminant information for person re-id and do not attempt to
formulate a joint learning framework for exploring the dis-
criminant re-id features in both HR and LR images.

We argue that either HR-specific or LR-specific iden-
tity features alone are not sufficient for cross-resolution
person re-id. This assertion is inspired by human visual
systems, which take advantage of multiscale visual informa-
tion, including feature representations at both small (global
contextual) and large (local saliency) scales (Navon 1977).
Therefore, we develop a joint bilateral identity model-
ing (JBIM) framework. Specifically, JBIM combines HR-
specific identity modeling (HIM) and LR-specific identity
modeling (LIM): HIM aims to improve the integration com-
patibility between image super-resolution and person re-id
by learning identity-sensitive high-frequency appearance
information, and LIM is for learning the complementary
LR-specific identity information. The framework therefore
learns discriminant bilateral-resolution joint features from
SR and LR images, along with person re-id on the joint fea-
tures. In the presence of different LRs, we further present a
multi-resolution adaptive ensemble mechanism by aggregat-
ing a set of anchor JBIM network models (each optimized
for a reference resolution) in a probe-specific manner. As
shown in Fig. 2, our approach is a multi-resolution solution
exploiting both high-resolution specific and low-resolution
specific features, jointly considering the strategies of (a), (b)
and (c) in Fig. 2. It differs from existing works that belong
to the category of (a) (Wang et al. 2018; Cheng et al. 2020;
Jiao et al. 2018) or (d) (Huang et al. 2020; Li et al. 2019a;
Mao et al. 2019).

We have conducted extensive evaluations to verify the
superiority of our JBIMapproach over related state-of-the-art
re-id and image super-resolutionmethods onfive person re-id
benchmarks: the Context Aware Vision Using Image-based
Active Recognition (CAVIAR) dataset (Cheng et al. 2011),
the third Chinese University of Hong Kong (CUHK03)
dataset (Li et al. 2014), the Sun Yat-sen University (SYSU)
dataset (Chen et al. 2017a), the Viewpoint Invariant Pedes-
trian Recognition (VIPeR) dataset (Gray and Tao 2008) and
the Market-1501 dataset (Zheng et al. 2015). An interesting
and significant finding is that with the assistance of LIM,
cascading super-resolution and person re-id directly suffices
to achieve satisfactory performance without elaborate model
design and parameter tuning, which reduces the burden of
image super-resolution, enabling our method to effectively
and flexibly integrate with different existing super-resolution
models.

(a)
Original 
Images

(b)
Normarlised 

Images

Spatial Size Normalisation 

Fig. 3 (a) Images with different underlying resolutions and (b) these
normalized to the same spatial size without changing the underlying
resolution

2 RelatedWork

Person re-id has attracted extensive research over the past
10 years (Gray and Tao 2008; Zheng et al. 2013; Liao et al.
2015; Ahmed et al. 2015; Zheng et al. 2015; Xiao et al. 2016;
Zheng et al. 2016; Zhang et al. 2016; Ristani et al. 2016; Li
et al. 2017; Chen et al. 2017b). The dominant focus is on
handling the re-id challenges arising from uncontrolled vari-
ations in illumination, background clutter and human pose.
cross-resolution re-id has also become a research hotspot (Li
et al. 2015; Jing et al. 2015;Wang et al. 2016, 2018;Mao et al.
2019; Chen et al. 2017c; Li et al. 2019a; Cheng et al. 2020;
Huang et al. 2020). In the literature, existing cross-resolution
re-id methods can be categorized into two groups: (1) meth-
ods for learning resolution-invariant features and (2)methods
for learning joint models for both image super-resolution and
person re-identification.

When learning resolution-invariant features, it is assumed
in (Li et al. 2015) that images of the same person should
be distributed similarly under different resolutions, and a
method of simultaneously optimizing cross-resolution image
alignment and distance metric modeling was designed.
In (Jing et al. 2015), a semi-coupled low-rank dictionary
learning approach was proposed to uncover the feature rela-
tionship between LR and HR images. In (Wang et al. 2016),
the characteristics of the scale-distance function space are
explored by varying the scale of LR images when match-
ing with HR images. A common limitation of these methods
is the inability to synthesize high-frequency and the loss of
discriminative appearance information during image acqui-
sition.

Recently, several convolution neural network (CNN) -
basedmethods have been proposed for learning joint models.
In (Wang et al. 2018), a cascaded multiple generative adver-
sarial network (GAN) for image super-resolution (SRGAN)
was proposed to recover the details of LR images progres-
sively. In (Mao et al. 2019), the research focused on person
foreground and learning different feature extractors for HR
andLR images. In (Chen et al. 2017c), amodelwithGANand
autoencoder was used to learn cross-resolution deep image
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Table 1 Comparing
state-of-the-art cross-resolution
re-id methods. “Using GAN”
means that the method applies
GAN in the joint model.
“Learning HR-specific
Discriminant Information”
implies that the method uses
HR-specific representations for
person identity classification. In
contrast, “Learning LR-specific
Discriminant Information”
signifies that the method uses
LR-specific representations for
person identity classification

Model Learning Learning
Using HR-specific LR-specific
GAN discriminant discriminant

information information

CSR-GAN (Wang et al. 2018) � � ×
RIPR (Mao et al. 2019) × � ×
CAD-Net (Li et al. 2019a) � � ×
INTACT (Cheng et al. 2020) � � ×
DI-REID (Huang et al. 2020) � � ×
JBIM (Ours) × � �

representations for re-id. In (Li et al. 2019a), the authors aim
to learn resolution-invariant representations and meanwhile
ensure recovering re-id-oriented HR details. In (Cheng et al.
2020), an association between the features for re-id and the
features for resolution discrimination was introduced as joint
learning regularization for cross-resolution person image
matching. In (Huang et al. 2020), a degradation invariance
learning framework was developed for extracting identity-
related robust features.

In summary, most existing cross-resolution re-id meth-
ods adopt the strategy of learning invariant cross-resolution
features, regardless of whether image super-resolution is
integrated. This approach nonetheless ignores the usefulness
of LR image specific information, i.e., the low-resolution
specific discriminant features are not explored.

As we found in experiments (see Table 3), this strategy is
rather limited in learning discriminating identity features.
The proposed learning method solves this limitation by
introducing anLR-specific feature learning component. Con-
sequently, the HR-specific and LR-specific identity features
are jointly learned so that they can be made highly comple-
mentary to improve the cross-resolution re-id results more
effectively than with other methods.

In our preliminary work (Jiao et al. 2018), for the first
time, we introduced the idea of jointly learning image super-
resolution and person re-id. Since then, our method has been
frequently adopted in a number of followup works (Cheng
et al. 2020; Chen et al. 2017c; Huang et al. 2020; Li et al.
2019a; Mao et al. 2019) that introduce various variations to
continuously verify this idea and improve re-id performance.
In this work, we revisit the same joint learning idea for HR-
specific identity feature learning on top of our early model
and make a couple of novel contributions: (1) By exploiting
LR-specific identity feature, which is largely ignored by all
previous studies, we find that taking use of low-resolution
specific identity feature could be a more effective and signif-
icant way as compared to pursuing elaborate model design
(e.g., using GAN-based design); and (2) with the assistance
of LIM, we empirically find that our joint learning method

can be further improved significantly in terms of not only
the generalizability but also the design flexibility and robust-
ness. For instance, the choice of super-resolution models is
less performance-sensitive, hence superior yet hard-to-train
super-resolutionmethods can be bypassed, e.g., GANmodels
(see Table 1).

In addition to works involving image super-resolution in
person re-id, LR face recognition methods are also relevant
and have been advanced in the literature (Wang and Tang
2005; Hennings-Yeomans et al. 2008; Huang and He 2011;
Cheng et al. 2018). Their underlying idea is to synthesize
HR faces by image super-resolution techniques without the
need for dense feature point alignment. While feasible for
structure-constrained face images, it is difficult to align per-
son images due to greater degrees of unknown variations
in body parts, e.g., aligning a back-view LR person image
with a side-viewHRperson image against other clutter. These
super-resolution-based LR face-matchingmethods are there-
fore not suitable for cross-resolution re-id (Li et al. 2015).
In the meantime, generic-purpose super-resolution methods
have achieved remarkable success in synthesizing missing
appearance fidelity from LR input images, mainly due to
the powerful modeling capacity of deep learning algorithms
(Dong et al. 2014, 2016b; Kim et al. 2016a, b; Lai et al. 2017;
Tai et al. 2017; Ledig et al. 2017; Lim et al. 2017; Haris et al.
2018; Zhang et al. 2018; Li et al. 2019b). They may gener-
ate HR person images with higher visual quality but remain
ineffective for cross-resolution re-id, as validated by our eval-
uations, because they are designed for improving low-level
pixel values but not high-level identity discrimination when
learning to reconstruct HR images.

3 Approach

Weneed tomatch an LR probe person imagewith a set of HR
gallery images. To that end, we propose a bilateral-resolution
learning approach (Fig. 4). We aim to not only acquire super-
resolution person images discriminative for re-identification,
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Fig. 4 An overview of the proposed joint bilateral resolution iden-
tity modeling (JBIM) framework. The JBIM framework consists of
three components: (A) a high-resolution (HR) specific identity model-
ing (HIM)network, (B) a low-resolution (LR) specific identitymodeling
(LIM) network, and (C) a feature fusion network (FFN). Specifically,
the HIM network contains two modules: (d) a super-resolution mod-
ule and (e and f) a person re-identification (re-id) module. In training
the HIM network, we deploy three streams taking (a) LR images, (b)
synthetic LR images, and (c) HR images as input. The middle stream
(b) acts as a bridge for joining (d) the image super-resolution and (e
and f) person re-id learning tasks. Besides, the LIM network takes as
input (a) the LR images and (b) synthetic LR images, with (m and
n) person re-id as the learning objective. The FFN takes as input (g)

and (i) HR re-id features and (j) and (k) LR re-id features, and outputs
two feature vectors: a fusion of (g) and (k), and a fusion of (i) and
(j). At the test time, we use both HIM and LIM. With HIM, we apply
the super-resolution module to resolve the LR probe images and use
the re-id module to extract features of both the SR probe images and
HR gallery images. With LIM, we employ the re-id module to extract
features from both the LR probe images and the downsampled gallery
images. To obtain the final fused features, we separately concatenate
the features from the LR probe images and those of the corresponding
SR images and the features of the HR gallery images and those of the
corresponding downsampled images. Finally, we utilize the L2 distance
of the fused features to perform cross-resolution re-id matching

but also to explore identity-sensitive LR specific features for
a more effective solution which is not explored before. To
maximize themodel performance,we propose to jointly learn
HR-specific and LR-specific identity features with optimal
compatibility.

Suppose Xl = {(xli , yli )}Nl
i=1 is an LR person image set

with Nl images from one camera view, Xh = {(xhi , yhi )}Nh
i=1

is an HR image set with Nh images from another view, where
xli and xhi denote LR and HR images captured with different
camera views of identity classes yli and yhi , respectively. To
extract LR-specific identity features from HR images, we
generate a synthetic LR set Xh2l = {(xh2li , yhi )}Nh

i=1 of X
h by

downsampling, where xh2li is a synthetic LR image w.r.t. an
HR image xhi .

To learn the discriminative joint bilateral-resolution fea-
tures, we want to obtain the following key components: (1)
an image super-resolution function Fsr (·) that can effec-
tively compensate for re-id information in the LR images
xli ; (2) an HR-specific identity discriminant feature extrac-
tion function Fh

f e(·) for both super-resolved LR images xsri

and realistic HR images xhj , where xsri = Fsr (xli ), with the

objective that Fh
f e(x

sr
i ) is close to Fh

f e(x
h
j ) in the feature

space when they share the identity label (i.e., yli = yhj ),
and vice versa; (3) an LR-specific identity discriminant
feature extraction function F l

f e(·) that can extract the LR-

specific identity features F l
f e(x

l
i ) and F l

f e(x
h2l
j ) from the

realistic LR images xli and the synthetic LR images xh2lj ,

respectively, and when yli = yhj , the corresponding LR-
specific identity features should be similar, and vice versa;
and (4) a feature fusion function F f us(·) that can fuse HR-
specific and LR-specific identity features to obtain more
discriminative joint bilateral resolution features. Similarly,
we require the fusion featuresF f us(Fh

f e(x
sr
i ),F l

f e(x
l
i )) and

F f us(Fh
f e(x

h
j ),F l

f e(x
h2l
j )) to be re-id discriminant.

Formally, by learning Fsr (·), Fh
f e(·), F l

f e(·) and F f us(·)
through some joint formulation, we aim to obtain a re-id
similarity matching metric:

S
(
F f us (Fh

f e(x
sr
i ),F l

f e(x
l
i )), F f us (Fh

f e(x
h
j ),F l

f e(x
h2l
j ))

)
, (1)
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subject to that after joint learning of image super-resolution,
HR-specific and LR-specific identity feature extraction, and
feature fusion, an LR image captured in one camera view can
be associated correctly with an HR image of the same person
captured in another camera view.

In the following, we first describe the HIM component for
deriving discriminant HR-specific identity features by joint
learning of super-resolution and identity classification. Then,
we expound on the LIM component for learning discrimina-
tive LR-specific identity features and combine the HIM and
LIM results in the Feature Fusion Networks (FFN) to acquire
more discriminative re-id representations for joint bilateral
resolution identity learning. An overview of the JBIM frame-
work is shown in Fig. 4.

3.1 High-Resolution Specific Identity Modeling:
Super-Resolution and Identity Joint Learning

Sincegeneric-purpose super-resolutionmethods are designed
to improve imagevisual fidelity rather than the re-idmatching
performance, a direct combination of independently trained
image super-resolution and person re-id for HR-specific
identity features might be suboptimal for re-id. Our HIM
framework is hence formulated as joint learning of image
super-resolution and person identity classification to cor-
relate the two learning tasks as well as maximize their
compatibility and complementary advantages.

- Super-Resolving Image. We first compensate for the
desired discriminative information missing in the LR images
through super-resolution.To facilitate super-resolutionmodel
training, we construct the image super-resolution loss with
the help of the synthetic LR version Xh2l downsampled by
Xh . Specifically, Xh2l allows optimizing the mean squared
error (MSE), which measures the image super-resolution
quality:

Lsr

(
{xhi }Nh

i=1

)
= 1

Nh

Nh∑
i=1

‖Fsr (xh2li ) − xhi ‖2F . (2)

Minimizing loss Lsr enforces the super-resolved image
Fsr (xh2li ) of xh2li to be similar to the ground-truth HR image
xhi . HR appearance information is critical for obtaining reli-
able re-id features (Li et al. 2015). This optimization scheme
(Eq. (2)) establishes the underlying relationship between the
LR and HR images in the image pixel space, but without
guaranteeing that the synthetic HR images are suitable for
computing features discriminant for re-id matching. The rea-
sons are as follows.
(1) It is very challenging to train a perfect image super-
resolution model given that it is a highly nonconvex and
difficult-to-optimize problemwith extremely complex corre-
lations among the local and global pixels (Dong et al. 2016a).

(2) Artifacts are likely generated particularly for low-quality
surveillance person images, which may negatively affect the
subsequent re-id matching results.

- Quantifying Identification. To address the above limita-
tion, we propose enforcing an identity constraint to guide
the super-resolution optimization behavior toward an image
enhancement solution optimal for identity discrimination.
This design differs from a typical super-resolution objective
that seeks pixel-level mapping from LR input images to HR
ground-truth images without a semantic top-down learning
constraint.

Specifically, we concurrently optimize the classification
of discriminative features w.r.t. the same person label in
the HR and synthetic LR images, along with the cross-view
LR images. Formally, we formulate the re-id classification
constraint in the context of different images as:

Lreid

(
{(xli , yli , xhi , yhi )}Ni=1

)
= 1

N

N∑
i=1

(
Lcls

(Fh
c ( f hhi ), y

h
i

)

+ Lcls
(Fh

c ( f h2lhi ), yhi
)

+ Lcls
(Fh

c ( f lhi ), y
l
i

))
, (3)

where (xli , y
l
i , x

h
i , y

h
i ) consists of an LR image from Xl and

an HR image from Xh as well as their corresponding iden-
tity labels. We can construct N groups from Xl and Xh .
All fh notations denote the HR-specific re-id feature vec-
tors obtained from the following feature extraction function:

f hhi = Fh
f e(x

h
i ), f h2lhi = Fh

f e
(Fsr (xh2li )

)
, f lhi = Fh

f e
(Fsr (xli )

)
. (4)

AndFh
c (·) represents an HR-specific classification function.

Lcls(·) is the integration of the identity loss Lid(·) and the
triplet loss Ltr i (·), which is defined as:

Lcls = Lid + Ltr i . (5)

- Simultaneous Super-Resolution Learning and Re-id.
After combining the super-resolution and re-id formulation
designs as above, we formulate the overall HR-specific re-id
loss function as:

LH IM

(
{(xli , yli , xhi , yhi )}Ni=1

)

= Lreid

(
{(xli , yli , xhi , yhi )}Ni=1

)
+ αLsr

(
{xhi }Ni=1

)
,

(6)

where the parameter α controls the balance between the
image super-resolution loss and the re-id loss. Optimizing
the joint lossLH IM allows guiding theFsr (·) to compensate
the semantic appearance details of the LR images toward
identity-salient fidelity synthesis and concurrently drives
Fh

f e(·) to accordingly extract identity discriminative features
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in a harmonious manner. Such a multitask joint learning for-
mulation is supposed to mitigate the resolution mismatch
problem in cross-resolution person re-id.

A key characteristic of the HIM formulation (Eq. (6))
is the seamless joining of a restoration quantization super-
resolution loss (Eq. (2)) and a person re-id loss (Eq. (3)),
both subject to the same synthetic LR training images xh2li
(Fig. 4b) in the context of concurrent identity discriminant
supervision on all three types of training images. That is, the
synthetic LR images xh2li and its re-id features f h2li together
bridge and correlate the image super-resolution (Fig. 4d) and
person re-id (Fig. 4 e and f) learning tasks. Without this
connection, the two loss functionsLsr andLreid will be opti-
mized independently, rather than jointly and concurrently.

3.2 Learning Bilateral-Resolution Identity Features
with Low-Resolution Identity Modeling

Although the information of LR images may be incomplete,
a fraction of it may be absent in the HR-specific represen-
tations but may be useful for re-id, i.e., LR-specific re-id
information. Under this consideration, we propose further
learning discriminative features in the LR image space, in a
similar manner as HR-specific re-id formulation above. We
ground this learning component on every pair of a synthetic
LR image (i.e., xh2li downsampled from HR image xhi ) and
a cross-view realistic LR image (i.e., xli ).

Formally, we introduce an LR re-id loss function as:

LL I M

(
{(xli , yli , xhi , yhi )}Ni=1

)
(7)

= 1

N

N∑
i=1

(
Lcls

(F l
c( f

l
li ), y

l
i

) + Lcls
(F l

c( f
h2l
li ), yhi

))
,

whereF l
c(·) represents theLR-specific identity classification.

Both fl notations denote LR-specific re-id feature vectors by
the LR-specific feature extraction function as:

f lli = F l
f e

(
xli

)
, f h2lli = F l

f e

(
xh2li

)
. (8)

By minimizing the classification loss LL I M , we encourage
F l

f e(·) to learn discriminative LR-specific identity features
from realistic and synthetic LR images.

- JBIM: Joint Bilateral-Resolution Identity Modeling.
Collaboratively fusing HR-specific identity learning and
LR-specific identity learning leads to the proposed JBIM
framework. This framework aims to derive more discrimi-
nate feature representations from the LRs and HRs together.

Specifically, with the image super-resolution function
Fsr (·) and theHR-specific feature extraction functionFh

f e(·),
we can obtain the HR-specific identity featureFh

f e(Fsr (xli ))

of an LR image xli and the HR-specific identity feature

Fh
f e(x

h
i ) of an HR image xhi . Moreover, the LR-specific

identity feature F l
f e(x

l
i ) and F l

f e(x
h2l
i ) can be extracted

by the discriminative LR-specific feature extraction function
F l

f e(·). We conjecture that HR representations and LR rep-
resentations capture different characteristics for re-id, i.e.,
they are complementary. To maximize this complementary
effect, we optimize the fusing of the features by minimizing
the following re-id classification loss as:

L f us

(
{(xli , yli , xhi , yhi )}Ni=1

)

= 1

N

N∑
i=1

(
Lcls

(F f
c ( f lf i ), y

l
i

) + Lcls
(F f

c ( f hf i ), y
h
i

))
,
(9)

where F f
c (·) represents the classification function of the

fused feature vectors f f , obtained by the feature fusion func-
tion as:

f lf i = F f us(Fh
f e(Fsr (xli )), F l

f e(x
l
i )),

f hf i = F f us(Fh
f e(x

h
i ), F l

f e(x
h2l
i )).

(10)

Finally, we derive the overall objective function as:

Loverall = LH IM + LL I M + βL f us, (11)

where the parameter β is a balance parameter. We set an
identical weight to the HR re-id loss (LH IM ) and the LR
re-id loss (LL I M ).

Optimizing the overall loss Loverall allows: (1) guid-
ing the super-resolution Fsr (·) to recover the appearance
information lost in low-resolution identity features, which
is beneficial for identity classification; (2) forcing the high-
resolution feature extraction function Fh

f e(·) to extract
discriminative high-resolution identity features; (3) com-
pelling the low-resolution feature extraction function F l

f e(·)
to extract the discriminative low-resolution identity features.
Besides, reducing the loss L f us makes the high-resolution
identitymapping and low-resolution identitymapping jointly
learned for obtaining resolution-specific discriminant fea-
tures, which could be complementary. For example, LIM and
HIM attend to different regions of a person image, making
their features complementary, as shown in Fig. 5.

4 Model Instantiation

We consider a deep CNN for model instantiation due to its
strong merits such as (1) its ability learning discriminative
representations from training data with great success on both
image super-resolution (Dong et al. 2016a;Wang et al. 2015)
and person re-id (Li et al. 2014; Xiao et al. 2016); (2) its
strong capability of learning highly non-convex tasks and
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LR
Image

LIM

HIM

Fig. 5 A large difference in the class activation maps derived by
low-resolution specific identity mapping (LIM, second row) and high-
resolution specific identity mapping (HIM, third row) suggests that the
learningmodule could extract different complementary appearance fea-
ture information from the LR and HR person images

its suitability for learning complex appearance variations in
lighting, occlusion and background clutter; and (3) its high
flexibility of reformulating the network architecture without
the need for redesigning the optimization algorithm.

In particular, we design a hybrid deep neural network to
realize the nonlinear functions involved, including the super-
resolution functionFsr (·), the HR-specific feature extraction
function Fh

f e(·), the LR-specific feature extraction function

F l
f e(·) and the feature fusion function F f us(·). The entire

framework is made up of three parts: the HIM network
(Fig. 4A) to compute the discriminative HR-specific identity
features, the LIM network (Fig. 4B) to obtain the discrim-
inative LR-specific identity features, and the FFN module
(Fig. 4C) to acquire the final representations fused by the
HR-specific and LR-specific identity features.

4.1 Architecture for High-Resolution Identity
Modeling

The network architecture for HIM is depicted in Fig. 4A.
Specifically, it consists of the two following modules.

-The Super-ResolutionModule aims to compensate for and
recover the information lost in the LR image acquisition,
i.e., realizing Fsr (·). It has two parameter-sharing streams,
taking xli (an LR image) and xh2li (a cross-view synthetic
LR image) as input . Following the super-resolution CNN
(SRCNN) in (Dong et al. 2014), our super-resolutionmodule
is constructed by two convolutional layers followed by a non-
linear rectified linear unit (ReLU) layer and a reconstruction
convolutional layer. The MSE loss function (Eq. 2) is used

for quantifying the pixel-level alignment degree between the
ground-truth HR xhi and the super-resolution output of xh2li
during training. The super-resolution outputs of xli are not
involved in calculating the reconstruction loss.

- The HR Re-IDModule aims to learn HR-specific identity
discriminant features, i.e., realizing Fh

f e(·), and imposing

HR-specific re-id constraints, i.e., realizing Fh
c (·). It has

HR parameter-sharing streams taking as input the super-
resolution output of the realistic LR image xli and the
super-resolution output of the synthetic LR image xh2li as
well as the HR image xhi . In our implementation, we adopt
a 50-layer residual neural network (ResNet-50) (He et al.
2016a), which has achieved effective results in classification
and detection tasks. In each stream, the penultimate fully
connected (FC) layer outputs the re-id feature, which is then
fed into the last FC layer for identity classification. The sum-
mation of all three streams’ identity losses (Eq. 3) is used as
the supervision signal for jointly qualifying the identification
of all inputs during model training. In the implementation,
we upscale the LR images to an appropriate size (256×128
in our experiments) by bicubic interpolation as (Dong et al.
2016a).

We achieve joint learning of image super-resolution and
person re-id in the proposed CNN by using multipurposed
synthetic LR image xh2li (Fig. 4b), i.e., xh2li is used for both
training super-resolution module and person re-id module.
Formally, xh2li and its super-resolution re-id feature vector
f h2lhi ground four loss quantities: one super-resolution loss
on (xh2li , xhi ) correlated with three re-id losses on three com-
puted features f h2lhi , f

l
hi and f hhi . This loss connectiondesign

injects more re-id discrimination awareness into a jointly
optimized image super-resolution model. We will evaluate
the effect of our model design in our experiments.

4.2 Architecture for Low-Resolution Identity
Modeling

With LIM, we realize the learning of the LR-specific feature
function, i.e., realizing F l

f e(·) and imposing LR-specific re-

id constraints F l
c(·), by a deep CNN as well (Fig. 4m and n).

Two parameter-sharing streams are involved, taking a realis-
tic LR image xli and a synthetic LR image xh2li as input. In
the same manner as the HR-specific re-id network, we adopt
ResNet-50 (He et al. 2016a). In each stream, the penultimate
FC layer outputs the re-id feature, which is then fed into the
last FC layer for LR-specific identity classification. The two
streams’ identity losses (Eq. 7) are summed up and used as
supervision signals for jointly qualifying the identification
of both the realistic and synthetic LR inputs during training,
i.e., two LR re-id losses on LR-specific identity features f lli
and f h2lli . The size of the LR images is fixed as 256×128 to
obtain the discriminative LR-specific identity features. Note
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that the images still have the same LRs, although the spatial
size is enlarged.

4.3 High- and Low-Resolution Collaborative
Learning

We design a FFN to jointly learn the HR-specific and
LR-specific identity features simultaneously.It collabora-
tively fuses the discriminative HR-specific identity features
(Sect. 4.1) and the LR-specific identity features (Sect. 4.2).
The FFN module consists of a concatenation layer, a fully-
connected layer, a batch normalization layer, a ReLU layer
and a dropout layer.

Specifically, taking the HR-specific feature f lhi and the
LR-specific feature f lli as input, the FFN outputs a fused
feature f lf i for an LR image xli ; Moreover, taking the HR-

specific feature f hhi and theLR-specific feature f h2lli as input,
the FFN concurrently outputs another fused feature f hf i for

a cross-view HR image xhi . Subsequently, the two fused fea-
tures (i.e., f lf i and f hf i ) are further fed into an FC layer
for separate identity classification. Finally, the two identity
losses (Eq. 9) are summed up to jointly supervise the identi-
fication of both the LR and HR inputs during training.

For feature fusion, we consider the following operation:

f f = F f us( fh, fl ) ∈ R
nh+nl (12)

fh = [ fh,1, fh,2, ..., fh, j , ..., fh,nh ] ∈ R
nh (13)

f l = [ fl,1, fl,2, ..., fl,k, ..., fh,nl ] ∈ R
nl (14)

where fh is an HR feature vector (e.g., fhh , fhl ) and f l is
an LR feature vector (e.g., fl h , fl l ). The scalars nh and nl
are the dimensions of fh and fl , respectively. f f denotes
the final joint bilateral-resolution features generated by fh
and fl . The back propagation operation of the concatenation
layer is as follows:

∂ fconcat,i
∂ fh, j

=
{
1 if i = j

0 if i �= j
(15)

∂ fconcat,i
∂ fl,k

=
{
1 if i = k + nh
0 if i �= k + nh

(16)

where fconcat = [ fh, fl ] ∈ R
nh+nl . The symbol [,] means

the concatenation of the two vectors. fconcat,i ∈ fconcat(i =
1, 2, ..., nh +nl), fh, j ∈ fh( j = 1, 2, ..., nh), fl,k ∈ fl (k =
1, 2, ..., nl). Since the concatenation operationwill only keep
the gradient of each neuron, the partial derivative is equal to
1 at corresponding position, otherwise it is equal to 0. These
two equations indicate that the gradients of the HR feature
vector fh and the LR feature vector fl do not influence each
other before they are input into the FFN module.

4.4 Model Testing

In the model test phase, we extract joint bilateral-resolution
features for both LR probe and HR gallery images. The
generic L2 distance metric is then used for re-id matching.

Specifically, for the HR gallery images, we directly use
the jointly learned HR re-id subnet in the HIM network to
obtain the HR-specific identity features and compute the LR-
specific identity features of the corresponding downsampled
LR images by LIM. For the LR probe images, we directly
apply the LIM network to compute the LR-specific identity
features. To compute the HR-specific identity features, we
apply the image super-resolution network in HIM to super-
resolve them before performing feature extraction by the
re-id subnet in the HIM network. The final joint bilateral res-
olution features are generated by the FFN module in which
the HR-specific identity features and the corresponding LR-
specific identity features are concatenated.

5 Multiresolution Adaptive Ensemble

The JBIM framework formulated as above assumes that all
the LR images have similar underlying resolutions because
the super-resolution network in the HIM network is opti-
mized for super-resolving the LR images by a ratiom, which
renders a single JBIMmodel suboptimal when the resolution
ratio is far away fromm as typically encountered in practice,
where multiple different LRs are present 2.

To address this problem, we propose creating ϕ anchor
JBIM models {M1, M2, · · · , Mϕ}, where each is responsi-
ble for optimizing a reference super-resolution ratio in the
set {m1,m2, · · · ,mϕ}. These JBIM models are then used
jointly to accommodate various resolutions involved in cross-
resolution re-id matching. Each model M i can be similarly
learned as described above by the corresponding synthetic
LR images Xh2l generated bydownsamplingHR imageswith
a ratiomi , along with realitic LR and HR training images. In
our experiments, we used three models corresponding to the
downsampling ratio { 12 , 1

3 ,
1
4 }.

In the test, given an LR probe image, we first com-
pute ϕ distance vectors {Di }ϕi=1 between the probe image
and all the gallery images with each anchor JBIM model,
where Di denotes the distance computed by model M i ,
i ∈ {1, 2, · · · , ϕ}. Then, we compute a multiresolution fused

2 While HR images also have different resolutions, we focus on han-
dling the LR images in this work because LR images suffer more
significant information loss than HR images during data acquisition and
are therefore the major cause of degraded re-id matching performance.
We assume that HR images share a similar resolution for simplicity.
However, the strategy proposed here can be similarly applied to deal
with HR images of different underlying resolutions.
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distance vector as:

Dmra =
ϕ∑

i=1

wi Di , (17)

where {wi }ϕi=1 represents the distance weights.
To make Dmra resolution adaptive, we consider the simi-

larity in theunderlying resolution among theLRprobe image,
all the HR gallery images, and each JBIM model. We quan-
tify the resolution similarity between the LR probe and HR
gallery images as:

r =
√

Ap

Ãg
, (18)

where Ap denotes the spatial area (i.e., the number of pixels)
of the LR probe and Ãg is the mean spatial area of all the
HRgallery images. They are computed on genuine resolution
scales without resizing. We then take into account the super-
resolving ratio mi as:

wi = exp{−σ−2 · (r − mi )
2}, (19)

where σ is a scaling parameter estimated by cross-validation.

6 Experiments

6.1 Datasets

We performed evaluations on one genuine and four simu-
lated cross-resolution person re-id datasets (Fig. 6). Instead
of assuming a single underlying resolution for all the LR
images, we consider multiple LRs (MLR) as in real-world
situations. Therefore, we used different downsampling rates
when simulating the LR images from the HR images.

(1) CAVIAR is an cross-resolution person re-id dataset
(Cheng et al. 2011). It contains 1220 images of 72 persons
captured from two camera views in a shoppingmall. Albeit of
small scale, this dataset is particularly suitable for evaluating
cross-resolution re-id because the resolution of images from
one camera (the distant camera) is much lower than that from
the other camera (the close camera).We discarded 22 persons
who appeared only in the close camera (HR images). For each
of the remaining 50 persons used in our experiments, there
are 10 HR and 10 LR images, i.e., a total of 1,000 images.
Unlike other simulated datasets, the LR images in CAVIAR
involve multiple realistic resolutions.

(2) MLR-CUHK03 was built from the CUHK03 (Li et al.
2014) dataset. The CUHK03 dataset consists of five different
pairs of camera views and contains more than 14,000 images
of 1,467 pedestrians. By following the settings outlined in

(a) CAVIAR (b) MLR-CUHK03

(c) MLR-SYSU (d) MLR-VIPeR

(e) MLR-Market

Fig. 6 Examples of HR (1st row) and LR (2nd row) person images
from five datasets

(Xiao et al. 2016), both the manually cropped and automati-
cally detected images were used in our evaluations. For each
camera pair,we randomly selected one as theLRprobe image
source by performing downsampling by a ratio randomly
selected from { 12 , 1

3 ,
1
4 }. This procedure results in a simu-

lated multiple LRs (MLRs) re-id dataset MLR-CUHK03.

(3) MLR-SYSU is based on the SYSU dataset (Chen et al.
2017a), which has 24,446 images of a total of 502 persons
captured by two cameras.We randomly selected three images
per person per camera in our evaluations and created anMLR
re-id dataset MLR-SYSU as for CUHK03.

(4) MLR-VIPeR was constructed from the VIPeR (Gray and
Tao 2008) dataset, which contains 632 person image pairs
captured by two cameras. Each image is of HR (128×48
pixels). To make this dataset suitable for cross-resolution
person re-id evaluation, we performed similar multiresolu-
tion downsampling on all the images from one camera view,
while the remaining images from the other view remained the
same. This procedure resulted in the MLR-VIPeR dataset.

(5) MLR-Market was constructed from the Market-1501
(Zheng et al. 2015) dataset, which contains 1501 people
captured by 6 cameras with varying viewpoints and lighting
conditions. Each person is captured by at least two cameras,
and each camera may obtain more than 10 pictures. To make
this dataset suitable for cross-resolution person re-id evalu-
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ation, we downsampled half of the images of a person by a
ratio randomly selected from { 12 , 1

3 ,
1
4 }, while the remaining

images of the other half remained the same.

6.2 Settings and Implementation

- Evaluation Protocol. We adopted the standard single-shot
re-id setting in our experiments. The CAVIAR,MLR-VIPeR
and MLR-SYSU datasets were randomly divided into two
halves: one-half for training and the other half for testing.
That is, there are p = 25, p = 316 and p = 251 persons in
the testing sets of CAVIAR, MLR-VIPeR and MLR-SYSU,
respectively. Following (Xiao et al. 2016), we utilized the
benchmarking 1,367/100 training/test identity split for the
MLR-CUHK03 dataset. In addition, we applied the 751/750
training/test identity split setting on theMLR-Market dataset
following (Zheng et al. 2015). For the testing data, we con-
structed the probe set with all LR images per person and the
gallery set with one randomly selected HR image per person.
For performance evaluation, we used the average cumula-
tive match characteristic (CMC) and mean average precision
(mAP) to measure the cross-resolution re-id matching per-
formance.

- ImplementationDetails.Wefirst trained theHIMandLIM
networks on each target cross-resolution re-id dataset sepa-
rately and then trained the whole JBIM model with the HIM
and LIM networks initialized with the independently trained
parameters and the randomly initialized FFN. The backbone
of our network was trained with random horizontal flipping,
random cropping and batch normalization neck (BNNeck)
(Luo et al. 2019). For the HIM network, we initialized the
super-resolution network by the SRCNN (Dong et al. 2014)
with a padding operation for all the convolution layers and
the ResNet-50-based re-id network (He et al. 2016a) with
ImageNet weights. We find that using other super-resolution
networks yields little performance improvement. We ini-
tialized the ResNet-50-based LIM network with ImageNet
weights. The σ (Eq. (19)) was set to 0.5. We set the balanc-
ing coefficient α = 1 (Eq. (6)) and β = 3 (Eq. (11)). The
parameters α and β will be discussed in the experiments.

6.3 Comparing Existing Low-Resolution
Re-IdentificationModels

We compared the proposed JBIM method with eight exist-
ing state-of-the-art cross-resolution re-id methods, including
three traditional methods and five deep CNN-based meth-
ods: (1) joint multiscale discriminant component analysis
(JUDEA) (Li et al. 2015): a cross-scale discriminative dis-
tance metric learning model; (2) semi-coupled low-rank
discriminant dictionary learning (SLD2L) (Jing et al. 2015): a
feature transformationor alignmentmodel; (3) scale-distance

Table 2 Comparison of the complexity of state-of-the-art cross-
resolution re-id methods that are based on ResNet-50 as the backbone.
We calculate the complexity of these models according to the descrip-
tion in their papers. “Params” is the number of parameters ofmodel, and
“MACs” is the number of fixed-point multiplication and accumulation
operations per second

Model Params (M) MACs (G)

CSR-GAN (Wang et al. 2018) 187.50 48.68

CAD-Net (Li et al. 2019a) 115.83 48.52

DI-REID (Huang et al. 2020) 472.86 734.63

JBIM 52.96 13.96

function (SDF) (Wang et al. 2016): a scale-distance func-
tion learning model; (4) cascaded SR-GAN (CSR-GAN)
(Wang et al. 2018): a joint learning of the person re-id and
multiple cascaded SR-GANs; (5) resolution-invariant per-
son re-identification (RIPR) (Mao et al. 2019): a network
jointly training a foreground focus super-resolution module
and a reso-lution-invariant feature extractor by end-to-end
CNN learning; (6) cross-resolution adversarial dual net-
work (CAD-Net) (Li et al. 2019a): a generative dual model
for cross-resolution person re-id. (7) inter-task association
critic (INTACT) (Cheng et al. 2020): a model leveraging the
association between image SR and person re-id tasks; (8)
degradation-invariant re-id (DI-REID) (Huang et al. 2020):
a degradation-invariant learning framework.

It is evident from Table 3 that our JBIM method out-
performs all the competitors in most cases. For example,
the JBIM method surpassed the best alternative traditional
method JUDEA by 30.0%, 62.1%, 40.8%, and 23.7% in
terms of the rank-1 matching rate on the CAVIAR, MLR-
CUHK03, MLR-SYSU, and MLR-VIPeR datasets, respec-
tively. The performance margins of the JBIM method over
the SLD2L and SDF models are still larger.

Moreover, our JBIM method surpasses the four deep
CNN-based cross-resolution re-id methods on each dataset
except the DI-REID model on the VIPeR dataset. Specifi-
cally, the strongest competitors are namely DI-REID (Huang
et al. 2020) and INTACT (Cheng et al. 2020), particularly
on the MLR-VIPeR and MLR-Market dataset. Whilst our
model’s result is on par with DI-REID, the complexity of
our method is largely smaller (9 times smaller), as reported
in Table 2, meaning that our model is more cost-effective and
more computationally scalable. In comparisonwith INTACT,
we found that it uses OSNet (Zhou et al. 2019) as the back-
bone which is stronger than ResNet-50 (He et al. 2016a)
as our model used for re-id. We thus tested our model
with OSNet. Table 3 shows that our method can outperform
INTACT on all datasets with a clear margin using the same
backbone model.
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The above results indicate the advantages of the pro-
posed JBIM model in handling both simulated and genuine
cross-resolution re-id. The performance superiority ismainly
due to (1) the capability of jointly super-resolving images
and learning discriminative person re-id features, which
allows us to maximize their mutual correlation. Compared to
the cross-resolution alignment-based competitor, our model
is able to synthesize high-frequency missing LR images
by re-id discriminative super-resolution and thus extracts
richer representations, which not only directly mitigates the
information amount discrepancy problem but also fills the
hard-to-bridge matching gap between different resolutions
with the appearance pattern divergence involved. (2) By
jointly learning the bilateral-resolution identity feature, the
presented multiresolution (HR and LR) features better char-
acterize the salience of a person in cross-resolution re-id than
all the traditional and deep CNN-based methods using only
single-resolution features.

6.4 Comparing Existing State-of-the-Art
Re-IdentificationMethods

To validate the necessity of a specially designed framework
for the cross-resolution re-id problem, we have implemented
three SOTA re-id methods (i.e. OSNet (Zhou et al. 2019),
ABD-Net (Chen et al. 2019a), and AGW (Ye et al. 2021))
in our problem setting, which are not specially designed for
cross-resolution re-id. The same training and testing settings
are used as our method. As shown in Table 3, our method sur-
passes all these alternative re-id methods for cross-resolution
person re-id. It demonstrates that the resolution mismatch
problem need targeted solutions.

6.5 Comparing the Super-resolution +
Re-Identification Scheme

We further evaluated the cross-resolution person re-id per-
formance by deploying a straightforward combination
of the super-resolution and person re-id scheme. While con-
ventional re-id methods assume using HR images, we utilize
state-of-the-art super-resolutionmodels when LR images are
given to meet their requirement. We used the same training
images as the proposed JBIM method to fine-tune the super-
resolution models. The proposed multiresolution adaptive
ensemble algorithmwas applied to all the comparedmethods
for a fair comparison.

- Compared Methods. The conventional Re-ID methods
considered in our evaluations are as follows: (1) cross-view
quadratic discriminant analysis (XQDA) (Liao et al. 2015): a
supervisedMahalanobismetric learningmethod; (2) domain-
guided dropout (DGD) : a widely used deep CNN re-id
model; (3) ResNet-50 (He et al. 2016a): a state-of-the-art
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deep CNN classification model. We utilized the contempo-
rary localmaximal occurrence (LOMO) handcrafted features
(Liao et al. 2015) for XQDA.

The image super-resolution methodswe selected for eval-
uation include two standard algorithms and five state-of-the-
art algorithms: (1) Bilinear: a popular linear interpolation-
based super-resolution model effective in handling generic
image scaling; (2) Bicubic: another widely used image
super-resolution method, which is an extension of cubic
interpolation; (3) SRCNN (Dong et al. 2014): an existing
state-of-the-art deep CNN-based super-resolution model; (4)
fast SRCNN (FSRCNN) (Dong et al. 2016b): an accel-
erated deep CNN-based super-resolution model; (5) very
deep super-resolution (VDSR) (Kim et al. 2016a): a super-
resolution method based on a very deep CNN; (6) deeply-
recursive convolutional network (DRCN) (Kim et al. 2016b):
a deeply-recursive convolutional network-based super-

resolution method; (7) SRGAN (Ledig et al. 2016): a
super-resolution method using a GAN to compensate for the
image details.

- Results & Analysis. For the other methods, we show dif-
ferent straightforward combinations of the super-resolution
methods and re-id methods. Table 4 shows that the pro-
posed JBIM method significantly outperformed all of the
combinations of super-resolution+re-id methods. Specif-
ically, the rank-1 matching rate over all the competi-
tors by the JBIM method can reach 12.9% (52.0-39.1),
14.5%(88.3-73.8), 6.3%(59.1-52.8), 17.4%(49.7-32.3) and
22.9%(88.1-65.2) on the CAVIAR, MLR-CUHK03, MLR-
SYSU, MLR-VIPeR and MLR-Market datasets, respec-
tively. These results show that the joint bilateral resolution
features outperformed the single HR-specific identity fea-
tures of the images super-resolved by the generic super-
resolution methods.

- Qualitative Evaluation of Different Super-Resolution
Methods. We qualitatively compared the super-resolved

person images produced byBilinear, Bicubic, SRCNN, FSR-
CNN,VDSR, DRCN, SRGAN and our JBIM. Two examples
are presented in Fig. 7. We make the following observations:
(1) Super-resolved images by bilinear and bicubic interpola-
tion are more blurry than those produced by the CNN-based
super-resolution methods and our proposed JBIM method.
(2) More edge/contour elements and better structured tex-
ture patterns are recovered by the proposed JBIM method.
In addition, the color distributions of the images produced
by the JBIM method are more similar to the ground-truth
color distributions than those produced by the other methods.
This difference visually indicates the advantages of JBIM
over super-resolution + re-id methods due to the capability
of recovering missing/enhancing appearance details while
ensuring better re-id discrimination.

7 Further Analysis of the ProposedMethod

7.1 Evaluation of the Individual Components

We provide detailed model component analysis in terms
of performance contribution. The comparisons on the five
cross-resolution re-id datasets are summarized in Table 5.
In particular, “JBIM w/o HIM” means that we train the LIM
branch (Fig. 4B) independently by using only the LR-specific
identity features for re-id. Similarly, “JBIMw/o LIM”means
that we train the HIM branch (Fig. 4A) independently by
using only the HR-specific identity features for re-id.
- Super-Resolution Versus Low-resolution Specific Iden-
tity Features. We evaluate the cross-resolution re-id per-
formance of the HR-specific identity features learned from
the JBIM w/o LIM model (i.e., using the HIM network
only) in comparison to the LR-specific identity features
from the JBIM w/o HIM model (i.e., using the LIM net-
work only). The results are shown on five datasets in Table
5. Although it is intuitive that using the HR features out-
performed the LR features by 1.7%(48.7-47.0), 0.3%(87.1-
86.8), 2.3%(58.0-55.7), 4.8%(45.6-40.8), 1.2%(87.7-86.5)
in terms of the rank-1 matching rate on the CAVIAR, MLR-
CUHK03, MLR-SYSU, MLR-VIPeR and MLR-Market
datasets, respectively, it is also clear that the JBIM method
without HIM is not weak; i.e., discriminant identity features
exist in the LR person image.

- Single-Resolution Versus Multiresolution Features. We
further evaluate the cross-resolution re-id performance advan-
tages of our multiresolution features in comparison to inde-
pendently learned single-resolution features. Table 5 reports
the matching results of the JBIM method, the JBIM method
without LIM, and the JBIM method without HIM. From the
experimental results, it can be observed that the joint learned
multiresolution features achieve a better performance than
using only one of them.Without the LIM network, the rank-1
matching rate of the JBIMmethod drops by 3.3%(52.0-48.7),
1.2%(88.3-87.1), 1.1%(59.1-58.0), 4.1% (49.7-45.6), 0.4%
(88.1-87.7) on the CAVIAR, MLR-CUHK03, MLR-SYSU,
MLR-VIPeR andMLR-Market datasets, respectively, which
suggests that the LR-specific identity features are still
important for constructing the joint bilateral-resolution fea-
tures, although the LR-specific identity features contain
less information than the HR-specific identity features. The
performance margins of the JBIM method over the JBIM
method without HIM (i.e., LIM) are even larger. This finding
validates the effectiveness of our proposed multiresolution
feature learning method in improving cross-resolution re-id
matching.
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Bilinear Bicubic SRCNN FSRCNN VDSR DRCN OursGroundtruthLR SRGAN

Fig. 7 Qualitative evaluations of the super-resolved person images by different methods. The ground-truth normal-resolution images (2nd column)
are indicated by red bounding boxes (Color figure online)

Table 5 Matching rate (%): Evaluation of the individual components

CAVIAR Rank1 Rank5 Rank10 mAP

JBIM w/o HIM 47.0 81.6 92.8 48.6

JBIM w/o LIM 48.7 81.0 92.6 49.0

JBIM 52.0 83.1 94.4 50.1

MLR-CUHK03 Rank1 Rank5 Rank10 mAP

JBIM w/o HIM 86.8 96.3 98.1 88.2

JBIM w/o LIM 87.1 96.3 98.2 88.5

JBIM 88.3 97.2 98.7 89.9

MLR-SYSU Rank1 Rank5 Rank10 mAP

JBIM w/o HIM 55.7 79.8 86.7 62.2

JBIM w/o LIM 58.0 81.2 88.0 63.9

JBIM 59.1 82.3 88.9 65.7

MLR-VIPeR Rank1 Rank5 Rank10 mAP

JBIM w/o HIM 40.8 68.0 79.1 49.8

JBIM w/o LIM 45.6 68.0 79.7 52.6

JBIM 49.7 72.5 81.3 58.0

MLR-Market Rank1 Rank5 Rank10 mAP

JBIM w/o HIM 86.5 94.3 96.4 68.5

JBIM w/o LIM 87.7 94.8 96.8 70.7

JBIM 88.1 95.1 96.9 73.5

7.2 Jointly Learning theMultiresolution Features

JBIM can be considered a joint hybrid model of the HIM
network, the LIM network and the FFN to learn a multireso-
lution feature fused by HR-specific and LR-specific identity
features. To validate the effectiveness of jointly learned
multiresolution features, we conduct a comparison experi-
ment with “HIM+LIM” , which learns the HR-specific and
LR-specific identity features independently and then con-
catenates the HR-specific and LR-specific identity features
into the final features. As shown in Table 6, such a feature
fusion method is effective: the JBIM method yields rank-1
matching rate improvement over “HIM+LIM”by2.8%(52.0-
49.2), 0.8%(88.3-87.5), 0.4%(59.1-58.7), 2.9% (49.7-46.8)
and 0.4%(88.1-87.7) on the CAVIAR, MLR-CUHK03,
MLR-SYSU and MLR-Market datasets, respectively. This
finding suggests that the joint learning of the HR-specific
and LR-specific identity features achieves better results than
concatenating the independent LR-specific and HR-specific
identity features. The results validate the effectiveness of
FFN of the JBIM framework.

7.3 Synthetic Low-Resolution Images

We evaluate the contribution of joint super-resolving the syn-
thetic LR images by the MSE loss (Eq. (2)), in conjunction
with classifying the resolved image (Eq. (3)). To this end,
we evaluate a stripped-down JBIM framework in which the
HIMnetworkwithout the streams of the synthetic LR images
(see the green arrows in Fig. 4 (A)). As such, the MSE
super-resolution loss is removed because no LR-HR train-
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Table 6 Matching rate (%): Comparing the independent learningmeth-
ods. “HIM + LIM” means learning HIM and LIM independently;
“SRCNN+ResNet-50+LIM” means learning super-resolution module,
HR-specific re-id module and LIM independently

CAVIAR Rank1 Rank5 Rank10 mAP

SRCNN + ResNet-50 + LIM 46.8 82.6 95.2 47.2

HIM + LIM 49.2 82.8 94.3 47.9

JBIM 52.0 83.1 94.4 50.1

MLR-CUHK03 Rank1 Rank5 Rank10 mAP

SRCNN + ResNet-50 + LIM 86.0 96.6 98.0 87.5

HIM + LIM 87.5 96.8 98.3 88.1

JBIM 88.3 97.2 98.7 89.9

MLR-SYSU Rank1 Rank5 Rank10 mAP

SRCNN + ResNet-50 + LIM 57.8 81.5 87.9 63.5

HIM + LIM 58.7 82.4 88.8 64.3

JBIM 59.1 82.3 88.9 65.7

VIPeR Rank1 Rank5 Rank10 mAP

SRCNN + ResNet-50 + LIM 41.6 69.0 80.1 55.2

HIM + LIM 46.8 72.8 82.3 57.5

JBIM 49.7 72.5 81.3 58.0

MLR-Market Rank1 Rank5 Rank10 mAP

SRCNN + ResNet-50 + LIM 83.8 94.0 96.3 70.1

HIM + LIM 87.7 95.4 97.0 71.2

JBIM 88.1 95.1 96.9 73.5

ing image pairs are available. Table 7 shows that an inferior
cross-resolution re-id performance will be yielded without
this joint learning stream. For example, the rank-1 rate drops
from 52.0% to 50.1%on the CAVIARdataset, from 88.3% to
87.9% on the MLR-CUHK03 dataset, from 59.1% to 58.3%
on the MLR-SYSU dataset, from 49.7% to 47.2% on the
MLR-VIPeR dataset, and from 88.1% to 87.5%on theMLR-
Market dataset, respectively.

This performance drop validates the usefulness of the
proposed joint learning approach in guiding the image
super-resolution model toward generating HR images with
re-id discriminative visual information. We further directly
evaluate the stripped-down HIM network (JBIM without
LIM) without synthetic LR images. From Table 7, we
can see that the performance also decreases without joint
learning. Specifically, the rank-1 matching rate decreases
by 1.8%, 0.2%, 0.8%, 1.5%, 0.8% on CAVIAR, MLR-
CUHK03, MLR-SYSU, MLR-VIPeR and MLR-Market
datasets, respectively. The results further indicate that super-
resolution and re-id joint learning can obtain better discrim-
inative HR-specific identity features than other methods.

7.4 ComparingModels Trained with All Resolution
Images

We consider that there are specific features for different
resolutions of an image. In order to prove the necessity
of LR-specific identity information, we train a ResNet-50
(i.e., our backbone) with all resolutions of training images,
and we denote this variant as “All-Resolution”. Compared
with our JBIM that learns the collaboration of LR-specific
and HR-specific information, the “All-Resolution” model
achieves suboptimal performance. A plausible reason is that
given a large number of different resolutions with the train-
ing data, the learned network has to fit all resolutions and
could discard the specific resolution information. In contrast,
our approach is able to extract different specific resolution
information and make them collaborate by optimisation. As
shown in Table 8, our method outperforms the model trained
with all resolution images. In addition, we conduct a visu-
alization of class activation maps of these two networks,
and it can be found in Fig. 8. It is found that our model’s
class activation maps could capture complementary person
appearance.

7.5 Super-Resolution and Re-ID Loss Balancing

We evaluated the balancing effect between image super-
resolution and the person re-id loss by varying the trade-off
parameter α in Eq. (6) (α = 1 in all the other exper-
iments). We conducted this analysis on all the genuine
and simulated cross-resolution re-id datasets with β =
3 fixed. Table 9 shows that the experimental results are
insensitive to variations in parameter α. Specifically, the
rank-1 matching rate is highest when parameter α = 1 in
Table 9. Thus, we use α = 1 in our comparison experi-
ments. Moreover, when setting α = 0, the rank-1 match-
ing rate performance dropped 2.6%, 0.5%, 0.6%, 1.6%,
1.0% on the CAVIAR, MLR-CUHK03, MLR-SYSU, MLR-
VIPeR and MLR-Market datasets, respectively, because
super-resolution reconstruction is totally ignored, and thus,
there is no interaction between super-resolution and re-id.
Moreover, the learning constraint on the super-resolution
submodel isweak, backpropagated fromperson identity clas-
sification supervision, and therefore results in poor re-id
matching.

7.6 Single- andMulti- Resolution Re-ID Loss
Balancing

We further evaluated the balancing effect between the single-
resolution loss (i.e., the LIM loss and the HIM loss) and the
resolution fusion loss by varying the trade-off parameter β in
Eq. (11) (β = 3 in all the other experiments). We conducted
this analysis on all the genuine and simulated cross-resolution
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Table 7 Effect of jointly
super-resolving and classifying
synthetic LR images (%)

Models HIM (no HIM JBIM (no JBIM
synthetic LR) synthetic LR)

Datasets Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

CAVIAR 46.9 47.6 48.7 49.0 50.1 48.6 52.0 50.1

MLR-CUHK03 86.9 88.0 87.1 88.5 87.9 89.4 88.3 89.9

MLR-SYSU 57.2 62.6 58.0 63.9 58.3 65.0 59.1 65.7

MLR-VIPeR 44.1 51.7 45.6 52.6 47.2 56.2 49.7 58.0

MLR-Market 86.9 69.9 87.7 70.7 87.5 72.8 88.1 73.5

Table 8 Matching rate (%):
“All-Resolution” means training
a ResNet-50 with all resolution
images (e.g. normal HR training
images and LR images obtained
by manually down-sampling
original training images at the
ratios of { 12 , 1

3 , 1
4 })

Dataset Method Rank1 Rank5 Rank10 mAP

MLR-VIPeR All-Resolution 36.7 62.3 74.4 48.9

JBIM 49.7 72.5 81.3 58.0

MLR-CUHK03 All-Resolution 52.6 77.3 84.9 56.4

JBIM 88.3 97.2 98.7 89.9

MLR-Market All-Resolution 53.8 71.1 77.6 38.0

JBIM 88.1 95.1 96.9 73.5

HIMLIM All
Resolu�on

Color bar

Input Input

Fig. 8 Visualizations of our JBIM and All-Resolution

re-id datasetswithα = 1fixed. Table 10 shows that the exper-
imental results are insensitive to variations in parameter β.
Specifically, the rank-1 matching rate of most datasets peaks
when β = 3. Therefore, we use β = 3 in our comparison
experiments.

7.7 Different Basic Super-Resolution or Re-ID
Models

We further validate the flexibility of the JBIM framework
by choosing different super-resolution or re-id CNN models

to construct different variants. In particular, we replaced the
default super-resolution model (i.e., SRCNN) with VDSR,
DRCN and SRGAN in all the other experiments or replaced
the default re-id model (i.e., ResNet-50) with OSNet in all
the other experiments for our proposed JBIM framework
and JBIM framework without LIM (i.e., using HIM only)
models. The results are shown in Tables 11 and 12. In
the tables, “JBIM (VDSR)” and “HIM (VDSR)” mean that
we use VDSR for super-resolution in the JBIM and HIM
frameworks, respectively. Similarly, “JBIM (OSNet)”, “HIM
(OSNet)” and “LIM (OSNet)”mean thatOSNet is used in our
model as backbone. The results indicate that our joint learn-
ing methods perform stably across different super-resolution
and re-id models.

7.8 Scale-Adaptive Low-Resolution Fusion

We evaluated the effect of fusing discriminative feature rep-
resentations from multiple LR scales for improving person
matching using the proposed scale-adaptive ensemble algo-
rithm. To this end, we evaluated the cross-resolution re-id

Table 9 Effect of balancing
image super-resolution and the
person re-identification loss
(β = 3)

α 0 1 10 100 1000
Datasets Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

CAVIAR 49.4 47.7 52.0 50.1 51.5 48.9 51.0 48.7 50.8 48.2

MLR-CUHK03 87.8 89.0 88.3 89.9 88.2 89.5 88.5 90.1 88.2 89.7

MLR-SYSU 58.5 64.8 59.1 65.7 59.0 65.2 59.0 65.4 59.0 65.6

MLR-VIPeR 48.1 55.8 49.7 58.0 48.7 57.1 49.1 56.9 49.1 57.3

MLR-Market 87.1 72.2 88.1 73.5 88.0 73.6 87.9 73.2 87.9 73.3
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Table 10 Effect of balancing
the single-resolution and
multiresolution re-id losses
(α = 1)

β 1 2 3 4 5
Datasets Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

CAVIAR 51.1 49.1 52.0 49.8 52.0 50.1 50.9 48.7 50.6 48.7

MLR-CUHK03 88.1 89.8 88.1 89.5 88.3 89.9 88.2 89.9 88.3 89.7

MLR-SYSU 59.1 65.8 59.0 65.4 59.1 65.7 59.2 65.6 59.1 65.4

MLR-VIPeR 47.5 55.7 48.4 57.2 49.7 58.0 46.5 55.6 46.8 55.0

MLR-Market 87.9 73.0 88.0 73.3 88.1 73.5 87.9 72.9 87.8 72.9

Table 11 Effects of super-resolution CNN models (%)

Models CAVIAR MLR-CUHK03 MLR-SYSU MLR-VIPeR MLR-Market
Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

HIM (SRCNN) 48.7 49.0 87.1 88.5 58.0 63.9 45.6 52.6 87.7 70.7

HIM (VDSR) 48.5 48.7 86.4 88.0 57.6 63.0 44.9 51.9 85.6 69.7

HIM (DRCN) 48.9 49.2 87.3 88.6 57.3 63.4 45.3 52.2 85.9 70.0

HIM (SRGAN) 47.6 46.8 86.1 87.7 58.0 63.5 44.4 51.5 85.7 69.6

JBIM (SRCNN) 52.0 50.1 88.3 89.9 59.1 65.7 49.7 58.0 88.1 73.5

JBIM (VDSR) 51.4 49.7 88.0 89.5 59.0 65.5 48.5 56.8 87.9 73.2

JBIM (DRCN) 51.8 49.7 88.6 90.1 60.1 66.2 49.2 57.5 88.0 73.5

JBIM (SRGAN) 49.3 48.9 87.4 88.6 60.0 66.0 47.4 56.0 87.9 72.8

Table 12 Effects of Re-ID CNN models (%)

Models CAVIAR MLR-CUHK03 MLR-SYSU MLR-VIPeR MLR-Market
Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

SRCNN+OSNet 43.0 45.6 86.8 88.3 59.6 64.9 46.8 60.4 86.0 70.7

HIM (OSNet) 49.0 49.7 87.5 89.2 60.9 66.7 49.1 61.0 87.4 72.6

HIM (OSNet)+LIM (OSNet) 49.8 50.1 87.6 89.1 61.4 66.6 49.7 62.5 88.1 73.5

JBIM (OSNet) 53.1 51.2 88.7 90.3 61.7 67.3 52.7 63.1 89.6 74.7

performance of six combination schemes from three differ-
ent scale-specific JBIM models (M 1

2
, M 1

3
, M 1

4
). We further

evaluated the effect of the proposed scale-adaptive ensemble
algorithm on the JBIM framework without LIM (i.e., using
only the HIM network). They correspond to 3 downsampling
ratios { 12 , 1

3 ,
1
4 }. Table 13 shows that more scales of LR infor-

mation fused by the proposed method yield better results that
we can achieve. The best results over all five cross-resolution
re-id datasets are yielded by fusing all three scale-specific
models. This finding validates the efficacy of the proposed
multiscale fusion algorithm. Moreover, this observation is
consistent in spirit with the classical pyramid matching ker-
nel (Grauman andDarrell 2005; Lazebnik et al. 2006), except
that our multiscale fusion is uniquely on multiple pixel-level
resolutions rather than onmultiple spatial extents of the same
resolution.

7.9 Ablation Study for the Scaling Parameter�

We have evaluated the effect of the scaling parameter σ in
Eq. (19). As shown in Fig. 9, the increase of σ improves
the performances on each dataset when σ is smaller than
0.2. When σ is larger than 0.2, the performance does not
change a lot. The parameter σ is not an important parameter
in our experiments, andwe just use it to enlarge the difference
between the resolution similarity r and super-resolving ratio
mi . In our experiments, σ is set to 0.5.

If we take σ as a variable s and (r −mi )
2 as a constant C ,

the function in Eq. (19) can be converted to

wi = e−C∗s−2
, s ∈ (0,+∞) (20)
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Fig. 9 Ablation study of the scaling parameter σ

which is a monotone increasing bounded function whose
upper bound is 1. Therefore, the distance weight wi does not
change a lot if we continue to increase the scaling parameter
σ .

7.10 Study of Down-Sampling Ratios

Except the original setting with the down-sampling ratios
{ 12 , 1

3 ,
1
4 } for both training and testing sets, we have now

evaluated each individual ratio separately. From Table 14,
we have several observations: 1) When the down-sampling
ratio of test set becomes larger, the performancewill drop due
to more missing observations; 2) The best performance can
be achieved when the same ratio is applied to the training set,
suggesting that image resolution is a dimension that matters
to model performance.

8 Conclusion

In this work, we present a joint bilateral-resolution identity
modeling (JBIM) framework for solving the cross-resolution
person re-identification challenge. The JBIM framework col-
laboratively learns both HR-specific and LR-specific identity
features by introducing a synergistic interplaybetween super-
resolution and discriminant re-id feature learning. In partic-
ular, we have demonstrated the significance of exploiting
LR-specific identity features in joint learning for overcom-
ing cross-view and cross-resolution cross-resolution re-id.
Extensive evaluations on five benchmarks show the clear
superiority of our JBIMmodel over existing cross-resolution
re-idmethods and fusions of state-of-the-art super-resolution
and re-id models, without elaborate network architecture
design. We have also conducted a full spectrum of model
component analysis to validate the effectiveness of individ-
ualmodules and provide insights into ourmodel formulation.
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Table 14 Ablation study of the down-sampling ratio. “Down-sampling
ratio for training” refers to the down-sampling ratio of LR images using
in the training process, HR images do not change. “Down-sampling

ratio for testing” means the down-sampling ratio of LR probe images
using in the testing process, HR gallery images stay as normal

Down-sampling ratio for testing 1/2 1/3 1/4 {1/2, 1/3, 1/4}
Down-sampling ratio for training

MLR-VIPeR Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

1/2 38.6 50.3 36.7 49.8 32.3 44.0 36.4 48.9

1/3 38.3 50.2 37.3 50.7 33.9 46.7 37.0 49.4

1/4 37.0 49.6 35.4 48.9 36.1 48.6 36.4 49.2

{1/2, 1/3, 1/4} 44.6 58.5 44.3 57.8 40.8 55.0 49.7 58.0

MLR-CUHK03 Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

1/2 91.3 92.6 89.9 91.4 88.1 89.5 78.3 80.8

1/3 91.2 92.1 91.0 91.7 89.7 90.8 81.5 83.1

1/4 90.0 91.4 89.0 90.6 89.7 90.5 80.6 82.5

{1/2, 1/3, 1/4} 91.2 92.5 90.1 91.5 90.3 91.5 88.3 89.9

MLR-Market Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

1/2 90.1 75.6 87.4 72.7 83.4 67.7 70.7 57.2

1/3 89.0 74.0 88.5 72.8 85.8 69.5 73.3 57.7

1/4 87.5 71.5 86.8 70.8 86.1 70.2 71.1 56.0

{1/2, 1/3, 1/4} 92.3 79.8 91.2 78.4 89.0 75.9 88.1 73.5
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